linux/kernel/sched/sched.h
<<
>>
Prefs
   1
   2#include <linux/sched.h>
   3#include <linux/sched/sysctl.h>
   4#include <linux/sched/rt.h>
   5#include <linux/sched/deadline.h>
   6#include <linux/mutex.h>
   7#include <linux/spinlock.h>
   8#include <linux/stop_machine.h>
   9#include <linux/tick.h>
  10#include <linux/slab.h>
  11
  12#include "cpupri.h"
  13#include "cpudeadline.h"
  14#include "cpuacct.h"
  15
  16struct rq;
  17struct cpuidle_state;
  18
  19/* task_struct::on_rq states: */
  20#define TASK_ON_RQ_QUEUED       1
  21#define TASK_ON_RQ_MIGRATING    2
  22
  23extern __read_mostly int scheduler_running;
  24
  25extern unsigned long calc_load_update;
  26extern atomic_long_t calc_load_tasks;
  27
  28extern long calc_load_fold_active(struct rq *this_rq);
  29extern void update_cpu_load_active(struct rq *this_rq);
  30
  31/*
  32 * Helpers for converting nanosecond timing to jiffy resolution
  33 */
  34#define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  35
  36/*
  37 * Increase resolution of nice-level calculations for 64-bit architectures.
  38 * The extra resolution improves shares distribution and load balancing of
  39 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  40 * hierarchies, especially on larger systems. This is not a user-visible change
  41 * and does not change the user-interface for setting shares/weights.
  42 *
  43 * We increase resolution only if we have enough bits to allow this increased
  44 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
  45 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
  46 * increased costs.
  47 */
  48#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
  49# define SCHED_LOAD_RESOLUTION  10
  50# define scale_load(w)          ((w) << SCHED_LOAD_RESOLUTION)
  51# define scale_load_down(w)     ((w) >> SCHED_LOAD_RESOLUTION)
  52#else
  53# define SCHED_LOAD_RESOLUTION  0
  54# define scale_load(w)          (w)
  55# define scale_load_down(w)     (w)
  56#endif
  57
  58#define SCHED_LOAD_SHIFT        (10 + SCHED_LOAD_RESOLUTION)
  59#define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
  60
  61#define NICE_0_LOAD             SCHED_LOAD_SCALE
  62#define NICE_0_SHIFT            SCHED_LOAD_SHIFT
  63
  64/*
  65 * Single value that decides SCHED_DEADLINE internal math precision.
  66 * 10 -> just above 1us
  67 * 9  -> just above 0.5us
  68 */
  69#define DL_SCALE (10)
  70
  71/*
  72 * These are the 'tuning knobs' of the scheduler:
  73 */
  74
  75/*
  76 * single value that denotes runtime == period, ie unlimited time.
  77 */
  78#define RUNTIME_INF     ((u64)~0ULL)
  79
  80static inline int fair_policy(int policy)
  81{
  82        return policy == SCHED_NORMAL || policy == SCHED_BATCH;
  83}
  84
  85static inline int rt_policy(int policy)
  86{
  87        return policy == SCHED_FIFO || policy == SCHED_RR;
  88}
  89
  90static inline int dl_policy(int policy)
  91{
  92        return policy == SCHED_DEADLINE;
  93}
  94
  95static inline int task_has_rt_policy(struct task_struct *p)
  96{
  97        return rt_policy(p->policy);
  98}
  99
 100static inline int task_has_dl_policy(struct task_struct *p)
 101{
 102        return dl_policy(p->policy);
 103}
 104
 105static inline bool dl_time_before(u64 a, u64 b)
 106{
 107        return (s64)(a - b) < 0;
 108}
 109
 110/*
 111 * Tells if entity @a should preempt entity @b.
 112 */
 113static inline bool
 114dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 115{
 116        return dl_time_before(a->deadline, b->deadline);
 117}
 118
 119/*
 120 * This is the priority-queue data structure of the RT scheduling class:
 121 */
 122struct rt_prio_array {
 123        DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 124        struct list_head queue[MAX_RT_PRIO];
 125};
 126
 127struct rt_bandwidth {
 128        /* nests inside the rq lock: */
 129        raw_spinlock_t          rt_runtime_lock;
 130        ktime_t                 rt_period;
 131        u64                     rt_runtime;
 132        struct hrtimer          rt_period_timer;
 133};
 134
 135void __dl_clear_params(struct task_struct *p);
 136
 137/*
 138 * To keep the bandwidth of -deadline tasks and groups under control
 139 * we need some place where:
 140 *  - store the maximum -deadline bandwidth of the system (the group);
 141 *  - cache the fraction of that bandwidth that is currently allocated.
 142 *
 143 * This is all done in the data structure below. It is similar to the
 144 * one used for RT-throttling (rt_bandwidth), with the main difference
 145 * that, since here we are only interested in admission control, we
 146 * do not decrease any runtime while the group "executes", neither we
 147 * need a timer to replenish it.
 148 *
 149 * With respect to SMP, the bandwidth is given on a per-CPU basis,
 150 * meaning that:
 151 *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 152 *  - dl_total_bw array contains, in the i-eth element, the currently
 153 *    allocated bandwidth on the i-eth CPU.
 154 * Moreover, groups consume bandwidth on each CPU, while tasks only
 155 * consume bandwidth on the CPU they're running on.
 156 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 157 * that will be shown the next time the proc or cgroup controls will
 158 * be red. It on its turn can be changed by writing on its own
 159 * control.
 160 */
 161struct dl_bandwidth {
 162        raw_spinlock_t dl_runtime_lock;
 163        u64 dl_runtime;
 164        u64 dl_period;
 165};
 166
 167static inline int dl_bandwidth_enabled(void)
 168{
 169        return sysctl_sched_rt_runtime >= 0;
 170}
 171
 172extern struct dl_bw *dl_bw_of(int i);
 173
 174struct dl_bw {
 175        raw_spinlock_t lock;
 176        u64 bw, total_bw;
 177};
 178
 179static inline
 180void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
 181{
 182        dl_b->total_bw -= tsk_bw;
 183}
 184
 185static inline
 186void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
 187{
 188        dl_b->total_bw += tsk_bw;
 189}
 190
 191static inline
 192bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
 193{
 194        return dl_b->bw != -1 &&
 195               dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
 196}
 197
 198extern struct mutex sched_domains_mutex;
 199
 200#ifdef CONFIG_CGROUP_SCHED
 201
 202#include <linux/cgroup.h>
 203
 204struct cfs_rq;
 205struct rt_rq;
 206
 207extern struct list_head task_groups;
 208
 209struct cfs_bandwidth {
 210#ifdef CONFIG_CFS_BANDWIDTH
 211        raw_spinlock_t lock;
 212        ktime_t period;
 213        u64 quota, runtime;
 214        s64 hierarchical_quota;
 215        u64 runtime_expires;
 216
 217        int idle, timer_active;
 218        struct hrtimer period_timer, slack_timer;
 219        struct list_head throttled_cfs_rq;
 220
 221        /* statistics */
 222        int nr_periods, nr_throttled;
 223        u64 throttled_time;
 224#endif
 225};
 226
 227/* task group related information */
 228struct task_group {
 229        struct cgroup_subsys_state css;
 230
 231#ifdef CONFIG_FAIR_GROUP_SCHED
 232        /* schedulable entities of this group on each cpu */
 233        struct sched_entity **se;
 234        /* runqueue "owned" by this group on each cpu */
 235        struct cfs_rq **cfs_rq;
 236        unsigned long shares;
 237
 238#ifdef  CONFIG_SMP
 239        atomic_long_t load_avg;
 240        atomic_t runnable_avg;
 241#endif
 242#endif
 243
 244#ifdef CONFIG_RT_GROUP_SCHED
 245        struct sched_rt_entity **rt_se;
 246        struct rt_rq **rt_rq;
 247
 248        struct rt_bandwidth rt_bandwidth;
 249#endif
 250
 251        struct rcu_head rcu;
 252        struct list_head list;
 253
 254        struct task_group *parent;
 255        struct list_head siblings;
 256        struct list_head children;
 257
 258#ifdef CONFIG_SCHED_AUTOGROUP
 259        struct autogroup *autogroup;
 260#endif
 261
 262        struct cfs_bandwidth cfs_bandwidth;
 263};
 264
 265#ifdef CONFIG_FAIR_GROUP_SCHED
 266#define ROOT_TASK_GROUP_LOAD    NICE_0_LOAD
 267
 268/*
 269 * A weight of 0 or 1 can cause arithmetics problems.
 270 * A weight of a cfs_rq is the sum of weights of which entities
 271 * are queued on this cfs_rq, so a weight of a entity should not be
 272 * too large, so as the shares value of a task group.
 273 * (The default weight is 1024 - so there's no practical
 274 *  limitation from this.)
 275 */
 276#define MIN_SHARES      (1UL <<  1)
 277#define MAX_SHARES      (1UL << 18)
 278#endif
 279
 280typedef int (*tg_visitor)(struct task_group *, void *);
 281
 282extern int walk_tg_tree_from(struct task_group *from,
 283                             tg_visitor down, tg_visitor up, void *data);
 284
 285/*
 286 * Iterate the full tree, calling @down when first entering a node and @up when
 287 * leaving it for the final time.
 288 *
 289 * Caller must hold rcu_lock or sufficient equivalent.
 290 */
 291static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 292{
 293        return walk_tg_tree_from(&root_task_group, down, up, data);
 294}
 295
 296extern int tg_nop(struct task_group *tg, void *data);
 297
 298extern void free_fair_sched_group(struct task_group *tg);
 299extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 300extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
 301extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 302                        struct sched_entity *se, int cpu,
 303                        struct sched_entity *parent);
 304extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 305extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 306
 307extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 308extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
 309extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 310
 311extern void free_rt_sched_group(struct task_group *tg);
 312extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 313extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 314                struct sched_rt_entity *rt_se, int cpu,
 315                struct sched_rt_entity *parent);
 316
 317extern struct task_group *sched_create_group(struct task_group *parent);
 318extern void sched_online_group(struct task_group *tg,
 319                               struct task_group *parent);
 320extern void sched_destroy_group(struct task_group *tg);
 321extern void sched_offline_group(struct task_group *tg);
 322
 323extern void sched_move_task(struct task_struct *tsk);
 324
 325#ifdef CONFIG_FAIR_GROUP_SCHED
 326extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 327#endif
 328
 329#else /* CONFIG_CGROUP_SCHED */
 330
 331struct cfs_bandwidth { };
 332
 333#endif  /* CONFIG_CGROUP_SCHED */
 334
 335/* CFS-related fields in a runqueue */
 336struct cfs_rq {
 337        struct load_weight load;
 338        unsigned int nr_running, h_nr_running;
 339
 340        u64 exec_clock;
 341        u64 min_vruntime;
 342#ifndef CONFIG_64BIT
 343        u64 min_vruntime_copy;
 344#endif
 345
 346        struct rb_root tasks_timeline;
 347        struct rb_node *rb_leftmost;
 348
 349        /*
 350         * 'curr' points to currently running entity on this cfs_rq.
 351         * It is set to NULL otherwise (i.e when none are currently running).
 352         */
 353        struct sched_entity *curr, *next, *last, *skip;
 354
 355#ifdef  CONFIG_SCHED_DEBUG
 356        unsigned int nr_spread_over;
 357#endif
 358
 359#ifdef CONFIG_SMP
 360        /*
 361         * CFS Load tracking
 362         * Under CFS, load is tracked on a per-entity basis and aggregated up.
 363         * This allows for the description of both thread and group usage (in
 364         * the FAIR_GROUP_SCHED case).
 365         */
 366        unsigned long runnable_load_avg, blocked_load_avg;
 367        atomic64_t decay_counter;
 368        u64 last_decay;
 369        atomic_long_t removed_load;
 370
 371#ifdef CONFIG_FAIR_GROUP_SCHED
 372        /* Required to track per-cpu representation of a task_group */
 373        u32 tg_runnable_contrib;
 374        unsigned long tg_load_contrib;
 375
 376        /*
 377         *   h_load = weight * f(tg)
 378         *
 379         * Where f(tg) is the recursive weight fraction assigned to
 380         * this group.
 381         */
 382        unsigned long h_load;
 383        u64 last_h_load_update;
 384        struct sched_entity *h_load_next;
 385#endif /* CONFIG_FAIR_GROUP_SCHED */
 386#endif /* CONFIG_SMP */
 387
 388#ifdef CONFIG_FAIR_GROUP_SCHED
 389        struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
 390
 391        /*
 392         * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 393         * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 394         * (like users, containers etc.)
 395         *
 396         * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
 397         * list is used during load balance.
 398         */
 399        int on_list;
 400        struct list_head leaf_cfs_rq_list;
 401        struct task_group *tg;  /* group that "owns" this runqueue */
 402
 403#ifdef CONFIG_CFS_BANDWIDTH
 404        int runtime_enabled;
 405        u64 runtime_expires;
 406        s64 runtime_remaining;
 407
 408        u64 throttled_clock, throttled_clock_task;
 409        u64 throttled_clock_task_time;
 410        int throttled, throttle_count;
 411        struct list_head throttled_list;
 412#endif /* CONFIG_CFS_BANDWIDTH */
 413#endif /* CONFIG_FAIR_GROUP_SCHED */
 414};
 415
 416static inline int rt_bandwidth_enabled(void)
 417{
 418        return sysctl_sched_rt_runtime >= 0;
 419}
 420
 421/* Real-Time classes' related field in a runqueue: */
 422struct rt_rq {
 423        struct rt_prio_array active;
 424        unsigned int rt_nr_running;
 425#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 426        struct {
 427                int curr; /* highest queued rt task prio */
 428#ifdef CONFIG_SMP
 429                int next; /* next highest */
 430#endif
 431        } highest_prio;
 432#endif
 433#ifdef CONFIG_SMP
 434        unsigned long rt_nr_migratory;
 435        unsigned long rt_nr_total;
 436        int overloaded;
 437        struct plist_head pushable_tasks;
 438#endif
 439        int rt_queued;
 440
 441        int rt_throttled;
 442        u64 rt_time;
 443        u64 rt_runtime;
 444        /* Nests inside the rq lock: */
 445        raw_spinlock_t rt_runtime_lock;
 446
 447#ifdef CONFIG_RT_GROUP_SCHED
 448        unsigned long rt_nr_boosted;
 449
 450        struct rq *rq;
 451        struct task_group *tg;
 452#endif
 453};
 454
 455/* Deadline class' related fields in a runqueue */
 456struct dl_rq {
 457        /* runqueue is an rbtree, ordered by deadline */
 458        struct rb_root rb_root;
 459        struct rb_node *rb_leftmost;
 460
 461        unsigned long dl_nr_running;
 462
 463#ifdef CONFIG_SMP
 464        /*
 465         * Deadline values of the currently executing and the
 466         * earliest ready task on this rq. Caching these facilitates
 467         * the decision wether or not a ready but not running task
 468         * should migrate somewhere else.
 469         */
 470        struct {
 471                u64 curr;
 472                u64 next;
 473        } earliest_dl;
 474
 475        unsigned long dl_nr_migratory;
 476        int overloaded;
 477
 478        /*
 479         * Tasks on this rq that can be pushed away. They are kept in
 480         * an rb-tree, ordered by tasks' deadlines, with caching
 481         * of the leftmost (earliest deadline) element.
 482         */
 483        struct rb_root pushable_dl_tasks_root;
 484        struct rb_node *pushable_dl_tasks_leftmost;
 485#else
 486        struct dl_bw dl_bw;
 487#endif
 488};
 489
 490#ifdef CONFIG_SMP
 491
 492/*
 493 * We add the notion of a root-domain which will be used to define per-domain
 494 * variables. Each exclusive cpuset essentially defines an island domain by
 495 * fully partitioning the member cpus from any other cpuset. Whenever a new
 496 * exclusive cpuset is created, we also create and attach a new root-domain
 497 * object.
 498 *
 499 */
 500struct root_domain {
 501        atomic_t refcount;
 502        atomic_t rto_count;
 503        struct rcu_head rcu;
 504        cpumask_var_t span;
 505        cpumask_var_t online;
 506
 507        /* Indicate more than one runnable task for any CPU */
 508        bool overload;
 509
 510        /*
 511         * The bit corresponding to a CPU gets set here if such CPU has more
 512         * than one runnable -deadline task (as it is below for RT tasks).
 513         */
 514        cpumask_var_t dlo_mask;
 515        atomic_t dlo_count;
 516        struct dl_bw dl_bw;
 517        struct cpudl cpudl;
 518
 519        /*
 520         * The "RT overload" flag: it gets set if a CPU has more than
 521         * one runnable RT task.
 522         */
 523        cpumask_var_t rto_mask;
 524        struct cpupri cpupri;
 525};
 526
 527extern struct root_domain def_root_domain;
 528
 529#endif /* CONFIG_SMP */
 530
 531/*
 532 * This is the main, per-CPU runqueue data structure.
 533 *
 534 * Locking rule: those places that want to lock multiple runqueues
 535 * (such as the load balancing or the thread migration code), lock
 536 * acquire operations must be ordered by ascending &runqueue.
 537 */
 538struct rq {
 539        /* runqueue lock: */
 540        raw_spinlock_t lock;
 541
 542        /*
 543         * nr_running and cpu_load should be in the same cacheline because
 544         * remote CPUs use both these fields when doing load calculation.
 545         */
 546        unsigned int nr_running;
 547#ifdef CONFIG_NUMA_BALANCING
 548        unsigned int nr_numa_running;
 549        unsigned int nr_preferred_running;
 550#endif
 551        #define CPU_LOAD_IDX_MAX 5
 552        unsigned long cpu_load[CPU_LOAD_IDX_MAX];
 553        unsigned long last_load_update_tick;
 554#ifdef CONFIG_NO_HZ_COMMON
 555        u64 nohz_stamp;
 556        unsigned long nohz_flags;
 557#endif
 558#ifdef CONFIG_NO_HZ_FULL
 559        unsigned long last_sched_tick;
 560#endif
 561        /* capture load from *all* tasks on this cpu: */
 562        struct load_weight load;
 563        unsigned long nr_load_updates;
 564        u64 nr_switches;
 565
 566        struct cfs_rq cfs;
 567        struct rt_rq rt;
 568        struct dl_rq dl;
 569
 570#ifdef CONFIG_FAIR_GROUP_SCHED
 571        /* list of leaf cfs_rq on this cpu: */
 572        struct list_head leaf_cfs_rq_list;
 573
 574        struct sched_avg avg;
 575#endif /* CONFIG_FAIR_GROUP_SCHED */
 576
 577        /*
 578         * This is part of a global counter where only the total sum
 579         * over all CPUs matters. A task can increase this counter on
 580         * one CPU and if it got migrated afterwards it may decrease
 581         * it on another CPU. Always updated under the runqueue lock:
 582         */
 583        unsigned long nr_uninterruptible;
 584
 585        struct task_struct *curr, *idle, *stop;
 586        unsigned long next_balance;
 587        struct mm_struct *prev_mm;
 588
 589        unsigned int clock_skip_update;
 590        u64 clock;
 591        u64 clock_task;
 592
 593        atomic_t nr_iowait;
 594
 595#ifdef CONFIG_SMP
 596        struct root_domain *rd;
 597        struct sched_domain *sd;
 598
 599        unsigned long cpu_capacity;
 600
 601        unsigned char idle_balance;
 602        /* For active balancing */
 603        int post_schedule;
 604        int active_balance;
 605        int push_cpu;
 606        struct cpu_stop_work active_balance_work;
 607        /* cpu of this runqueue: */
 608        int cpu;
 609        int online;
 610
 611        struct list_head cfs_tasks;
 612
 613        u64 rt_avg;
 614        u64 age_stamp;
 615        u64 idle_stamp;
 616        u64 avg_idle;
 617
 618        /* This is used to determine avg_idle's max value */
 619        u64 max_idle_balance_cost;
 620#endif
 621
 622#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 623        u64 prev_irq_time;
 624#endif
 625#ifdef CONFIG_PARAVIRT
 626        u64 prev_steal_time;
 627#endif
 628#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 629        u64 prev_steal_time_rq;
 630#endif
 631
 632        /* calc_load related fields */
 633        unsigned long calc_load_update;
 634        long calc_load_active;
 635
 636#ifdef CONFIG_SCHED_HRTICK
 637#ifdef CONFIG_SMP
 638        int hrtick_csd_pending;
 639        struct call_single_data hrtick_csd;
 640#endif
 641        struct hrtimer hrtick_timer;
 642#endif
 643
 644#ifdef CONFIG_SCHEDSTATS
 645        /* latency stats */
 646        struct sched_info rq_sched_info;
 647        unsigned long long rq_cpu_time;
 648        /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 649
 650        /* sys_sched_yield() stats */
 651        unsigned int yld_count;
 652
 653        /* schedule() stats */
 654        unsigned int sched_count;
 655        unsigned int sched_goidle;
 656
 657        /* try_to_wake_up() stats */
 658        unsigned int ttwu_count;
 659        unsigned int ttwu_local;
 660#endif
 661
 662#ifdef CONFIG_SMP
 663        struct llist_head wake_list;
 664#endif
 665
 666#ifdef CONFIG_CPU_IDLE
 667        /* Must be inspected within a rcu lock section */
 668        struct cpuidle_state *idle_state;
 669#endif
 670};
 671
 672static inline int cpu_of(struct rq *rq)
 673{
 674#ifdef CONFIG_SMP
 675        return rq->cpu;
 676#else
 677        return 0;
 678#endif
 679}
 680
 681DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 682
 683#define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
 684#define this_rq()               this_cpu_ptr(&runqueues)
 685#define task_rq(p)              cpu_rq(task_cpu(p))
 686#define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
 687#define raw_rq()                raw_cpu_ptr(&runqueues)
 688
 689static inline u64 __rq_clock_broken(struct rq *rq)
 690{
 691        return ACCESS_ONCE(rq->clock);
 692}
 693
 694static inline u64 rq_clock(struct rq *rq)
 695{
 696        lockdep_assert_held(&rq->lock);
 697        return rq->clock;
 698}
 699
 700static inline u64 rq_clock_task(struct rq *rq)
 701{
 702        lockdep_assert_held(&rq->lock);
 703        return rq->clock_task;
 704}
 705
 706#define RQCF_REQ_SKIP   0x01
 707#define RQCF_ACT_SKIP   0x02
 708
 709static inline void rq_clock_skip_update(struct rq *rq, bool skip)
 710{
 711        lockdep_assert_held(&rq->lock);
 712        if (skip)
 713                rq->clock_skip_update |= RQCF_REQ_SKIP;
 714        else
 715                rq->clock_skip_update &= ~RQCF_REQ_SKIP;
 716}
 717
 718#ifdef CONFIG_NUMA
 719enum numa_topology_type {
 720        NUMA_DIRECT,
 721        NUMA_GLUELESS_MESH,
 722        NUMA_BACKPLANE,
 723};
 724extern enum numa_topology_type sched_numa_topology_type;
 725extern int sched_max_numa_distance;
 726extern bool find_numa_distance(int distance);
 727#endif
 728
 729#ifdef CONFIG_NUMA_BALANCING
 730/* The regions in numa_faults array from task_struct */
 731enum numa_faults_stats {
 732        NUMA_MEM = 0,
 733        NUMA_CPU,
 734        NUMA_MEMBUF,
 735        NUMA_CPUBUF
 736};
 737extern void sched_setnuma(struct task_struct *p, int node);
 738extern int migrate_task_to(struct task_struct *p, int cpu);
 739extern int migrate_swap(struct task_struct *, struct task_struct *);
 740#endif /* CONFIG_NUMA_BALANCING */
 741
 742#ifdef CONFIG_SMP
 743
 744extern void sched_ttwu_pending(void);
 745
 746#define rcu_dereference_check_sched_domain(p) \
 747        rcu_dereference_check((p), \
 748                              lockdep_is_held(&sched_domains_mutex))
 749
 750/*
 751 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 752 * See detach_destroy_domains: synchronize_sched for details.
 753 *
 754 * The domain tree of any CPU may only be accessed from within
 755 * preempt-disabled sections.
 756 */
 757#define for_each_domain(cpu, __sd) \
 758        for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
 759                        __sd; __sd = __sd->parent)
 760
 761#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
 762
 763/**
 764 * highest_flag_domain - Return highest sched_domain containing flag.
 765 * @cpu:        The cpu whose highest level of sched domain is to
 766 *              be returned.
 767 * @flag:       The flag to check for the highest sched_domain
 768 *              for the given cpu.
 769 *
 770 * Returns the highest sched_domain of a cpu which contains the given flag.
 771 */
 772static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
 773{
 774        struct sched_domain *sd, *hsd = NULL;
 775
 776        for_each_domain(cpu, sd) {
 777                if (!(sd->flags & flag))
 778                        break;
 779                hsd = sd;
 780        }
 781
 782        return hsd;
 783}
 784
 785static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
 786{
 787        struct sched_domain *sd;
 788
 789        for_each_domain(cpu, sd) {
 790                if (sd->flags & flag)
 791                        break;
 792        }
 793
 794        return sd;
 795}
 796
 797DECLARE_PER_CPU(struct sched_domain *, sd_llc);
 798DECLARE_PER_CPU(int, sd_llc_size);
 799DECLARE_PER_CPU(int, sd_llc_id);
 800DECLARE_PER_CPU(struct sched_domain *, sd_numa);
 801DECLARE_PER_CPU(struct sched_domain *, sd_busy);
 802DECLARE_PER_CPU(struct sched_domain *, sd_asym);
 803
 804struct sched_group_capacity {
 805        atomic_t ref;
 806        /*
 807         * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
 808         * for a single CPU.
 809         */
 810        unsigned int capacity, capacity_orig;
 811        unsigned long next_update;
 812        int imbalance; /* XXX unrelated to capacity but shared group state */
 813        /*
 814         * Number of busy cpus in this group.
 815         */
 816        atomic_t nr_busy_cpus;
 817
 818        unsigned long cpumask[0]; /* iteration mask */
 819};
 820
 821struct sched_group {
 822        struct sched_group *next;       /* Must be a circular list */
 823        atomic_t ref;
 824
 825        unsigned int group_weight;
 826        struct sched_group_capacity *sgc;
 827
 828        /*
 829         * The CPUs this group covers.
 830         *
 831         * NOTE: this field is variable length. (Allocated dynamically
 832         * by attaching extra space to the end of the structure,
 833         * depending on how many CPUs the kernel has booted up with)
 834         */
 835        unsigned long cpumask[0];
 836};
 837
 838static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 839{
 840        return to_cpumask(sg->cpumask);
 841}
 842
 843/*
 844 * cpumask masking which cpus in the group are allowed to iterate up the domain
 845 * tree.
 846 */
 847static inline struct cpumask *sched_group_mask(struct sched_group *sg)
 848{
 849        return to_cpumask(sg->sgc->cpumask);
 850}
 851
 852/**
 853 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 854 * @group: The group whose first cpu is to be returned.
 855 */
 856static inline unsigned int group_first_cpu(struct sched_group *group)
 857{
 858        return cpumask_first(sched_group_cpus(group));
 859}
 860
 861extern int group_balance_cpu(struct sched_group *sg);
 862
 863#else
 864
 865static inline void sched_ttwu_pending(void) { }
 866
 867#endif /* CONFIG_SMP */
 868
 869#include "stats.h"
 870#include "auto_group.h"
 871
 872#ifdef CONFIG_CGROUP_SCHED
 873
 874/*
 875 * Return the group to which this tasks belongs.
 876 *
 877 * We cannot use task_css() and friends because the cgroup subsystem
 878 * changes that value before the cgroup_subsys::attach() method is called,
 879 * therefore we cannot pin it and might observe the wrong value.
 880 *
 881 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 882 * core changes this before calling sched_move_task().
 883 *
 884 * Instead we use a 'copy' which is updated from sched_move_task() while
 885 * holding both task_struct::pi_lock and rq::lock.
 886 */
 887static inline struct task_group *task_group(struct task_struct *p)
 888{
 889        return p->sched_task_group;
 890}
 891
 892/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
 893static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 894{
 895#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
 896        struct task_group *tg = task_group(p);
 897#endif
 898
 899#ifdef CONFIG_FAIR_GROUP_SCHED
 900        p->se.cfs_rq = tg->cfs_rq[cpu];
 901        p->se.parent = tg->se[cpu];
 902#endif
 903
 904#ifdef CONFIG_RT_GROUP_SCHED
 905        p->rt.rt_rq  = tg->rt_rq[cpu];
 906        p->rt.parent = tg->rt_se[cpu];
 907#endif
 908}
 909
 910#else /* CONFIG_CGROUP_SCHED */
 911
 912static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
 913static inline struct task_group *task_group(struct task_struct *p)
 914{
 915        return NULL;
 916}
 917
 918#endif /* CONFIG_CGROUP_SCHED */
 919
 920static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
 921{
 922        set_task_rq(p, cpu);
 923#ifdef CONFIG_SMP
 924        /*
 925         * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
 926         * successfuly executed on another CPU. We must ensure that updates of
 927         * per-task data have been completed by this moment.
 928         */
 929        smp_wmb();
 930        task_thread_info(p)->cpu = cpu;
 931        p->wake_cpu = cpu;
 932#endif
 933}
 934
 935/*
 936 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 937 */
 938#ifdef CONFIG_SCHED_DEBUG
 939# include <linux/static_key.h>
 940# define const_debug __read_mostly
 941#else
 942# define const_debug const
 943#endif
 944
 945extern const_debug unsigned int sysctl_sched_features;
 946
 947#define SCHED_FEAT(name, enabled)       \
 948        __SCHED_FEAT_##name ,
 949
 950enum {
 951#include "features.h"
 952        __SCHED_FEAT_NR,
 953};
 954
 955#undef SCHED_FEAT
 956
 957#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
 958#define SCHED_FEAT(name, enabled)                                       \
 959static __always_inline bool static_branch_##name(struct static_key *key) \
 960{                                                                       \
 961        return static_key_##enabled(key);                               \
 962}
 963
 964#include "features.h"
 965
 966#undef SCHED_FEAT
 967
 968extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
 969#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
 970#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
 971#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
 972#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
 973
 974#ifdef CONFIG_NUMA_BALANCING
 975#define sched_feat_numa(x) sched_feat(x)
 976#ifdef CONFIG_SCHED_DEBUG
 977#define numabalancing_enabled sched_feat_numa(NUMA)
 978#else
 979extern bool numabalancing_enabled;
 980#endif /* CONFIG_SCHED_DEBUG */
 981#else
 982#define sched_feat_numa(x) (0)
 983#define numabalancing_enabled (0)
 984#endif /* CONFIG_NUMA_BALANCING */
 985
 986static inline u64 global_rt_period(void)
 987{
 988        return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
 989}
 990
 991static inline u64 global_rt_runtime(void)
 992{
 993        if (sysctl_sched_rt_runtime < 0)
 994                return RUNTIME_INF;
 995
 996        return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
 997}
 998
 999static inline int task_current(struct rq *rq, struct task_struct *p)
1000{
1001        return rq->curr == p;
1002}
1003
1004static inline int task_running(struct rq *rq, struct task_struct *p)
1005{
1006#ifdef CONFIG_SMP
1007        return p->on_cpu;
1008#else
1009        return task_current(rq, p);
1010#endif
1011}
1012
1013static inline int task_on_rq_queued(struct task_struct *p)
1014{
1015        return p->on_rq == TASK_ON_RQ_QUEUED;
1016}
1017
1018static inline int task_on_rq_migrating(struct task_struct *p)
1019{
1020        return p->on_rq == TASK_ON_RQ_MIGRATING;
1021}
1022
1023#ifndef prepare_arch_switch
1024# define prepare_arch_switch(next)      do { } while (0)
1025#endif
1026#ifndef finish_arch_switch
1027# define finish_arch_switch(prev)       do { } while (0)
1028#endif
1029#ifndef finish_arch_post_lock_switch
1030# define finish_arch_post_lock_switch() do { } while (0)
1031#endif
1032
1033static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1034{
1035#ifdef CONFIG_SMP
1036        /*
1037         * We can optimise this out completely for !SMP, because the
1038         * SMP rebalancing from interrupt is the only thing that cares
1039         * here.
1040         */
1041        next->on_cpu = 1;
1042#endif
1043}
1044
1045static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1046{
1047#ifdef CONFIG_SMP
1048        /*
1049         * After ->on_cpu is cleared, the task can be moved to a different CPU.
1050         * We must ensure this doesn't happen until the switch is completely
1051         * finished.
1052         */
1053        smp_wmb();
1054        prev->on_cpu = 0;
1055#endif
1056#ifdef CONFIG_DEBUG_SPINLOCK
1057        /* this is a valid case when another task releases the spinlock */
1058        rq->lock.owner = current;
1059#endif
1060        /*
1061         * If we are tracking spinlock dependencies then we have to
1062         * fix up the runqueue lock - which gets 'carried over' from
1063         * prev into current:
1064         */
1065        spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1066
1067        raw_spin_unlock_irq(&rq->lock);
1068}
1069
1070/*
1071 * wake flags
1072 */
1073#define WF_SYNC         0x01            /* waker goes to sleep after wakeup */
1074#define WF_FORK         0x02            /* child wakeup after fork */
1075#define WF_MIGRATED     0x4             /* internal use, task got migrated */
1076
1077/*
1078 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1079 * of tasks with abnormal "nice" values across CPUs the contribution that
1080 * each task makes to its run queue's load is weighted according to its
1081 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1082 * scaled version of the new time slice allocation that they receive on time
1083 * slice expiry etc.
1084 */
1085
1086#define WEIGHT_IDLEPRIO                3
1087#define WMULT_IDLEPRIO         1431655765
1088
1089/*
1090 * Nice levels are multiplicative, with a gentle 10% change for every
1091 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1092 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1093 * that remained on nice 0.
1094 *
1095 * The "10% effect" is relative and cumulative: from _any_ nice level,
1096 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1097 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1098 * If a task goes up by ~10% and another task goes down by ~10% then
1099 * the relative distance between them is ~25%.)
1100 */
1101static const int prio_to_weight[40] = {
1102 /* -20 */     88761,     71755,     56483,     46273,     36291,
1103 /* -15 */     29154,     23254,     18705,     14949,     11916,
1104 /* -10 */      9548,      7620,      6100,      4904,      3906,
1105 /*  -5 */      3121,      2501,      1991,      1586,      1277,
1106 /*   0 */      1024,       820,       655,       526,       423,
1107 /*   5 */       335,       272,       215,       172,       137,
1108 /*  10 */       110,        87,        70,        56,        45,
1109 /*  15 */        36,        29,        23,        18,        15,
1110};
1111
1112/*
1113 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1114 *
1115 * In cases where the weight does not change often, we can use the
1116 * precalculated inverse to speed up arithmetics by turning divisions
1117 * into multiplications:
1118 */
1119static const u32 prio_to_wmult[40] = {
1120 /* -20 */     48388,     59856,     76040,     92818,    118348,
1121 /* -15 */    147320,    184698,    229616,    287308,    360437,
1122 /* -10 */    449829,    563644,    704093,    875809,   1099582,
1123 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1124 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1125 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1126 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1127 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1128};
1129
1130#define ENQUEUE_WAKEUP          1
1131#define ENQUEUE_HEAD            2
1132#ifdef CONFIG_SMP
1133#define ENQUEUE_WAKING          4       /* sched_class::task_waking was called */
1134#else
1135#define ENQUEUE_WAKING          0
1136#endif
1137#define ENQUEUE_REPLENISH       8
1138
1139#define DEQUEUE_SLEEP           1
1140
1141#define RETRY_TASK              ((void *)-1UL)
1142
1143struct sched_class {
1144        const struct sched_class *next;
1145
1146        void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1147        void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1148        void (*yield_task) (struct rq *rq);
1149        bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1150
1151        void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1152
1153        /*
1154         * It is the responsibility of the pick_next_task() method that will
1155         * return the next task to call put_prev_task() on the @prev task or
1156         * something equivalent.
1157         *
1158         * May return RETRY_TASK when it finds a higher prio class has runnable
1159         * tasks.
1160         */
1161        struct task_struct * (*pick_next_task) (struct rq *rq,
1162                                                struct task_struct *prev);
1163        void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1164
1165#ifdef CONFIG_SMP
1166        int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1167        void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1168
1169        void (*post_schedule) (struct rq *this_rq);
1170        void (*task_waking) (struct task_struct *task);
1171        void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1172
1173        void (*set_cpus_allowed)(struct task_struct *p,
1174                                 const struct cpumask *newmask);
1175
1176        void (*rq_online)(struct rq *rq);
1177        void (*rq_offline)(struct rq *rq);
1178#endif
1179
1180        void (*set_curr_task) (struct rq *rq);
1181        void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1182        void (*task_fork) (struct task_struct *p);
1183        void (*task_dead) (struct task_struct *p);
1184
1185        /*
1186         * The switched_from() call is allowed to drop rq->lock, therefore we
1187         * cannot assume the switched_from/switched_to pair is serliazed by
1188         * rq->lock. They are however serialized by p->pi_lock.
1189         */
1190        void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1191        void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1192        void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1193                             int oldprio);
1194
1195        unsigned int (*get_rr_interval) (struct rq *rq,
1196                                         struct task_struct *task);
1197
1198        void (*update_curr) (struct rq *rq);
1199
1200#ifdef CONFIG_FAIR_GROUP_SCHED
1201        void (*task_move_group) (struct task_struct *p, int on_rq);
1202#endif
1203};
1204
1205static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1206{
1207        prev->sched_class->put_prev_task(rq, prev);
1208}
1209
1210#define sched_class_highest (&stop_sched_class)
1211#define for_each_class(class) \
1212   for (class = sched_class_highest; class; class = class->next)
1213
1214extern const struct sched_class stop_sched_class;
1215extern const struct sched_class dl_sched_class;
1216extern const struct sched_class rt_sched_class;
1217extern const struct sched_class fair_sched_class;
1218extern const struct sched_class idle_sched_class;
1219
1220
1221#ifdef CONFIG_SMP
1222
1223extern void update_group_capacity(struct sched_domain *sd, int cpu);
1224
1225extern void trigger_load_balance(struct rq *rq);
1226
1227extern void idle_enter_fair(struct rq *this_rq);
1228extern void idle_exit_fair(struct rq *this_rq);
1229
1230#else
1231
1232static inline void idle_enter_fair(struct rq *rq) { }
1233static inline void idle_exit_fair(struct rq *rq) { }
1234
1235#endif
1236
1237#ifdef CONFIG_CPU_IDLE
1238static inline void idle_set_state(struct rq *rq,
1239                                  struct cpuidle_state *idle_state)
1240{
1241        rq->idle_state = idle_state;
1242}
1243
1244static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1245{
1246        WARN_ON(!rcu_read_lock_held());
1247        return rq->idle_state;
1248}
1249#else
1250static inline void idle_set_state(struct rq *rq,
1251                                  struct cpuidle_state *idle_state)
1252{
1253}
1254
1255static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1256{
1257        return NULL;
1258}
1259#endif
1260
1261extern void sysrq_sched_debug_show(void);
1262extern void sched_init_granularity(void);
1263extern void update_max_interval(void);
1264
1265extern void init_sched_dl_class(void);
1266extern void init_sched_rt_class(void);
1267extern void init_sched_fair_class(void);
1268extern void init_sched_dl_class(void);
1269
1270extern void resched_curr(struct rq *rq);
1271extern void resched_cpu(int cpu);
1272
1273extern struct rt_bandwidth def_rt_bandwidth;
1274extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1275
1276extern struct dl_bandwidth def_dl_bandwidth;
1277extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1278extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1279
1280unsigned long to_ratio(u64 period, u64 runtime);
1281
1282extern void update_idle_cpu_load(struct rq *this_rq);
1283
1284extern void init_task_runnable_average(struct task_struct *p);
1285
1286static inline void add_nr_running(struct rq *rq, unsigned count)
1287{
1288        unsigned prev_nr = rq->nr_running;
1289
1290        rq->nr_running = prev_nr + count;
1291
1292        if (prev_nr < 2 && rq->nr_running >= 2) {
1293#ifdef CONFIG_SMP
1294                if (!rq->rd->overload)
1295                        rq->rd->overload = true;
1296#endif
1297
1298#ifdef CONFIG_NO_HZ_FULL
1299                if (tick_nohz_full_cpu(rq->cpu)) {
1300                        /*
1301                         * Tick is needed if more than one task runs on a CPU.
1302                         * Send the target an IPI to kick it out of nohz mode.
1303                         *
1304                         * We assume that IPI implies full memory barrier and the
1305                         * new value of rq->nr_running is visible on reception
1306                         * from the target.
1307                         */
1308                        tick_nohz_full_kick_cpu(rq->cpu);
1309                }
1310#endif
1311        }
1312}
1313
1314static inline void sub_nr_running(struct rq *rq, unsigned count)
1315{
1316        rq->nr_running -= count;
1317}
1318
1319static inline void rq_last_tick_reset(struct rq *rq)
1320{
1321#ifdef CONFIG_NO_HZ_FULL
1322        rq->last_sched_tick = jiffies;
1323#endif
1324}
1325
1326extern void update_rq_clock(struct rq *rq);
1327
1328extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1329extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1330
1331extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1332
1333extern const_debug unsigned int sysctl_sched_time_avg;
1334extern const_debug unsigned int sysctl_sched_nr_migrate;
1335extern const_debug unsigned int sysctl_sched_migration_cost;
1336
1337static inline u64 sched_avg_period(void)
1338{
1339        return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1340}
1341
1342#ifdef CONFIG_SCHED_HRTICK
1343
1344/*
1345 * Use hrtick when:
1346 *  - enabled by features
1347 *  - hrtimer is actually high res
1348 */
1349static inline int hrtick_enabled(struct rq *rq)
1350{
1351        if (!sched_feat(HRTICK))
1352                return 0;
1353        if (!cpu_active(cpu_of(rq)))
1354                return 0;
1355        return hrtimer_is_hres_active(&rq->hrtick_timer);
1356}
1357
1358void hrtick_start(struct rq *rq, u64 delay);
1359
1360#else
1361
1362static inline int hrtick_enabled(struct rq *rq)
1363{
1364        return 0;
1365}
1366
1367#endif /* CONFIG_SCHED_HRTICK */
1368
1369#ifdef CONFIG_SMP
1370extern void sched_avg_update(struct rq *rq);
1371static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1372{
1373        rq->rt_avg += rt_delta;
1374        sched_avg_update(rq);
1375}
1376#else
1377static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1378static inline void sched_avg_update(struct rq *rq) { }
1379#endif
1380
1381extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1382
1383/*
1384 * __task_rq_lock - lock the rq @p resides on.
1385 */
1386static inline struct rq *__task_rq_lock(struct task_struct *p)
1387        __acquires(rq->lock)
1388{
1389        struct rq *rq;
1390
1391        lockdep_assert_held(&p->pi_lock);
1392
1393        for (;;) {
1394                rq = task_rq(p);
1395                raw_spin_lock(&rq->lock);
1396                if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1397                        return rq;
1398                raw_spin_unlock(&rq->lock);
1399
1400                while (unlikely(task_on_rq_migrating(p)))
1401                        cpu_relax();
1402        }
1403}
1404
1405/*
1406 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1407 */
1408static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1409        __acquires(p->pi_lock)
1410        __acquires(rq->lock)
1411{
1412        struct rq *rq;
1413
1414        for (;;) {
1415                raw_spin_lock_irqsave(&p->pi_lock, *flags);
1416                rq = task_rq(p);
1417                raw_spin_lock(&rq->lock);
1418                /*
1419                 *      move_queued_task()              task_rq_lock()
1420                 *
1421                 *      ACQUIRE (rq->lock)
1422                 *      [S] ->on_rq = MIGRATING         [L] rq = task_rq()
1423                 *      WMB (__set_task_cpu())          ACQUIRE (rq->lock);
1424                 *      [S] ->cpu = new_cpu             [L] task_rq()
1425                 *                                      [L] ->on_rq
1426                 *      RELEASE (rq->lock)
1427                 *
1428                 * If we observe the old cpu in task_rq_lock, the acquire of
1429                 * the old rq->lock will fully serialize against the stores.
1430                 *
1431                 * If we observe the new cpu in task_rq_lock, the acquire will
1432                 * pair with the WMB to ensure we must then also see migrating.
1433                 */
1434                if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1435                        return rq;
1436                raw_spin_unlock(&rq->lock);
1437                raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1438
1439                while (unlikely(task_on_rq_migrating(p)))
1440                        cpu_relax();
1441        }
1442}
1443
1444static inline void __task_rq_unlock(struct rq *rq)
1445        __releases(rq->lock)
1446{
1447        raw_spin_unlock(&rq->lock);
1448}
1449
1450static inline void
1451task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1452        __releases(rq->lock)
1453        __releases(p->pi_lock)
1454{
1455        raw_spin_unlock(&rq->lock);
1456        raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1457}
1458
1459#ifdef CONFIG_SMP
1460#ifdef CONFIG_PREEMPT
1461
1462static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1463
1464/*
1465 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1466 * way at the expense of forcing extra atomic operations in all
1467 * invocations.  This assures that the double_lock is acquired using the
1468 * same underlying policy as the spinlock_t on this architecture, which
1469 * reduces latency compared to the unfair variant below.  However, it
1470 * also adds more overhead and therefore may reduce throughput.
1471 */
1472static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1473        __releases(this_rq->lock)
1474        __acquires(busiest->lock)
1475        __acquires(this_rq->lock)
1476{
1477        raw_spin_unlock(&this_rq->lock);
1478        double_rq_lock(this_rq, busiest);
1479
1480        return 1;
1481}
1482
1483#else
1484/*
1485 * Unfair double_lock_balance: Optimizes throughput at the expense of
1486 * latency by eliminating extra atomic operations when the locks are
1487 * already in proper order on entry.  This favors lower cpu-ids and will
1488 * grant the double lock to lower cpus over higher ids under contention,
1489 * regardless of entry order into the function.
1490 */
1491static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1492        __releases(this_rq->lock)
1493        __acquires(busiest->lock)
1494        __acquires(this_rq->lock)
1495{
1496        int ret = 0;
1497
1498        if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1499                if (busiest < this_rq) {
1500                        raw_spin_unlock(&this_rq->lock);
1501                        raw_spin_lock(&busiest->lock);
1502                        raw_spin_lock_nested(&this_rq->lock,
1503                                              SINGLE_DEPTH_NESTING);
1504                        ret = 1;
1505                } else
1506                        raw_spin_lock_nested(&busiest->lock,
1507                                              SINGLE_DEPTH_NESTING);
1508        }
1509        return ret;
1510}
1511
1512#endif /* CONFIG_PREEMPT */
1513
1514/*
1515 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1516 */
1517static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1518{
1519        if (unlikely(!irqs_disabled())) {
1520                /* printk() doesn't work good under rq->lock */
1521                raw_spin_unlock(&this_rq->lock);
1522                BUG_ON(1);
1523        }
1524
1525        return _double_lock_balance(this_rq, busiest);
1526}
1527
1528static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1529        __releases(busiest->lock)
1530{
1531        raw_spin_unlock(&busiest->lock);
1532        lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1533}
1534
1535static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1536{
1537        if (l1 > l2)
1538                swap(l1, l2);
1539
1540        spin_lock(l1);
1541        spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1542}
1543
1544static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1545{
1546        if (l1 > l2)
1547                swap(l1, l2);
1548
1549        spin_lock_irq(l1);
1550        spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1551}
1552
1553static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1554{
1555        if (l1 > l2)
1556                swap(l1, l2);
1557
1558        raw_spin_lock(l1);
1559        raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1560}
1561
1562/*
1563 * double_rq_lock - safely lock two runqueues
1564 *
1565 * Note this does not disable interrupts like task_rq_lock,
1566 * you need to do so manually before calling.
1567 */
1568static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1569        __acquires(rq1->lock)
1570        __acquires(rq2->lock)
1571{
1572        BUG_ON(!irqs_disabled());
1573        if (rq1 == rq2) {
1574                raw_spin_lock(&rq1->lock);
1575                __acquire(rq2->lock);   /* Fake it out ;) */
1576        } else {
1577                if (rq1 < rq2) {
1578                        raw_spin_lock(&rq1->lock);
1579                        raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1580                } else {
1581                        raw_spin_lock(&rq2->lock);
1582                        raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1583                }
1584        }
1585}
1586
1587/*
1588 * double_rq_unlock - safely unlock two runqueues
1589 *
1590 * Note this does not restore interrupts like task_rq_unlock,
1591 * you need to do so manually after calling.
1592 */
1593static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1594        __releases(rq1->lock)
1595        __releases(rq2->lock)
1596{
1597        raw_spin_unlock(&rq1->lock);
1598        if (rq1 != rq2)
1599                raw_spin_unlock(&rq2->lock);
1600        else
1601                __release(rq2->lock);
1602}
1603
1604#else /* CONFIG_SMP */
1605
1606/*
1607 * double_rq_lock - safely lock two runqueues
1608 *
1609 * Note this does not disable interrupts like task_rq_lock,
1610 * you need to do so manually before calling.
1611 */
1612static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1613        __acquires(rq1->lock)
1614        __acquires(rq2->lock)
1615{
1616        BUG_ON(!irqs_disabled());
1617        BUG_ON(rq1 != rq2);
1618        raw_spin_lock(&rq1->lock);
1619        __acquire(rq2->lock);   /* Fake it out ;) */
1620}
1621
1622/*
1623 * double_rq_unlock - safely unlock two runqueues
1624 *
1625 * Note this does not restore interrupts like task_rq_unlock,
1626 * you need to do so manually after calling.
1627 */
1628static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1629        __releases(rq1->lock)
1630        __releases(rq2->lock)
1631{
1632        BUG_ON(rq1 != rq2);
1633        raw_spin_unlock(&rq1->lock);
1634        __release(rq2->lock);
1635}
1636
1637#endif
1638
1639extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1640extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1641extern void print_cfs_stats(struct seq_file *m, int cpu);
1642extern void print_rt_stats(struct seq_file *m, int cpu);
1643extern void print_dl_stats(struct seq_file *m, int cpu);
1644
1645extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1646extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1647extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
1648
1649extern void cfs_bandwidth_usage_inc(void);
1650extern void cfs_bandwidth_usage_dec(void);
1651
1652#ifdef CONFIG_NO_HZ_COMMON
1653enum rq_nohz_flag_bits {
1654        NOHZ_TICK_STOPPED,
1655        NOHZ_BALANCE_KICK,
1656};
1657
1658#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1659#endif
1660
1661#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1662
1663DECLARE_PER_CPU(u64, cpu_hardirq_time);
1664DECLARE_PER_CPU(u64, cpu_softirq_time);
1665
1666#ifndef CONFIG_64BIT
1667DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1668
1669static inline void irq_time_write_begin(void)
1670{
1671        __this_cpu_inc(irq_time_seq.sequence);
1672        smp_wmb();
1673}
1674
1675static inline void irq_time_write_end(void)
1676{
1677        smp_wmb();
1678        __this_cpu_inc(irq_time_seq.sequence);
1679}
1680
1681static inline u64 irq_time_read(int cpu)
1682{
1683        u64 irq_time;
1684        unsigned seq;
1685
1686        do {
1687                seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1688                irq_time = per_cpu(cpu_softirq_time, cpu) +
1689                           per_cpu(cpu_hardirq_time, cpu);
1690        } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1691
1692        return irq_time;
1693}
1694#else /* CONFIG_64BIT */
1695static inline void irq_time_write_begin(void)
1696{
1697}
1698
1699static inline void irq_time_write_end(void)
1700{
1701}
1702
1703static inline u64 irq_time_read(int cpu)
1704{
1705        return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1706}
1707#endif /* CONFIG_64BIT */
1708#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1709