linux/kernel/time/hrtimer.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/hrtimer.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  High-resolution kernel timers
   9 *
  10 *  In contrast to the low-resolution timeout API implemented in
  11 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
  12 *  depending on system configuration and capabilities.
  13 *
  14 *  These timers are currently used for:
  15 *   - itimers
  16 *   - POSIX timers
  17 *   - nanosleep
  18 *   - precise in-kernel timing
  19 *
  20 *  Started by: Thomas Gleixner and Ingo Molnar
  21 *
  22 *  Credits:
  23 *      based on kernel/timer.c
  24 *
  25 *      Help, testing, suggestions, bugfixes, improvements were
  26 *      provided by:
  27 *
  28 *      George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29 *      et. al.
  30 *
  31 *  For licencing details see kernel-base/COPYING
  32 */
  33
  34#include <linux/cpu.h>
  35#include <linux/export.h>
  36#include <linux/percpu.h>
  37#include <linux/hrtimer.h>
  38#include <linux/notifier.h>
  39#include <linux/syscalls.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/tick.h>
  43#include <linux/seq_file.h>
  44#include <linux/err.h>
  45#include <linux/debugobjects.h>
  46#include <linux/sched.h>
  47#include <linux/sched/sysctl.h>
  48#include <linux/sched/rt.h>
  49#include <linux/sched/deadline.h>
  50#include <linux/timer.h>
  51#include <linux/freezer.h>
  52
  53#include <asm/uaccess.h>
  54
  55#include <trace/events/timer.h>
  56
  57#include "timekeeping.h"
  58
  59/*
  60 * The timer bases:
  61 *
  62 * There are more clockids then hrtimer bases. Thus, we index
  63 * into the timer bases by the hrtimer_base_type enum. When trying
  64 * to reach a base using a clockid, hrtimer_clockid_to_base()
  65 * is used to convert from clockid to the proper hrtimer_base_type.
  66 */
  67DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  68{
  69
  70        .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  71        .clock_base =
  72        {
  73                {
  74                        .index = HRTIMER_BASE_MONOTONIC,
  75                        .clockid = CLOCK_MONOTONIC,
  76                        .get_time = &ktime_get,
  77                        .resolution = KTIME_LOW_RES,
  78                },
  79                {
  80                        .index = HRTIMER_BASE_REALTIME,
  81                        .clockid = CLOCK_REALTIME,
  82                        .get_time = &ktime_get_real,
  83                        .resolution = KTIME_LOW_RES,
  84                },
  85                {
  86                        .index = HRTIMER_BASE_BOOTTIME,
  87                        .clockid = CLOCK_BOOTTIME,
  88                        .get_time = &ktime_get_boottime,
  89                        .resolution = KTIME_LOW_RES,
  90                },
  91                {
  92                        .index = HRTIMER_BASE_TAI,
  93                        .clockid = CLOCK_TAI,
  94                        .get_time = &ktime_get_clocktai,
  95                        .resolution = KTIME_LOW_RES,
  96                },
  97        }
  98};
  99
 100static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
 101        [CLOCK_REALTIME]        = HRTIMER_BASE_REALTIME,
 102        [CLOCK_MONOTONIC]       = HRTIMER_BASE_MONOTONIC,
 103        [CLOCK_BOOTTIME]        = HRTIMER_BASE_BOOTTIME,
 104        [CLOCK_TAI]             = HRTIMER_BASE_TAI,
 105};
 106
 107static inline int hrtimer_clockid_to_base(clockid_t clock_id)
 108{
 109        return hrtimer_clock_to_base_table[clock_id];
 110}
 111
 112
 113/*
 114 * Get the coarse grained time at the softirq based on xtime and
 115 * wall_to_monotonic.
 116 */
 117static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
 118{
 119        ktime_t xtim, mono, boot, tai;
 120        ktime_t off_real, off_boot, off_tai;
 121
 122        mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
 123        boot = ktime_add(mono, off_boot);
 124        xtim = ktime_add(mono, off_real);
 125        tai = ktime_add(mono, off_tai);
 126
 127        base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
 128        base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
 129        base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
 130        base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
 131}
 132
 133/*
 134 * Functions and macros which are different for UP/SMP systems are kept in a
 135 * single place
 136 */
 137#ifdef CONFIG_SMP
 138
 139/*
 140 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 141 * means that all timers which are tied to this base via timer->base are
 142 * locked, and the base itself is locked too.
 143 *
 144 * So __run_timers/migrate_timers can safely modify all timers which could
 145 * be found on the lists/queues.
 146 *
 147 * When the timer's base is locked, and the timer removed from list, it is
 148 * possible to set timer->base = NULL and drop the lock: the timer remains
 149 * locked.
 150 */
 151static
 152struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 153                                             unsigned long *flags)
 154{
 155        struct hrtimer_clock_base *base;
 156
 157        for (;;) {
 158                base = timer->base;
 159                if (likely(base != NULL)) {
 160                        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 161                        if (likely(base == timer->base))
 162                                return base;
 163                        /* The timer has migrated to another CPU: */
 164                        raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 165                }
 166                cpu_relax();
 167        }
 168}
 169
 170/*
 171 * With HIGHRES=y we do not migrate the timer when it is expiring
 172 * before the next event on the target cpu because we cannot reprogram
 173 * the target cpu hardware and we would cause it to fire late.
 174 *
 175 * Called with cpu_base->lock of target cpu held.
 176 */
 177static int
 178hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 179{
 180#ifdef CONFIG_HIGH_RES_TIMERS
 181        ktime_t expires;
 182
 183        if (!new_base->cpu_base->hres_active)
 184                return 0;
 185
 186        expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 187        return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
 188#else
 189        return 0;
 190#endif
 191}
 192
 193/*
 194 * Switch the timer base to the current CPU when possible.
 195 */
 196static inline struct hrtimer_clock_base *
 197switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 198                    int pinned)
 199{
 200        struct hrtimer_clock_base *new_base;
 201        struct hrtimer_cpu_base *new_cpu_base;
 202        int this_cpu = smp_processor_id();
 203        int cpu = get_nohz_timer_target(pinned);
 204        int basenum = base->index;
 205
 206again:
 207        new_cpu_base = &per_cpu(hrtimer_bases, cpu);
 208        new_base = &new_cpu_base->clock_base[basenum];
 209
 210        if (base != new_base) {
 211                /*
 212                 * We are trying to move timer to new_base.
 213                 * However we can't change timer's base while it is running,
 214                 * so we keep it on the same CPU. No hassle vs. reprogramming
 215                 * the event source in the high resolution case. The softirq
 216                 * code will take care of this when the timer function has
 217                 * completed. There is no conflict as we hold the lock until
 218                 * the timer is enqueued.
 219                 */
 220                if (unlikely(hrtimer_callback_running(timer)))
 221                        return base;
 222
 223                /* See the comment in lock_timer_base() */
 224                timer->base = NULL;
 225                raw_spin_unlock(&base->cpu_base->lock);
 226                raw_spin_lock(&new_base->cpu_base->lock);
 227
 228                if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
 229                        cpu = this_cpu;
 230                        raw_spin_unlock(&new_base->cpu_base->lock);
 231                        raw_spin_lock(&base->cpu_base->lock);
 232                        timer->base = base;
 233                        goto again;
 234                }
 235                timer->base = new_base;
 236        } else {
 237                if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
 238                        cpu = this_cpu;
 239                        goto again;
 240                }
 241        }
 242        return new_base;
 243}
 244
 245#else /* CONFIG_SMP */
 246
 247static inline struct hrtimer_clock_base *
 248lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 249{
 250        struct hrtimer_clock_base *base = timer->base;
 251
 252        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 253
 254        return base;
 255}
 256
 257# define switch_hrtimer_base(t, b, p)   (b)
 258
 259#endif  /* !CONFIG_SMP */
 260
 261/*
 262 * Functions for the union type storage format of ktime_t which are
 263 * too large for inlining:
 264 */
 265#if BITS_PER_LONG < 64
 266/*
 267 * Divide a ktime value by a nanosecond value
 268 */
 269u64 __ktime_divns(const ktime_t kt, s64 div)
 270{
 271        u64 dclc;
 272        int sft = 0;
 273
 274        dclc = ktime_to_ns(kt);
 275        /* Make sure the divisor is less than 2^32: */
 276        while (div >> 32) {
 277                sft++;
 278                div >>= 1;
 279        }
 280        dclc >>= sft;
 281        do_div(dclc, (unsigned long) div);
 282
 283        return dclc;
 284}
 285EXPORT_SYMBOL_GPL(__ktime_divns);
 286#endif /* BITS_PER_LONG >= 64 */
 287
 288/*
 289 * Add two ktime values and do a safety check for overflow:
 290 */
 291ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 292{
 293        ktime_t res = ktime_add(lhs, rhs);
 294
 295        /*
 296         * We use KTIME_SEC_MAX here, the maximum timeout which we can
 297         * return to user space in a timespec:
 298         */
 299        if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
 300                res = ktime_set(KTIME_SEC_MAX, 0);
 301
 302        return res;
 303}
 304
 305EXPORT_SYMBOL_GPL(ktime_add_safe);
 306
 307#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 308
 309static struct debug_obj_descr hrtimer_debug_descr;
 310
 311static void *hrtimer_debug_hint(void *addr)
 312{
 313        return ((struct hrtimer *) addr)->function;
 314}
 315
 316/*
 317 * fixup_init is called when:
 318 * - an active object is initialized
 319 */
 320static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 321{
 322        struct hrtimer *timer = addr;
 323
 324        switch (state) {
 325        case ODEBUG_STATE_ACTIVE:
 326                hrtimer_cancel(timer);
 327                debug_object_init(timer, &hrtimer_debug_descr);
 328                return 1;
 329        default:
 330                return 0;
 331        }
 332}
 333
 334/*
 335 * fixup_activate is called when:
 336 * - an active object is activated
 337 * - an unknown object is activated (might be a statically initialized object)
 338 */
 339static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 340{
 341        switch (state) {
 342
 343        case ODEBUG_STATE_NOTAVAILABLE:
 344                WARN_ON_ONCE(1);
 345                return 0;
 346
 347        case ODEBUG_STATE_ACTIVE:
 348                WARN_ON(1);
 349
 350        default:
 351                return 0;
 352        }
 353}
 354
 355/*
 356 * fixup_free is called when:
 357 * - an active object is freed
 358 */
 359static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 360{
 361        struct hrtimer *timer = addr;
 362
 363        switch (state) {
 364        case ODEBUG_STATE_ACTIVE:
 365                hrtimer_cancel(timer);
 366                debug_object_free(timer, &hrtimer_debug_descr);
 367                return 1;
 368        default:
 369                return 0;
 370        }
 371}
 372
 373static struct debug_obj_descr hrtimer_debug_descr = {
 374        .name           = "hrtimer",
 375        .debug_hint     = hrtimer_debug_hint,
 376        .fixup_init     = hrtimer_fixup_init,
 377        .fixup_activate = hrtimer_fixup_activate,
 378        .fixup_free     = hrtimer_fixup_free,
 379};
 380
 381static inline void debug_hrtimer_init(struct hrtimer *timer)
 382{
 383        debug_object_init(timer, &hrtimer_debug_descr);
 384}
 385
 386static inline void debug_hrtimer_activate(struct hrtimer *timer)
 387{
 388        debug_object_activate(timer, &hrtimer_debug_descr);
 389}
 390
 391static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 392{
 393        debug_object_deactivate(timer, &hrtimer_debug_descr);
 394}
 395
 396static inline void debug_hrtimer_free(struct hrtimer *timer)
 397{
 398        debug_object_free(timer, &hrtimer_debug_descr);
 399}
 400
 401static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 402                           enum hrtimer_mode mode);
 403
 404void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 405                           enum hrtimer_mode mode)
 406{
 407        debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 408        __hrtimer_init(timer, clock_id, mode);
 409}
 410EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 411
 412void destroy_hrtimer_on_stack(struct hrtimer *timer)
 413{
 414        debug_object_free(timer, &hrtimer_debug_descr);
 415}
 416
 417#else
 418static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 419static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
 420static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 421#endif
 422
 423static inline void
 424debug_init(struct hrtimer *timer, clockid_t clockid,
 425           enum hrtimer_mode mode)
 426{
 427        debug_hrtimer_init(timer);
 428        trace_hrtimer_init(timer, clockid, mode);
 429}
 430
 431static inline void debug_activate(struct hrtimer *timer)
 432{
 433        debug_hrtimer_activate(timer);
 434        trace_hrtimer_start(timer);
 435}
 436
 437static inline void debug_deactivate(struct hrtimer *timer)
 438{
 439        debug_hrtimer_deactivate(timer);
 440        trace_hrtimer_cancel(timer);
 441}
 442
 443#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
 444static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
 445{
 446        struct hrtimer_clock_base *base = cpu_base->clock_base;
 447        ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
 448        int i;
 449
 450        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
 451                struct timerqueue_node *next;
 452                struct hrtimer *timer;
 453
 454                next = timerqueue_getnext(&base->active);
 455                if (!next)
 456                        continue;
 457
 458                timer = container_of(next, struct hrtimer, node);
 459                expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 460                if (expires.tv64 < expires_next.tv64)
 461                        expires_next = expires;
 462        }
 463        /*
 464         * clock_was_set() might have changed base->offset of any of
 465         * the clock bases so the result might be negative. Fix it up
 466         * to prevent a false positive in clockevents_program_event().
 467         */
 468        if (expires_next.tv64 < 0)
 469                expires_next.tv64 = 0;
 470        return expires_next;
 471}
 472#endif
 473
 474/* High resolution timer related functions */
 475#ifdef CONFIG_HIGH_RES_TIMERS
 476
 477/*
 478 * High resolution timer enabled ?
 479 */
 480static int hrtimer_hres_enabled __read_mostly  = 1;
 481
 482/*
 483 * Enable / Disable high resolution mode
 484 */
 485static int __init setup_hrtimer_hres(char *str)
 486{
 487        if (!strcmp(str, "off"))
 488                hrtimer_hres_enabled = 0;
 489        else if (!strcmp(str, "on"))
 490                hrtimer_hres_enabled = 1;
 491        else
 492                return 0;
 493        return 1;
 494}
 495
 496__setup("highres=", setup_hrtimer_hres);
 497
 498/*
 499 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 500 */
 501static inline int hrtimer_is_hres_enabled(void)
 502{
 503        return hrtimer_hres_enabled;
 504}
 505
 506/*
 507 * Is the high resolution mode active ?
 508 */
 509static inline int hrtimer_hres_active(void)
 510{
 511        return __this_cpu_read(hrtimer_bases.hres_active);
 512}
 513
 514/*
 515 * Reprogram the event source with checking both queues for the
 516 * next event
 517 * Called with interrupts disabled and base->lock held
 518 */
 519static void
 520hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 521{
 522        ktime_t expires_next = __hrtimer_get_next_event(cpu_base);
 523
 524        if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
 525                return;
 526
 527        cpu_base->expires_next.tv64 = expires_next.tv64;
 528
 529        /*
 530         * If a hang was detected in the last timer interrupt then we
 531         * leave the hang delay active in the hardware. We want the
 532         * system to make progress. That also prevents the following
 533         * scenario:
 534         * T1 expires 50ms from now
 535         * T2 expires 5s from now
 536         *
 537         * T1 is removed, so this code is called and would reprogram
 538         * the hardware to 5s from now. Any hrtimer_start after that
 539         * will not reprogram the hardware due to hang_detected being
 540         * set. So we'd effectivly block all timers until the T2 event
 541         * fires.
 542         */
 543        if (cpu_base->hang_detected)
 544                return;
 545
 546        if (cpu_base->expires_next.tv64 != KTIME_MAX)
 547                tick_program_event(cpu_base->expires_next, 1);
 548}
 549
 550/*
 551 * Shared reprogramming for clock_realtime and clock_monotonic
 552 *
 553 * When a timer is enqueued and expires earlier than the already enqueued
 554 * timers, we have to check, whether it expires earlier than the timer for
 555 * which the clock event device was armed.
 556 *
 557 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
 558 * and no expiry check happens. The timer gets enqueued into the rbtree. The
 559 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
 560 * softirq.
 561 *
 562 * Called with interrupts disabled and base->cpu_base.lock held
 563 */
 564static int hrtimer_reprogram(struct hrtimer *timer,
 565                             struct hrtimer_clock_base *base)
 566{
 567        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
 568        ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 569        int res;
 570
 571        WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 572
 573        /*
 574         * When the callback is running, we do not reprogram the clock event
 575         * device. The timer callback is either running on a different CPU or
 576         * the callback is executed in the hrtimer_interrupt context. The
 577         * reprogramming is handled either by the softirq, which called the
 578         * callback or at the end of the hrtimer_interrupt.
 579         */
 580        if (hrtimer_callback_running(timer))
 581                return 0;
 582
 583        /*
 584         * CLOCK_REALTIME timer might be requested with an absolute
 585         * expiry time which is less than base->offset. Nothing wrong
 586         * about that, just avoid to call into the tick code, which
 587         * has now objections against negative expiry values.
 588         */
 589        if (expires.tv64 < 0)
 590                return -ETIME;
 591
 592        if (expires.tv64 >= cpu_base->expires_next.tv64)
 593                return 0;
 594
 595        /*
 596         * When the target cpu of the timer is currently executing
 597         * hrtimer_interrupt(), then we do not touch the clock event
 598         * device. hrtimer_interrupt() will reevaluate all clock bases
 599         * before reprogramming the device.
 600         */
 601        if (cpu_base->in_hrtirq)
 602                return 0;
 603
 604        /*
 605         * If a hang was detected in the last timer interrupt then we
 606         * do not schedule a timer which is earlier than the expiry
 607         * which we enforced in the hang detection. We want the system
 608         * to make progress.
 609         */
 610        if (cpu_base->hang_detected)
 611                return 0;
 612
 613        /*
 614         * Clockevents returns -ETIME, when the event was in the past.
 615         */
 616        res = tick_program_event(expires, 0);
 617        if (!IS_ERR_VALUE(res))
 618                cpu_base->expires_next = expires;
 619        return res;
 620}
 621
 622/*
 623 * Initialize the high resolution related parts of cpu_base
 624 */
 625static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
 626{
 627        base->expires_next.tv64 = KTIME_MAX;
 628        base->hres_active = 0;
 629}
 630
 631static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 632{
 633        ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 634        ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 635        ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 636
 637        return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
 638}
 639
 640/*
 641 * Retrigger next event is called after clock was set
 642 *
 643 * Called with interrupts disabled via on_each_cpu()
 644 */
 645static void retrigger_next_event(void *arg)
 646{
 647        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 648
 649        if (!hrtimer_hres_active())
 650                return;
 651
 652        raw_spin_lock(&base->lock);
 653        hrtimer_update_base(base);
 654        hrtimer_force_reprogram(base, 0);
 655        raw_spin_unlock(&base->lock);
 656}
 657
 658/*
 659 * Switch to high resolution mode
 660 */
 661static int hrtimer_switch_to_hres(void)
 662{
 663        int i, cpu = smp_processor_id();
 664        struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
 665        unsigned long flags;
 666
 667        if (base->hres_active)
 668                return 1;
 669
 670        local_irq_save(flags);
 671
 672        if (tick_init_highres()) {
 673                local_irq_restore(flags);
 674                printk(KERN_WARNING "Could not switch to high resolution "
 675                                    "mode on CPU %d\n", cpu);
 676                return 0;
 677        }
 678        base->hres_active = 1;
 679        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
 680                base->clock_base[i].resolution = KTIME_HIGH_RES;
 681
 682        tick_setup_sched_timer();
 683        /* "Retrigger" the interrupt to get things going */
 684        retrigger_next_event(NULL);
 685        local_irq_restore(flags);
 686        return 1;
 687}
 688
 689static void clock_was_set_work(struct work_struct *work)
 690{
 691        clock_was_set();
 692}
 693
 694static DECLARE_WORK(hrtimer_work, clock_was_set_work);
 695
 696/*
 697 * Called from timekeeping and resume code to reprogramm the hrtimer
 698 * interrupt device on all cpus.
 699 */
 700void clock_was_set_delayed(void)
 701{
 702        schedule_work(&hrtimer_work);
 703}
 704
 705#else
 706
 707static inline int hrtimer_hres_active(void) { return 0; }
 708static inline int hrtimer_is_hres_enabled(void) { return 0; }
 709static inline int hrtimer_switch_to_hres(void) { return 0; }
 710static inline void
 711hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
 712static inline int hrtimer_reprogram(struct hrtimer *timer,
 713                                    struct hrtimer_clock_base *base)
 714{
 715        return 0;
 716}
 717static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
 718static inline void retrigger_next_event(void *arg) { }
 719
 720#endif /* CONFIG_HIGH_RES_TIMERS */
 721
 722/*
 723 * Clock realtime was set
 724 *
 725 * Change the offset of the realtime clock vs. the monotonic
 726 * clock.
 727 *
 728 * We might have to reprogram the high resolution timer interrupt. On
 729 * SMP we call the architecture specific code to retrigger _all_ high
 730 * resolution timer interrupts. On UP we just disable interrupts and
 731 * call the high resolution interrupt code.
 732 */
 733void clock_was_set(void)
 734{
 735#ifdef CONFIG_HIGH_RES_TIMERS
 736        /* Retrigger the CPU local events everywhere */
 737        on_each_cpu(retrigger_next_event, NULL, 1);
 738#endif
 739        timerfd_clock_was_set();
 740}
 741
 742/*
 743 * During resume we might have to reprogram the high resolution timer
 744 * interrupt on all online CPUs.  However, all other CPUs will be
 745 * stopped with IRQs interrupts disabled so the clock_was_set() call
 746 * must be deferred.
 747 */
 748void hrtimers_resume(void)
 749{
 750        WARN_ONCE(!irqs_disabled(),
 751                  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
 752
 753        /* Retrigger on the local CPU */
 754        retrigger_next_event(NULL);
 755        /* And schedule a retrigger for all others */
 756        clock_was_set_delayed();
 757}
 758
 759static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
 760{
 761#ifdef CONFIG_TIMER_STATS
 762        if (timer->start_site)
 763                return;
 764        timer->start_site = __builtin_return_address(0);
 765        memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 766        timer->start_pid = current->pid;
 767#endif
 768}
 769
 770static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
 771{
 772#ifdef CONFIG_TIMER_STATS
 773        timer->start_site = NULL;
 774#endif
 775}
 776
 777static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
 778{
 779#ifdef CONFIG_TIMER_STATS
 780        if (likely(!timer_stats_active))
 781                return;
 782        timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
 783                                 timer->function, timer->start_comm, 0);
 784#endif
 785}
 786
 787/*
 788 * Counterpart to lock_hrtimer_base above:
 789 */
 790static inline
 791void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 792{
 793        raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 794}
 795
 796/**
 797 * hrtimer_forward - forward the timer expiry
 798 * @timer:      hrtimer to forward
 799 * @now:        forward past this time
 800 * @interval:   the interval to forward
 801 *
 802 * Forward the timer expiry so it will expire in the future.
 803 * Returns the number of overruns.
 804 */
 805u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 806{
 807        u64 orun = 1;
 808        ktime_t delta;
 809
 810        delta = ktime_sub(now, hrtimer_get_expires(timer));
 811
 812        if (delta.tv64 < 0)
 813                return 0;
 814
 815        if (interval.tv64 < timer->base->resolution.tv64)
 816                interval.tv64 = timer->base->resolution.tv64;
 817
 818        if (unlikely(delta.tv64 >= interval.tv64)) {
 819                s64 incr = ktime_to_ns(interval);
 820
 821                orun = ktime_divns(delta, incr);
 822                hrtimer_add_expires_ns(timer, incr * orun);
 823                if (hrtimer_get_expires_tv64(timer) > now.tv64)
 824                        return orun;
 825                /*
 826                 * This (and the ktime_add() below) is the
 827                 * correction for exact:
 828                 */
 829                orun++;
 830        }
 831        hrtimer_add_expires(timer, interval);
 832
 833        return orun;
 834}
 835EXPORT_SYMBOL_GPL(hrtimer_forward);
 836
 837/*
 838 * enqueue_hrtimer - internal function to (re)start a timer
 839 *
 840 * The timer is inserted in expiry order. Insertion into the
 841 * red black tree is O(log(n)). Must hold the base lock.
 842 *
 843 * Returns 1 when the new timer is the leftmost timer in the tree.
 844 */
 845static int enqueue_hrtimer(struct hrtimer *timer,
 846                           struct hrtimer_clock_base *base)
 847{
 848        debug_activate(timer);
 849
 850        timerqueue_add(&base->active, &timer->node);
 851        base->cpu_base->active_bases |= 1 << base->index;
 852
 853        /*
 854         * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
 855         * state of a possibly running callback.
 856         */
 857        timer->state |= HRTIMER_STATE_ENQUEUED;
 858
 859        return (&timer->node == base->active.next);
 860}
 861
 862/*
 863 * __remove_hrtimer - internal function to remove a timer
 864 *
 865 * Caller must hold the base lock.
 866 *
 867 * High resolution timer mode reprograms the clock event device when the
 868 * timer is the one which expires next. The caller can disable this by setting
 869 * reprogram to zero. This is useful, when the context does a reprogramming
 870 * anyway (e.g. timer interrupt)
 871 */
 872static void __remove_hrtimer(struct hrtimer *timer,
 873                             struct hrtimer_clock_base *base,
 874                             unsigned long newstate, int reprogram)
 875{
 876        struct timerqueue_node *next_timer;
 877        if (!(timer->state & HRTIMER_STATE_ENQUEUED))
 878                goto out;
 879
 880        next_timer = timerqueue_getnext(&base->active);
 881        timerqueue_del(&base->active, &timer->node);
 882        if (&timer->node == next_timer) {
 883#ifdef CONFIG_HIGH_RES_TIMERS
 884                /* Reprogram the clock event device. if enabled */
 885                if (reprogram && hrtimer_hres_active()) {
 886                        ktime_t expires;
 887
 888                        expires = ktime_sub(hrtimer_get_expires(timer),
 889                                            base->offset);
 890                        if (base->cpu_base->expires_next.tv64 == expires.tv64)
 891                                hrtimer_force_reprogram(base->cpu_base, 1);
 892                }
 893#endif
 894        }
 895        if (!timerqueue_getnext(&base->active))
 896                base->cpu_base->active_bases &= ~(1 << base->index);
 897out:
 898        timer->state = newstate;
 899}
 900
 901/*
 902 * remove hrtimer, called with base lock held
 903 */
 904static inline int
 905remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
 906{
 907        if (hrtimer_is_queued(timer)) {
 908                unsigned long state;
 909                int reprogram;
 910
 911                /*
 912                 * Remove the timer and force reprogramming when high
 913                 * resolution mode is active and the timer is on the current
 914                 * CPU. If we remove a timer on another CPU, reprogramming is
 915                 * skipped. The interrupt event on this CPU is fired and
 916                 * reprogramming happens in the interrupt handler. This is a
 917                 * rare case and less expensive than a smp call.
 918                 */
 919                debug_deactivate(timer);
 920                timer_stats_hrtimer_clear_start_info(timer);
 921                reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
 922                /*
 923                 * We must preserve the CALLBACK state flag here,
 924                 * otherwise we could move the timer base in
 925                 * switch_hrtimer_base.
 926                 */
 927                state = timer->state & HRTIMER_STATE_CALLBACK;
 928                __remove_hrtimer(timer, base, state, reprogram);
 929                return 1;
 930        }
 931        return 0;
 932}
 933
 934int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
 935                unsigned long delta_ns, const enum hrtimer_mode mode,
 936                int wakeup)
 937{
 938        struct hrtimer_clock_base *base, *new_base;
 939        unsigned long flags;
 940        int ret, leftmost;
 941
 942        base = lock_hrtimer_base(timer, &flags);
 943
 944        /* Remove an active timer from the queue: */
 945        ret = remove_hrtimer(timer, base);
 946
 947        if (mode & HRTIMER_MODE_REL) {
 948                tim = ktime_add_safe(tim, base->get_time());
 949                /*
 950                 * CONFIG_TIME_LOW_RES is a temporary way for architectures
 951                 * to signal that they simply return xtime in
 952                 * do_gettimeoffset(). In this case we want to round up by
 953                 * resolution when starting a relative timer, to avoid short
 954                 * timeouts. This will go away with the GTOD framework.
 955                 */
 956#ifdef CONFIG_TIME_LOW_RES
 957                tim = ktime_add_safe(tim, base->resolution);
 958#endif
 959        }
 960
 961        hrtimer_set_expires_range_ns(timer, tim, delta_ns);
 962
 963        /* Switch the timer base, if necessary: */
 964        new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
 965
 966        timer_stats_hrtimer_set_start_info(timer);
 967
 968        leftmost = enqueue_hrtimer(timer, new_base);
 969
 970        if (!leftmost) {
 971                unlock_hrtimer_base(timer, &flags);
 972                return ret;
 973        }
 974
 975        if (!hrtimer_is_hres_active(timer)) {
 976                /*
 977                 * Kick to reschedule the next tick to handle the new timer
 978                 * on dynticks target.
 979                 */
 980                wake_up_nohz_cpu(new_base->cpu_base->cpu);
 981        } else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) &&
 982                        hrtimer_reprogram(timer, new_base)) {
 983                /*
 984                 * Only allow reprogramming if the new base is on this CPU.
 985                 * (it might still be on another CPU if the timer was pending)
 986                 *
 987                 * XXX send_remote_softirq() ?
 988                 */
 989                if (wakeup) {
 990                        /*
 991                         * We need to drop cpu_base->lock to avoid a
 992                         * lock ordering issue vs. rq->lock.
 993                         */
 994                        raw_spin_unlock(&new_base->cpu_base->lock);
 995                        raise_softirq_irqoff(HRTIMER_SOFTIRQ);
 996                        local_irq_restore(flags);
 997                        return ret;
 998                } else {
 999                        __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1000                }
1001        }
1002
1003        unlock_hrtimer_base(timer, &flags);
1004
1005        return ret;
1006}
1007EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
1008
1009/**
1010 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1011 * @timer:      the timer to be added
1012 * @tim:        expiry time
1013 * @delta_ns:   "slack" range for the timer
1014 * @mode:       expiry mode: absolute (HRTIMER_MODE_ABS) or
1015 *              relative (HRTIMER_MODE_REL)
1016 *
1017 * Returns:
1018 *  0 on success
1019 *  1 when the timer was active
1020 */
1021int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1022                unsigned long delta_ns, const enum hrtimer_mode mode)
1023{
1024        return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1025}
1026EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1027
1028/**
1029 * hrtimer_start - (re)start an hrtimer on the current CPU
1030 * @timer:      the timer to be added
1031 * @tim:        expiry time
1032 * @mode:       expiry mode: absolute (HRTIMER_MODE_ABS) or
1033 *              relative (HRTIMER_MODE_REL)
1034 *
1035 * Returns:
1036 *  0 on success
1037 *  1 when the timer was active
1038 */
1039int
1040hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1041{
1042        return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1043}
1044EXPORT_SYMBOL_GPL(hrtimer_start);
1045
1046
1047/**
1048 * hrtimer_try_to_cancel - try to deactivate a timer
1049 * @timer:      hrtimer to stop
1050 *
1051 * Returns:
1052 *  0 when the timer was not active
1053 *  1 when the timer was active
1054 * -1 when the timer is currently excuting the callback function and
1055 *    cannot be stopped
1056 */
1057int hrtimer_try_to_cancel(struct hrtimer *timer)
1058{
1059        struct hrtimer_clock_base *base;
1060        unsigned long flags;
1061        int ret = -1;
1062
1063        base = lock_hrtimer_base(timer, &flags);
1064
1065        if (!hrtimer_callback_running(timer))
1066                ret = remove_hrtimer(timer, base);
1067
1068        unlock_hrtimer_base(timer, &flags);
1069
1070        return ret;
1071
1072}
1073EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1074
1075/**
1076 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1077 * @timer:      the timer to be cancelled
1078 *
1079 * Returns:
1080 *  0 when the timer was not active
1081 *  1 when the timer was active
1082 */
1083int hrtimer_cancel(struct hrtimer *timer)
1084{
1085        for (;;) {
1086                int ret = hrtimer_try_to_cancel(timer);
1087
1088                if (ret >= 0)
1089                        return ret;
1090                cpu_relax();
1091        }
1092}
1093EXPORT_SYMBOL_GPL(hrtimer_cancel);
1094
1095/**
1096 * hrtimer_get_remaining - get remaining time for the timer
1097 * @timer:      the timer to read
1098 */
1099ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1100{
1101        unsigned long flags;
1102        ktime_t rem;
1103
1104        lock_hrtimer_base(timer, &flags);
1105        rem = hrtimer_expires_remaining(timer);
1106        unlock_hrtimer_base(timer, &flags);
1107
1108        return rem;
1109}
1110EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1111
1112#ifdef CONFIG_NO_HZ_COMMON
1113/**
1114 * hrtimer_get_next_event - get the time until next expiry event
1115 *
1116 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1117 * is pending.
1118 */
1119ktime_t hrtimer_get_next_event(void)
1120{
1121        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1122        ktime_t mindelta = { .tv64 = KTIME_MAX };
1123        unsigned long flags;
1124
1125        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1126
1127        if (!hrtimer_hres_active())
1128                mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base),
1129                                     ktime_get());
1130
1131        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1132
1133        if (mindelta.tv64 < 0)
1134                mindelta.tv64 = 0;
1135        return mindelta;
1136}
1137#endif
1138
1139static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1140                           enum hrtimer_mode mode)
1141{
1142        struct hrtimer_cpu_base *cpu_base;
1143        int base;
1144
1145        memset(timer, 0, sizeof(struct hrtimer));
1146
1147        cpu_base = raw_cpu_ptr(&hrtimer_bases);
1148
1149        if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1150                clock_id = CLOCK_MONOTONIC;
1151
1152        base = hrtimer_clockid_to_base(clock_id);
1153        timer->base = &cpu_base->clock_base[base];
1154        timerqueue_init(&timer->node);
1155
1156#ifdef CONFIG_TIMER_STATS
1157        timer->start_site = NULL;
1158        timer->start_pid = -1;
1159        memset(timer->start_comm, 0, TASK_COMM_LEN);
1160#endif
1161}
1162
1163/**
1164 * hrtimer_init - initialize a timer to the given clock
1165 * @timer:      the timer to be initialized
1166 * @clock_id:   the clock to be used
1167 * @mode:       timer mode abs/rel
1168 */
1169void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1170                  enum hrtimer_mode mode)
1171{
1172        debug_init(timer, clock_id, mode);
1173        __hrtimer_init(timer, clock_id, mode);
1174}
1175EXPORT_SYMBOL_GPL(hrtimer_init);
1176
1177/**
1178 * hrtimer_get_res - get the timer resolution for a clock
1179 * @which_clock: which clock to query
1180 * @tp:          pointer to timespec variable to store the resolution
1181 *
1182 * Store the resolution of the clock selected by @which_clock in the
1183 * variable pointed to by @tp.
1184 */
1185int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1186{
1187        struct hrtimer_cpu_base *cpu_base;
1188        int base = hrtimer_clockid_to_base(which_clock);
1189
1190        cpu_base = raw_cpu_ptr(&hrtimer_bases);
1191        *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1192
1193        return 0;
1194}
1195EXPORT_SYMBOL_GPL(hrtimer_get_res);
1196
1197static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1198{
1199        struct hrtimer_clock_base *base = timer->base;
1200        struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1201        enum hrtimer_restart (*fn)(struct hrtimer *);
1202        int restart;
1203
1204        WARN_ON(!irqs_disabled());
1205
1206        debug_deactivate(timer);
1207        __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1208        timer_stats_account_hrtimer(timer);
1209        fn = timer->function;
1210
1211        /*
1212         * Because we run timers from hardirq context, there is no chance
1213         * they get migrated to another cpu, therefore its safe to unlock
1214         * the timer base.
1215         */
1216        raw_spin_unlock(&cpu_base->lock);
1217        trace_hrtimer_expire_entry(timer, now);
1218        restart = fn(timer);
1219        trace_hrtimer_expire_exit(timer);
1220        raw_spin_lock(&cpu_base->lock);
1221
1222        /*
1223         * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1224         * we do not reprogramm the event hardware. Happens either in
1225         * hrtimer_start_range_ns() or in hrtimer_interrupt()
1226         */
1227        if (restart != HRTIMER_NORESTART) {
1228                BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1229                enqueue_hrtimer(timer, base);
1230        }
1231
1232        WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1233
1234        timer->state &= ~HRTIMER_STATE_CALLBACK;
1235}
1236
1237#ifdef CONFIG_HIGH_RES_TIMERS
1238
1239/*
1240 * High resolution timer interrupt
1241 * Called with interrupts disabled
1242 */
1243void hrtimer_interrupt(struct clock_event_device *dev)
1244{
1245        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1246        ktime_t expires_next, now, entry_time, delta;
1247        int i, retries = 0;
1248
1249        BUG_ON(!cpu_base->hres_active);
1250        cpu_base->nr_events++;
1251        dev->next_event.tv64 = KTIME_MAX;
1252
1253        raw_spin_lock(&cpu_base->lock);
1254        entry_time = now = hrtimer_update_base(cpu_base);
1255retry:
1256        cpu_base->in_hrtirq = 1;
1257        /*
1258         * We set expires_next to KTIME_MAX here with cpu_base->lock
1259         * held to prevent that a timer is enqueued in our queue via
1260         * the migration code. This does not affect enqueueing of
1261         * timers which run their callback and need to be requeued on
1262         * this CPU.
1263         */
1264        cpu_base->expires_next.tv64 = KTIME_MAX;
1265
1266        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1267                struct hrtimer_clock_base *base;
1268                struct timerqueue_node *node;
1269                ktime_t basenow;
1270
1271                if (!(cpu_base->active_bases & (1 << i)))
1272                        continue;
1273
1274                base = cpu_base->clock_base + i;
1275                basenow = ktime_add(now, base->offset);
1276
1277                while ((node = timerqueue_getnext(&base->active))) {
1278                        struct hrtimer *timer;
1279
1280                        timer = container_of(node, struct hrtimer, node);
1281
1282                        /*
1283                         * The immediate goal for using the softexpires is
1284                         * minimizing wakeups, not running timers at the
1285                         * earliest interrupt after their soft expiration.
1286                         * This allows us to avoid using a Priority Search
1287                         * Tree, which can answer a stabbing querry for
1288                         * overlapping intervals and instead use the simple
1289                         * BST we already have.
1290                         * We don't add extra wakeups by delaying timers that
1291                         * are right-of a not yet expired timer, because that
1292                         * timer will have to trigger a wakeup anyway.
1293                         */
1294                        if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1295                                break;
1296
1297                        __run_hrtimer(timer, &basenow);
1298                }
1299        }
1300        /* Reevaluate the clock bases for the next expiry */
1301        expires_next = __hrtimer_get_next_event(cpu_base);
1302        /*
1303         * Store the new expiry value so the migration code can verify
1304         * against it.
1305         */
1306        cpu_base->expires_next = expires_next;
1307        cpu_base->in_hrtirq = 0;
1308        raw_spin_unlock(&cpu_base->lock);
1309
1310        /* Reprogramming necessary ? */
1311        if (expires_next.tv64 == KTIME_MAX ||
1312            !tick_program_event(expires_next, 0)) {
1313                cpu_base->hang_detected = 0;
1314                return;
1315        }
1316
1317        /*
1318         * The next timer was already expired due to:
1319         * - tracing
1320         * - long lasting callbacks
1321         * - being scheduled away when running in a VM
1322         *
1323         * We need to prevent that we loop forever in the hrtimer
1324         * interrupt routine. We give it 3 attempts to avoid
1325         * overreacting on some spurious event.
1326         *
1327         * Acquire base lock for updating the offsets and retrieving
1328         * the current time.
1329         */
1330        raw_spin_lock(&cpu_base->lock);
1331        now = hrtimer_update_base(cpu_base);
1332        cpu_base->nr_retries++;
1333        if (++retries < 3)
1334                goto retry;
1335        /*
1336         * Give the system a chance to do something else than looping
1337         * here. We stored the entry time, so we know exactly how long
1338         * we spent here. We schedule the next event this amount of
1339         * time away.
1340         */
1341        cpu_base->nr_hangs++;
1342        cpu_base->hang_detected = 1;
1343        raw_spin_unlock(&cpu_base->lock);
1344        delta = ktime_sub(now, entry_time);
1345        if (delta.tv64 > cpu_base->max_hang_time.tv64)
1346                cpu_base->max_hang_time = delta;
1347        /*
1348         * Limit it to a sensible value as we enforce a longer
1349         * delay. Give the CPU at least 100ms to catch up.
1350         */
1351        if (delta.tv64 > 100 * NSEC_PER_MSEC)
1352                expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1353        else
1354                expires_next = ktime_add(now, delta);
1355        tick_program_event(expires_next, 1);
1356        printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1357                    ktime_to_ns(delta));
1358}
1359
1360/*
1361 * local version of hrtimer_peek_ahead_timers() called with interrupts
1362 * disabled.
1363 */
1364static void __hrtimer_peek_ahead_timers(void)
1365{
1366        struct tick_device *td;
1367
1368        if (!hrtimer_hres_active())
1369                return;
1370
1371        td = this_cpu_ptr(&tick_cpu_device);
1372        if (td && td->evtdev)
1373                hrtimer_interrupt(td->evtdev);
1374}
1375
1376/**
1377 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1378 *
1379 * hrtimer_peek_ahead_timers will peek at the timer queue of
1380 * the current cpu and check if there are any timers for which
1381 * the soft expires time has passed. If any such timers exist,
1382 * they are run immediately and then removed from the timer queue.
1383 *
1384 */
1385void hrtimer_peek_ahead_timers(void)
1386{
1387        unsigned long flags;
1388
1389        local_irq_save(flags);
1390        __hrtimer_peek_ahead_timers();
1391        local_irq_restore(flags);
1392}
1393
1394static void run_hrtimer_softirq(struct softirq_action *h)
1395{
1396        hrtimer_peek_ahead_timers();
1397}
1398
1399#else /* CONFIG_HIGH_RES_TIMERS */
1400
1401static inline void __hrtimer_peek_ahead_timers(void) { }
1402
1403#endif  /* !CONFIG_HIGH_RES_TIMERS */
1404
1405/*
1406 * Called from timer softirq every jiffy, expire hrtimers:
1407 *
1408 * For HRT its the fall back code to run the softirq in the timer
1409 * softirq context in case the hrtimer initialization failed or has
1410 * not been done yet.
1411 */
1412void hrtimer_run_pending(void)
1413{
1414        if (hrtimer_hres_active())
1415                return;
1416
1417        /*
1418         * This _is_ ugly: We have to check in the softirq context,
1419         * whether we can switch to highres and / or nohz mode. The
1420         * clocksource switch happens in the timer interrupt with
1421         * xtime_lock held. Notification from there only sets the
1422         * check bit in the tick_oneshot code, otherwise we might
1423         * deadlock vs. xtime_lock.
1424         */
1425        if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1426                hrtimer_switch_to_hres();
1427}
1428
1429/*
1430 * Called from hardirq context every jiffy
1431 */
1432void hrtimer_run_queues(void)
1433{
1434        struct timerqueue_node *node;
1435        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1436        struct hrtimer_clock_base *base;
1437        int index, gettime = 1;
1438
1439        if (hrtimer_hres_active())
1440                return;
1441
1442        for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1443                base = &cpu_base->clock_base[index];
1444                if (!timerqueue_getnext(&base->active))
1445                        continue;
1446
1447                if (gettime) {
1448                        hrtimer_get_softirq_time(cpu_base);
1449                        gettime = 0;
1450                }
1451
1452                raw_spin_lock(&cpu_base->lock);
1453
1454                while ((node = timerqueue_getnext(&base->active))) {
1455                        struct hrtimer *timer;
1456
1457                        timer = container_of(node, struct hrtimer, node);
1458                        if (base->softirq_time.tv64 <=
1459                                        hrtimer_get_expires_tv64(timer))
1460                                break;
1461
1462                        __run_hrtimer(timer, &base->softirq_time);
1463                }
1464                raw_spin_unlock(&cpu_base->lock);
1465        }
1466}
1467
1468/*
1469 * Sleep related functions:
1470 */
1471static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1472{
1473        struct hrtimer_sleeper *t =
1474                container_of(timer, struct hrtimer_sleeper, timer);
1475        struct task_struct *task = t->task;
1476
1477        t->task = NULL;
1478        if (task)
1479                wake_up_process(task);
1480
1481        return HRTIMER_NORESTART;
1482}
1483
1484void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1485{
1486        sl->timer.function = hrtimer_wakeup;
1487        sl->task = task;
1488}
1489EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1490
1491static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1492{
1493        hrtimer_init_sleeper(t, current);
1494
1495        do {
1496                set_current_state(TASK_INTERRUPTIBLE);
1497                hrtimer_start_expires(&t->timer, mode);
1498                if (!hrtimer_active(&t->timer))
1499                        t->task = NULL;
1500
1501                if (likely(t->task))
1502                        freezable_schedule();
1503
1504                hrtimer_cancel(&t->timer);
1505                mode = HRTIMER_MODE_ABS;
1506
1507        } while (t->task && !signal_pending(current));
1508
1509        __set_current_state(TASK_RUNNING);
1510
1511        return t->task == NULL;
1512}
1513
1514static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1515{
1516        struct timespec rmt;
1517        ktime_t rem;
1518
1519        rem = hrtimer_expires_remaining(timer);
1520        if (rem.tv64 <= 0)
1521                return 0;
1522        rmt = ktime_to_timespec(rem);
1523
1524        if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1525                return -EFAULT;
1526
1527        return 1;
1528}
1529
1530long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1531{
1532        struct hrtimer_sleeper t;
1533        struct timespec __user  *rmtp;
1534        int ret = 0;
1535
1536        hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1537                                HRTIMER_MODE_ABS);
1538        hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1539
1540        if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1541                goto out;
1542
1543        rmtp = restart->nanosleep.rmtp;
1544        if (rmtp) {
1545                ret = update_rmtp(&t.timer, rmtp);
1546                if (ret <= 0)
1547                        goto out;
1548        }
1549
1550        /* The other values in restart are already filled in */
1551        ret = -ERESTART_RESTARTBLOCK;
1552out:
1553        destroy_hrtimer_on_stack(&t.timer);
1554        return ret;
1555}
1556
1557long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1558                       const enum hrtimer_mode mode, const clockid_t clockid)
1559{
1560        struct restart_block *restart;
1561        struct hrtimer_sleeper t;
1562        int ret = 0;
1563        unsigned long slack;
1564
1565        slack = current->timer_slack_ns;
1566        if (dl_task(current) || rt_task(current))
1567                slack = 0;
1568
1569        hrtimer_init_on_stack(&t.timer, clockid, mode);
1570        hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1571        if (do_nanosleep(&t, mode))
1572                goto out;
1573
1574        /* Absolute timers do not update the rmtp value and restart: */
1575        if (mode == HRTIMER_MODE_ABS) {
1576                ret = -ERESTARTNOHAND;
1577                goto out;
1578        }
1579
1580        if (rmtp) {
1581                ret = update_rmtp(&t.timer, rmtp);
1582                if (ret <= 0)
1583                        goto out;
1584        }
1585
1586        restart = &current->restart_block;
1587        restart->fn = hrtimer_nanosleep_restart;
1588        restart->nanosleep.clockid = t.timer.base->clockid;
1589        restart->nanosleep.rmtp = rmtp;
1590        restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1591
1592        ret = -ERESTART_RESTARTBLOCK;
1593out:
1594        destroy_hrtimer_on_stack(&t.timer);
1595        return ret;
1596}
1597
1598SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1599                struct timespec __user *, rmtp)
1600{
1601        struct timespec tu;
1602
1603        if (copy_from_user(&tu, rqtp, sizeof(tu)))
1604                return -EFAULT;
1605
1606        if (!timespec_valid(&tu))
1607                return -EINVAL;
1608
1609        return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1610}
1611
1612/*
1613 * Functions related to boot-time initialization:
1614 */
1615static void init_hrtimers_cpu(int cpu)
1616{
1617        struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1618        int i;
1619
1620        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1621                cpu_base->clock_base[i].cpu_base = cpu_base;
1622                timerqueue_init_head(&cpu_base->clock_base[i].active);
1623        }
1624
1625        cpu_base->cpu = cpu;
1626        hrtimer_init_hres(cpu_base);
1627}
1628
1629#ifdef CONFIG_HOTPLUG_CPU
1630
1631static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1632                                struct hrtimer_clock_base *new_base)
1633{
1634        struct hrtimer *timer;
1635        struct timerqueue_node *node;
1636
1637        while ((node = timerqueue_getnext(&old_base->active))) {
1638                timer = container_of(node, struct hrtimer, node);
1639                BUG_ON(hrtimer_callback_running(timer));
1640                debug_deactivate(timer);
1641
1642                /*
1643                 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1644                 * timer could be seen as !active and just vanish away
1645                 * under us on another CPU
1646                 */
1647                __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1648                timer->base = new_base;
1649                /*
1650                 * Enqueue the timers on the new cpu. This does not
1651                 * reprogram the event device in case the timer
1652                 * expires before the earliest on this CPU, but we run
1653                 * hrtimer_interrupt after we migrated everything to
1654                 * sort out already expired timers and reprogram the
1655                 * event device.
1656                 */
1657                enqueue_hrtimer(timer, new_base);
1658
1659                /* Clear the migration state bit */
1660                timer->state &= ~HRTIMER_STATE_MIGRATE;
1661        }
1662}
1663
1664static void migrate_hrtimers(int scpu)
1665{
1666        struct hrtimer_cpu_base *old_base, *new_base;
1667        int i;
1668
1669        BUG_ON(cpu_online(scpu));
1670        tick_cancel_sched_timer(scpu);
1671
1672        local_irq_disable();
1673        old_base = &per_cpu(hrtimer_bases, scpu);
1674        new_base = this_cpu_ptr(&hrtimer_bases);
1675        /*
1676         * The caller is globally serialized and nobody else
1677         * takes two locks at once, deadlock is not possible.
1678         */
1679        raw_spin_lock(&new_base->lock);
1680        raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1681
1682        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1683                migrate_hrtimer_list(&old_base->clock_base[i],
1684                                     &new_base->clock_base[i]);
1685        }
1686
1687        raw_spin_unlock(&old_base->lock);
1688        raw_spin_unlock(&new_base->lock);
1689
1690        /* Check, if we got expired work to do */
1691        __hrtimer_peek_ahead_timers();
1692        local_irq_enable();
1693}
1694
1695#endif /* CONFIG_HOTPLUG_CPU */
1696
1697static int hrtimer_cpu_notify(struct notifier_block *self,
1698                                        unsigned long action, void *hcpu)
1699{
1700        int scpu = (long)hcpu;
1701
1702        switch (action) {
1703
1704        case CPU_UP_PREPARE:
1705        case CPU_UP_PREPARE_FROZEN:
1706                init_hrtimers_cpu(scpu);
1707                break;
1708
1709#ifdef CONFIG_HOTPLUG_CPU
1710        case CPU_DYING:
1711        case CPU_DYING_FROZEN:
1712                clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1713                break;
1714        case CPU_DEAD:
1715        case CPU_DEAD_FROZEN:
1716        {
1717                clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1718                migrate_hrtimers(scpu);
1719                break;
1720        }
1721#endif
1722
1723        default:
1724                break;
1725        }
1726
1727        return NOTIFY_OK;
1728}
1729
1730static struct notifier_block hrtimers_nb = {
1731        .notifier_call = hrtimer_cpu_notify,
1732};
1733
1734void __init hrtimers_init(void)
1735{
1736        hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1737                          (void *)(long)smp_processor_id());
1738        register_cpu_notifier(&hrtimers_nb);
1739#ifdef CONFIG_HIGH_RES_TIMERS
1740        open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1741#endif
1742}
1743
1744/**
1745 * schedule_hrtimeout_range_clock - sleep until timeout
1746 * @expires:    timeout value (ktime_t)
1747 * @delta:      slack in expires timeout (ktime_t)
1748 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1749 * @clock:      timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1750 */
1751int __sched
1752schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1753                               const enum hrtimer_mode mode, int clock)
1754{
1755        struct hrtimer_sleeper t;
1756
1757        /*
1758         * Optimize when a zero timeout value is given. It does not
1759         * matter whether this is an absolute or a relative time.
1760         */
1761        if (expires && !expires->tv64) {
1762                __set_current_state(TASK_RUNNING);
1763                return 0;
1764        }
1765
1766        /*
1767         * A NULL parameter means "infinite"
1768         */
1769        if (!expires) {
1770                schedule();
1771                return -EINTR;
1772        }
1773
1774        hrtimer_init_on_stack(&t.timer, clock, mode);
1775        hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1776
1777        hrtimer_init_sleeper(&t, current);
1778
1779        hrtimer_start_expires(&t.timer, mode);
1780        if (!hrtimer_active(&t.timer))
1781                t.task = NULL;
1782
1783        if (likely(t.task))
1784                schedule();
1785
1786        hrtimer_cancel(&t.timer);
1787        destroy_hrtimer_on_stack(&t.timer);
1788
1789        __set_current_state(TASK_RUNNING);
1790
1791        return !t.task ? 0 : -EINTR;
1792}
1793
1794/**
1795 * schedule_hrtimeout_range - sleep until timeout
1796 * @expires:    timeout value (ktime_t)
1797 * @delta:      slack in expires timeout (ktime_t)
1798 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1799 *
1800 * Make the current task sleep until the given expiry time has
1801 * elapsed. The routine will return immediately unless
1802 * the current task state has been set (see set_current_state()).
1803 *
1804 * The @delta argument gives the kernel the freedom to schedule the
1805 * actual wakeup to a time that is both power and performance friendly.
1806 * The kernel give the normal best effort behavior for "@expires+@delta",
1807 * but may decide to fire the timer earlier, but no earlier than @expires.
1808 *
1809 * You can set the task state as follows -
1810 *
1811 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1812 * pass before the routine returns.
1813 *
1814 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1815 * delivered to the current task.
1816 *
1817 * The current task state is guaranteed to be TASK_RUNNING when this
1818 * routine returns.
1819 *
1820 * Returns 0 when the timer has expired otherwise -EINTR
1821 */
1822int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1823                                     const enum hrtimer_mode mode)
1824{
1825        return schedule_hrtimeout_range_clock(expires, delta, mode,
1826                                              CLOCK_MONOTONIC);
1827}
1828EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1829
1830/**
1831 * schedule_hrtimeout - sleep until timeout
1832 * @expires:    timeout value (ktime_t)
1833 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1834 *
1835 * Make the current task sleep until the given expiry time has
1836 * elapsed. The routine will return immediately unless
1837 * the current task state has been set (see set_current_state()).
1838 *
1839 * You can set the task state as follows -
1840 *
1841 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1842 * pass before the routine returns.
1843 *
1844 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1845 * delivered to the current task.
1846 *
1847 * The current task state is guaranteed to be TASK_RUNNING when this
1848 * routine returns.
1849 *
1850 * Returns 0 when the timer has expired otherwise -EINTR
1851 */
1852int __sched schedule_hrtimeout(ktime_t *expires,
1853                               const enum hrtimer_mode mode)
1854{
1855        return schedule_hrtimeout_range(expires, 0, mode);
1856}
1857EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1858