linux/kernel/signal.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *              Changes to use preallocated sigqueue structures
  10 *              to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <asm/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"      /* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58        return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63        /* Is it explicitly or implicitly ignored? */
  64        return handler == SIG_IGN ||
  65                (handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  69{
  70        void __user *handler;
  71
  72        handler = sig_handler(t, sig);
  73
  74        if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75                        handler == SIG_DFL && !force)
  76                return 1;
  77
  78        return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83        /*
  84         * Blocked signals are never ignored, since the
  85         * signal handler may change by the time it is
  86         * unblocked.
  87         */
  88        if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89                return 0;
  90
  91        if (!sig_task_ignored(t, sig, force))
  92                return 0;
  93
  94        /*
  95         * Tracers may want to know about even ignored signals.
  96         */
  97        return !t->ptrace;
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106        unsigned long ready;
 107        long i;
 108
 109        switch (_NSIG_WORDS) {
 110        default:
 111                for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112                        ready |= signal->sig[i] &~ blocked->sig[i];
 113                break;
 114
 115        case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116                ready |= signal->sig[2] &~ blocked->sig[2];
 117                ready |= signal->sig[1] &~ blocked->sig[1];
 118                ready |= signal->sig[0] &~ blocked->sig[0];
 119                break;
 120
 121        case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122                ready |= signal->sig[0] &~ blocked->sig[0];
 123                break;
 124
 125        case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126        }
 127        return ready != 0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134        if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135            PENDING(&t->pending, &t->blocked) ||
 136            PENDING(&t->signal->shared_pending, &t->blocked)) {
 137                set_tsk_thread_flag(t, TIF_SIGPENDING);
 138                return 1;
 139        }
 140        /*
 141         * We must never clear the flag in another thread, or in current
 142         * when it's possible the current syscall is returning -ERESTART*.
 143         * So we don't clear it here, and only callers who know they should do.
 144         */
 145        return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154        if (recalc_sigpending_tsk(t))
 155                signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160        if (!recalc_sigpending_tsk(current) && !freezing(current))
 161                clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168        (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169         sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173        unsigned long i, *s, *m, x;
 174        int sig = 0;
 175
 176        s = pending->signal.sig;
 177        m = mask->sig;
 178
 179        /*
 180         * Handle the first word specially: it contains the
 181         * synchronous signals that need to be dequeued first.
 182         */
 183        x = *s &~ *m;
 184        if (x) {
 185                if (x & SYNCHRONOUS_MASK)
 186                        x &= SYNCHRONOUS_MASK;
 187                sig = ffz(~x) + 1;
 188                return sig;
 189        }
 190
 191        switch (_NSIG_WORDS) {
 192        default:
 193                for (i = 1; i < _NSIG_WORDS; ++i) {
 194                        x = *++s &~ *++m;
 195                        if (!x)
 196                                continue;
 197                        sig = ffz(~x) + i*_NSIG_BPW + 1;
 198                        break;
 199                }
 200                break;
 201
 202        case 2:
 203                x = s[1] &~ m[1];
 204                if (!x)
 205                        break;
 206                sig = ffz(~x) + _NSIG_BPW + 1;
 207                break;
 208
 209        case 1:
 210                /* Nothing to do */
 211                break;
 212        }
 213
 214        return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219        static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221        if (!print_fatal_signals)
 222                return;
 223
 224        if (!__ratelimit(&ratelimit_state))
 225                return;
 226
 227        printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228                                current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
 249{
 250        BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251                        JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252        BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254        if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255                return false;
 256
 257        if (mask & JOBCTL_STOP_SIGMASK)
 258                task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260        task->jobctl |= mask;
 261        return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278        if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279                task->jobctl &= ~JOBCTL_TRAPPING;
 280                smp_mb();       /* advised by wake_up_bit() */
 281                wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 282        }
 283}
 284
 285/**
 286 * task_clear_jobctl_pending - clear jobctl pending bits
 287 * @task: target task
 288 * @mask: pending bits to clear
 289 *
 290 * Clear @mask from @task->jobctl.  @mask must be subset of
 291 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 292 * STOP bits are cleared together.
 293 *
 294 * If clearing of @mask leaves no stop or trap pending, this function calls
 295 * task_clear_jobctl_trapping().
 296 *
 297 * CONTEXT:
 298 * Must be called with @task->sighand->siglock held.
 299 */
 300void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
 301{
 302        BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 303
 304        if (mask & JOBCTL_STOP_PENDING)
 305                mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 306
 307        task->jobctl &= ~mask;
 308
 309        if (!(task->jobctl & JOBCTL_PENDING_MASK))
 310                task_clear_jobctl_trapping(task);
 311}
 312
 313/**
 314 * task_participate_group_stop - participate in a group stop
 315 * @task: task participating in a group stop
 316 *
 317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 318 * Group stop states are cleared and the group stop count is consumed if
 319 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 320 * stop, the appropriate %SIGNAL_* flags are set.
 321 *
 322 * CONTEXT:
 323 * Must be called with @task->sighand->siglock held.
 324 *
 325 * RETURNS:
 326 * %true if group stop completion should be notified to the parent, %false
 327 * otherwise.
 328 */
 329static bool task_participate_group_stop(struct task_struct *task)
 330{
 331        struct signal_struct *sig = task->signal;
 332        bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 333
 334        WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 335
 336        task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 337
 338        if (!consume)
 339                return false;
 340
 341        if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 342                sig->group_stop_count--;
 343
 344        /*
 345         * Tell the caller to notify completion iff we are entering into a
 346         * fresh group stop.  Read comment in do_signal_stop() for details.
 347         */
 348        if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 349                sig->flags = SIGNAL_STOP_STOPPED;
 350                return true;
 351        }
 352        return false;
 353}
 354
 355/*
 356 * allocate a new signal queue record
 357 * - this may be called without locks if and only if t == current, otherwise an
 358 *   appropriate lock must be held to stop the target task from exiting
 359 */
 360static struct sigqueue *
 361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 362{
 363        struct sigqueue *q = NULL;
 364        struct user_struct *user;
 365
 366        /*
 367         * Protect access to @t credentials. This can go away when all
 368         * callers hold rcu read lock.
 369         */
 370        rcu_read_lock();
 371        user = get_uid(__task_cred(t)->user);
 372        atomic_inc(&user->sigpending);
 373        rcu_read_unlock();
 374
 375        if (override_rlimit ||
 376            atomic_read(&user->sigpending) <=
 377                        task_rlimit(t, RLIMIT_SIGPENDING)) {
 378                q = kmem_cache_alloc(sigqueue_cachep, flags);
 379        } else {
 380                print_dropped_signal(sig);
 381        }
 382
 383        if (unlikely(q == NULL)) {
 384                atomic_dec(&user->sigpending);
 385                free_uid(user);
 386        } else {
 387                INIT_LIST_HEAD(&q->list);
 388                q->flags = 0;
 389                q->user = user;
 390        }
 391
 392        return q;
 393}
 394
 395static void __sigqueue_free(struct sigqueue *q)
 396{
 397        if (q->flags & SIGQUEUE_PREALLOC)
 398                return;
 399        atomic_dec(&q->user->sigpending);
 400        free_uid(q->user);
 401        kmem_cache_free(sigqueue_cachep, q);
 402}
 403
 404void flush_sigqueue(struct sigpending *queue)
 405{
 406        struct sigqueue *q;
 407
 408        sigemptyset(&queue->signal);
 409        while (!list_empty(&queue->list)) {
 410                q = list_entry(queue->list.next, struct sigqueue , list);
 411                list_del_init(&q->list);
 412                __sigqueue_free(q);
 413        }
 414}
 415
 416/*
 417 * Flush all pending signals for a task.
 418 */
 419void __flush_signals(struct task_struct *t)
 420{
 421        clear_tsk_thread_flag(t, TIF_SIGPENDING);
 422        flush_sigqueue(&t->pending);
 423        flush_sigqueue(&t->signal->shared_pending);
 424}
 425
 426void flush_signals(struct task_struct *t)
 427{
 428        unsigned long flags;
 429
 430        spin_lock_irqsave(&t->sighand->siglock, flags);
 431        __flush_signals(t);
 432        spin_unlock_irqrestore(&t->sighand->siglock, flags);
 433}
 434
 435static void __flush_itimer_signals(struct sigpending *pending)
 436{
 437        sigset_t signal, retain;
 438        struct sigqueue *q, *n;
 439
 440        signal = pending->signal;
 441        sigemptyset(&retain);
 442
 443        list_for_each_entry_safe(q, n, &pending->list, list) {
 444                int sig = q->info.si_signo;
 445
 446                if (likely(q->info.si_code != SI_TIMER)) {
 447                        sigaddset(&retain, sig);
 448                } else {
 449                        sigdelset(&signal, sig);
 450                        list_del_init(&q->list);
 451                        __sigqueue_free(q);
 452                }
 453        }
 454
 455        sigorsets(&pending->signal, &signal, &retain);
 456}
 457
 458void flush_itimer_signals(void)
 459{
 460        struct task_struct *tsk = current;
 461        unsigned long flags;
 462
 463        spin_lock_irqsave(&tsk->sighand->siglock, flags);
 464        __flush_itimer_signals(&tsk->pending);
 465        __flush_itimer_signals(&tsk->signal->shared_pending);
 466        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 467}
 468
 469void ignore_signals(struct task_struct *t)
 470{
 471        int i;
 472
 473        for (i = 0; i < _NSIG; ++i)
 474                t->sighand->action[i].sa.sa_handler = SIG_IGN;
 475
 476        flush_signals(t);
 477}
 478
 479/*
 480 * Flush all handlers for a task.
 481 */
 482
 483void
 484flush_signal_handlers(struct task_struct *t, int force_default)
 485{
 486        int i;
 487        struct k_sigaction *ka = &t->sighand->action[0];
 488        for (i = _NSIG ; i != 0 ; i--) {
 489                if (force_default || ka->sa.sa_handler != SIG_IGN)
 490                        ka->sa.sa_handler = SIG_DFL;
 491                ka->sa.sa_flags = 0;
 492#ifdef __ARCH_HAS_SA_RESTORER
 493                ka->sa.sa_restorer = NULL;
 494#endif
 495                sigemptyset(&ka->sa.sa_mask);
 496                ka++;
 497        }
 498}
 499
 500int unhandled_signal(struct task_struct *tsk, int sig)
 501{
 502        void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 503        if (is_global_init(tsk))
 504                return 1;
 505        if (handler != SIG_IGN && handler != SIG_DFL)
 506                return 0;
 507        /* if ptraced, let the tracer determine */
 508        return !tsk->ptrace;
 509}
 510
 511/*
 512 * Notify the system that a driver wants to block all signals for this
 513 * process, and wants to be notified if any signals at all were to be
 514 * sent/acted upon.  If the notifier routine returns non-zero, then the
 515 * signal will be acted upon after all.  If the notifier routine returns 0,
 516 * then then signal will be blocked.  Only one block per process is
 517 * allowed.  priv is a pointer to private data that the notifier routine
 518 * can use to determine if the signal should be blocked or not.
 519 */
 520void
 521block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 522{
 523        unsigned long flags;
 524
 525        spin_lock_irqsave(&current->sighand->siglock, flags);
 526        current->notifier_mask = mask;
 527        current->notifier_data = priv;
 528        current->notifier = notifier;
 529        spin_unlock_irqrestore(&current->sighand->siglock, flags);
 530}
 531
 532/* Notify the system that blocking has ended. */
 533
 534void
 535unblock_all_signals(void)
 536{
 537        unsigned long flags;
 538
 539        spin_lock_irqsave(&current->sighand->siglock, flags);
 540        current->notifier = NULL;
 541        current->notifier_data = NULL;
 542        recalc_sigpending();
 543        spin_unlock_irqrestore(&current->sighand->siglock, flags);
 544}
 545
 546static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 547{
 548        struct sigqueue *q, *first = NULL;
 549
 550        /*
 551         * Collect the siginfo appropriate to this signal.  Check if
 552         * there is another siginfo for the same signal.
 553        */
 554        list_for_each_entry(q, &list->list, list) {
 555                if (q->info.si_signo == sig) {
 556                        if (first)
 557                                goto still_pending;
 558                        first = q;
 559                }
 560        }
 561
 562        sigdelset(&list->signal, sig);
 563
 564        if (first) {
 565still_pending:
 566                list_del_init(&first->list);
 567                copy_siginfo(info, &first->info);
 568                __sigqueue_free(first);
 569        } else {
 570                /*
 571                 * Ok, it wasn't in the queue.  This must be
 572                 * a fast-pathed signal or we must have been
 573                 * out of queue space.  So zero out the info.
 574                 */
 575                info->si_signo = sig;
 576                info->si_errno = 0;
 577                info->si_code = SI_USER;
 578                info->si_pid = 0;
 579                info->si_uid = 0;
 580        }
 581}
 582
 583static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 584                        siginfo_t *info)
 585{
 586        int sig = next_signal(pending, mask);
 587
 588        if (sig) {
 589                if (current->notifier) {
 590                        if (sigismember(current->notifier_mask, sig)) {
 591                                if (!(current->notifier)(current->notifier_data)) {
 592                                        clear_thread_flag(TIF_SIGPENDING);
 593                                        return 0;
 594                                }
 595                        }
 596                }
 597
 598                collect_signal(sig, pending, info);
 599        }
 600
 601        return sig;
 602}
 603
 604/*
 605 * Dequeue a signal and return the element to the caller, which is
 606 * expected to free it.
 607 *
 608 * All callers have to hold the siglock.
 609 */
 610int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 611{
 612        int signr;
 613
 614        /* We only dequeue private signals from ourselves, we don't let
 615         * signalfd steal them
 616         */
 617        signr = __dequeue_signal(&tsk->pending, mask, info);
 618        if (!signr) {
 619                signr = __dequeue_signal(&tsk->signal->shared_pending,
 620                                         mask, info);
 621                /*
 622                 * itimer signal ?
 623                 *
 624                 * itimers are process shared and we restart periodic
 625                 * itimers in the signal delivery path to prevent DoS
 626                 * attacks in the high resolution timer case. This is
 627                 * compliant with the old way of self-restarting
 628                 * itimers, as the SIGALRM is a legacy signal and only
 629                 * queued once. Changing the restart behaviour to
 630                 * restart the timer in the signal dequeue path is
 631                 * reducing the timer noise on heavy loaded !highres
 632                 * systems too.
 633                 */
 634                if (unlikely(signr == SIGALRM)) {
 635                        struct hrtimer *tmr = &tsk->signal->real_timer;
 636
 637                        if (!hrtimer_is_queued(tmr) &&
 638                            tsk->signal->it_real_incr.tv64 != 0) {
 639                                hrtimer_forward(tmr, tmr->base->get_time(),
 640                                                tsk->signal->it_real_incr);
 641                                hrtimer_restart(tmr);
 642                        }
 643                }
 644        }
 645
 646        recalc_sigpending();
 647        if (!signr)
 648                return 0;
 649
 650        if (unlikely(sig_kernel_stop(signr))) {
 651                /*
 652                 * Set a marker that we have dequeued a stop signal.  Our
 653                 * caller might release the siglock and then the pending
 654                 * stop signal it is about to process is no longer in the
 655                 * pending bitmasks, but must still be cleared by a SIGCONT
 656                 * (and overruled by a SIGKILL).  So those cases clear this
 657                 * shared flag after we've set it.  Note that this flag may
 658                 * remain set after the signal we return is ignored or
 659                 * handled.  That doesn't matter because its only purpose
 660                 * is to alert stop-signal processing code when another
 661                 * processor has come along and cleared the flag.
 662                 */
 663                current->jobctl |= JOBCTL_STOP_DEQUEUED;
 664        }
 665        if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 666                /*
 667                 * Release the siglock to ensure proper locking order
 668                 * of timer locks outside of siglocks.  Note, we leave
 669                 * irqs disabled here, since the posix-timers code is
 670                 * about to disable them again anyway.
 671                 */
 672                spin_unlock(&tsk->sighand->siglock);
 673                do_schedule_next_timer(info);
 674                spin_lock(&tsk->sighand->siglock);
 675        }
 676        return signr;
 677}
 678
 679/*
 680 * Tell a process that it has a new active signal..
 681 *
 682 * NOTE! we rely on the previous spin_lock to
 683 * lock interrupts for us! We can only be called with
 684 * "siglock" held, and the local interrupt must
 685 * have been disabled when that got acquired!
 686 *
 687 * No need to set need_resched since signal event passing
 688 * goes through ->blocked
 689 */
 690void signal_wake_up_state(struct task_struct *t, unsigned int state)
 691{
 692        set_tsk_thread_flag(t, TIF_SIGPENDING);
 693        /*
 694         * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 695         * case. We don't check t->state here because there is a race with it
 696         * executing another processor and just now entering stopped state.
 697         * By using wake_up_state, we ensure the process will wake up and
 698         * handle its death signal.
 699         */
 700        if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 701                kick_process(t);
 702}
 703
 704/*
 705 * Remove signals in mask from the pending set and queue.
 706 * Returns 1 if any signals were found.
 707 *
 708 * All callers must be holding the siglock.
 709 */
 710static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 711{
 712        struct sigqueue *q, *n;
 713        sigset_t m;
 714
 715        sigandsets(&m, mask, &s->signal);
 716        if (sigisemptyset(&m))
 717                return 0;
 718
 719        sigandnsets(&s->signal, &s->signal, mask);
 720        list_for_each_entry_safe(q, n, &s->list, list) {
 721                if (sigismember(mask, q->info.si_signo)) {
 722                        list_del_init(&q->list);
 723                        __sigqueue_free(q);
 724                }
 725        }
 726        return 1;
 727}
 728
 729static inline int is_si_special(const struct siginfo *info)
 730{
 731        return info <= SEND_SIG_FORCED;
 732}
 733
 734static inline bool si_fromuser(const struct siginfo *info)
 735{
 736        return info == SEND_SIG_NOINFO ||
 737                (!is_si_special(info) && SI_FROMUSER(info));
 738}
 739
 740/*
 741 * called with RCU read lock from check_kill_permission()
 742 */
 743static int kill_ok_by_cred(struct task_struct *t)
 744{
 745        const struct cred *cred = current_cred();
 746        const struct cred *tcred = __task_cred(t);
 747
 748        if (uid_eq(cred->euid, tcred->suid) ||
 749            uid_eq(cred->euid, tcred->uid)  ||
 750            uid_eq(cred->uid,  tcred->suid) ||
 751            uid_eq(cred->uid,  tcred->uid))
 752                return 1;
 753
 754        if (ns_capable(tcred->user_ns, CAP_KILL))
 755                return 1;
 756
 757        return 0;
 758}
 759
 760/*
 761 * Bad permissions for sending the signal
 762 * - the caller must hold the RCU read lock
 763 */
 764static int check_kill_permission(int sig, struct siginfo *info,
 765                                 struct task_struct *t)
 766{
 767        struct pid *sid;
 768        int error;
 769
 770        if (!valid_signal(sig))
 771                return -EINVAL;
 772
 773        if (!si_fromuser(info))
 774                return 0;
 775
 776        error = audit_signal_info(sig, t); /* Let audit system see the signal */
 777        if (error)
 778                return error;
 779
 780        if (!same_thread_group(current, t) &&
 781            !kill_ok_by_cred(t)) {
 782                switch (sig) {
 783                case SIGCONT:
 784                        sid = task_session(t);
 785                        /*
 786                         * We don't return the error if sid == NULL. The
 787                         * task was unhashed, the caller must notice this.
 788                         */
 789                        if (!sid || sid == task_session(current))
 790                                break;
 791                default:
 792                        return -EPERM;
 793                }
 794        }
 795
 796        return security_task_kill(t, info, sig, 0);
 797}
 798
 799/**
 800 * ptrace_trap_notify - schedule trap to notify ptracer
 801 * @t: tracee wanting to notify tracer
 802 *
 803 * This function schedules sticky ptrace trap which is cleared on the next
 804 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 805 * ptracer.
 806 *
 807 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 808 * ptracer is listening for events, tracee is woken up so that it can
 809 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 810 * eventually taken without returning to userland after the existing traps
 811 * are finished by PTRACE_CONT.
 812 *
 813 * CONTEXT:
 814 * Must be called with @task->sighand->siglock held.
 815 */
 816static void ptrace_trap_notify(struct task_struct *t)
 817{
 818        WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 819        assert_spin_locked(&t->sighand->siglock);
 820
 821        task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 822        ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 823}
 824
 825/*
 826 * Handle magic process-wide effects of stop/continue signals. Unlike
 827 * the signal actions, these happen immediately at signal-generation
 828 * time regardless of blocking, ignoring, or handling.  This does the
 829 * actual continuing for SIGCONT, but not the actual stopping for stop
 830 * signals. The process stop is done as a signal action for SIG_DFL.
 831 *
 832 * Returns true if the signal should be actually delivered, otherwise
 833 * it should be dropped.
 834 */
 835static bool prepare_signal(int sig, struct task_struct *p, bool force)
 836{
 837        struct signal_struct *signal = p->signal;
 838        struct task_struct *t;
 839        sigset_t flush;
 840
 841        if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 842                if (signal->flags & SIGNAL_GROUP_COREDUMP)
 843                        return sig == SIGKILL;
 844                /*
 845                 * The process is in the middle of dying, nothing to do.
 846                 */
 847        } else if (sig_kernel_stop(sig)) {
 848                /*
 849                 * This is a stop signal.  Remove SIGCONT from all queues.
 850                 */
 851                siginitset(&flush, sigmask(SIGCONT));
 852                flush_sigqueue_mask(&flush, &signal->shared_pending);
 853                for_each_thread(p, t)
 854                        flush_sigqueue_mask(&flush, &t->pending);
 855        } else if (sig == SIGCONT) {
 856                unsigned int why;
 857                /*
 858                 * Remove all stop signals from all queues, wake all threads.
 859                 */
 860                siginitset(&flush, SIG_KERNEL_STOP_MASK);
 861                flush_sigqueue_mask(&flush, &signal->shared_pending);
 862                for_each_thread(p, t) {
 863                        flush_sigqueue_mask(&flush, &t->pending);
 864                        task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 865                        if (likely(!(t->ptrace & PT_SEIZED)))
 866                                wake_up_state(t, __TASK_STOPPED);
 867                        else
 868                                ptrace_trap_notify(t);
 869                }
 870
 871                /*
 872                 * Notify the parent with CLD_CONTINUED if we were stopped.
 873                 *
 874                 * If we were in the middle of a group stop, we pretend it
 875                 * was already finished, and then continued. Since SIGCHLD
 876                 * doesn't queue we report only CLD_STOPPED, as if the next
 877                 * CLD_CONTINUED was dropped.
 878                 */
 879                why = 0;
 880                if (signal->flags & SIGNAL_STOP_STOPPED)
 881                        why |= SIGNAL_CLD_CONTINUED;
 882                else if (signal->group_stop_count)
 883                        why |= SIGNAL_CLD_STOPPED;
 884
 885                if (why) {
 886                        /*
 887                         * The first thread which returns from do_signal_stop()
 888                         * will take ->siglock, notice SIGNAL_CLD_MASK, and
 889                         * notify its parent. See get_signal_to_deliver().
 890                         */
 891                        signal->flags = why | SIGNAL_STOP_CONTINUED;
 892                        signal->group_stop_count = 0;
 893                        signal->group_exit_code = 0;
 894                }
 895        }
 896
 897        return !sig_ignored(p, sig, force);
 898}
 899
 900/*
 901 * Test if P wants to take SIG.  After we've checked all threads with this,
 902 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 903 * blocking SIG were ruled out because they are not running and already
 904 * have pending signals.  Such threads will dequeue from the shared queue
 905 * as soon as they're available, so putting the signal on the shared queue
 906 * will be equivalent to sending it to one such thread.
 907 */
 908static inline int wants_signal(int sig, struct task_struct *p)
 909{
 910        if (sigismember(&p->blocked, sig))
 911                return 0;
 912        if (p->flags & PF_EXITING)
 913                return 0;
 914        if (sig == SIGKILL)
 915                return 1;
 916        if (task_is_stopped_or_traced(p))
 917                return 0;
 918        return task_curr(p) || !signal_pending(p);
 919}
 920
 921static void complete_signal(int sig, struct task_struct *p, int group)
 922{
 923        struct signal_struct *signal = p->signal;
 924        struct task_struct *t;
 925
 926        /*
 927         * Now find a thread we can wake up to take the signal off the queue.
 928         *
 929         * If the main thread wants the signal, it gets first crack.
 930         * Probably the least surprising to the average bear.
 931         */
 932        if (wants_signal(sig, p))
 933                t = p;
 934        else if (!group || thread_group_empty(p))
 935                /*
 936                 * There is just one thread and it does not need to be woken.
 937                 * It will dequeue unblocked signals before it runs again.
 938                 */
 939                return;
 940        else {
 941                /*
 942                 * Otherwise try to find a suitable thread.
 943                 */
 944                t = signal->curr_target;
 945                while (!wants_signal(sig, t)) {
 946                        t = next_thread(t);
 947                        if (t == signal->curr_target)
 948                                /*
 949                                 * No thread needs to be woken.
 950                                 * Any eligible threads will see
 951                                 * the signal in the queue soon.
 952                                 */
 953                                return;
 954                }
 955                signal->curr_target = t;
 956        }
 957
 958        /*
 959         * Found a killable thread.  If the signal will be fatal,
 960         * then start taking the whole group down immediately.
 961         */
 962        if (sig_fatal(p, sig) &&
 963            !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 964            !sigismember(&t->real_blocked, sig) &&
 965            (sig == SIGKILL || !t->ptrace)) {
 966                /*
 967                 * This signal will be fatal to the whole group.
 968                 */
 969                if (!sig_kernel_coredump(sig)) {
 970                        /*
 971                         * Start a group exit and wake everybody up.
 972                         * This way we don't have other threads
 973                         * running and doing things after a slower
 974                         * thread has the fatal signal pending.
 975                         */
 976                        signal->flags = SIGNAL_GROUP_EXIT;
 977                        signal->group_exit_code = sig;
 978                        signal->group_stop_count = 0;
 979                        t = p;
 980                        do {
 981                                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 982                                sigaddset(&t->pending.signal, SIGKILL);
 983                                signal_wake_up(t, 1);
 984                        } while_each_thread(p, t);
 985                        return;
 986                }
 987        }
 988
 989        /*
 990         * The signal is already in the shared-pending queue.
 991         * Tell the chosen thread to wake up and dequeue it.
 992         */
 993        signal_wake_up(t, sig == SIGKILL);
 994        return;
 995}
 996
 997static inline int legacy_queue(struct sigpending *signals, int sig)
 998{
 999        return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1000}
1001
1002#ifdef CONFIG_USER_NS
1003static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1004{
1005        if (current_user_ns() == task_cred_xxx(t, user_ns))
1006                return;
1007
1008        if (SI_FROMKERNEL(info))
1009                return;
1010
1011        rcu_read_lock();
1012        info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1013                                        make_kuid(current_user_ns(), info->si_uid));
1014        rcu_read_unlock();
1015}
1016#else
1017static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1018{
1019        return;
1020}
1021#endif
1022
1023static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1024                        int group, int from_ancestor_ns)
1025{
1026        struct sigpending *pending;
1027        struct sigqueue *q;
1028        int override_rlimit;
1029        int ret = 0, result;
1030
1031        assert_spin_locked(&t->sighand->siglock);
1032
1033        result = TRACE_SIGNAL_IGNORED;
1034        if (!prepare_signal(sig, t,
1035                        from_ancestor_ns || (info == SEND_SIG_FORCED)))
1036                goto ret;
1037
1038        pending = group ? &t->signal->shared_pending : &t->pending;
1039        /*
1040         * Short-circuit ignored signals and support queuing
1041         * exactly one non-rt signal, so that we can get more
1042         * detailed information about the cause of the signal.
1043         */
1044        result = TRACE_SIGNAL_ALREADY_PENDING;
1045        if (legacy_queue(pending, sig))
1046                goto ret;
1047
1048        result = TRACE_SIGNAL_DELIVERED;
1049        /*
1050         * fast-pathed signals for kernel-internal things like SIGSTOP
1051         * or SIGKILL.
1052         */
1053        if (info == SEND_SIG_FORCED)
1054                goto out_set;
1055
1056        /*
1057         * Real-time signals must be queued if sent by sigqueue, or
1058         * some other real-time mechanism.  It is implementation
1059         * defined whether kill() does so.  We attempt to do so, on
1060         * the principle of least surprise, but since kill is not
1061         * allowed to fail with EAGAIN when low on memory we just
1062         * make sure at least one signal gets delivered and don't
1063         * pass on the info struct.
1064         */
1065        if (sig < SIGRTMIN)
1066                override_rlimit = (is_si_special(info) || info->si_code >= 0);
1067        else
1068                override_rlimit = 0;
1069
1070        q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1071                override_rlimit);
1072        if (q) {
1073                list_add_tail(&q->list, &pending->list);
1074                switch ((unsigned long) info) {
1075                case (unsigned long) SEND_SIG_NOINFO:
1076                        q->info.si_signo = sig;
1077                        q->info.si_errno = 0;
1078                        q->info.si_code = SI_USER;
1079                        q->info.si_pid = task_tgid_nr_ns(current,
1080                                                        task_active_pid_ns(t));
1081                        q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1082                        break;
1083                case (unsigned long) SEND_SIG_PRIV:
1084                        q->info.si_signo = sig;
1085                        q->info.si_errno = 0;
1086                        q->info.si_code = SI_KERNEL;
1087                        q->info.si_pid = 0;
1088                        q->info.si_uid = 0;
1089                        break;
1090                default:
1091                        copy_siginfo(&q->info, info);
1092                        if (from_ancestor_ns)
1093                                q->info.si_pid = 0;
1094                        break;
1095                }
1096
1097                userns_fixup_signal_uid(&q->info, t);
1098
1099        } else if (!is_si_special(info)) {
1100                if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1101                        /*
1102                         * Queue overflow, abort.  We may abort if the
1103                         * signal was rt and sent by user using something
1104                         * other than kill().
1105                         */
1106                        result = TRACE_SIGNAL_OVERFLOW_FAIL;
1107                        ret = -EAGAIN;
1108                        goto ret;
1109                } else {
1110                        /*
1111                         * This is a silent loss of information.  We still
1112                         * send the signal, but the *info bits are lost.
1113                         */
1114                        result = TRACE_SIGNAL_LOSE_INFO;
1115                }
1116        }
1117
1118out_set:
1119        signalfd_notify(t, sig);
1120        sigaddset(&pending->signal, sig);
1121        complete_signal(sig, t, group);
1122ret:
1123        trace_signal_generate(sig, info, t, group, result);
1124        return ret;
1125}
1126
1127static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1128                        int group)
1129{
1130        int from_ancestor_ns = 0;
1131
1132#ifdef CONFIG_PID_NS
1133        from_ancestor_ns = si_fromuser(info) &&
1134                           !task_pid_nr_ns(current, task_active_pid_ns(t));
1135#endif
1136
1137        return __send_signal(sig, info, t, group, from_ancestor_ns);
1138}
1139
1140static void print_fatal_signal(int signr)
1141{
1142        struct pt_regs *regs = signal_pt_regs();
1143        printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1144
1145#if defined(__i386__) && !defined(__arch_um__)
1146        printk(KERN_INFO "code at %08lx: ", regs->ip);
1147        {
1148                int i;
1149                for (i = 0; i < 16; i++) {
1150                        unsigned char insn;
1151
1152                        if (get_user(insn, (unsigned char *)(regs->ip + i)))
1153                                break;
1154                        printk(KERN_CONT "%02x ", insn);
1155                }
1156        }
1157        printk(KERN_CONT "\n");
1158#endif
1159        preempt_disable();
1160        show_regs(regs);
1161        preempt_enable();
1162}
1163
1164static int __init setup_print_fatal_signals(char *str)
1165{
1166        get_option (&str, &print_fatal_signals);
1167
1168        return 1;
1169}
1170
1171__setup("print-fatal-signals=", setup_print_fatal_signals);
1172
1173int
1174__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1175{
1176        return send_signal(sig, info, p, 1);
1177}
1178
1179static int
1180specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1181{
1182        return send_signal(sig, info, t, 0);
1183}
1184
1185int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1186                        bool group)
1187{
1188        unsigned long flags;
1189        int ret = -ESRCH;
1190
1191        if (lock_task_sighand(p, &flags)) {
1192                ret = send_signal(sig, info, p, group);
1193                unlock_task_sighand(p, &flags);
1194        }
1195
1196        return ret;
1197}
1198
1199/*
1200 * Force a signal that the process can't ignore: if necessary
1201 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1202 *
1203 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1204 * since we do not want to have a signal handler that was blocked
1205 * be invoked when user space had explicitly blocked it.
1206 *
1207 * We don't want to have recursive SIGSEGV's etc, for example,
1208 * that is why we also clear SIGNAL_UNKILLABLE.
1209 */
1210int
1211force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1212{
1213        unsigned long int flags;
1214        int ret, blocked, ignored;
1215        struct k_sigaction *action;
1216
1217        spin_lock_irqsave(&t->sighand->siglock, flags);
1218        action = &t->sighand->action[sig-1];
1219        ignored = action->sa.sa_handler == SIG_IGN;
1220        blocked = sigismember(&t->blocked, sig);
1221        if (blocked || ignored) {
1222                action->sa.sa_handler = SIG_DFL;
1223                if (blocked) {
1224                        sigdelset(&t->blocked, sig);
1225                        recalc_sigpending_and_wake(t);
1226                }
1227        }
1228        if (action->sa.sa_handler == SIG_DFL)
1229                t->signal->flags &= ~SIGNAL_UNKILLABLE;
1230        ret = specific_send_sig_info(sig, info, t);
1231        spin_unlock_irqrestore(&t->sighand->siglock, flags);
1232
1233        return ret;
1234}
1235
1236/*
1237 * Nuke all other threads in the group.
1238 */
1239int zap_other_threads(struct task_struct *p)
1240{
1241        struct task_struct *t = p;
1242        int count = 0;
1243
1244        p->signal->group_stop_count = 0;
1245
1246        while_each_thread(p, t) {
1247                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1248                count++;
1249
1250                /* Don't bother with already dead threads */
1251                if (t->exit_state)
1252                        continue;
1253                sigaddset(&t->pending.signal, SIGKILL);
1254                signal_wake_up(t, 1);
1255        }
1256
1257        return count;
1258}
1259
1260struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1261                                           unsigned long *flags)
1262{
1263        struct sighand_struct *sighand;
1264
1265        for (;;) {
1266                /*
1267                 * Disable interrupts early to avoid deadlocks.
1268                 * See rcu_read_unlock() comment header for details.
1269                 */
1270                local_irq_save(*flags);
1271                rcu_read_lock();
1272                sighand = rcu_dereference(tsk->sighand);
1273                if (unlikely(sighand == NULL)) {
1274                        rcu_read_unlock();
1275                        local_irq_restore(*flags);
1276                        break;
1277                }
1278                /*
1279                 * This sighand can be already freed and even reused, but
1280                 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1281                 * initializes ->siglock: this slab can't go away, it has
1282                 * the same object type, ->siglock can't be reinitialized.
1283                 *
1284                 * We need to ensure that tsk->sighand is still the same
1285                 * after we take the lock, we can race with de_thread() or
1286                 * __exit_signal(). In the latter case the next iteration
1287                 * must see ->sighand == NULL.
1288                 */
1289                spin_lock(&sighand->siglock);
1290                if (likely(sighand == tsk->sighand)) {
1291                        rcu_read_unlock();
1292                        break;
1293                }
1294                spin_unlock(&sighand->siglock);
1295                rcu_read_unlock();
1296                local_irq_restore(*flags);
1297        }
1298
1299        return sighand;
1300}
1301
1302/*
1303 * send signal info to all the members of a group
1304 */
1305int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1306{
1307        int ret;
1308
1309        rcu_read_lock();
1310        ret = check_kill_permission(sig, info, p);
1311        rcu_read_unlock();
1312
1313        if (!ret && sig)
1314                ret = do_send_sig_info(sig, info, p, true);
1315
1316        return ret;
1317}
1318
1319/*
1320 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1321 * control characters do (^C, ^Z etc)
1322 * - the caller must hold at least a readlock on tasklist_lock
1323 */
1324int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1325{
1326        struct task_struct *p = NULL;
1327        int retval, success;
1328
1329        success = 0;
1330        retval = -ESRCH;
1331        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1332                int err = group_send_sig_info(sig, info, p);
1333                success |= !err;
1334                retval = err;
1335        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1336        return success ? 0 : retval;
1337}
1338
1339int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1340{
1341        int error = -ESRCH;
1342        struct task_struct *p;
1343
1344        for (;;) {
1345                rcu_read_lock();
1346                p = pid_task(pid, PIDTYPE_PID);
1347                if (p)
1348                        error = group_send_sig_info(sig, info, p);
1349                rcu_read_unlock();
1350                if (likely(!p || error != -ESRCH))
1351                        return error;
1352
1353                /*
1354                 * The task was unhashed in between, try again.  If it
1355                 * is dead, pid_task() will return NULL, if we race with
1356                 * de_thread() it will find the new leader.
1357                 */
1358        }
1359}
1360
1361int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1362{
1363        int error;
1364        rcu_read_lock();
1365        error = kill_pid_info(sig, info, find_vpid(pid));
1366        rcu_read_unlock();
1367        return error;
1368}
1369
1370static int kill_as_cred_perm(const struct cred *cred,
1371                             struct task_struct *target)
1372{
1373        const struct cred *pcred = __task_cred(target);
1374        if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1375            !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1376                return 0;
1377        return 1;
1378}
1379
1380/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1381int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1382                         const struct cred *cred, u32 secid)
1383{
1384        int ret = -EINVAL;
1385        struct task_struct *p;
1386        unsigned long flags;
1387
1388        if (!valid_signal(sig))
1389                return ret;
1390
1391        rcu_read_lock();
1392        p = pid_task(pid, PIDTYPE_PID);
1393        if (!p) {
1394                ret = -ESRCH;
1395                goto out_unlock;
1396        }
1397        if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1398                ret = -EPERM;
1399                goto out_unlock;
1400        }
1401        ret = security_task_kill(p, info, sig, secid);
1402        if (ret)
1403                goto out_unlock;
1404
1405        if (sig) {
1406                if (lock_task_sighand(p, &flags)) {
1407                        ret = __send_signal(sig, info, p, 1, 0);
1408                        unlock_task_sighand(p, &flags);
1409                } else
1410                        ret = -ESRCH;
1411        }
1412out_unlock:
1413        rcu_read_unlock();
1414        return ret;
1415}
1416EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1417
1418/*
1419 * kill_something_info() interprets pid in interesting ways just like kill(2).
1420 *
1421 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1422 * is probably wrong.  Should make it like BSD or SYSV.
1423 */
1424
1425static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1426{
1427        int ret;
1428
1429        if (pid > 0) {
1430                rcu_read_lock();
1431                ret = kill_pid_info(sig, info, find_vpid(pid));
1432                rcu_read_unlock();
1433                return ret;
1434        }
1435
1436        read_lock(&tasklist_lock);
1437        if (pid != -1) {
1438                ret = __kill_pgrp_info(sig, info,
1439                                pid ? find_vpid(-pid) : task_pgrp(current));
1440        } else {
1441                int retval = 0, count = 0;
1442                struct task_struct * p;
1443
1444                for_each_process(p) {
1445                        if (task_pid_vnr(p) > 1 &&
1446                                        !same_thread_group(p, current)) {
1447                                int err = group_send_sig_info(sig, info, p);
1448                                ++count;
1449                                if (err != -EPERM)
1450                                        retval = err;
1451                        }
1452                }
1453                ret = count ? retval : -ESRCH;
1454        }
1455        read_unlock(&tasklist_lock);
1456
1457        return ret;
1458}
1459
1460/*
1461 * These are for backward compatibility with the rest of the kernel source.
1462 */
1463
1464int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1465{
1466        /*
1467         * Make sure legacy kernel users don't send in bad values
1468         * (normal paths check this in check_kill_permission).
1469         */
1470        if (!valid_signal(sig))
1471                return -EINVAL;
1472
1473        return do_send_sig_info(sig, info, p, false);
1474}
1475
1476#define __si_special(priv) \
1477        ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1478
1479int
1480send_sig(int sig, struct task_struct *p, int priv)
1481{
1482        return send_sig_info(sig, __si_special(priv), p);
1483}
1484
1485void
1486force_sig(int sig, struct task_struct *p)
1487{
1488        force_sig_info(sig, SEND_SIG_PRIV, p);
1489}
1490
1491/*
1492 * When things go south during signal handling, we
1493 * will force a SIGSEGV. And if the signal that caused
1494 * the problem was already a SIGSEGV, we'll want to
1495 * make sure we don't even try to deliver the signal..
1496 */
1497int
1498force_sigsegv(int sig, struct task_struct *p)
1499{
1500        if (sig == SIGSEGV) {
1501                unsigned long flags;
1502                spin_lock_irqsave(&p->sighand->siglock, flags);
1503                p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1504                spin_unlock_irqrestore(&p->sighand->siglock, flags);
1505        }
1506        force_sig(SIGSEGV, p);
1507        return 0;
1508}
1509
1510int kill_pgrp(struct pid *pid, int sig, int priv)
1511{
1512        int ret;
1513
1514        read_lock(&tasklist_lock);
1515        ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1516        read_unlock(&tasklist_lock);
1517
1518        return ret;
1519}
1520EXPORT_SYMBOL(kill_pgrp);
1521
1522int kill_pid(struct pid *pid, int sig, int priv)
1523{
1524        return kill_pid_info(sig, __si_special(priv), pid);
1525}
1526EXPORT_SYMBOL(kill_pid);
1527
1528/*
1529 * These functions support sending signals using preallocated sigqueue
1530 * structures.  This is needed "because realtime applications cannot
1531 * afford to lose notifications of asynchronous events, like timer
1532 * expirations or I/O completions".  In the case of POSIX Timers
1533 * we allocate the sigqueue structure from the timer_create.  If this
1534 * allocation fails we are able to report the failure to the application
1535 * with an EAGAIN error.
1536 */
1537struct sigqueue *sigqueue_alloc(void)
1538{
1539        struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1540
1541        if (q)
1542                q->flags |= SIGQUEUE_PREALLOC;
1543
1544        return q;
1545}
1546
1547void sigqueue_free(struct sigqueue *q)
1548{
1549        unsigned long flags;
1550        spinlock_t *lock = &current->sighand->siglock;
1551
1552        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1553        /*
1554         * We must hold ->siglock while testing q->list
1555         * to serialize with collect_signal() or with
1556         * __exit_signal()->flush_sigqueue().
1557         */
1558        spin_lock_irqsave(lock, flags);
1559        q->flags &= ~SIGQUEUE_PREALLOC;
1560        /*
1561         * If it is queued it will be freed when dequeued,
1562         * like the "regular" sigqueue.
1563         */
1564        if (!list_empty(&q->list))
1565                q = NULL;
1566        spin_unlock_irqrestore(lock, flags);
1567
1568        if (q)
1569                __sigqueue_free(q);
1570}
1571
1572int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1573{
1574        int sig = q->info.si_signo;
1575        struct sigpending *pending;
1576        unsigned long flags;
1577        int ret, result;
1578
1579        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1580
1581        ret = -1;
1582        if (!likely(lock_task_sighand(t, &flags)))
1583                goto ret;
1584
1585        ret = 1; /* the signal is ignored */
1586        result = TRACE_SIGNAL_IGNORED;
1587        if (!prepare_signal(sig, t, false))
1588                goto out;
1589
1590        ret = 0;
1591        if (unlikely(!list_empty(&q->list))) {
1592                /*
1593                 * If an SI_TIMER entry is already queue just increment
1594                 * the overrun count.
1595                 */
1596                BUG_ON(q->info.si_code != SI_TIMER);
1597                q->info.si_overrun++;
1598                result = TRACE_SIGNAL_ALREADY_PENDING;
1599                goto out;
1600        }
1601        q->info.si_overrun = 0;
1602
1603        signalfd_notify(t, sig);
1604        pending = group ? &t->signal->shared_pending : &t->pending;
1605        list_add_tail(&q->list, &pending->list);
1606        sigaddset(&pending->signal, sig);
1607        complete_signal(sig, t, group);
1608        result = TRACE_SIGNAL_DELIVERED;
1609out:
1610        trace_signal_generate(sig, &q->info, t, group, result);
1611        unlock_task_sighand(t, &flags);
1612ret:
1613        return ret;
1614}
1615
1616/*
1617 * Let a parent know about the death of a child.
1618 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1619 *
1620 * Returns true if our parent ignored us and so we've switched to
1621 * self-reaping.
1622 */
1623bool do_notify_parent(struct task_struct *tsk, int sig)
1624{
1625        struct siginfo info;
1626        unsigned long flags;
1627        struct sighand_struct *psig;
1628        bool autoreap = false;
1629        cputime_t utime, stime;
1630
1631        BUG_ON(sig == -1);
1632
1633        /* do_notify_parent_cldstop should have been called instead.  */
1634        BUG_ON(task_is_stopped_or_traced(tsk));
1635
1636        BUG_ON(!tsk->ptrace &&
1637               (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1638
1639        if (sig != SIGCHLD) {
1640                /*
1641                 * This is only possible if parent == real_parent.
1642                 * Check if it has changed security domain.
1643                 */
1644                if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1645                        sig = SIGCHLD;
1646        }
1647
1648        info.si_signo = sig;
1649        info.si_errno = 0;
1650        /*
1651         * We are under tasklist_lock here so our parent is tied to
1652         * us and cannot change.
1653         *
1654         * task_active_pid_ns will always return the same pid namespace
1655         * until a task passes through release_task.
1656         *
1657         * write_lock() currently calls preempt_disable() which is the
1658         * same as rcu_read_lock(), but according to Oleg, this is not
1659         * correct to rely on this
1660         */
1661        rcu_read_lock();
1662        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1663        info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1664                                       task_uid(tsk));
1665        rcu_read_unlock();
1666
1667        task_cputime(tsk, &utime, &stime);
1668        info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1669        info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1670
1671        info.si_status = tsk->exit_code & 0x7f;
1672        if (tsk->exit_code & 0x80)
1673                info.si_code = CLD_DUMPED;
1674        else if (tsk->exit_code & 0x7f)
1675                info.si_code = CLD_KILLED;
1676        else {
1677                info.si_code = CLD_EXITED;
1678                info.si_status = tsk->exit_code >> 8;
1679        }
1680
1681        psig = tsk->parent->sighand;
1682        spin_lock_irqsave(&psig->siglock, flags);
1683        if (!tsk->ptrace && sig == SIGCHLD &&
1684            (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1685             (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1686                /*
1687                 * We are exiting and our parent doesn't care.  POSIX.1
1688                 * defines special semantics for setting SIGCHLD to SIG_IGN
1689                 * or setting the SA_NOCLDWAIT flag: we should be reaped
1690                 * automatically and not left for our parent's wait4 call.
1691                 * Rather than having the parent do it as a magic kind of
1692                 * signal handler, we just set this to tell do_exit that we
1693                 * can be cleaned up without becoming a zombie.  Note that
1694                 * we still call __wake_up_parent in this case, because a
1695                 * blocked sys_wait4 might now return -ECHILD.
1696                 *
1697                 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1698                 * is implementation-defined: we do (if you don't want
1699                 * it, just use SIG_IGN instead).
1700                 */
1701                autoreap = true;
1702                if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1703                        sig = 0;
1704        }
1705        if (valid_signal(sig) && sig)
1706                __group_send_sig_info(sig, &info, tsk->parent);
1707        __wake_up_parent(tsk, tsk->parent);
1708        spin_unlock_irqrestore(&psig->siglock, flags);
1709
1710        return autoreap;
1711}
1712
1713/**
1714 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1715 * @tsk: task reporting the state change
1716 * @for_ptracer: the notification is for ptracer
1717 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1718 *
1719 * Notify @tsk's parent that the stopped/continued state has changed.  If
1720 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1721 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1722 *
1723 * CONTEXT:
1724 * Must be called with tasklist_lock at least read locked.
1725 */
1726static void do_notify_parent_cldstop(struct task_struct *tsk,
1727                                     bool for_ptracer, int why)
1728{
1729        struct siginfo info;
1730        unsigned long flags;
1731        struct task_struct *parent;
1732        struct sighand_struct *sighand;
1733        cputime_t utime, stime;
1734
1735        if (for_ptracer) {
1736                parent = tsk->parent;
1737        } else {
1738                tsk = tsk->group_leader;
1739                parent = tsk->real_parent;
1740        }
1741
1742        info.si_signo = SIGCHLD;
1743        info.si_errno = 0;
1744        /*
1745         * see comment in do_notify_parent() about the following 4 lines
1746         */
1747        rcu_read_lock();
1748        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1749        info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1750        rcu_read_unlock();
1751
1752        task_cputime(tsk, &utime, &stime);
1753        info.si_utime = cputime_to_clock_t(utime);
1754        info.si_stime = cputime_to_clock_t(stime);
1755
1756        info.si_code = why;
1757        switch (why) {
1758        case CLD_CONTINUED:
1759                info.si_status = SIGCONT;
1760                break;
1761        case CLD_STOPPED:
1762                info.si_status = tsk->signal->group_exit_code & 0x7f;
1763                break;
1764        case CLD_TRAPPED:
1765                info.si_status = tsk->exit_code & 0x7f;
1766                break;
1767        default:
1768                BUG();
1769        }
1770
1771        sighand = parent->sighand;
1772        spin_lock_irqsave(&sighand->siglock, flags);
1773        if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1774            !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1775                __group_send_sig_info(SIGCHLD, &info, parent);
1776        /*
1777         * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1778         */
1779        __wake_up_parent(tsk, parent);
1780        spin_unlock_irqrestore(&sighand->siglock, flags);
1781}
1782
1783static inline int may_ptrace_stop(void)
1784{
1785        if (!likely(current->ptrace))
1786                return 0;
1787        /*
1788         * Are we in the middle of do_coredump?
1789         * If so and our tracer is also part of the coredump stopping
1790         * is a deadlock situation, and pointless because our tracer
1791         * is dead so don't allow us to stop.
1792         * If SIGKILL was already sent before the caller unlocked
1793         * ->siglock we must see ->core_state != NULL. Otherwise it
1794         * is safe to enter schedule().
1795         *
1796         * This is almost outdated, a task with the pending SIGKILL can't
1797         * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1798         * after SIGKILL was already dequeued.
1799         */
1800        if (unlikely(current->mm->core_state) &&
1801            unlikely(current->mm == current->parent->mm))
1802                return 0;
1803
1804        return 1;
1805}
1806
1807/*
1808 * Return non-zero if there is a SIGKILL that should be waking us up.
1809 * Called with the siglock held.
1810 */
1811static int sigkill_pending(struct task_struct *tsk)
1812{
1813        return  sigismember(&tsk->pending.signal, SIGKILL) ||
1814                sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1815}
1816
1817/*
1818 * This must be called with current->sighand->siglock held.
1819 *
1820 * This should be the path for all ptrace stops.
1821 * We always set current->last_siginfo while stopped here.
1822 * That makes it a way to test a stopped process for
1823 * being ptrace-stopped vs being job-control-stopped.
1824 *
1825 * If we actually decide not to stop at all because the tracer
1826 * is gone, we keep current->exit_code unless clear_code.
1827 */
1828static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1829        __releases(&current->sighand->siglock)
1830        __acquires(&current->sighand->siglock)
1831{
1832        bool gstop_done = false;
1833
1834        if (arch_ptrace_stop_needed(exit_code, info)) {
1835                /*
1836                 * The arch code has something special to do before a
1837                 * ptrace stop.  This is allowed to block, e.g. for faults
1838                 * on user stack pages.  We can't keep the siglock while
1839                 * calling arch_ptrace_stop, so we must release it now.
1840                 * To preserve proper semantics, we must do this before
1841                 * any signal bookkeeping like checking group_stop_count.
1842                 * Meanwhile, a SIGKILL could come in before we retake the
1843                 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1844                 * So after regaining the lock, we must check for SIGKILL.
1845                 */
1846                spin_unlock_irq(&current->sighand->siglock);
1847                arch_ptrace_stop(exit_code, info);
1848                spin_lock_irq(&current->sighand->siglock);
1849                if (sigkill_pending(current))
1850                        return;
1851        }
1852
1853        /*
1854         * We're committing to trapping.  TRACED should be visible before
1855         * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1856         * Also, transition to TRACED and updates to ->jobctl should be
1857         * atomic with respect to siglock and should be done after the arch
1858         * hook as siglock is released and regrabbed across it.
1859         */
1860        set_current_state(TASK_TRACED);
1861
1862        current->last_siginfo = info;
1863        current->exit_code = exit_code;
1864
1865        /*
1866         * If @why is CLD_STOPPED, we're trapping to participate in a group
1867         * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1868         * across siglock relocks since INTERRUPT was scheduled, PENDING
1869         * could be clear now.  We act as if SIGCONT is received after
1870         * TASK_TRACED is entered - ignore it.
1871         */
1872        if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1873                gstop_done = task_participate_group_stop(current);
1874
1875        /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1876        task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1877        if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1878                task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1879
1880        /* entering a trap, clear TRAPPING */
1881        task_clear_jobctl_trapping(current);
1882
1883        spin_unlock_irq(&current->sighand->siglock);
1884        read_lock(&tasklist_lock);
1885        if (may_ptrace_stop()) {
1886                /*
1887                 * Notify parents of the stop.
1888                 *
1889                 * While ptraced, there are two parents - the ptracer and
1890                 * the real_parent of the group_leader.  The ptracer should
1891                 * know about every stop while the real parent is only
1892                 * interested in the completion of group stop.  The states
1893                 * for the two don't interact with each other.  Notify
1894                 * separately unless they're gonna be duplicates.
1895                 */
1896                do_notify_parent_cldstop(current, true, why);
1897                if (gstop_done && ptrace_reparented(current))
1898                        do_notify_parent_cldstop(current, false, why);
1899
1900                /*
1901                 * Don't want to allow preemption here, because
1902                 * sys_ptrace() needs this task to be inactive.
1903                 *
1904                 * XXX: implement read_unlock_no_resched().
1905                 */
1906                preempt_disable();
1907                read_unlock(&tasklist_lock);
1908                preempt_enable_no_resched();
1909                freezable_schedule();
1910        } else {
1911                /*
1912                 * By the time we got the lock, our tracer went away.
1913                 * Don't drop the lock yet, another tracer may come.
1914                 *
1915                 * If @gstop_done, the ptracer went away between group stop
1916                 * completion and here.  During detach, it would have set
1917                 * JOBCTL_STOP_PENDING on us and we'll re-enter
1918                 * TASK_STOPPED in do_signal_stop() on return, so notifying
1919                 * the real parent of the group stop completion is enough.
1920                 */
1921                if (gstop_done)
1922                        do_notify_parent_cldstop(current, false, why);
1923
1924                /* tasklist protects us from ptrace_freeze_traced() */
1925                __set_current_state(TASK_RUNNING);
1926                if (clear_code)
1927                        current->exit_code = 0;
1928                read_unlock(&tasklist_lock);
1929        }
1930
1931        /*
1932         * We are back.  Now reacquire the siglock before touching
1933         * last_siginfo, so that we are sure to have synchronized with
1934         * any signal-sending on another CPU that wants to examine it.
1935         */
1936        spin_lock_irq(&current->sighand->siglock);
1937        current->last_siginfo = NULL;
1938
1939        /* LISTENING can be set only during STOP traps, clear it */
1940        current->jobctl &= ~JOBCTL_LISTENING;
1941
1942        /*
1943         * Queued signals ignored us while we were stopped for tracing.
1944         * So check for any that we should take before resuming user mode.
1945         * This sets TIF_SIGPENDING, but never clears it.
1946         */
1947        recalc_sigpending_tsk(current);
1948}
1949
1950static void ptrace_do_notify(int signr, int exit_code, int why)
1951{
1952        siginfo_t info;
1953
1954        memset(&info, 0, sizeof info);
1955        info.si_signo = signr;
1956        info.si_code = exit_code;
1957        info.si_pid = task_pid_vnr(current);
1958        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1959
1960        /* Let the debugger run.  */
1961        ptrace_stop(exit_code, why, 1, &info);
1962}
1963
1964void ptrace_notify(int exit_code)
1965{
1966        BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1967        if (unlikely(current->task_works))
1968                task_work_run();
1969
1970        spin_lock_irq(&current->sighand->siglock);
1971        ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1972        spin_unlock_irq(&current->sighand->siglock);
1973}
1974
1975/**
1976 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1977 * @signr: signr causing group stop if initiating
1978 *
1979 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1980 * and participate in it.  If already set, participate in the existing
1981 * group stop.  If participated in a group stop (and thus slept), %true is
1982 * returned with siglock released.
1983 *
1984 * If ptraced, this function doesn't handle stop itself.  Instead,
1985 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1986 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1987 * places afterwards.
1988 *
1989 * CONTEXT:
1990 * Must be called with @current->sighand->siglock held, which is released
1991 * on %true return.
1992 *
1993 * RETURNS:
1994 * %false if group stop is already cancelled or ptrace trap is scheduled.
1995 * %true if participated in group stop.
1996 */
1997static bool do_signal_stop(int signr)
1998        __releases(&current->sighand->siglock)
1999{
2000        struct signal_struct *sig = current->signal;
2001
2002        if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2003                unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2004                struct task_struct *t;
2005
2006                /* signr will be recorded in task->jobctl for retries */
2007                WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2008
2009                if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2010                    unlikely(signal_group_exit(sig)))
2011                        return false;
2012                /*
2013                 * There is no group stop already in progress.  We must
2014                 * initiate one now.
2015                 *
2016                 * While ptraced, a task may be resumed while group stop is
2017                 * still in effect and then receive a stop signal and
2018                 * initiate another group stop.  This deviates from the
2019                 * usual behavior as two consecutive stop signals can't
2020                 * cause two group stops when !ptraced.  That is why we
2021                 * also check !task_is_stopped(t) below.
2022                 *
2023                 * The condition can be distinguished by testing whether
2024                 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2025                 * group_exit_code in such case.
2026                 *
2027                 * This is not necessary for SIGNAL_STOP_CONTINUED because
2028                 * an intervening stop signal is required to cause two
2029                 * continued events regardless of ptrace.
2030                 */
2031                if (!(sig->flags & SIGNAL_STOP_STOPPED))
2032                        sig->group_exit_code = signr;
2033
2034                sig->group_stop_count = 0;
2035
2036                if (task_set_jobctl_pending(current, signr | gstop))
2037                        sig->group_stop_count++;
2038
2039                t = current;
2040                while_each_thread(current, t) {
2041                        /*
2042                         * Setting state to TASK_STOPPED for a group
2043                         * stop is always done with the siglock held,
2044                         * so this check has no races.
2045                         */
2046                        if (!task_is_stopped(t) &&
2047                            task_set_jobctl_pending(t, signr | gstop)) {
2048                                sig->group_stop_count++;
2049                                if (likely(!(t->ptrace & PT_SEIZED)))
2050                                        signal_wake_up(t, 0);
2051                                else
2052                                        ptrace_trap_notify(t);
2053                        }
2054                }
2055        }
2056
2057        if (likely(!current->ptrace)) {
2058                int notify = 0;
2059
2060                /*
2061                 * If there are no other threads in the group, or if there
2062                 * is a group stop in progress and we are the last to stop,
2063                 * report to the parent.
2064                 */
2065                if (task_participate_group_stop(current))
2066                        notify = CLD_STOPPED;
2067
2068                __set_current_state(TASK_STOPPED);
2069                spin_unlock_irq(&current->sighand->siglock);
2070
2071                /*
2072                 * Notify the parent of the group stop completion.  Because
2073                 * we're not holding either the siglock or tasklist_lock
2074                 * here, ptracer may attach inbetween; however, this is for
2075                 * group stop and should always be delivered to the real
2076                 * parent of the group leader.  The new ptracer will get
2077                 * its notification when this task transitions into
2078                 * TASK_TRACED.
2079                 */
2080                if (notify) {
2081                        read_lock(&tasklist_lock);
2082                        do_notify_parent_cldstop(current, false, notify);
2083                        read_unlock(&tasklist_lock);
2084                }
2085
2086                /* Now we don't run again until woken by SIGCONT or SIGKILL */
2087                freezable_schedule();
2088                return true;
2089        } else {
2090                /*
2091                 * While ptraced, group stop is handled by STOP trap.
2092                 * Schedule it and let the caller deal with it.
2093                 */
2094                task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2095                return false;
2096        }
2097}
2098
2099/**
2100 * do_jobctl_trap - take care of ptrace jobctl traps
2101 *
2102 * When PT_SEIZED, it's used for both group stop and explicit
2103 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2104 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2105 * the stop signal; otherwise, %SIGTRAP.
2106 *
2107 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2108 * number as exit_code and no siginfo.
2109 *
2110 * CONTEXT:
2111 * Must be called with @current->sighand->siglock held, which may be
2112 * released and re-acquired before returning with intervening sleep.
2113 */
2114static void do_jobctl_trap(void)
2115{
2116        struct signal_struct *signal = current->signal;
2117        int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2118
2119        if (current->ptrace & PT_SEIZED) {
2120                if (!signal->group_stop_count &&
2121                    !(signal->flags & SIGNAL_STOP_STOPPED))
2122                        signr = SIGTRAP;
2123                WARN_ON_ONCE(!signr);
2124                ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2125                                 CLD_STOPPED);
2126        } else {
2127                WARN_ON_ONCE(!signr);
2128                ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2129                current->exit_code = 0;
2130        }
2131}
2132
2133static int ptrace_signal(int signr, siginfo_t *info)
2134{
2135        ptrace_signal_deliver();
2136        /*
2137         * We do not check sig_kernel_stop(signr) but set this marker
2138         * unconditionally because we do not know whether debugger will
2139         * change signr. This flag has no meaning unless we are going
2140         * to stop after return from ptrace_stop(). In this case it will
2141         * be checked in do_signal_stop(), we should only stop if it was
2142         * not cleared by SIGCONT while we were sleeping. See also the
2143         * comment in dequeue_signal().
2144         */
2145        current->jobctl |= JOBCTL_STOP_DEQUEUED;
2146        ptrace_stop(signr, CLD_TRAPPED, 0, info);
2147
2148        /* We're back.  Did the debugger cancel the sig?  */
2149        signr = current->exit_code;
2150        if (signr == 0)
2151                return signr;
2152
2153        current->exit_code = 0;
2154
2155        /*
2156         * Update the siginfo structure if the signal has
2157         * changed.  If the debugger wanted something
2158         * specific in the siginfo structure then it should
2159         * have updated *info via PTRACE_SETSIGINFO.
2160         */
2161        if (signr != info->si_signo) {
2162                info->si_signo = signr;
2163                info->si_errno = 0;
2164                info->si_code = SI_USER;
2165                rcu_read_lock();
2166                info->si_pid = task_pid_vnr(current->parent);
2167                info->si_uid = from_kuid_munged(current_user_ns(),
2168                                                task_uid(current->parent));
2169                rcu_read_unlock();
2170        }
2171
2172        /* If the (new) signal is now blocked, requeue it.  */
2173        if (sigismember(&current->blocked, signr)) {
2174                specific_send_sig_info(signr, info, current);
2175                signr = 0;
2176        }
2177
2178        return signr;
2179}
2180
2181int get_signal(struct ksignal *ksig)
2182{
2183        struct sighand_struct *sighand = current->sighand;
2184        struct signal_struct *signal = current->signal;
2185        int signr;
2186
2187        if (unlikely(current->task_works))
2188                task_work_run();
2189
2190        if (unlikely(uprobe_deny_signal()))
2191                return 0;
2192
2193        /*
2194         * Do this once, we can't return to user-mode if freezing() == T.
2195         * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2196         * thus do not need another check after return.
2197         */
2198        try_to_freeze();
2199
2200relock:
2201        spin_lock_irq(&sighand->siglock);
2202        /*
2203         * Every stopped thread goes here after wakeup. Check to see if
2204         * we should notify the parent, prepare_signal(SIGCONT) encodes
2205         * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2206         */
2207        if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2208                int why;
2209
2210                if (signal->flags & SIGNAL_CLD_CONTINUED)
2211                        why = CLD_CONTINUED;
2212                else
2213                        why = CLD_STOPPED;
2214
2215                signal->flags &= ~SIGNAL_CLD_MASK;
2216
2217                spin_unlock_irq(&sighand->siglock);
2218
2219                /*
2220                 * Notify the parent that we're continuing.  This event is
2221                 * always per-process and doesn't make whole lot of sense
2222                 * for ptracers, who shouldn't consume the state via
2223                 * wait(2) either, but, for backward compatibility, notify
2224                 * the ptracer of the group leader too unless it's gonna be
2225                 * a duplicate.
2226                 */
2227                read_lock(&tasklist_lock);
2228                do_notify_parent_cldstop(current, false, why);
2229
2230                if (ptrace_reparented(current->group_leader))
2231                        do_notify_parent_cldstop(current->group_leader,
2232                                                true, why);
2233                read_unlock(&tasklist_lock);
2234
2235                goto relock;
2236        }
2237
2238        for (;;) {
2239                struct k_sigaction *ka;
2240
2241                if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2242                    do_signal_stop(0))
2243                        goto relock;
2244
2245                if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2246                        do_jobctl_trap();
2247                        spin_unlock_irq(&sighand->siglock);
2248                        goto relock;
2249                }
2250
2251                signr = dequeue_signal(current, &current->blocked, &ksig->info);
2252
2253                if (!signr)
2254                        break; /* will return 0 */
2255
2256                if (unlikely(current->ptrace) && signr != SIGKILL) {
2257                        signr = ptrace_signal(signr, &ksig->info);
2258                        if (!signr)
2259                                continue;
2260                }
2261
2262                ka = &sighand->action[signr-1];
2263
2264                /* Trace actually delivered signals. */
2265                trace_signal_deliver(signr, &ksig->info, ka);
2266
2267                if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2268                        continue;
2269                if (ka->sa.sa_handler != SIG_DFL) {
2270                        /* Run the handler.  */
2271                        ksig->ka = *ka;
2272
2273                        if (ka->sa.sa_flags & SA_ONESHOT)
2274                                ka->sa.sa_handler = SIG_DFL;
2275
2276                        break; /* will return non-zero "signr" value */
2277                }
2278
2279                /*
2280                 * Now we are doing the default action for this signal.
2281                 */
2282                if (sig_kernel_ignore(signr)) /* Default is nothing. */
2283                        continue;
2284
2285                /*
2286                 * Global init gets no signals it doesn't want.
2287                 * Container-init gets no signals it doesn't want from same
2288                 * container.
2289                 *
2290                 * Note that if global/container-init sees a sig_kernel_only()
2291                 * signal here, the signal must have been generated internally
2292                 * or must have come from an ancestor namespace. In either
2293                 * case, the signal cannot be dropped.
2294                 */
2295                if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2296                                !sig_kernel_only(signr))
2297                        continue;
2298
2299                if (sig_kernel_stop(signr)) {
2300                        /*
2301                         * The default action is to stop all threads in
2302                         * the thread group.  The job control signals
2303                         * do nothing in an orphaned pgrp, but SIGSTOP
2304                         * always works.  Note that siglock needs to be
2305                         * dropped during the call to is_orphaned_pgrp()
2306                         * because of lock ordering with tasklist_lock.
2307                         * This allows an intervening SIGCONT to be posted.
2308                         * We need to check for that and bail out if necessary.
2309                         */
2310                        if (signr != SIGSTOP) {
2311                                spin_unlock_irq(&sighand->siglock);
2312
2313                                /* signals can be posted during this window */
2314
2315                                if (is_current_pgrp_orphaned())
2316                                        goto relock;
2317
2318                                spin_lock_irq(&sighand->siglock);
2319                        }
2320
2321                        if (likely(do_signal_stop(ksig->info.si_signo))) {
2322                                /* It released the siglock.  */
2323                                goto relock;
2324                        }
2325
2326                        /*
2327                         * We didn't actually stop, due to a race
2328                         * with SIGCONT or something like that.
2329                         */
2330                        continue;
2331                }
2332
2333                spin_unlock_irq(&sighand->siglock);
2334
2335                /*
2336                 * Anything else is fatal, maybe with a core dump.
2337                 */
2338                current->flags |= PF_SIGNALED;
2339
2340                if (sig_kernel_coredump(signr)) {
2341                        if (print_fatal_signals)
2342                                print_fatal_signal(ksig->info.si_signo);
2343                        proc_coredump_connector(current);
2344                        /*
2345                         * If it was able to dump core, this kills all
2346                         * other threads in the group and synchronizes with
2347                         * their demise.  If we lost the race with another
2348                         * thread getting here, it set group_exit_code
2349                         * first and our do_group_exit call below will use
2350                         * that value and ignore the one we pass it.
2351                         */
2352                        do_coredump(&ksig->info);
2353                }
2354
2355                /*
2356                 * Death signals, no core dump.
2357                 */
2358                do_group_exit(ksig->info.si_signo);
2359                /* NOTREACHED */
2360        }
2361        spin_unlock_irq(&sighand->siglock);
2362
2363        ksig->sig = signr;
2364        return ksig->sig > 0;
2365}
2366
2367/**
2368 * signal_delivered - 
2369 * @ksig:               kernel signal struct
2370 * @stepping:           nonzero if debugger single-step or block-step in use
2371 *
2372 * This function should be called when a signal has successfully been
2373 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2374 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2375 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2376 */
2377static void signal_delivered(struct ksignal *ksig, int stepping)
2378{
2379        sigset_t blocked;
2380
2381        /* A signal was successfully delivered, and the
2382           saved sigmask was stored on the signal frame,
2383           and will be restored by sigreturn.  So we can
2384           simply clear the restore sigmask flag.  */
2385        clear_restore_sigmask();
2386
2387        sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2388        if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2389                sigaddset(&blocked, ksig->sig);
2390        set_current_blocked(&blocked);
2391        tracehook_signal_handler(stepping);
2392}
2393
2394void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2395{
2396        if (failed)
2397                force_sigsegv(ksig->sig, current);
2398        else
2399                signal_delivered(ksig, stepping);
2400}
2401
2402/*
2403 * It could be that complete_signal() picked us to notify about the
2404 * group-wide signal. Other threads should be notified now to take
2405 * the shared signals in @which since we will not.
2406 */
2407static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2408{
2409        sigset_t retarget;
2410        struct task_struct *t;
2411
2412        sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2413        if (sigisemptyset(&retarget))
2414                return;
2415
2416        t = tsk;
2417        while_each_thread(tsk, t) {
2418                if (t->flags & PF_EXITING)
2419                        continue;
2420
2421                if (!has_pending_signals(&retarget, &t->blocked))
2422                        continue;
2423                /* Remove the signals this thread can handle. */
2424                sigandsets(&retarget, &retarget, &t->blocked);
2425
2426                if (!signal_pending(t))
2427                        signal_wake_up(t, 0);
2428
2429                if (sigisemptyset(&retarget))
2430                        break;
2431        }
2432}
2433
2434void exit_signals(struct task_struct *tsk)
2435{
2436        int group_stop = 0;
2437        sigset_t unblocked;
2438
2439        /*
2440         * @tsk is about to have PF_EXITING set - lock out users which
2441         * expect stable threadgroup.
2442         */
2443        threadgroup_change_begin(tsk);
2444
2445        if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2446                tsk->flags |= PF_EXITING;
2447                threadgroup_change_end(tsk);
2448                return;
2449        }
2450
2451        spin_lock_irq(&tsk->sighand->siglock);
2452        /*
2453         * From now this task is not visible for group-wide signals,
2454         * see wants_signal(), do_signal_stop().
2455         */
2456        tsk->flags |= PF_EXITING;
2457
2458        threadgroup_change_end(tsk);
2459
2460        if (!signal_pending(tsk))
2461                goto out;
2462
2463        unblocked = tsk->blocked;
2464        signotset(&unblocked);
2465        retarget_shared_pending(tsk, &unblocked);
2466
2467        if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2468            task_participate_group_stop(tsk))
2469                group_stop = CLD_STOPPED;
2470out:
2471        spin_unlock_irq(&tsk->sighand->siglock);
2472
2473        /*
2474         * If group stop has completed, deliver the notification.  This
2475         * should always go to the real parent of the group leader.
2476         */
2477        if (unlikely(group_stop)) {
2478                read_lock(&tasklist_lock);
2479                do_notify_parent_cldstop(tsk, false, group_stop);
2480                read_unlock(&tasklist_lock);
2481        }
2482}
2483
2484EXPORT_SYMBOL(recalc_sigpending);
2485EXPORT_SYMBOL_GPL(dequeue_signal);
2486EXPORT_SYMBOL(flush_signals);
2487EXPORT_SYMBOL(force_sig);
2488EXPORT_SYMBOL(send_sig);
2489EXPORT_SYMBOL(send_sig_info);
2490EXPORT_SYMBOL(sigprocmask);
2491EXPORT_SYMBOL(block_all_signals);
2492EXPORT_SYMBOL(unblock_all_signals);
2493
2494
2495/*
2496 * System call entry points.
2497 */
2498
2499/**
2500 *  sys_restart_syscall - restart a system call
2501 */
2502SYSCALL_DEFINE0(restart_syscall)
2503{
2504        struct restart_block *restart = &current->restart_block;
2505        return restart->fn(restart);
2506}
2507
2508long do_no_restart_syscall(struct restart_block *param)
2509{
2510        return -EINTR;
2511}
2512
2513static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2514{
2515        if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2516                sigset_t newblocked;
2517                /* A set of now blocked but previously unblocked signals. */
2518                sigandnsets(&newblocked, newset, &current->blocked);
2519                retarget_shared_pending(tsk, &newblocked);
2520        }
2521        tsk->blocked = *newset;
2522        recalc_sigpending();
2523}
2524
2525/**
2526 * set_current_blocked - change current->blocked mask
2527 * @newset: new mask
2528 *
2529 * It is wrong to change ->blocked directly, this helper should be used
2530 * to ensure the process can't miss a shared signal we are going to block.
2531 */
2532void set_current_blocked(sigset_t *newset)
2533{
2534        sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2535        __set_current_blocked(newset);
2536}
2537
2538void __set_current_blocked(const sigset_t *newset)
2539{
2540        struct task_struct *tsk = current;
2541
2542        spin_lock_irq(&tsk->sighand->siglock);
2543        __set_task_blocked(tsk, newset);
2544        spin_unlock_irq(&tsk->sighand->siglock);
2545}
2546
2547/*
2548 * This is also useful for kernel threads that want to temporarily
2549 * (or permanently) block certain signals.
2550 *
2551 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2552 * interface happily blocks "unblockable" signals like SIGKILL
2553 * and friends.
2554 */
2555int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2556{
2557        struct task_struct *tsk = current;
2558        sigset_t newset;
2559
2560        /* Lockless, only current can change ->blocked, never from irq */
2561        if (oldset)
2562                *oldset = tsk->blocked;
2563
2564        switch (how) {
2565        case SIG_BLOCK:
2566                sigorsets(&newset, &tsk->blocked, set);
2567                break;
2568        case SIG_UNBLOCK:
2569                sigandnsets(&newset, &tsk->blocked, set);
2570                break;
2571        case SIG_SETMASK:
2572                newset = *set;
2573                break;
2574        default:
2575                return -EINVAL;
2576        }
2577
2578        __set_current_blocked(&newset);
2579        return 0;
2580}
2581
2582/**
2583 *  sys_rt_sigprocmask - change the list of currently blocked signals
2584 *  @how: whether to add, remove, or set signals
2585 *  @nset: stores pending signals
2586 *  @oset: previous value of signal mask if non-null
2587 *  @sigsetsize: size of sigset_t type
2588 */
2589SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2590                sigset_t __user *, oset, size_t, sigsetsize)
2591{
2592        sigset_t old_set, new_set;
2593        int error;
2594
2595        /* XXX: Don't preclude handling different sized sigset_t's.  */
2596        if (sigsetsize != sizeof(sigset_t))
2597                return -EINVAL;
2598
2599        old_set = current->blocked;
2600
2601        if (nset) {
2602                if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2603                        return -EFAULT;
2604                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2605
2606                error = sigprocmask(how, &new_set, NULL);
2607                if (error)
2608                        return error;
2609        }
2610
2611        if (oset) {
2612                if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2613                        return -EFAULT;
2614        }
2615
2616        return 0;
2617}
2618
2619#ifdef CONFIG_COMPAT
2620COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2621                compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2622{
2623#ifdef __BIG_ENDIAN
2624        sigset_t old_set = current->blocked;
2625
2626        /* XXX: Don't preclude handling different sized sigset_t's.  */
2627        if (sigsetsize != sizeof(sigset_t))
2628                return -EINVAL;
2629
2630        if (nset) {
2631                compat_sigset_t new32;
2632                sigset_t new_set;
2633                int error;
2634                if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2635                        return -EFAULT;
2636
2637                sigset_from_compat(&new_set, &new32);
2638                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2639
2640                error = sigprocmask(how, &new_set, NULL);
2641                if (error)
2642                        return error;
2643        }
2644        if (oset) {
2645                compat_sigset_t old32;
2646                sigset_to_compat(&old32, &old_set);
2647                if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2648                        return -EFAULT;
2649        }
2650        return 0;
2651#else
2652        return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2653                                  (sigset_t __user *)oset, sigsetsize);
2654#endif
2655}
2656#endif
2657
2658static int do_sigpending(void *set, unsigned long sigsetsize)
2659{
2660        if (sigsetsize > sizeof(sigset_t))
2661                return -EINVAL;
2662
2663        spin_lock_irq(&current->sighand->siglock);
2664        sigorsets(set, &current->pending.signal,
2665                  &current->signal->shared_pending.signal);
2666        spin_unlock_irq(&current->sighand->siglock);
2667
2668        /* Outside the lock because only this thread touches it.  */
2669        sigandsets(set, &current->blocked, set);
2670        return 0;
2671}
2672
2673/**
2674 *  sys_rt_sigpending - examine a pending signal that has been raised
2675 *                      while blocked
2676 *  @uset: stores pending signals
2677 *  @sigsetsize: size of sigset_t type or larger
2678 */
2679SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2680{
2681        sigset_t set;
2682        int err = do_sigpending(&set, sigsetsize);
2683        if (!err && copy_to_user(uset, &set, sigsetsize))
2684                err = -EFAULT;
2685        return err;
2686}
2687
2688#ifdef CONFIG_COMPAT
2689COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2690                compat_size_t, sigsetsize)
2691{
2692#ifdef __BIG_ENDIAN
2693        sigset_t set;
2694        int err = do_sigpending(&set, sigsetsize);
2695        if (!err) {
2696                compat_sigset_t set32;
2697                sigset_to_compat(&set32, &set);
2698                /* we can get here only if sigsetsize <= sizeof(set) */
2699                if (copy_to_user(uset, &set32, sigsetsize))
2700                        err = -EFAULT;
2701        }
2702        return err;
2703#else
2704        return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2705#endif
2706}
2707#endif
2708
2709#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2710
2711int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2712{
2713        int err;
2714
2715        if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2716                return -EFAULT;
2717        if (from->si_code < 0)
2718                return __copy_to_user(to, from, sizeof(siginfo_t))
2719                        ? -EFAULT : 0;
2720        /*
2721         * If you change siginfo_t structure, please be sure
2722         * this code is fixed accordingly.
2723         * Please remember to update the signalfd_copyinfo() function
2724         * inside fs/signalfd.c too, in case siginfo_t changes.
2725         * It should never copy any pad contained in the structure
2726         * to avoid security leaks, but must copy the generic
2727         * 3 ints plus the relevant union member.
2728         */
2729        err = __put_user(from->si_signo, &to->si_signo);
2730        err |= __put_user(from->si_errno, &to->si_errno);
2731        err |= __put_user((short)from->si_code, &to->si_code);
2732        switch (from->si_code & __SI_MASK) {
2733        case __SI_KILL:
2734                err |= __put_user(from->si_pid, &to->si_pid);
2735                err |= __put_user(from->si_uid, &to->si_uid);
2736                break;
2737        case __SI_TIMER:
2738                 err |= __put_user(from->si_tid, &to->si_tid);
2739                 err |= __put_user(from->si_overrun, &to->si_overrun);
2740                 err |= __put_user(from->si_ptr, &to->si_ptr);
2741                break;
2742        case __SI_POLL:
2743                err |= __put_user(from->si_band, &to->si_band);
2744                err |= __put_user(from->si_fd, &to->si_fd);
2745                break;
2746        case __SI_FAULT:
2747                err |= __put_user(from->si_addr, &to->si_addr);
2748#ifdef __ARCH_SI_TRAPNO
2749                err |= __put_user(from->si_trapno, &to->si_trapno);
2750#endif
2751#ifdef BUS_MCEERR_AO
2752                /*
2753                 * Other callers might not initialize the si_lsb field,
2754                 * so check explicitly for the right codes here.
2755                 */
2756                if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2757                        err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2758#endif
2759#ifdef SEGV_BNDERR
2760                err |= __put_user(from->si_lower, &to->si_lower);
2761                err |= __put_user(from->si_upper, &to->si_upper);
2762#endif
2763                break;
2764        case __SI_CHLD:
2765                err |= __put_user(from->si_pid, &to->si_pid);
2766                err |= __put_user(from->si_uid, &to->si_uid);
2767                err |= __put_user(from->si_status, &to->si_status);
2768                err |= __put_user(from->si_utime, &to->si_utime);
2769                err |= __put_user(from->si_stime, &to->si_stime);
2770                break;
2771        case __SI_RT: /* This is not generated by the kernel as of now. */
2772        case __SI_MESGQ: /* But this is */
2773                err |= __put_user(from->si_pid, &to->si_pid);
2774                err |= __put_user(from->si_uid, &to->si_uid);
2775                err |= __put_user(from->si_ptr, &to->si_ptr);
2776                break;
2777#ifdef __ARCH_SIGSYS
2778        case __SI_SYS:
2779                err |= __put_user(from->si_call_addr, &to->si_call_addr);
2780                err |= __put_user(from->si_syscall, &to->si_syscall);
2781                err |= __put_user(from->si_arch, &to->si_arch);
2782                break;
2783#endif
2784        default: /* this is just in case for now ... */
2785                err |= __put_user(from->si_pid, &to->si_pid);
2786                err |= __put_user(from->si_uid, &to->si_uid);
2787                break;
2788        }
2789        return err;
2790}
2791
2792#endif
2793
2794/**
2795 *  do_sigtimedwait - wait for queued signals specified in @which
2796 *  @which: queued signals to wait for
2797 *  @info: if non-null, the signal's siginfo is returned here
2798 *  @ts: upper bound on process time suspension
2799 */
2800int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2801                        const struct timespec *ts)
2802{
2803        struct task_struct *tsk = current;
2804        long timeout = MAX_SCHEDULE_TIMEOUT;
2805        sigset_t mask = *which;
2806        int sig;
2807
2808        if (ts) {
2809                if (!timespec_valid(ts))
2810                        return -EINVAL;
2811                timeout = timespec_to_jiffies(ts);
2812                /*
2813                 * We can be close to the next tick, add another one
2814                 * to ensure we will wait at least the time asked for.
2815                 */
2816                if (ts->tv_sec || ts->tv_nsec)
2817                        timeout++;
2818        }
2819
2820        /*
2821         * Invert the set of allowed signals to get those we want to block.
2822         */
2823        sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2824        signotset(&mask);
2825
2826        spin_lock_irq(&tsk->sighand->siglock);
2827        sig = dequeue_signal(tsk, &mask, info);
2828        if (!sig && timeout) {
2829                /*
2830                 * None ready, temporarily unblock those we're interested
2831                 * while we are sleeping in so that we'll be awakened when
2832                 * they arrive. Unblocking is always fine, we can avoid
2833                 * set_current_blocked().
2834                 */
2835                tsk->real_blocked = tsk->blocked;
2836                sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2837                recalc_sigpending();
2838                spin_unlock_irq(&tsk->sighand->siglock);
2839
2840                timeout = freezable_schedule_timeout_interruptible(timeout);
2841
2842                spin_lock_irq(&tsk->sighand->siglock);
2843                __set_task_blocked(tsk, &tsk->real_blocked);
2844                sigemptyset(&tsk->real_blocked);
2845                sig = dequeue_signal(tsk, &mask, info);
2846        }
2847        spin_unlock_irq(&tsk->sighand->siglock);
2848
2849        if (sig)
2850                return sig;
2851        return timeout ? -EINTR : -EAGAIN;
2852}
2853
2854/**
2855 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2856 *                      in @uthese
2857 *  @uthese: queued signals to wait for
2858 *  @uinfo: if non-null, the signal's siginfo is returned here
2859 *  @uts: upper bound on process time suspension
2860 *  @sigsetsize: size of sigset_t type
2861 */
2862SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2863                siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2864                size_t, sigsetsize)
2865{
2866        sigset_t these;
2867        struct timespec ts;
2868        siginfo_t info;
2869        int ret;
2870
2871        /* XXX: Don't preclude handling different sized sigset_t's.  */
2872        if (sigsetsize != sizeof(sigset_t))
2873                return -EINVAL;
2874
2875        if (copy_from_user(&these, uthese, sizeof(these)))
2876                return -EFAULT;
2877
2878        if (uts) {
2879                if (copy_from_user(&ts, uts, sizeof(ts)))
2880                        return -EFAULT;
2881        }
2882
2883        ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2884
2885        if (ret > 0 && uinfo) {
2886                if (copy_siginfo_to_user(uinfo, &info))
2887                        ret = -EFAULT;
2888        }
2889
2890        return ret;
2891}
2892
2893/**
2894 *  sys_kill - send a signal to a process
2895 *  @pid: the PID of the process
2896 *  @sig: signal to be sent
2897 */
2898SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2899{
2900        struct siginfo info;
2901
2902        info.si_signo = sig;
2903        info.si_errno = 0;
2904        info.si_code = SI_USER;
2905        info.si_pid = task_tgid_vnr(current);
2906        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2907
2908        return kill_something_info(sig, &info, pid);
2909}
2910
2911static int
2912do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2913{
2914        struct task_struct *p;
2915        int error = -ESRCH;
2916
2917        rcu_read_lock();
2918        p = find_task_by_vpid(pid);
2919        if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2920                error = check_kill_permission(sig, info, p);
2921                /*
2922                 * The null signal is a permissions and process existence
2923                 * probe.  No signal is actually delivered.
2924                 */
2925                if (!error && sig) {
2926                        error = do_send_sig_info(sig, info, p, false);
2927                        /*
2928                         * If lock_task_sighand() failed we pretend the task
2929                         * dies after receiving the signal. The window is tiny,
2930                         * and the signal is private anyway.
2931                         */
2932                        if (unlikely(error == -ESRCH))
2933                                error = 0;
2934                }
2935        }
2936        rcu_read_unlock();
2937
2938        return error;
2939}
2940
2941static int do_tkill(pid_t tgid, pid_t pid, int sig)
2942{
2943        struct siginfo info = {};
2944
2945        info.si_signo = sig;
2946        info.si_errno = 0;
2947        info.si_code = SI_TKILL;
2948        info.si_pid = task_tgid_vnr(current);
2949        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2950
2951        return do_send_specific(tgid, pid, sig, &info);
2952}
2953
2954/**
2955 *  sys_tgkill - send signal to one specific thread
2956 *  @tgid: the thread group ID of the thread
2957 *  @pid: the PID of the thread
2958 *  @sig: signal to be sent
2959 *
2960 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2961 *  exists but it's not belonging to the target process anymore. This
2962 *  method solves the problem of threads exiting and PIDs getting reused.
2963 */
2964SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2965{
2966        /* This is only valid for single tasks */
2967        if (pid <= 0 || tgid <= 0)
2968                return -EINVAL;
2969
2970        return do_tkill(tgid, pid, sig);
2971}
2972
2973/**
2974 *  sys_tkill - send signal to one specific task
2975 *  @pid: the PID of the task
2976 *  @sig: signal to be sent
2977 *
2978 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2979 */
2980SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2981{
2982        /* This is only valid for single tasks */
2983        if (pid <= 0)
2984                return -EINVAL;
2985
2986        return do_tkill(0, pid, sig);
2987}
2988
2989static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2990{
2991        /* Not even root can pretend to send signals from the kernel.
2992         * Nor can they impersonate a kill()/tgkill(), which adds source info.
2993         */
2994        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2995            (task_pid_vnr(current) != pid)) {
2996                /* We used to allow any < 0 si_code */
2997                WARN_ON_ONCE(info->si_code < 0);
2998                return -EPERM;
2999        }
3000        info->si_signo = sig;
3001
3002        /* POSIX.1b doesn't mention process groups.  */
3003        return kill_proc_info(sig, info, pid);
3004}
3005
3006/**
3007 *  sys_rt_sigqueueinfo - send signal information to a signal
3008 *  @pid: the PID of the thread
3009 *  @sig: signal to be sent
3010 *  @uinfo: signal info to be sent
3011 */
3012SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3013                siginfo_t __user *, uinfo)
3014{
3015        siginfo_t info;
3016        if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3017                return -EFAULT;
3018        return do_rt_sigqueueinfo(pid, sig, &info);
3019}
3020
3021#ifdef CONFIG_COMPAT
3022COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3023                        compat_pid_t, pid,
3024                        int, sig,
3025                        struct compat_siginfo __user *, uinfo)
3026{
3027        siginfo_t info;
3028        int ret = copy_siginfo_from_user32(&info, uinfo);
3029        if (unlikely(ret))
3030                return ret;
3031        return do_rt_sigqueueinfo(pid, sig, &info);
3032}
3033#endif
3034
3035static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3036{
3037        /* This is only valid for single tasks */
3038        if (pid <= 0 || tgid <= 0)
3039                return -EINVAL;
3040
3041        /* Not even root can pretend to send signals from the kernel.
3042         * Nor can they impersonate a kill()/tgkill(), which adds source info.
3043         */
3044        if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3045            (task_pid_vnr(current) != pid)) {
3046                /* We used to allow any < 0 si_code */
3047                WARN_ON_ONCE(info->si_code < 0);
3048                return -EPERM;
3049        }
3050        info->si_signo = sig;
3051
3052        return do_send_specific(tgid, pid, sig, info);
3053}
3054
3055SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3056                siginfo_t __user *, uinfo)
3057{
3058        siginfo_t info;
3059
3060        if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3061                return -EFAULT;
3062
3063        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3064}
3065
3066#ifdef CONFIG_COMPAT
3067COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3068                        compat_pid_t, tgid,
3069                        compat_pid_t, pid,
3070                        int, sig,
3071                        struct compat_siginfo __user *, uinfo)
3072{
3073        siginfo_t info;
3074
3075        if (copy_siginfo_from_user32(&info, uinfo))
3076                return -EFAULT;
3077        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3078}
3079#endif
3080
3081/*
3082 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3083 */
3084void kernel_sigaction(int sig, __sighandler_t action)
3085{
3086        spin_lock_irq(&current->sighand->siglock);
3087        current->sighand->action[sig - 1].sa.sa_handler = action;
3088        if (action == SIG_IGN) {
3089                sigset_t mask;
3090
3091                sigemptyset(&mask);
3092                sigaddset(&mask, sig);
3093
3094                flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3095                flush_sigqueue_mask(&mask, &current->pending);
3096                recalc_sigpending();
3097        }
3098        spin_unlock_irq(&current->sighand->siglock);
3099}
3100EXPORT_SYMBOL(kernel_sigaction);
3101
3102int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3103{
3104        struct task_struct *p = current, *t;
3105        struct k_sigaction *k;
3106        sigset_t mask;
3107
3108        if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3109                return -EINVAL;
3110
3111        k = &p->sighand->action[sig-1];
3112
3113        spin_lock_irq(&p->sighand->siglock);
3114        if (oact)
3115                *oact = *k;
3116
3117        if (act) {
3118                sigdelsetmask(&act->sa.sa_mask,
3119                              sigmask(SIGKILL) | sigmask(SIGSTOP));
3120                *k = *act;
3121                /*
3122                 * POSIX 3.3.1.3:
3123                 *  "Setting a signal action to SIG_IGN for a signal that is
3124                 *   pending shall cause the pending signal to be discarded,
3125                 *   whether or not it is blocked."
3126                 *
3127                 *  "Setting a signal action to SIG_DFL for a signal that is
3128                 *   pending and whose default action is to ignore the signal
3129                 *   (for example, SIGCHLD), shall cause the pending signal to
3130                 *   be discarded, whether or not it is blocked"
3131                 */
3132                if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3133                        sigemptyset(&mask);
3134                        sigaddset(&mask, sig);
3135                        flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3136                        for_each_thread(p, t)
3137                                flush_sigqueue_mask(&mask, &t->pending);
3138                }
3139        }
3140
3141        spin_unlock_irq(&p->sighand->siglock);
3142        return 0;
3143}
3144
3145static int
3146do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3147{
3148        stack_t oss;
3149        int error;
3150
3151        oss.ss_sp = (void __user *) current->sas_ss_sp;
3152        oss.ss_size = current->sas_ss_size;
3153        oss.ss_flags = sas_ss_flags(sp);
3154
3155        if (uss) {
3156                void __user *ss_sp;
3157                size_t ss_size;
3158                int ss_flags;
3159
3160                error = -EFAULT;
3161                if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3162                        goto out;
3163                error = __get_user(ss_sp, &uss->ss_sp) |
3164                        __get_user(ss_flags, &uss->ss_flags) |
3165                        __get_user(ss_size, &uss->ss_size);
3166                if (error)
3167                        goto out;
3168
3169                error = -EPERM;
3170                if (on_sig_stack(sp))
3171                        goto out;
3172
3173                error = -EINVAL;
3174                /*
3175                 * Note - this code used to test ss_flags incorrectly:
3176                 *        old code may have been written using ss_flags==0
3177                 *        to mean ss_flags==SS_ONSTACK (as this was the only
3178                 *        way that worked) - this fix preserves that older
3179                 *        mechanism.
3180                 */
3181                if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3182                        goto out;
3183
3184                if (ss_flags == SS_DISABLE) {
3185                        ss_size = 0;
3186                        ss_sp = NULL;
3187                } else {
3188                        error = -ENOMEM;
3189                        if (ss_size < MINSIGSTKSZ)
3190                                goto out;
3191                }
3192
3193                current->sas_ss_sp = (unsigned long) ss_sp;
3194                current->sas_ss_size = ss_size;
3195        }
3196
3197        error = 0;
3198        if (uoss) {
3199                error = -EFAULT;
3200                if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3201                        goto out;
3202                error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3203                        __put_user(oss.ss_size, &uoss->ss_size) |
3204                        __put_user(oss.ss_flags, &uoss->ss_flags);
3205        }
3206
3207out:
3208        return error;
3209}
3210SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3211{
3212        return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3213}
3214
3215int restore_altstack(const stack_t __user *uss)
3216{
3217        int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3218        /* squash all but EFAULT for now */
3219        return err == -EFAULT ? err : 0;
3220}
3221
3222int __save_altstack(stack_t __user *uss, unsigned long sp)
3223{
3224        struct task_struct *t = current;
3225        return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3226                __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3227                __put_user(t->sas_ss_size, &uss->ss_size);
3228}
3229
3230#ifdef CONFIG_COMPAT
3231COMPAT_SYSCALL_DEFINE2(sigaltstack,
3232                        const compat_stack_t __user *, uss_ptr,
3233                        compat_stack_t __user *, uoss_ptr)
3234{
3235        stack_t uss, uoss;
3236        int ret;
3237        mm_segment_t seg;
3238
3239        if (uss_ptr) {
3240                compat_stack_t uss32;
3241
3242                memset(&uss, 0, sizeof(stack_t));
3243                if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3244                        return -EFAULT;
3245                uss.ss_sp = compat_ptr(uss32.ss_sp);
3246                uss.ss_flags = uss32.ss_flags;
3247                uss.ss_size = uss32.ss_size;
3248        }
3249        seg = get_fs();
3250        set_fs(KERNEL_DS);
3251        ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3252                             (stack_t __force __user *) &uoss,
3253                             compat_user_stack_pointer());
3254        set_fs(seg);
3255        if (ret >= 0 && uoss_ptr)  {
3256                if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3257                    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3258                    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3259                    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3260                        ret = -EFAULT;
3261        }
3262        return ret;
3263}
3264
3265int compat_restore_altstack(const compat_stack_t __user *uss)
3266{
3267        int err = compat_sys_sigaltstack(uss, NULL);
3268        /* squash all but -EFAULT for now */
3269        return err == -EFAULT ? err : 0;
3270}
3271
3272int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3273{
3274        struct task_struct *t = current;
3275        return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3276                __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3277                __put_user(t->sas_ss_size, &uss->ss_size);
3278}
3279#endif
3280
3281#ifdef __ARCH_WANT_SYS_SIGPENDING
3282
3283/**
3284 *  sys_sigpending - examine pending signals
3285 *  @set: where mask of pending signal is returned
3286 */
3287SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3288{
3289        return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
3290}
3291
3292#endif
3293
3294#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3295/**
3296 *  sys_sigprocmask - examine and change blocked signals
3297 *  @how: whether to add, remove, or set signals
3298 *  @nset: signals to add or remove (if non-null)
3299 *  @oset: previous value of signal mask if non-null
3300 *
3301 * Some platforms have their own version with special arguments;
3302 * others support only sys_rt_sigprocmask.
3303 */
3304
3305SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3306                old_sigset_t __user *, oset)
3307{
3308        old_sigset_t old_set, new_set;
3309        sigset_t new_blocked;
3310
3311        old_set = current->blocked.sig[0];
3312
3313        if (nset) {
3314                if (copy_from_user(&new_set, nset, sizeof(*nset)))
3315                        return -EFAULT;
3316
3317                new_blocked = current->blocked;
3318
3319                switch (how) {
3320                case SIG_BLOCK:
3321                        sigaddsetmask(&new_blocked, new_set);
3322                        break;
3323                case SIG_UNBLOCK:
3324                        sigdelsetmask(&new_blocked, new_set);
3325                        break;
3326                case SIG_SETMASK:
3327                        new_blocked.sig[0] = new_set;
3328                        break;
3329                default:
3330                        return -EINVAL;
3331                }
3332
3333                set_current_blocked(&new_blocked);
3334        }
3335
3336        if (oset) {
3337                if (copy_to_user(oset, &old_set, sizeof(*oset)))
3338                        return -EFAULT;
3339        }
3340
3341        return 0;
3342}
3343#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3344
3345#ifndef CONFIG_ODD_RT_SIGACTION
3346/**
3347 *  sys_rt_sigaction - alter an action taken by a process
3348 *  @sig: signal to be sent
3349 *  @act: new sigaction
3350 *  @oact: used to save the previous sigaction
3351 *  @sigsetsize: size of sigset_t type
3352 */
3353SYSCALL_DEFINE4(rt_sigaction, int, sig,
3354                const struct sigaction __user *, act,
3355                struct sigaction __user *, oact,
3356                size_t, sigsetsize)
3357{
3358        struct k_sigaction new_sa, old_sa;
3359        int ret = -EINVAL;
3360
3361        /* XXX: Don't preclude handling different sized sigset_t's.  */
3362        if (sigsetsize != sizeof(sigset_t))
3363                goto out;
3364
3365        if (act) {
3366                if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3367                        return -EFAULT;
3368        }
3369
3370        ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3371
3372        if (!ret && oact) {
3373                if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3374                        return -EFAULT;
3375        }
3376out:
3377        return ret;
3378}
3379#ifdef CONFIG_COMPAT
3380COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3381                const struct compat_sigaction __user *, act,
3382                struct compat_sigaction __user *, oact,
3383                compat_size_t, sigsetsize)
3384{
3385        struct k_sigaction new_ka, old_ka;
3386        compat_sigset_t mask;
3387#ifdef __ARCH_HAS_SA_RESTORER
3388        compat_uptr_t restorer;
3389#endif
3390        int ret;
3391
3392        /* XXX: Don't preclude handling different sized sigset_t's.  */
3393        if (sigsetsize != sizeof(compat_sigset_t))
3394                return -EINVAL;
3395
3396        if (act) {
3397                compat_uptr_t handler;
3398                ret = get_user(handler, &act->sa_handler);
3399                new_ka.sa.sa_handler = compat_ptr(handler);
3400#ifdef __ARCH_HAS_SA_RESTORER
3401                ret |= get_user(restorer, &act->sa_restorer);
3402                new_ka.sa.sa_restorer = compat_ptr(restorer);
3403#endif
3404                ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3405                ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3406                if (ret)
3407                        return -EFAULT;
3408                sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3409        }
3410
3411        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3412        if (!ret && oact) {
3413                sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3414                ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3415                               &oact->sa_handler);
3416                ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3417                ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3418#ifdef __ARCH_HAS_SA_RESTORER
3419                ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3420                                &oact->sa_restorer);
3421#endif
3422        }
3423        return ret;
3424}
3425#endif
3426#endif /* !CONFIG_ODD_RT_SIGACTION */
3427
3428#ifdef CONFIG_OLD_SIGACTION
3429SYSCALL_DEFINE3(sigaction, int, sig,
3430                const struct old_sigaction __user *, act,
3431                struct old_sigaction __user *, oact)
3432{
3433        struct k_sigaction new_ka, old_ka;
3434        int ret;
3435
3436        if (act) {
3437                old_sigset_t mask;
3438                if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3439                    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3440                    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3441                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3442                    __get_user(mask, &act->sa_mask))
3443                        return -EFAULT;
3444#ifdef __ARCH_HAS_KA_RESTORER
3445                new_ka.ka_restorer = NULL;
3446#endif
3447                siginitset(&new_ka.sa.sa_mask, mask);
3448        }
3449
3450        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3451
3452        if (!ret && oact) {
3453                if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3454                    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3455                    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3456                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3457                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3458                        return -EFAULT;
3459        }
3460
3461        return ret;
3462}
3463#endif
3464#ifdef CONFIG_COMPAT_OLD_SIGACTION
3465COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3466                const struct compat_old_sigaction __user *, act,
3467                struct compat_old_sigaction __user *, oact)
3468{
3469        struct k_sigaction new_ka, old_ka;
3470        int ret;
3471        compat_old_sigset_t mask;
3472        compat_uptr_t handler, restorer;
3473
3474        if (act) {
3475                if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3476                    __get_user(handler, &act->sa_handler) ||
3477                    __get_user(restorer, &act->sa_restorer) ||
3478                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3479                    __get_user(mask, &act->sa_mask))
3480                        return -EFAULT;
3481
3482#ifdef __ARCH_HAS_KA_RESTORER
3483                new_ka.ka_restorer = NULL;
3484#endif
3485                new_ka.sa.sa_handler = compat_ptr(handler);
3486                new_ka.sa.sa_restorer = compat_ptr(restorer);
3487                siginitset(&new_ka.sa.sa_mask, mask);
3488        }
3489
3490        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3491
3492        if (!ret && oact) {
3493                if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3494                    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3495                               &oact->sa_handler) ||
3496                    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3497                               &oact->sa_restorer) ||
3498                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3499                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3500                        return -EFAULT;
3501        }
3502        return ret;
3503}
3504#endif
3505
3506#ifdef CONFIG_SGETMASK_SYSCALL
3507
3508/*
3509 * For backwards compatibility.  Functionality superseded by sigprocmask.
3510 */
3511SYSCALL_DEFINE0(sgetmask)
3512{
3513        /* SMP safe */
3514        return current->blocked.sig[0];
3515}
3516
3517SYSCALL_DEFINE1(ssetmask, int, newmask)
3518{
3519        int old = current->blocked.sig[0];
3520        sigset_t newset;
3521
3522        siginitset(&newset, newmask);
3523        set_current_blocked(&newset);
3524
3525        return old;
3526}
3527#endif /* CONFIG_SGETMASK_SYSCALL */
3528
3529#ifdef __ARCH_WANT_SYS_SIGNAL
3530/*
3531 * For backwards compatibility.  Functionality superseded by sigaction.
3532 */
3533SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3534{
3535        struct k_sigaction new_sa, old_sa;
3536        int ret;
3537
3538        new_sa.sa.sa_handler = handler;
3539        new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3540        sigemptyset(&new_sa.sa.sa_mask);
3541
3542        ret = do_sigaction(sig, &new_sa, &old_sa);
3543
3544        return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3545}
3546#endif /* __ARCH_WANT_SYS_SIGNAL */
3547
3548#ifdef __ARCH_WANT_SYS_PAUSE
3549
3550SYSCALL_DEFINE0(pause)
3551{
3552        while (!signal_pending(current)) {
3553                __set_current_state(TASK_INTERRUPTIBLE);
3554                schedule();
3555        }
3556        return -ERESTARTNOHAND;
3557}
3558
3559#endif
3560
3561int sigsuspend(sigset_t *set)
3562{
3563        current->saved_sigmask = current->blocked;
3564        set_current_blocked(set);
3565
3566        __set_current_state(TASK_INTERRUPTIBLE);
3567        schedule();
3568        set_restore_sigmask();
3569        return -ERESTARTNOHAND;
3570}
3571
3572/**
3573 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3574 *      @unewset value until a signal is received
3575 *  @unewset: new signal mask value
3576 *  @sigsetsize: size of sigset_t type
3577 */
3578SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3579{
3580        sigset_t newset;
3581
3582        /* XXX: Don't preclude handling different sized sigset_t's.  */
3583        if (sigsetsize != sizeof(sigset_t))
3584                return -EINVAL;
3585
3586        if (copy_from_user(&newset, unewset, sizeof(newset)))
3587                return -EFAULT;
3588        return sigsuspend(&newset);
3589}
3590 
3591#ifdef CONFIG_COMPAT
3592COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3593{
3594#ifdef __BIG_ENDIAN
3595        sigset_t newset;
3596        compat_sigset_t newset32;
3597
3598        /* XXX: Don't preclude handling different sized sigset_t's.  */
3599        if (sigsetsize != sizeof(sigset_t))
3600                return -EINVAL;
3601
3602        if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3603                return -EFAULT;
3604        sigset_from_compat(&newset, &newset32);
3605        return sigsuspend(&newset);
3606#else
3607        /* on little-endian bitmaps don't care about granularity */
3608        return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3609#endif
3610}
3611#endif
3612
3613#ifdef CONFIG_OLD_SIGSUSPEND
3614SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3615{
3616        sigset_t blocked;
3617        siginitset(&blocked, mask);
3618        return sigsuspend(&blocked);
3619}
3620#endif
3621#ifdef CONFIG_OLD_SIGSUSPEND3
3622SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3623{
3624        sigset_t blocked;
3625        siginitset(&blocked, mask);
3626        return sigsuspend(&blocked);
3627}
3628#endif
3629
3630__weak const char *arch_vma_name(struct vm_area_struct *vma)
3631{
3632        return NULL;
3633}
3634
3635void __init signals_init(void)
3636{
3637        sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3638}
3639
3640#ifdef CONFIG_KGDB_KDB
3641#include <linux/kdb.h>
3642/*
3643 * kdb_send_sig_info - Allows kdb to send signals without exposing
3644 * signal internals.  This function checks if the required locks are
3645 * available before calling the main signal code, to avoid kdb
3646 * deadlocks.
3647 */
3648void
3649kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3650{
3651        static struct task_struct *kdb_prev_t;
3652        int sig, new_t;
3653        if (!spin_trylock(&t->sighand->siglock)) {
3654                kdb_printf("Can't do kill command now.\n"
3655                           "The sigmask lock is held somewhere else in "
3656                           "kernel, try again later\n");
3657                return;
3658        }
3659        spin_unlock(&t->sighand->siglock);
3660        new_t = kdb_prev_t != t;
3661        kdb_prev_t = t;
3662        if (t->state != TASK_RUNNING && new_t) {
3663                kdb_printf("Process is not RUNNING, sending a signal from "
3664                           "kdb risks deadlock\n"
3665                           "on the run queue locks. "
3666                           "The signal has _not_ been sent.\n"
3667                           "Reissue the kill command if you want to risk "
3668                           "the deadlock.\n");
3669                return;
3670        }
3671        sig = info->si_signo;
3672        if (send_sig_info(sig, info, t))
3673                kdb_printf("Fail to deliver Signal %d to process %d.\n",
3674                           sig, t->pid);
3675        else
3676                kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3677}
3678#endif  /* CONFIG_KGDB_KDB */
3679