linux/mm/memcontrol.c
<<
>>
Prefs
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * Kernel Memory Controller
  14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15 * Authors: Glauber Costa and Suleiman Souhlal
  16 *
  17 * This program is free software; you can redistribute it and/or modify
  18 * it under the terms of the GNU General Public License as published by
  19 * the Free Software Foundation; either version 2 of the License, or
  20 * (at your option) any later version.
  21 *
  22 * This program is distributed in the hope that it will be useful,
  23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  25 * GNU General Public License for more details.
  26 */
  27
  28#include <linux/page_counter.h>
  29#include <linux/memcontrol.h>
  30#include <linux/cgroup.h>
  31#include <linux/mm.h>
  32#include <linux/hugetlb.h>
  33#include <linux/pagemap.h>
  34#include <linux/smp.h>
  35#include <linux/page-flags.h>
  36#include <linux/backing-dev.h>
  37#include <linux/bit_spinlock.h>
  38#include <linux/rcupdate.h>
  39#include <linux/limits.h>
  40#include <linux/export.h>
  41#include <linux/mutex.h>
  42#include <linux/rbtree.h>
  43#include <linux/slab.h>
  44#include <linux/swap.h>
  45#include <linux/swapops.h>
  46#include <linux/spinlock.h>
  47#include <linux/eventfd.h>
  48#include <linux/poll.h>
  49#include <linux/sort.h>
  50#include <linux/fs.h>
  51#include <linux/seq_file.h>
  52#include <linux/vmpressure.h>
  53#include <linux/mm_inline.h>
  54#include <linux/swap_cgroup.h>
  55#include <linux/cpu.h>
  56#include <linux/oom.h>
  57#include <linux/lockdep.h>
  58#include <linux/file.h>
  59#include "internal.h"
  60#include <net/sock.h>
  61#include <net/ip.h>
  62#include <net/tcp_memcontrol.h>
  63#include "slab.h"
  64
  65#include <asm/uaccess.h>
  66
  67#include <trace/events/vmscan.h>
  68
  69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  70EXPORT_SYMBOL(memory_cgrp_subsys);
  71
  72#define MEM_CGROUP_RECLAIM_RETRIES      5
  73static struct mem_cgroup *root_mem_cgroup __read_mostly;
  74
  75/* Whether the swap controller is active */
  76#ifdef CONFIG_MEMCG_SWAP
  77int do_swap_account __read_mostly;
  78#else
  79#define do_swap_account         0
  80#endif
  81
  82static const char * const mem_cgroup_stat_names[] = {
  83        "cache",
  84        "rss",
  85        "rss_huge",
  86        "mapped_file",
  87        "writeback",
  88        "swap",
  89};
  90
  91static const char * const mem_cgroup_events_names[] = {
  92        "pgpgin",
  93        "pgpgout",
  94        "pgfault",
  95        "pgmajfault",
  96};
  97
  98static const char * const mem_cgroup_lru_names[] = {
  99        "inactive_anon",
 100        "active_anon",
 101        "inactive_file",
 102        "active_file",
 103        "unevictable",
 104};
 105
 106/*
 107 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 108 * it will be incremated by the number of pages. This counter is used for
 109 * for trigger some periodic events. This is straightforward and better
 110 * than using jiffies etc. to handle periodic memcg event.
 111 */
 112enum mem_cgroup_events_target {
 113        MEM_CGROUP_TARGET_THRESH,
 114        MEM_CGROUP_TARGET_SOFTLIMIT,
 115        MEM_CGROUP_TARGET_NUMAINFO,
 116        MEM_CGROUP_NTARGETS,
 117};
 118#define THRESHOLDS_EVENTS_TARGET 128
 119#define SOFTLIMIT_EVENTS_TARGET 1024
 120#define NUMAINFO_EVENTS_TARGET  1024
 121
 122struct mem_cgroup_stat_cpu {
 123        long count[MEM_CGROUP_STAT_NSTATS];
 124        unsigned long events[MEMCG_NR_EVENTS];
 125        unsigned long nr_page_events;
 126        unsigned long targets[MEM_CGROUP_NTARGETS];
 127};
 128
 129struct reclaim_iter {
 130        struct mem_cgroup *position;
 131        /* scan generation, increased every round-trip */
 132        unsigned int generation;
 133};
 134
 135/*
 136 * per-zone information in memory controller.
 137 */
 138struct mem_cgroup_per_zone {
 139        struct lruvec           lruvec;
 140        unsigned long           lru_size[NR_LRU_LISTS];
 141
 142        struct reclaim_iter     iter[DEF_PRIORITY + 1];
 143
 144        struct rb_node          tree_node;      /* RB tree node */
 145        unsigned long           usage_in_excess;/* Set to the value by which */
 146                                                /* the soft limit is exceeded*/
 147        bool                    on_tree;
 148        struct mem_cgroup       *memcg;         /* Back pointer, we cannot */
 149                                                /* use container_of        */
 150};
 151
 152struct mem_cgroup_per_node {
 153        struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
 154};
 155
 156/*
 157 * Cgroups above their limits are maintained in a RB-Tree, independent of
 158 * their hierarchy representation
 159 */
 160
 161struct mem_cgroup_tree_per_zone {
 162        struct rb_root rb_root;
 163        spinlock_t lock;
 164};
 165
 166struct mem_cgroup_tree_per_node {
 167        struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 168};
 169
 170struct mem_cgroup_tree {
 171        struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 172};
 173
 174static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 175
 176struct mem_cgroup_threshold {
 177        struct eventfd_ctx *eventfd;
 178        unsigned long threshold;
 179};
 180
 181/* For threshold */
 182struct mem_cgroup_threshold_ary {
 183        /* An array index points to threshold just below or equal to usage. */
 184        int current_threshold;
 185        /* Size of entries[] */
 186        unsigned int size;
 187        /* Array of thresholds */
 188        struct mem_cgroup_threshold entries[0];
 189};
 190
 191struct mem_cgroup_thresholds {
 192        /* Primary thresholds array */
 193        struct mem_cgroup_threshold_ary *primary;
 194        /*
 195         * Spare threshold array.
 196         * This is needed to make mem_cgroup_unregister_event() "never fail".
 197         * It must be able to store at least primary->size - 1 entries.
 198         */
 199        struct mem_cgroup_threshold_ary *spare;
 200};
 201
 202/* for OOM */
 203struct mem_cgroup_eventfd_list {
 204        struct list_head list;
 205        struct eventfd_ctx *eventfd;
 206};
 207
 208/*
 209 * cgroup_event represents events which userspace want to receive.
 210 */
 211struct mem_cgroup_event {
 212        /*
 213         * memcg which the event belongs to.
 214         */
 215        struct mem_cgroup *memcg;
 216        /*
 217         * eventfd to signal userspace about the event.
 218         */
 219        struct eventfd_ctx *eventfd;
 220        /*
 221         * Each of these stored in a list by the cgroup.
 222         */
 223        struct list_head list;
 224        /*
 225         * register_event() callback will be used to add new userspace
 226         * waiter for changes related to this event.  Use eventfd_signal()
 227         * on eventfd to send notification to userspace.
 228         */
 229        int (*register_event)(struct mem_cgroup *memcg,
 230                              struct eventfd_ctx *eventfd, const char *args);
 231        /*
 232         * unregister_event() callback will be called when userspace closes
 233         * the eventfd or on cgroup removing.  This callback must be set,
 234         * if you want provide notification functionality.
 235         */
 236        void (*unregister_event)(struct mem_cgroup *memcg,
 237                                 struct eventfd_ctx *eventfd);
 238        /*
 239         * All fields below needed to unregister event when
 240         * userspace closes eventfd.
 241         */
 242        poll_table pt;
 243        wait_queue_head_t *wqh;
 244        wait_queue_t wait;
 245        struct work_struct remove;
 246};
 247
 248static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 249static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 250
 251/*
 252 * The memory controller data structure. The memory controller controls both
 253 * page cache and RSS per cgroup. We would eventually like to provide
 254 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 255 * to help the administrator determine what knobs to tune.
 256 *
 257 * TODO: Add a water mark for the memory controller. Reclaim will begin when
 258 * we hit the water mark. May be even add a low water mark, such that
 259 * no reclaim occurs from a cgroup at it's low water mark, this is
 260 * a feature that will be implemented much later in the future.
 261 */
 262struct mem_cgroup {
 263        struct cgroup_subsys_state css;
 264
 265        /* Accounted resources */
 266        struct page_counter memory;
 267        struct page_counter memsw;
 268        struct page_counter kmem;
 269
 270        /* Normal memory consumption range */
 271        unsigned long low;
 272        unsigned long high;
 273
 274        unsigned long soft_limit;
 275
 276        /* vmpressure notifications */
 277        struct vmpressure vmpressure;
 278
 279        /* css_online() has been completed */
 280        int initialized;
 281
 282        /*
 283         * Should the accounting and control be hierarchical, per subtree?
 284         */
 285        bool use_hierarchy;
 286
 287        bool            oom_lock;
 288        atomic_t        under_oom;
 289        atomic_t        oom_wakeups;
 290
 291        int     swappiness;
 292        /* OOM-Killer disable */
 293        int             oom_kill_disable;
 294
 295        /* protect arrays of thresholds */
 296        struct mutex thresholds_lock;
 297
 298        /* thresholds for memory usage. RCU-protected */
 299        struct mem_cgroup_thresholds thresholds;
 300
 301        /* thresholds for mem+swap usage. RCU-protected */
 302        struct mem_cgroup_thresholds memsw_thresholds;
 303
 304        /* For oom notifier event fd */
 305        struct list_head oom_notify;
 306
 307        /*
 308         * Should we move charges of a task when a task is moved into this
 309         * mem_cgroup ? And what type of charges should we move ?
 310         */
 311        unsigned long move_charge_at_immigrate;
 312        /*
 313         * set > 0 if pages under this cgroup are moving to other cgroup.
 314         */
 315        atomic_t                moving_account;
 316        /* taken only while moving_account > 0 */
 317        spinlock_t              move_lock;
 318        struct task_struct      *move_lock_task;
 319        unsigned long           move_lock_flags;
 320        /*
 321         * percpu counter.
 322         */
 323        struct mem_cgroup_stat_cpu __percpu *stat;
 324        /*
 325         * used when a cpu is offlined or other synchronizations
 326         * See mem_cgroup_read_stat().
 327         */
 328        struct mem_cgroup_stat_cpu nocpu_base;
 329        spinlock_t pcp_counter_lock;
 330
 331#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
 332        struct cg_proto tcp_mem;
 333#endif
 334#if defined(CONFIG_MEMCG_KMEM)
 335        /* Index in the kmem_cache->memcg_params.memcg_caches array */
 336        int kmemcg_id;
 337        bool kmem_acct_activated;
 338        bool kmem_acct_active;
 339#endif
 340
 341        int last_scanned_node;
 342#if MAX_NUMNODES > 1
 343        nodemask_t      scan_nodes;
 344        atomic_t        numainfo_events;
 345        atomic_t        numainfo_updating;
 346#endif
 347
 348        /* List of events which userspace want to receive */
 349        struct list_head event_list;
 350        spinlock_t event_list_lock;
 351
 352        struct mem_cgroup_per_node *nodeinfo[0];
 353        /* WARNING: nodeinfo must be the last member here */
 354};
 355
 356#ifdef CONFIG_MEMCG_KMEM
 357bool memcg_kmem_is_active(struct mem_cgroup *memcg)
 358{
 359        return memcg->kmem_acct_active;
 360}
 361#endif
 362
 363/* Stuffs for move charges at task migration. */
 364/*
 365 * Types of charges to be moved.
 366 */
 367#define MOVE_ANON       0x1U
 368#define MOVE_FILE       0x2U
 369#define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
 370
 371/* "mc" and its members are protected by cgroup_mutex */
 372static struct move_charge_struct {
 373        spinlock_t        lock; /* for from, to */
 374        struct mem_cgroup *from;
 375        struct mem_cgroup *to;
 376        unsigned long flags;
 377        unsigned long precharge;
 378        unsigned long moved_charge;
 379        unsigned long moved_swap;
 380        struct task_struct *moving_task;        /* a task moving charges */
 381        wait_queue_head_t waitq;                /* a waitq for other context */
 382} mc = {
 383        .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 384        .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 385};
 386
 387/*
 388 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 389 * limit reclaim to prevent infinite loops, if they ever occur.
 390 */
 391#define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
 392#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
 393
 394enum charge_type {
 395        MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 396        MEM_CGROUP_CHARGE_TYPE_ANON,
 397        MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
 398        MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
 399        NR_CHARGE_TYPE,
 400};
 401
 402/* for encoding cft->private value on file */
 403enum res_type {
 404        _MEM,
 405        _MEMSWAP,
 406        _OOM_TYPE,
 407        _KMEM,
 408};
 409
 410#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
 411#define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
 412#define MEMFILE_ATTR(val)       ((val) & 0xffff)
 413/* Used for OOM nofiier */
 414#define OOM_CONTROL             (0)
 415
 416/*
 417 * The memcg_create_mutex will be held whenever a new cgroup is created.
 418 * As a consequence, any change that needs to protect against new child cgroups
 419 * appearing has to hold it as well.
 420 */
 421static DEFINE_MUTEX(memcg_create_mutex);
 422
 423struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
 424{
 425        return s ? container_of(s, struct mem_cgroup, css) : NULL;
 426}
 427
 428/* Some nice accessors for the vmpressure. */
 429struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 430{
 431        if (!memcg)
 432                memcg = root_mem_cgroup;
 433        return &memcg->vmpressure;
 434}
 435
 436struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 437{
 438        return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 439}
 440
 441static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 442{
 443        return (memcg == root_mem_cgroup);
 444}
 445
 446/*
 447 * We restrict the id in the range of [1, 65535], so it can fit into
 448 * an unsigned short.
 449 */
 450#define MEM_CGROUP_ID_MAX       USHRT_MAX
 451
 452static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
 453{
 454        return memcg->css.id;
 455}
 456
 457static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
 458{
 459        struct cgroup_subsys_state *css;
 460
 461        css = css_from_id(id, &memory_cgrp_subsys);
 462        return mem_cgroup_from_css(css);
 463}
 464
 465/* Writing them here to avoid exposing memcg's inner layout */
 466#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
 467
 468void sock_update_memcg(struct sock *sk)
 469{
 470        if (mem_cgroup_sockets_enabled) {
 471                struct mem_cgroup *memcg;
 472                struct cg_proto *cg_proto;
 473
 474                BUG_ON(!sk->sk_prot->proto_cgroup);
 475
 476                /* Socket cloning can throw us here with sk_cgrp already
 477                 * filled. It won't however, necessarily happen from
 478                 * process context. So the test for root memcg given
 479                 * the current task's memcg won't help us in this case.
 480                 *
 481                 * Respecting the original socket's memcg is a better
 482                 * decision in this case.
 483                 */
 484                if (sk->sk_cgrp) {
 485                        BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
 486                        css_get(&sk->sk_cgrp->memcg->css);
 487                        return;
 488                }
 489
 490                rcu_read_lock();
 491                memcg = mem_cgroup_from_task(current);
 492                cg_proto = sk->sk_prot->proto_cgroup(memcg);
 493                if (!mem_cgroup_is_root(memcg) &&
 494                    memcg_proto_active(cg_proto) &&
 495                    css_tryget_online(&memcg->css)) {
 496                        sk->sk_cgrp = cg_proto;
 497                }
 498                rcu_read_unlock();
 499        }
 500}
 501EXPORT_SYMBOL(sock_update_memcg);
 502
 503void sock_release_memcg(struct sock *sk)
 504{
 505        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
 506                struct mem_cgroup *memcg;
 507                WARN_ON(!sk->sk_cgrp->memcg);
 508                memcg = sk->sk_cgrp->memcg;
 509                css_put(&sk->sk_cgrp->memcg->css);
 510        }
 511}
 512
 513struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
 514{
 515        if (!memcg || mem_cgroup_is_root(memcg))
 516                return NULL;
 517
 518        return &memcg->tcp_mem;
 519}
 520EXPORT_SYMBOL(tcp_proto_cgroup);
 521
 522#endif
 523
 524#ifdef CONFIG_MEMCG_KMEM
 525/*
 526 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
 527 * The main reason for not using cgroup id for this:
 528 *  this works better in sparse environments, where we have a lot of memcgs,
 529 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 530 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 531 *  200 entry array for that.
 532 *
 533 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 534 * will double each time we have to increase it.
 535 */
 536static DEFINE_IDA(memcg_cache_ida);
 537int memcg_nr_cache_ids;
 538
 539/* Protects memcg_nr_cache_ids */
 540static DECLARE_RWSEM(memcg_cache_ids_sem);
 541
 542void memcg_get_cache_ids(void)
 543{
 544        down_read(&memcg_cache_ids_sem);
 545}
 546
 547void memcg_put_cache_ids(void)
 548{
 549        up_read(&memcg_cache_ids_sem);
 550}
 551
 552/*
 553 * MIN_SIZE is different than 1, because we would like to avoid going through
 554 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 555 * cgroups is a reasonable guess. In the future, it could be a parameter or
 556 * tunable, but that is strictly not necessary.
 557 *
 558 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 559 * this constant directly from cgroup, but it is understandable that this is
 560 * better kept as an internal representation in cgroup.c. In any case, the
 561 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 562 * increase ours as well if it increases.
 563 */
 564#define MEMCG_CACHES_MIN_SIZE 4
 565#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 566
 567/*
 568 * A lot of the calls to the cache allocation functions are expected to be
 569 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 570 * conditional to this static branch, we'll have to allow modules that does
 571 * kmem_cache_alloc and the such to see this symbol as well
 572 */
 573struct static_key memcg_kmem_enabled_key;
 574EXPORT_SYMBOL(memcg_kmem_enabled_key);
 575
 576#endif /* CONFIG_MEMCG_KMEM */
 577
 578static struct mem_cgroup_per_zone *
 579mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
 580{
 581        int nid = zone_to_nid(zone);
 582        int zid = zone_idx(zone);
 583
 584        return &memcg->nodeinfo[nid]->zoneinfo[zid];
 585}
 586
 587struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
 588{
 589        return &memcg->css;
 590}
 591
 592static struct mem_cgroup_per_zone *
 593mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
 594{
 595        int nid = page_to_nid(page);
 596        int zid = page_zonenum(page);
 597
 598        return &memcg->nodeinfo[nid]->zoneinfo[zid];
 599}
 600
 601static struct mem_cgroup_tree_per_zone *
 602soft_limit_tree_node_zone(int nid, int zid)
 603{
 604        return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 605}
 606
 607static struct mem_cgroup_tree_per_zone *
 608soft_limit_tree_from_page(struct page *page)
 609{
 610        int nid = page_to_nid(page);
 611        int zid = page_zonenum(page);
 612
 613        return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 614}
 615
 616static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
 617                                         struct mem_cgroup_tree_per_zone *mctz,
 618                                         unsigned long new_usage_in_excess)
 619{
 620        struct rb_node **p = &mctz->rb_root.rb_node;
 621        struct rb_node *parent = NULL;
 622        struct mem_cgroup_per_zone *mz_node;
 623
 624        if (mz->on_tree)
 625                return;
 626
 627        mz->usage_in_excess = new_usage_in_excess;
 628        if (!mz->usage_in_excess)
 629                return;
 630        while (*p) {
 631                parent = *p;
 632                mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 633                                        tree_node);
 634                if (mz->usage_in_excess < mz_node->usage_in_excess)
 635                        p = &(*p)->rb_left;
 636                /*
 637                 * We can't avoid mem cgroups that are over their soft
 638                 * limit by the same amount
 639                 */
 640                else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 641                        p = &(*p)->rb_right;
 642        }
 643        rb_link_node(&mz->tree_node, parent, p);
 644        rb_insert_color(&mz->tree_node, &mctz->rb_root);
 645        mz->on_tree = true;
 646}
 647
 648static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
 649                                         struct mem_cgroup_tree_per_zone *mctz)
 650{
 651        if (!mz->on_tree)
 652                return;
 653        rb_erase(&mz->tree_node, &mctz->rb_root);
 654        mz->on_tree = false;
 655}
 656
 657static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
 658                                       struct mem_cgroup_tree_per_zone *mctz)
 659{
 660        unsigned long flags;
 661
 662        spin_lock_irqsave(&mctz->lock, flags);
 663        __mem_cgroup_remove_exceeded(mz, mctz);
 664        spin_unlock_irqrestore(&mctz->lock, flags);
 665}
 666
 667static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 668{
 669        unsigned long nr_pages = page_counter_read(&memcg->memory);
 670        unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
 671        unsigned long excess = 0;
 672
 673        if (nr_pages > soft_limit)
 674                excess = nr_pages - soft_limit;
 675
 676        return excess;
 677}
 678
 679static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 680{
 681        unsigned long excess;
 682        struct mem_cgroup_per_zone *mz;
 683        struct mem_cgroup_tree_per_zone *mctz;
 684
 685        mctz = soft_limit_tree_from_page(page);
 686        /*
 687         * Necessary to update all ancestors when hierarchy is used.
 688         * because their event counter is not touched.
 689         */
 690        for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 691                mz = mem_cgroup_page_zoneinfo(memcg, page);
 692                excess = soft_limit_excess(memcg);
 693                /*
 694                 * We have to update the tree if mz is on RB-tree or
 695                 * mem is over its softlimit.
 696                 */
 697                if (excess || mz->on_tree) {
 698                        unsigned long flags;
 699
 700                        spin_lock_irqsave(&mctz->lock, flags);
 701                        /* if on-tree, remove it */
 702                        if (mz->on_tree)
 703                                __mem_cgroup_remove_exceeded(mz, mctz);
 704                        /*
 705                         * Insert again. mz->usage_in_excess will be updated.
 706                         * If excess is 0, no tree ops.
 707                         */
 708                        __mem_cgroup_insert_exceeded(mz, mctz, excess);
 709                        spin_unlock_irqrestore(&mctz->lock, flags);
 710                }
 711        }
 712}
 713
 714static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 715{
 716        struct mem_cgroup_tree_per_zone *mctz;
 717        struct mem_cgroup_per_zone *mz;
 718        int nid, zid;
 719
 720        for_each_node(nid) {
 721                for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 722                        mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
 723                        mctz = soft_limit_tree_node_zone(nid, zid);
 724                        mem_cgroup_remove_exceeded(mz, mctz);
 725                }
 726        }
 727}
 728
 729static struct mem_cgroup_per_zone *
 730__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 731{
 732        struct rb_node *rightmost = NULL;
 733        struct mem_cgroup_per_zone *mz;
 734
 735retry:
 736        mz = NULL;
 737        rightmost = rb_last(&mctz->rb_root);
 738        if (!rightmost)
 739                goto done;              /* Nothing to reclaim from */
 740
 741        mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 742        /*
 743         * Remove the node now but someone else can add it back,
 744         * we will to add it back at the end of reclaim to its correct
 745         * position in the tree.
 746         */
 747        __mem_cgroup_remove_exceeded(mz, mctz);
 748        if (!soft_limit_excess(mz->memcg) ||
 749            !css_tryget_online(&mz->memcg->css))
 750                goto retry;
 751done:
 752        return mz;
 753}
 754
 755static struct mem_cgroup_per_zone *
 756mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 757{
 758        struct mem_cgroup_per_zone *mz;
 759
 760        spin_lock_irq(&mctz->lock);
 761        mz = __mem_cgroup_largest_soft_limit_node(mctz);
 762        spin_unlock_irq(&mctz->lock);
 763        return mz;
 764}
 765
 766/*
 767 * Implementation Note: reading percpu statistics for memcg.
 768 *
 769 * Both of vmstat[] and percpu_counter has threshold and do periodic
 770 * synchronization to implement "quick" read. There are trade-off between
 771 * reading cost and precision of value. Then, we may have a chance to implement
 772 * a periodic synchronizion of counter in memcg's counter.
 773 *
 774 * But this _read() function is used for user interface now. The user accounts
 775 * memory usage by memory cgroup and he _always_ requires exact value because
 776 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 777 * have to visit all online cpus and make sum. So, for now, unnecessary
 778 * synchronization is not implemented. (just implemented for cpu hotplug)
 779 *
 780 * If there are kernel internal actions which can make use of some not-exact
 781 * value, and reading all cpu value can be performance bottleneck in some
 782 * common workload, threashold and synchonization as vmstat[] should be
 783 * implemented.
 784 */
 785static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
 786                                 enum mem_cgroup_stat_index idx)
 787{
 788        long val = 0;
 789        int cpu;
 790
 791        get_online_cpus();
 792        for_each_online_cpu(cpu)
 793                val += per_cpu(memcg->stat->count[idx], cpu);
 794#ifdef CONFIG_HOTPLUG_CPU
 795        spin_lock(&memcg->pcp_counter_lock);
 796        val += memcg->nocpu_base.count[idx];
 797        spin_unlock(&memcg->pcp_counter_lock);
 798#endif
 799        put_online_cpus();
 800        return val;
 801}
 802
 803static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
 804                                            enum mem_cgroup_events_index idx)
 805{
 806        unsigned long val = 0;
 807        int cpu;
 808
 809        get_online_cpus();
 810        for_each_online_cpu(cpu)
 811                val += per_cpu(memcg->stat->events[idx], cpu);
 812#ifdef CONFIG_HOTPLUG_CPU
 813        spin_lock(&memcg->pcp_counter_lock);
 814        val += memcg->nocpu_base.events[idx];
 815        spin_unlock(&memcg->pcp_counter_lock);
 816#endif
 817        put_online_cpus();
 818        return val;
 819}
 820
 821static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 822                                         struct page *page,
 823                                         int nr_pages)
 824{
 825        /*
 826         * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 827         * counted as CACHE even if it's on ANON LRU.
 828         */
 829        if (PageAnon(page))
 830                __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
 831                                nr_pages);
 832        else
 833                __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
 834                                nr_pages);
 835
 836        if (PageTransHuge(page))
 837                __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
 838                                nr_pages);
 839
 840        /* pagein of a big page is an event. So, ignore page size */
 841        if (nr_pages > 0)
 842                __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
 843        else {
 844                __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
 845                nr_pages = -nr_pages; /* for event */
 846        }
 847
 848        __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
 849}
 850
 851unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
 852{
 853        struct mem_cgroup_per_zone *mz;
 854
 855        mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
 856        return mz->lru_size[lru];
 857}
 858
 859static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 860                                                  int nid,
 861                                                  unsigned int lru_mask)
 862{
 863        unsigned long nr = 0;
 864        int zid;
 865
 866        VM_BUG_ON((unsigned)nid >= nr_node_ids);
 867
 868        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 869                struct mem_cgroup_per_zone *mz;
 870                enum lru_list lru;
 871
 872                for_each_lru(lru) {
 873                        if (!(BIT(lru) & lru_mask))
 874                                continue;
 875                        mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
 876                        nr += mz->lru_size[lru];
 877                }
 878        }
 879        return nr;
 880}
 881
 882static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 883                        unsigned int lru_mask)
 884{
 885        unsigned long nr = 0;
 886        int nid;
 887
 888        for_each_node_state(nid, N_MEMORY)
 889                nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
 890        return nr;
 891}
 892
 893static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 894                                       enum mem_cgroup_events_target target)
 895{
 896        unsigned long val, next;
 897
 898        val = __this_cpu_read(memcg->stat->nr_page_events);
 899        next = __this_cpu_read(memcg->stat->targets[target]);
 900        /* from time_after() in jiffies.h */
 901        if ((long)next - (long)val < 0) {
 902                switch (target) {
 903                case MEM_CGROUP_TARGET_THRESH:
 904                        next = val + THRESHOLDS_EVENTS_TARGET;
 905                        break;
 906                case MEM_CGROUP_TARGET_SOFTLIMIT:
 907                        next = val + SOFTLIMIT_EVENTS_TARGET;
 908                        break;
 909                case MEM_CGROUP_TARGET_NUMAINFO:
 910                        next = val + NUMAINFO_EVENTS_TARGET;
 911                        break;
 912                default:
 913                        break;
 914                }
 915                __this_cpu_write(memcg->stat->targets[target], next);
 916                return true;
 917        }
 918        return false;
 919}
 920
 921/*
 922 * Check events in order.
 923 *
 924 */
 925static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 926{
 927        /* threshold event is triggered in finer grain than soft limit */
 928        if (unlikely(mem_cgroup_event_ratelimit(memcg,
 929                                                MEM_CGROUP_TARGET_THRESH))) {
 930                bool do_softlimit;
 931                bool do_numainfo __maybe_unused;
 932
 933                do_softlimit = mem_cgroup_event_ratelimit(memcg,
 934                                                MEM_CGROUP_TARGET_SOFTLIMIT);
 935#if MAX_NUMNODES > 1
 936                do_numainfo = mem_cgroup_event_ratelimit(memcg,
 937                                                MEM_CGROUP_TARGET_NUMAINFO);
 938#endif
 939                mem_cgroup_threshold(memcg);
 940                if (unlikely(do_softlimit))
 941                        mem_cgroup_update_tree(memcg, page);
 942#if MAX_NUMNODES > 1
 943                if (unlikely(do_numainfo))
 944                        atomic_inc(&memcg->numainfo_events);
 945#endif
 946        }
 947}
 948
 949struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 950{
 951        /*
 952         * mm_update_next_owner() may clear mm->owner to NULL
 953         * if it races with swapoff, page migration, etc.
 954         * So this can be called with p == NULL.
 955         */
 956        if (unlikely(!p))
 957                return NULL;
 958
 959        return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 960}
 961
 962static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 963{
 964        struct mem_cgroup *memcg = NULL;
 965
 966        rcu_read_lock();
 967        do {
 968                /*
 969                 * Page cache insertions can happen withou an
 970                 * actual mm context, e.g. during disk probing
 971                 * on boot, loopback IO, acct() writes etc.
 972                 */
 973                if (unlikely(!mm))
 974                        memcg = root_mem_cgroup;
 975                else {
 976                        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 977                        if (unlikely(!memcg))
 978                                memcg = root_mem_cgroup;
 979                }
 980        } while (!css_tryget_online(&memcg->css));
 981        rcu_read_unlock();
 982        return memcg;
 983}
 984
 985/**
 986 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 987 * @root: hierarchy root
 988 * @prev: previously returned memcg, NULL on first invocation
 989 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 990 *
 991 * Returns references to children of the hierarchy below @root, or
 992 * @root itself, or %NULL after a full round-trip.
 993 *
 994 * Caller must pass the return value in @prev on subsequent
 995 * invocations for reference counting, or use mem_cgroup_iter_break()
 996 * to cancel a hierarchy walk before the round-trip is complete.
 997 *
 998 * Reclaimers can specify a zone and a priority level in @reclaim to
 999 * divide up the memcgs in the hierarchy among all concurrent
1000 * reclaimers operating on the same zone and priority.
1001 */
1002struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1003                                   struct mem_cgroup *prev,
1004                                   struct mem_cgroup_reclaim_cookie *reclaim)
1005{
1006        struct reclaim_iter *uninitialized_var(iter);
1007        struct cgroup_subsys_state *css = NULL;
1008        struct mem_cgroup *memcg = NULL;
1009        struct mem_cgroup *pos = NULL;
1010
1011        if (mem_cgroup_disabled())
1012                return NULL;
1013
1014        if (!root)
1015                root = root_mem_cgroup;
1016
1017        if (prev && !reclaim)
1018                pos = prev;
1019
1020        if (!root->use_hierarchy && root != root_mem_cgroup) {
1021                if (prev)
1022                        goto out;
1023                return root;
1024        }
1025
1026        rcu_read_lock();
1027
1028        if (reclaim) {
1029                struct mem_cgroup_per_zone *mz;
1030
1031                mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1032                iter = &mz->iter[reclaim->priority];
1033
1034                if (prev && reclaim->generation != iter->generation)
1035                        goto out_unlock;
1036
1037                do {
1038                        pos = ACCESS_ONCE(iter->position);
1039                        /*
1040                         * A racing update may change the position and
1041                         * put the last reference, hence css_tryget(),
1042                         * or retry to see the updated position.
1043                         */
1044                } while (pos && !css_tryget(&pos->css));
1045        }
1046
1047        if (pos)
1048                css = &pos->css;
1049
1050        for (;;) {
1051                css = css_next_descendant_pre(css, &root->css);
1052                if (!css) {
1053                        /*
1054                         * Reclaimers share the hierarchy walk, and a
1055                         * new one might jump in right at the end of
1056                         * the hierarchy - make sure they see at least
1057                         * one group and restart from the beginning.
1058                         */
1059                        if (!prev)
1060                                continue;
1061                        break;
1062                }
1063
1064                /*
1065                 * Verify the css and acquire a reference.  The root
1066                 * is provided by the caller, so we know it's alive
1067                 * and kicking, and don't take an extra reference.
1068                 */
1069                memcg = mem_cgroup_from_css(css);
1070
1071                if (css == &root->css)
1072                        break;
1073
1074                if (css_tryget(css)) {
1075                        /*
1076                         * Make sure the memcg is initialized:
1077                         * mem_cgroup_css_online() orders the the
1078                         * initialization against setting the flag.
1079                         */
1080                        if (smp_load_acquire(&memcg->initialized))
1081                                break;
1082
1083                        css_put(css);
1084                }
1085
1086                memcg = NULL;
1087        }
1088
1089        if (reclaim) {
1090                if (cmpxchg(&iter->position, pos, memcg) == pos) {
1091                        if (memcg)
1092                                css_get(&memcg->css);
1093                        if (pos)
1094                                css_put(&pos->css);
1095                }
1096
1097                /*
1098                 * pairs with css_tryget when dereferencing iter->position
1099                 * above.
1100                 */
1101                if (pos)
1102                        css_put(&pos->css);
1103
1104                if (!memcg)
1105                        iter->generation++;
1106                else if (!prev)
1107                        reclaim->generation = iter->generation;
1108        }
1109
1110out_unlock:
1111        rcu_read_unlock();
1112out:
1113        if (prev && prev != root)
1114                css_put(&prev->css);
1115
1116        return memcg;
1117}
1118
1119/**
1120 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1121 * @root: hierarchy root
1122 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1123 */
1124void mem_cgroup_iter_break(struct mem_cgroup *root,
1125                           struct mem_cgroup *prev)
1126{
1127        if (!root)
1128                root = root_mem_cgroup;
1129        if (prev && prev != root)
1130                css_put(&prev->css);
1131}
1132
1133/*
1134 * Iteration constructs for visiting all cgroups (under a tree).  If
1135 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1136 * be used for reference counting.
1137 */
1138#define for_each_mem_cgroup_tree(iter, root)            \
1139        for (iter = mem_cgroup_iter(root, NULL, NULL);  \
1140             iter != NULL;                              \
1141             iter = mem_cgroup_iter(root, iter, NULL))
1142
1143#define for_each_mem_cgroup(iter)                       \
1144        for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
1145             iter != NULL;                              \
1146             iter = mem_cgroup_iter(NULL, iter, NULL))
1147
1148void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1149{
1150        struct mem_cgroup *memcg;
1151
1152        rcu_read_lock();
1153        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1154        if (unlikely(!memcg))
1155                goto out;
1156
1157        switch (idx) {
1158        case PGFAULT:
1159                this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1160                break;
1161        case PGMAJFAULT:
1162                this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1163                break;
1164        default:
1165                BUG();
1166        }
1167out:
1168        rcu_read_unlock();
1169}
1170EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1171
1172/**
1173 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1174 * @zone: zone of the wanted lruvec
1175 * @memcg: memcg of the wanted lruvec
1176 *
1177 * Returns the lru list vector holding pages for the given @zone and
1178 * @mem.  This can be the global zone lruvec, if the memory controller
1179 * is disabled.
1180 */
1181struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1182                                      struct mem_cgroup *memcg)
1183{
1184        struct mem_cgroup_per_zone *mz;
1185        struct lruvec *lruvec;
1186
1187        if (mem_cgroup_disabled()) {
1188                lruvec = &zone->lruvec;
1189                goto out;
1190        }
1191
1192        mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1193        lruvec = &mz->lruvec;
1194out:
1195        /*
1196         * Since a node can be onlined after the mem_cgroup was created,
1197         * we have to be prepared to initialize lruvec->zone here;
1198         * and if offlined then reonlined, we need to reinitialize it.
1199         */
1200        if (unlikely(lruvec->zone != zone))
1201                lruvec->zone = zone;
1202        return lruvec;
1203}
1204
1205/**
1206 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1207 * @page: the page
1208 * @zone: zone of the page
1209 *
1210 * This function is only safe when following the LRU page isolation
1211 * and putback protocol: the LRU lock must be held, and the page must
1212 * either be PageLRU() or the caller must have isolated/allocated it.
1213 */
1214struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1215{
1216        struct mem_cgroup_per_zone *mz;
1217        struct mem_cgroup *memcg;
1218        struct lruvec *lruvec;
1219
1220        if (mem_cgroup_disabled()) {
1221                lruvec = &zone->lruvec;
1222                goto out;
1223        }
1224
1225        memcg = page->mem_cgroup;
1226        /*
1227         * Swapcache readahead pages are added to the LRU - and
1228         * possibly migrated - before they are charged.
1229         */
1230        if (!memcg)
1231                memcg = root_mem_cgroup;
1232
1233        mz = mem_cgroup_page_zoneinfo(memcg, page);
1234        lruvec = &mz->lruvec;
1235out:
1236        /*
1237         * Since a node can be onlined after the mem_cgroup was created,
1238         * we have to be prepared to initialize lruvec->zone here;
1239         * and if offlined then reonlined, we need to reinitialize it.
1240         */
1241        if (unlikely(lruvec->zone != zone))
1242                lruvec->zone = zone;
1243        return lruvec;
1244}
1245
1246/**
1247 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248 * @lruvec: mem_cgroup per zone lru vector
1249 * @lru: index of lru list the page is sitting on
1250 * @nr_pages: positive when adding or negative when removing
1251 *
1252 * This function must be called when a page is added to or removed from an
1253 * lru list.
1254 */
1255void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1256                                int nr_pages)
1257{
1258        struct mem_cgroup_per_zone *mz;
1259        unsigned long *lru_size;
1260
1261        if (mem_cgroup_disabled())
1262                return;
1263
1264        mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1265        lru_size = mz->lru_size + lru;
1266        *lru_size += nr_pages;
1267        VM_BUG_ON((long)(*lru_size) < 0);
1268}
1269
1270bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1271{
1272        if (root == memcg)
1273                return true;
1274        if (!root->use_hierarchy)
1275                return false;
1276        return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1277}
1278
1279bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1280{
1281        struct mem_cgroup *task_memcg;
1282        struct task_struct *p;
1283        bool ret;
1284
1285        p = find_lock_task_mm(task);
1286        if (p) {
1287                task_memcg = get_mem_cgroup_from_mm(p->mm);
1288                task_unlock(p);
1289        } else {
1290                /*
1291                 * All threads may have already detached their mm's, but the oom
1292                 * killer still needs to detect if they have already been oom
1293                 * killed to prevent needlessly killing additional tasks.
1294                 */
1295                rcu_read_lock();
1296                task_memcg = mem_cgroup_from_task(task);
1297                css_get(&task_memcg->css);
1298                rcu_read_unlock();
1299        }
1300        ret = mem_cgroup_is_descendant(task_memcg, memcg);
1301        css_put(&task_memcg->css);
1302        return ret;
1303}
1304
1305int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1306{
1307        unsigned long inactive_ratio;
1308        unsigned long inactive;
1309        unsigned long active;
1310        unsigned long gb;
1311
1312        inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1313        active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1314
1315        gb = (inactive + active) >> (30 - PAGE_SHIFT);
1316        if (gb)
1317                inactive_ratio = int_sqrt(10 * gb);
1318        else
1319                inactive_ratio = 1;
1320
1321        return inactive * inactive_ratio < active;
1322}
1323
1324bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1325{
1326        struct mem_cgroup_per_zone *mz;
1327        struct mem_cgroup *memcg;
1328
1329        if (mem_cgroup_disabled())
1330                return true;
1331
1332        mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1333        memcg = mz->memcg;
1334
1335        return !!(memcg->css.flags & CSS_ONLINE);
1336}
1337
1338#define mem_cgroup_from_counter(counter, member)        \
1339        container_of(counter, struct mem_cgroup, member)
1340
1341/**
1342 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1343 * @memcg: the memory cgroup
1344 *
1345 * Returns the maximum amount of memory @mem can be charged with, in
1346 * pages.
1347 */
1348static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1349{
1350        unsigned long margin = 0;
1351        unsigned long count;
1352        unsigned long limit;
1353
1354        count = page_counter_read(&memcg->memory);
1355        limit = ACCESS_ONCE(memcg->memory.limit);
1356        if (count < limit)
1357                margin = limit - count;
1358
1359        if (do_swap_account) {
1360                count = page_counter_read(&memcg->memsw);
1361                limit = ACCESS_ONCE(memcg->memsw.limit);
1362                if (count <= limit)
1363                        margin = min(margin, limit - count);
1364        }
1365
1366        return margin;
1367}
1368
1369int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1370{
1371        /* root ? */
1372        if (mem_cgroup_disabled() || !memcg->css.parent)
1373                return vm_swappiness;
1374
1375        return memcg->swappiness;
1376}
1377
1378/*
1379 * A routine for checking "mem" is under move_account() or not.
1380 *
1381 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1382 * moving cgroups. This is for waiting at high-memory pressure
1383 * caused by "move".
1384 */
1385static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1386{
1387        struct mem_cgroup *from;
1388        struct mem_cgroup *to;
1389        bool ret = false;
1390        /*
1391         * Unlike task_move routines, we access mc.to, mc.from not under
1392         * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1393         */
1394        spin_lock(&mc.lock);
1395        from = mc.from;
1396        to = mc.to;
1397        if (!from)
1398                goto unlock;
1399
1400        ret = mem_cgroup_is_descendant(from, memcg) ||
1401                mem_cgroup_is_descendant(to, memcg);
1402unlock:
1403        spin_unlock(&mc.lock);
1404        return ret;
1405}
1406
1407static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1408{
1409        if (mc.moving_task && current != mc.moving_task) {
1410                if (mem_cgroup_under_move(memcg)) {
1411                        DEFINE_WAIT(wait);
1412                        prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1413                        /* moving charge context might have finished. */
1414                        if (mc.moving_task)
1415                                schedule();
1416                        finish_wait(&mc.waitq, &wait);
1417                        return true;
1418                }
1419        }
1420        return false;
1421}
1422
1423#define K(x) ((x) << (PAGE_SHIFT-10))
1424/**
1425 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1426 * @memcg: The memory cgroup that went over limit
1427 * @p: Task that is going to be killed
1428 *
1429 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1430 * enabled
1431 */
1432void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1433{
1434        /* oom_info_lock ensures that parallel ooms do not interleave */
1435        static DEFINE_MUTEX(oom_info_lock);
1436        struct mem_cgroup *iter;
1437        unsigned int i;
1438
1439        if (!p)
1440                return;
1441
1442        mutex_lock(&oom_info_lock);
1443        rcu_read_lock();
1444
1445        pr_info("Task in ");
1446        pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1447        pr_cont(" killed as a result of limit of ");
1448        pr_cont_cgroup_path(memcg->css.cgroup);
1449        pr_cont("\n");
1450
1451        rcu_read_unlock();
1452
1453        pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1454                K((u64)page_counter_read(&memcg->memory)),
1455                K((u64)memcg->memory.limit), memcg->memory.failcnt);
1456        pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1457                K((u64)page_counter_read(&memcg->memsw)),
1458                K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1459        pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1460                K((u64)page_counter_read(&memcg->kmem)),
1461                K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1462
1463        for_each_mem_cgroup_tree(iter, memcg) {
1464                pr_info("Memory cgroup stats for ");
1465                pr_cont_cgroup_path(iter->css.cgroup);
1466                pr_cont(":");
1467
1468                for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1469                        if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1470                                continue;
1471                        pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1472                                K(mem_cgroup_read_stat(iter, i)));
1473                }
1474
1475                for (i = 0; i < NR_LRU_LISTS; i++)
1476                        pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1477                                K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1478
1479                pr_cont("\n");
1480        }
1481        mutex_unlock(&oom_info_lock);
1482}
1483
1484/*
1485 * This function returns the number of memcg under hierarchy tree. Returns
1486 * 1(self count) if no children.
1487 */
1488static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1489{
1490        int num = 0;
1491        struct mem_cgroup *iter;
1492
1493        for_each_mem_cgroup_tree(iter, memcg)
1494                num++;
1495        return num;
1496}
1497
1498/*
1499 * Return the memory (and swap, if configured) limit for a memcg.
1500 */
1501static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1502{
1503        unsigned long limit;
1504
1505        limit = memcg->memory.limit;
1506        if (mem_cgroup_swappiness(memcg)) {
1507                unsigned long memsw_limit;
1508
1509                memsw_limit = memcg->memsw.limit;
1510                limit = min(limit + total_swap_pages, memsw_limit);
1511        }
1512        return limit;
1513}
1514
1515static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1516                                     int order)
1517{
1518        struct mem_cgroup *iter;
1519        unsigned long chosen_points = 0;
1520        unsigned long totalpages;
1521        unsigned int points = 0;
1522        struct task_struct *chosen = NULL;
1523
1524        /*
1525         * If current has a pending SIGKILL or is exiting, then automatically
1526         * select it.  The goal is to allow it to allocate so that it may
1527         * quickly exit and free its memory.
1528         */
1529        if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1530                mark_tsk_oom_victim(current);
1531                return;
1532        }
1533
1534        check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1535        totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1536        for_each_mem_cgroup_tree(iter, memcg) {
1537                struct css_task_iter it;
1538                struct task_struct *task;
1539
1540                css_task_iter_start(&iter->css, &it);
1541                while ((task = css_task_iter_next(&it))) {
1542                        switch (oom_scan_process_thread(task, totalpages, NULL,
1543                                                        false)) {
1544                        case OOM_SCAN_SELECT:
1545                                if (chosen)
1546                                        put_task_struct(chosen);
1547                                chosen = task;
1548                                chosen_points = ULONG_MAX;
1549                                get_task_struct(chosen);
1550                                /* fall through */
1551                        case OOM_SCAN_CONTINUE:
1552                                continue;
1553                        case OOM_SCAN_ABORT:
1554                                css_task_iter_end(&it);
1555                                mem_cgroup_iter_break(memcg, iter);
1556                                if (chosen)
1557                                        put_task_struct(chosen);
1558                                return;
1559                        case OOM_SCAN_OK:
1560                                break;
1561                        };
1562                        points = oom_badness(task, memcg, NULL, totalpages);
1563                        if (!points || points < chosen_points)
1564                                continue;
1565                        /* Prefer thread group leaders for display purposes */
1566                        if (points == chosen_points &&
1567                            thread_group_leader(chosen))
1568                                continue;
1569
1570                        if (chosen)
1571                                put_task_struct(chosen);
1572                        chosen = task;
1573                        chosen_points = points;
1574                        get_task_struct(chosen);
1575                }
1576                css_task_iter_end(&it);
1577        }
1578
1579        if (!chosen)
1580                return;
1581        points = chosen_points * 1000 / totalpages;
1582        oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1583                         NULL, "Memory cgroup out of memory");
1584}
1585
1586#if MAX_NUMNODES > 1
1587
1588/**
1589 * test_mem_cgroup_node_reclaimable
1590 * @memcg: the target memcg
1591 * @nid: the node ID to be checked.
1592 * @noswap : specify true here if the user wants flle only information.
1593 *
1594 * This function returns whether the specified memcg contains any
1595 * reclaimable pages on a node. Returns true if there are any reclaimable
1596 * pages in the node.
1597 */
1598static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1599                int nid, bool noswap)
1600{
1601        if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1602                return true;
1603        if (noswap || !total_swap_pages)
1604                return false;
1605        if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1606                return true;
1607        return false;
1608
1609}
1610
1611/*
1612 * Always updating the nodemask is not very good - even if we have an empty
1613 * list or the wrong list here, we can start from some node and traverse all
1614 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1615 *
1616 */
1617static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1618{
1619        int nid;
1620        /*
1621         * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1622         * pagein/pageout changes since the last update.
1623         */
1624        if (!atomic_read(&memcg->numainfo_events))
1625                return;
1626        if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1627                return;
1628
1629        /* make a nodemask where this memcg uses memory from */
1630        memcg->scan_nodes = node_states[N_MEMORY];
1631
1632        for_each_node_mask(nid, node_states[N_MEMORY]) {
1633
1634                if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1635                        node_clear(nid, memcg->scan_nodes);
1636        }
1637
1638        atomic_set(&memcg->numainfo_events, 0);
1639        atomic_set(&memcg->numainfo_updating, 0);
1640}
1641
1642/*
1643 * Selecting a node where we start reclaim from. Because what we need is just
1644 * reducing usage counter, start from anywhere is O,K. Considering
1645 * memory reclaim from current node, there are pros. and cons.
1646 *
1647 * Freeing memory from current node means freeing memory from a node which
1648 * we'll use or we've used. So, it may make LRU bad. And if several threads
1649 * hit limits, it will see a contention on a node. But freeing from remote
1650 * node means more costs for memory reclaim because of memory latency.
1651 *
1652 * Now, we use round-robin. Better algorithm is welcomed.
1653 */
1654int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1655{
1656        int node;
1657
1658        mem_cgroup_may_update_nodemask(memcg);
1659        node = memcg->last_scanned_node;
1660
1661        node = next_node(node, memcg->scan_nodes);
1662        if (node == MAX_NUMNODES)
1663                node = first_node(memcg->scan_nodes);
1664        /*
1665         * We call this when we hit limit, not when pages are added to LRU.
1666         * No LRU may hold pages because all pages are UNEVICTABLE or
1667         * memcg is too small and all pages are not on LRU. In that case,
1668         * we use curret node.
1669         */
1670        if (unlikely(node == MAX_NUMNODES))
1671                node = numa_node_id();
1672
1673        memcg->last_scanned_node = node;
1674        return node;
1675}
1676#else
1677int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1678{
1679        return 0;
1680}
1681#endif
1682
1683static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1684                                   struct zone *zone,
1685                                   gfp_t gfp_mask,
1686                                   unsigned long *total_scanned)
1687{
1688        struct mem_cgroup *victim = NULL;
1689        int total = 0;
1690        int loop = 0;
1691        unsigned long excess;
1692        unsigned long nr_scanned;
1693        struct mem_cgroup_reclaim_cookie reclaim = {
1694                .zone = zone,
1695                .priority = 0,
1696        };
1697
1698        excess = soft_limit_excess(root_memcg);
1699
1700        while (1) {
1701                victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1702                if (!victim) {
1703                        loop++;
1704                        if (loop >= 2) {
1705                                /*
1706                                 * If we have not been able to reclaim
1707                                 * anything, it might because there are
1708                                 * no reclaimable pages under this hierarchy
1709                                 */
1710                                if (!total)
1711                                        break;
1712                                /*
1713                                 * We want to do more targeted reclaim.
1714                                 * excess >> 2 is not to excessive so as to
1715                                 * reclaim too much, nor too less that we keep
1716                                 * coming back to reclaim from this cgroup
1717                                 */
1718                                if (total >= (excess >> 2) ||
1719                                        (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1720                                        break;
1721                        }
1722                        continue;
1723                }
1724                total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1725                                                     zone, &nr_scanned);
1726                *total_scanned += nr_scanned;
1727                if (!soft_limit_excess(root_memcg))
1728                        break;
1729        }
1730        mem_cgroup_iter_break(root_memcg, victim);
1731        return total;
1732}
1733
1734#ifdef CONFIG_LOCKDEP
1735static struct lockdep_map memcg_oom_lock_dep_map = {
1736        .name = "memcg_oom_lock",
1737};
1738#endif
1739
1740static DEFINE_SPINLOCK(memcg_oom_lock);
1741
1742/*
1743 * Check OOM-Killer is already running under our hierarchy.
1744 * If someone is running, return false.
1745 */
1746static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1747{
1748        struct mem_cgroup *iter, *failed = NULL;
1749
1750        spin_lock(&memcg_oom_lock);
1751
1752        for_each_mem_cgroup_tree(iter, memcg) {
1753                if (iter->oom_lock) {
1754                        /*
1755                         * this subtree of our hierarchy is already locked
1756                         * so we cannot give a lock.
1757                         */
1758                        failed = iter;
1759                        mem_cgroup_iter_break(memcg, iter);
1760                        break;
1761                } else
1762                        iter->oom_lock = true;
1763        }
1764
1765        if (failed) {
1766                /*
1767                 * OK, we failed to lock the whole subtree so we have
1768                 * to clean up what we set up to the failing subtree
1769                 */
1770                for_each_mem_cgroup_tree(iter, memcg) {
1771                        if (iter == failed) {
1772                                mem_cgroup_iter_break(memcg, iter);
1773                                break;
1774                        }
1775                        iter->oom_lock = false;
1776                }
1777        } else
1778                mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1779
1780        spin_unlock(&memcg_oom_lock);
1781
1782        return !failed;
1783}
1784
1785static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1786{
1787        struct mem_cgroup *iter;
1788
1789        spin_lock(&memcg_oom_lock);
1790        mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1791        for_each_mem_cgroup_tree(iter, memcg)
1792                iter->oom_lock = false;
1793        spin_unlock(&memcg_oom_lock);
1794}
1795
1796static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1797{
1798        struct mem_cgroup *iter;
1799
1800        for_each_mem_cgroup_tree(iter, memcg)
1801                atomic_inc(&iter->under_oom);
1802}
1803
1804static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1805{
1806        struct mem_cgroup *iter;
1807
1808        /*
1809         * When a new child is created while the hierarchy is under oom,
1810         * mem_cgroup_oom_lock() may not be called. We have to use
1811         * atomic_add_unless() here.
1812         */
1813        for_each_mem_cgroup_tree(iter, memcg)
1814                atomic_add_unless(&iter->under_oom, -1, 0);
1815}
1816
1817static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1818
1819struct oom_wait_info {
1820        struct mem_cgroup *memcg;
1821        wait_queue_t    wait;
1822};
1823
1824static int memcg_oom_wake_function(wait_queue_t *wait,
1825        unsigned mode, int sync, void *arg)
1826{
1827        struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1828        struct mem_cgroup *oom_wait_memcg;
1829        struct oom_wait_info *oom_wait_info;
1830
1831        oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1832        oom_wait_memcg = oom_wait_info->memcg;
1833
1834        if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1835            !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1836                return 0;
1837        return autoremove_wake_function(wait, mode, sync, arg);
1838}
1839
1840static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1841{
1842        atomic_inc(&memcg->oom_wakeups);
1843        /* for filtering, pass "memcg" as argument. */
1844        __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1845}
1846
1847static void memcg_oom_recover(struct mem_cgroup *memcg)
1848{
1849        if (memcg && atomic_read(&memcg->under_oom))
1850                memcg_wakeup_oom(memcg);
1851}
1852
1853static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1854{
1855        if (!current->memcg_oom.may_oom)
1856                return;
1857        /*
1858         * We are in the middle of the charge context here, so we
1859         * don't want to block when potentially sitting on a callstack
1860         * that holds all kinds of filesystem and mm locks.
1861         *
1862         * Also, the caller may handle a failed allocation gracefully
1863         * (like optional page cache readahead) and so an OOM killer
1864         * invocation might not even be necessary.
1865         *
1866         * That's why we don't do anything here except remember the
1867         * OOM context and then deal with it at the end of the page
1868         * fault when the stack is unwound, the locks are released,
1869         * and when we know whether the fault was overall successful.
1870         */
1871        css_get(&memcg->css);
1872        current->memcg_oom.memcg = memcg;
1873        current->memcg_oom.gfp_mask = mask;
1874        current->memcg_oom.order = order;
1875}
1876
1877/**
1878 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1879 * @handle: actually kill/wait or just clean up the OOM state
1880 *
1881 * This has to be called at the end of a page fault if the memcg OOM
1882 * handler was enabled.
1883 *
1884 * Memcg supports userspace OOM handling where failed allocations must
1885 * sleep on a waitqueue until the userspace task resolves the
1886 * situation.  Sleeping directly in the charge context with all kinds
1887 * of locks held is not a good idea, instead we remember an OOM state
1888 * in the task and mem_cgroup_oom_synchronize() has to be called at
1889 * the end of the page fault to complete the OOM handling.
1890 *
1891 * Returns %true if an ongoing memcg OOM situation was detected and
1892 * completed, %false otherwise.
1893 */
1894bool mem_cgroup_oom_synchronize(bool handle)
1895{
1896        struct mem_cgroup *memcg = current->memcg_oom.memcg;
1897        struct oom_wait_info owait;
1898        bool locked;
1899
1900        /* OOM is global, do not handle */
1901        if (!memcg)
1902                return false;
1903
1904        if (!handle || oom_killer_disabled)
1905                goto cleanup;
1906
1907        owait.memcg = memcg;
1908        owait.wait.flags = 0;
1909        owait.wait.func = memcg_oom_wake_function;
1910        owait.wait.private = current;
1911        INIT_LIST_HEAD(&owait.wait.task_list);
1912
1913        prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1914        mem_cgroup_mark_under_oom(memcg);
1915
1916        locked = mem_cgroup_oom_trylock(memcg);
1917
1918        if (locked)
1919                mem_cgroup_oom_notify(memcg);
1920
1921        if (locked && !memcg->oom_kill_disable) {
1922                mem_cgroup_unmark_under_oom(memcg);
1923                finish_wait(&memcg_oom_waitq, &owait.wait);
1924                mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1925                                         current->memcg_oom.order);
1926        } else {
1927                schedule();
1928                mem_cgroup_unmark_under_oom(memcg);
1929                finish_wait(&memcg_oom_waitq, &owait.wait);
1930        }
1931
1932        if (locked) {
1933                mem_cgroup_oom_unlock(memcg);
1934                /*
1935                 * There is no guarantee that an OOM-lock contender
1936                 * sees the wakeups triggered by the OOM kill
1937                 * uncharges.  Wake any sleepers explicitely.
1938                 */
1939                memcg_oom_recover(memcg);
1940        }
1941cleanup:
1942        current->memcg_oom.memcg = NULL;
1943        css_put(&memcg->css);
1944        return true;
1945}
1946
1947/**
1948 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1949 * @page: page that is going to change accounted state
1950 *
1951 * This function must mark the beginning of an accounted page state
1952 * change to prevent double accounting when the page is concurrently
1953 * being moved to another memcg:
1954 *
1955 *   memcg = mem_cgroup_begin_page_stat(page);
1956 *   if (TestClearPageState(page))
1957 *     mem_cgroup_update_page_stat(memcg, state, -1);
1958 *   mem_cgroup_end_page_stat(memcg);
1959 */
1960struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1961{
1962        struct mem_cgroup *memcg;
1963        unsigned long flags;
1964
1965        /*
1966         * The RCU lock is held throughout the transaction.  The fast
1967         * path can get away without acquiring the memcg->move_lock
1968         * because page moving starts with an RCU grace period.
1969         *
1970         * The RCU lock also protects the memcg from being freed when
1971         * the page state that is going to change is the only thing
1972         * preventing the page from being uncharged.
1973         * E.g. end-writeback clearing PageWriteback(), which allows
1974         * migration to go ahead and uncharge the page before the
1975         * account transaction might be complete.
1976         */
1977        rcu_read_lock();
1978
1979        if (mem_cgroup_disabled())
1980                return NULL;
1981again:
1982        memcg = page->mem_cgroup;
1983        if (unlikely(!memcg))
1984                return NULL;
1985
1986        if (atomic_read(&memcg->moving_account) <= 0)
1987                return memcg;
1988
1989        spin_lock_irqsave(&memcg->move_lock, flags);
1990        if (memcg != page->mem_cgroup) {
1991                spin_unlock_irqrestore(&memcg->move_lock, flags);
1992                goto again;
1993        }
1994
1995        /*
1996         * When charge migration first begins, we can have locked and
1997         * unlocked page stat updates happening concurrently.  Track
1998         * the task who has the lock for mem_cgroup_end_page_stat().
1999         */
2000        memcg->move_lock_task = current;
2001        memcg->move_lock_flags = flags;
2002
2003        return memcg;
2004}
2005
2006/**
2007 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2008 * @memcg: the memcg that was accounted against
2009 */
2010void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2011{
2012        if (memcg && memcg->move_lock_task == current) {
2013                unsigned long flags = memcg->move_lock_flags;
2014
2015                memcg->move_lock_task = NULL;
2016                memcg->move_lock_flags = 0;
2017
2018                spin_unlock_irqrestore(&memcg->move_lock, flags);
2019        }
2020
2021        rcu_read_unlock();
2022}
2023
2024/**
2025 * mem_cgroup_update_page_stat - update page state statistics
2026 * @memcg: memcg to account against
2027 * @idx: page state item to account
2028 * @val: number of pages (positive or negative)
2029 *
2030 * See mem_cgroup_begin_page_stat() for locking requirements.
2031 */
2032void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2033                                 enum mem_cgroup_stat_index idx, int val)
2034{
2035        VM_BUG_ON(!rcu_read_lock_held());
2036
2037        if (memcg)
2038                this_cpu_add(memcg->stat->count[idx], val);
2039}
2040
2041/*
2042 * size of first charge trial. "32" comes from vmscan.c's magic value.
2043 * TODO: maybe necessary to use big numbers in big irons.
2044 */
2045#define CHARGE_BATCH    32U
2046struct memcg_stock_pcp {
2047        struct mem_cgroup *cached; /* this never be root cgroup */
2048        unsigned int nr_pages;
2049        struct work_struct work;
2050        unsigned long flags;
2051#define FLUSHING_CACHED_CHARGE  0
2052};
2053static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2054static DEFINE_MUTEX(percpu_charge_mutex);
2055
2056/**
2057 * consume_stock: Try to consume stocked charge on this cpu.
2058 * @memcg: memcg to consume from.
2059 * @nr_pages: how many pages to charge.
2060 *
2061 * The charges will only happen if @memcg matches the current cpu's memcg
2062 * stock, and at least @nr_pages are available in that stock.  Failure to
2063 * service an allocation will refill the stock.
2064 *
2065 * returns true if successful, false otherwise.
2066 */
2067static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2068{
2069        struct memcg_stock_pcp *stock;
2070        bool ret = false;
2071
2072        if (nr_pages > CHARGE_BATCH)
2073                return ret;
2074
2075        stock = &get_cpu_var(memcg_stock);
2076        if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2077                stock->nr_pages -= nr_pages;
2078                ret = true;
2079        }
2080        put_cpu_var(memcg_stock);
2081        return ret;
2082}
2083
2084/*
2085 * Returns stocks cached in percpu and reset cached information.
2086 */
2087static void drain_stock(struct memcg_stock_pcp *stock)
2088{
2089        struct mem_cgroup *old = stock->cached;
2090
2091        if (stock->nr_pages) {
2092                page_counter_uncharge(&old->memory, stock->nr_pages);
2093                if (do_swap_account)
2094                        page_counter_uncharge(&old->memsw, stock->nr_pages);
2095                css_put_many(&old->css, stock->nr_pages);
2096                stock->nr_pages = 0;
2097        }
2098        stock->cached = NULL;
2099}
2100
2101/*
2102 * This must be called under preempt disabled or must be called by
2103 * a thread which is pinned to local cpu.
2104 */
2105static void drain_local_stock(struct work_struct *dummy)
2106{
2107        struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2108        drain_stock(stock);
2109        clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2110}
2111
2112/*
2113 * Cache charges(val) to local per_cpu area.
2114 * This will be consumed by consume_stock() function, later.
2115 */
2116static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2117{
2118        struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2119
2120        if (stock->cached != memcg) { /* reset if necessary */
2121                drain_stock(stock);
2122                stock->cached = memcg;
2123        }
2124        stock->nr_pages += nr_pages;
2125        put_cpu_var(memcg_stock);
2126}
2127
2128/*
2129 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2130 * of the hierarchy under it.
2131 */
2132static void drain_all_stock(struct mem_cgroup *root_memcg)
2133{
2134        int cpu, curcpu;
2135
2136        /* If someone's already draining, avoid adding running more workers. */
2137        if (!mutex_trylock(&percpu_charge_mutex))
2138                return;
2139        /* Notify other cpus that system-wide "drain" is running */
2140        get_online_cpus();
2141        curcpu = get_cpu();
2142        for_each_online_cpu(cpu) {
2143                struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2144                struct mem_cgroup *memcg;
2145
2146                memcg = stock->cached;
2147                if (!memcg || !stock->nr_pages)
2148                        continue;
2149                if (!mem_cgroup_is_descendant(memcg, root_memcg))
2150                        continue;
2151                if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2152                        if (cpu == curcpu)
2153                                drain_local_stock(&stock->work);
2154                        else
2155                                schedule_work_on(cpu, &stock->work);
2156                }
2157        }
2158        put_cpu();
2159        put_online_cpus();
2160        mutex_unlock(&percpu_charge_mutex);
2161}
2162
2163/*
2164 * This function drains percpu counter value from DEAD cpu and
2165 * move it to local cpu. Note that this function can be preempted.
2166 */
2167static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2168{
2169        int i;
2170
2171        spin_lock(&memcg->pcp_counter_lock);
2172        for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2173                long x = per_cpu(memcg->stat->count[i], cpu);
2174
2175                per_cpu(memcg->stat->count[i], cpu) = 0;
2176                memcg->nocpu_base.count[i] += x;
2177        }
2178        for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2179                unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2180
2181                per_cpu(memcg->stat->events[i], cpu) = 0;
2182                memcg->nocpu_base.events[i] += x;
2183        }
2184        spin_unlock(&memcg->pcp_counter_lock);
2185}
2186
2187static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2188                                        unsigned long action,
2189                                        void *hcpu)
2190{
2191        int cpu = (unsigned long)hcpu;
2192        struct memcg_stock_pcp *stock;
2193        struct mem_cgroup *iter;
2194
2195        if (action == CPU_ONLINE)
2196                return NOTIFY_OK;
2197
2198        if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2199                return NOTIFY_OK;
2200
2201        for_each_mem_cgroup(iter)
2202                mem_cgroup_drain_pcp_counter(iter, cpu);
2203
2204        stock = &per_cpu(memcg_stock, cpu);
2205        drain_stock(stock);
2206        return NOTIFY_OK;
2207}
2208
2209static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2210                      unsigned int nr_pages)
2211{
2212        unsigned int batch = max(CHARGE_BATCH, nr_pages);
2213        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2214        struct mem_cgroup *mem_over_limit;
2215        struct page_counter *counter;
2216        unsigned long nr_reclaimed;
2217        bool may_swap = true;
2218        bool drained = false;
2219        int ret = 0;
2220
2221        if (mem_cgroup_is_root(memcg))
2222                goto done;
2223retry:
2224        if (consume_stock(memcg, nr_pages))
2225                goto done;
2226
2227        if (!do_swap_account ||
2228            !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2229                if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2230                        goto done_restock;
2231                if (do_swap_account)
2232                        page_counter_uncharge(&memcg->memsw, batch);
2233                mem_over_limit = mem_cgroup_from_counter(counter, memory);
2234        } else {
2235                mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2236                may_swap = false;
2237        }
2238
2239        if (batch > nr_pages) {
2240                batch = nr_pages;
2241                goto retry;
2242        }
2243
2244        /*
2245         * Unlike in global OOM situations, memcg is not in a physical
2246         * memory shortage.  Allow dying and OOM-killed tasks to
2247         * bypass the last charges so that they can exit quickly and
2248         * free their memory.
2249         */
2250        if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2251                     fatal_signal_pending(current) ||
2252                     current->flags & PF_EXITING))
2253                goto bypass;
2254
2255        if (unlikely(task_in_memcg_oom(current)))
2256                goto nomem;
2257
2258        if (!(gfp_mask & __GFP_WAIT))
2259                goto nomem;
2260
2261        mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2262
2263        nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2264                                                    gfp_mask, may_swap);
2265
2266        if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2267                goto retry;
2268
2269        if (!drained) {
2270                drain_all_stock(mem_over_limit);
2271                drained = true;
2272                goto retry;
2273        }
2274
2275        if (gfp_mask & __GFP_NORETRY)
2276                goto nomem;
2277        /*
2278         * Even though the limit is exceeded at this point, reclaim
2279         * may have been able to free some pages.  Retry the charge
2280         * before killing the task.
2281         *
2282         * Only for regular pages, though: huge pages are rather
2283         * unlikely to succeed so close to the limit, and we fall back
2284         * to regular pages anyway in case of failure.
2285         */
2286        if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2287                goto retry;
2288        /*
2289         * At task move, charge accounts can be doubly counted. So, it's
2290         * better to wait until the end of task_move if something is going on.
2291         */
2292        if (mem_cgroup_wait_acct_move(mem_over_limit))
2293                goto retry;
2294
2295        if (nr_retries--)
2296                goto retry;
2297
2298        if (gfp_mask & __GFP_NOFAIL)
2299                goto bypass;
2300
2301        if (fatal_signal_pending(current))
2302                goto bypass;
2303
2304        mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2305
2306        mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2307nomem:
2308        if (!(gfp_mask & __GFP_NOFAIL))
2309                return -ENOMEM;
2310bypass:
2311        return -EINTR;
2312
2313done_restock:
2314        css_get_many(&memcg->css, batch);
2315        if (batch > nr_pages)
2316                refill_stock(memcg, batch - nr_pages);
2317        /*
2318         * If the hierarchy is above the normal consumption range,
2319         * make the charging task trim their excess contribution.
2320         */
2321        do {
2322                if (page_counter_read(&memcg->memory) <= memcg->high)
2323                        continue;
2324                mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2325                try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2326        } while ((memcg = parent_mem_cgroup(memcg)));
2327done:
2328        return ret;
2329}
2330
2331static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2332{
2333        if (mem_cgroup_is_root(memcg))
2334                return;
2335
2336        page_counter_uncharge(&memcg->memory, nr_pages);
2337        if (do_swap_account)
2338                page_counter_uncharge(&memcg->memsw, nr_pages);
2339
2340        css_put_many(&memcg->css, nr_pages);
2341}
2342
2343/*
2344 * A helper function to get mem_cgroup from ID. must be called under
2345 * rcu_read_lock().  The caller is responsible for calling
2346 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2347 * refcnt from swap can be called against removed memcg.)
2348 */
2349static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2350{
2351        /* ID 0 is unused ID */
2352        if (!id)
2353                return NULL;
2354        return mem_cgroup_from_id(id);
2355}
2356
2357/*
2358 * try_get_mem_cgroup_from_page - look up page's memcg association
2359 * @page: the page
2360 *
2361 * Look up, get a css reference, and return the memcg that owns @page.
2362 *
2363 * The page must be locked to prevent racing with swap-in and page
2364 * cache charges.  If coming from an unlocked page table, the caller
2365 * must ensure the page is on the LRU or this can race with charging.
2366 */
2367struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2368{
2369        struct mem_cgroup *memcg;
2370        unsigned short id;
2371        swp_entry_t ent;
2372
2373        VM_BUG_ON_PAGE(!PageLocked(page), page);
2374
2375        memcg = page->mem_cgroup;
2376        if (memcg) {
2377                if (!css_tryget_online(&memcg->css))
2378                        memcg = NULL;
2379        } else if (PageSwapCache(page)) {
2380                ent.val = page_private(page);
2381                id = lookup_swap_cgroup_id(ent);
2382                rcu_read_lock();
2383                memcg = mem_cgroup_lookup(id);
2384                if (memcg && !css_tryget_online(&memcg->css))
2385                        memcg = NULL;
2386                rcu_read_unlock();
2387        }
2388        return memcg;
2389}
2390
2391static void lock_page_lru(struct page *page, int *isolated)
2392{
2393        struct zone *zone = page_zone(page);
2394
2395        spin_lock_irq(&zone->lru_lock);
2396        if (PageLRU(page)) {
2397                struct lruvec *lruvec;
2398
2399                lruvec = mem_cgroup_page_lruvec(page, zone);
2400                ClearPageLRU(page);
2401                del_page_from_lru_list(page, lruvec, page_lru(page));
2402                *isolated = 1;
2403        } else
2404                *isolated = 0;
2405}
2406
2407static void unlock_page_lru(struct page *page, int isolated)
2408{
2409        struct zone *zone = page_zone(page);
2410
2411        if (isolated) {
2412                struct lruvec *lruvec;
2413
2414                lruvec = mem_cgroup_page_lruvec(page, zone);
2415                VM_BUG_ON_PAGE(PageLRU(page), page);
2416                SetPageLRU(page);
2417                add_page_to_lru_list(page, lruvec, page_lru(page));
2418        }
2419        spin_unlock_irq(&zone->lru_lock);
2420}
2421
2422static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2423                          bool lrucare)
2424{
2425        int isolated;
2426
2427        VM_BUG_ON_PAGE(page->mem_cgroup, page);
2428
2429        /*
2430         * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2431         * may already be on some other mem_cgroup's LRU.  Take care of it.
2432         */
2433        if (lrucare)
2434                lock_page_lru(page, &isolated);
2435
2436        /*
2437         * Nobody should be changing or seriously looking at
2438         * page->mem_cgroup at this point:
2439         *
2440         * - the page is uncharged
2441         *
2442         * - the page is off-LRU
2443         *
2444         * - an anonymous fault has exclusive page access, except for
2445         *   a locked page table
2446         *
2447         * - a page cache insertion, a swapin fault, or a migration
2448         *   have the page locked
2449         */
2450        page->mem_cgroup = memcg;
2451
2452        if (lrucare)
2453                unlock_page_lru(page, isolated);
2454}
2455
2456#ifdef CONFIG_MEMCG_KMEM
2457int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2458                      unsigned long nr_pages)
2459{
2460        struct page_counter *counter;
2461        int ret = 0;
2462
2463        ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2464        if (ret < 0)
2465                return ret;
2466
2467        ret = try_charge(memcg, gfp, nr_pages);
2468        if (ret == -EINTR)  {
2469                /*
2470                 * try_charge() chose to bypass to root due to OOM kill or
2471                 * fatal signal.  Since our only options are to either fail
2472                 * the allocation or charge it to this cgroup, do it as a
2473                 * temporary condition. But we can't fail. From a kmem/slab
2474                 * perspective, the cache has already been selected, by
2475                 * mem_cgroup_kmem_get_cache(), so it is too late to change
2476                 * our minds.
2477                 *
2478                 * This condition will only trigger if the task entered
2479                 * memcg_charge_kmem in a sane state, but was OOM-killed
2480                 * during try_charge() above. Tasks that were already dying
2481                 * when the allocation triggers should have been already
2482                 * directed to the root cgroup in memcontrol.h
2483                 */
2484                page_counter_charge(&memcg->memory, nr_pages);
2485                if (do_swap_account)
2486                        page_counter_charge(&memcg->memsw, nr_pages);
2487                css_get_many(&memcg->css, nr_pages);
2488                ret = 0;
2489        } else if (ret)
2490                page_counter_uncharge(&memcg->kmem, nr_pages);
2491
2492        return ret;
2493}
2494
2495void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2496{
2497        page_counter_uncharge(&memcg->memory, nr_pages);
2498        if (do_swap_account)
2499                page_counter_uncharge(&memcg->memsw, nr_pages);
2500
2501        page_counter_uncharge(&memcg->kmem, nr_pages);
2502
2503        css_put_many(&memcg->css, nr_pages);
2504}
2505
2506/*
2507 * helper for acessing a memcg's index. It will be used as an index in the
2508 * child cache array in kmem_cache, and also to derive its name. This function
2509 * will return -1 when this is not a kmem-limited memcg.
2510 */
2511int memcg_cache_id(struct mem_cgroup *memcg)
2512{
2513        return memcg ? memcg->kmemcg_id : -1;
2514}
2515
2516static int memcg_alloc_cache_id(void)
2517{
2518        int id, size;
2519        int err;
2520
2521        id = ida_simple_get(&memcg_cache_ida,
2522                            0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2523        if (id < 0)
2524                return id;
2525
2526        if (id < memcg_nr_cache_ids)
2527                return id;
2528
2529        /*
2530         * There's no space for the new id in memcg_caches arrays,
2531         * so we have to grow them.
2532         */
2533        down_write(&memcg_cache_ids_sem);
2534
2535        size = 2 * (id + 1);
2536        if (size < MEMCG_CACHES_MIN_SIZE)
2537                size = MEMCG_CACHES_MIN_SIZE;
2538        else if (size > MEMCG_CACHES_MAX_SIZE)
2539                size = MEMCG_CACHES_MAX_SIZE;
2540
2541        err = memcg_update_all_caches(size);
2542        if (!err)
2543                err = memcg_update_all_list_lrus(size);
2544        if (!err)
2545                memcg_nr_cache_ids = size;
2546
2547        up_write(&memcg_cache_ids_sem);
2548
2549        if (err) {
2550                ida_simple_remove(&memcg_cache_ida, id);
2551                return err;
2552        }
2553        return id;
2554}
2555
2556static void memcg_free_cache_id(int id)
2557{
2558        ida_simple_remove(&memcg_cache_ida, id);
2559}
2560
2561struct memcg_kmem_cache_create_work {
2562        struct mem_cgroup *memcg;
2563        struct kmem_cache *cachep;
2564        struct work_struct work;
2565};
2566
2567static void memcg_kmem_cache_create_func(struct work_struct *w)
2568{
2569        struct memcg_kmem_cache_create_work *cw =
2570                container_of(w, struct memcg_kmem_cache_create_work, work);
2571        struct mem_cgroup *memcg = cw->memcg;
2572        struct kmem_cache *cachep = cw->cachep;
2573
2574        memcg_create_kmem_cache(memcg, cachep);
2575
2576        css_put(&memcg->css);
2577        kfree(cw);
2578}
2579
2580/*
2581 * Enqueue the creation of a per-memcg kmem_cache.
2582 */
2583static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2584                                               struct kmem_cache *cachep)
2585{
2586        struct memcg_kmem_cache_create_work *cw;
2587
2588        cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2589        if (!cw)
2590                return;
2591
2592        css_get(&memcg->css);
2593
2594        cw->memcg = memcg;
2595        cw->cachep = cachep;
2596        INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2597
2598        schedule_work(&cw->work);
2599}
2600
2601static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2602                                             struct kmem_cache *cachep)
2603{
2604        /*
2605         * We need to stop accounting when we kmalloc, because if the
2606         * corresponding kmalloc cache is not yet created, the first allocation
2607         * in __memcg_schedule_kmem_cache_create will recurse.
2608         *
2609         * However, it is better to enclose the whole function. Depending on
2610         * the debugging options enabled, INIT_WORK(), for instance, can
2611         * trigger an allocation. This too, will make us recurse. Because at
2612         * this point we can't allow ourselves back into memcg_kmem_get_cache,
2613         * the safest choice is to do it like this, wrapping the whole function.
2614         */
2615        current->memcg_kmem_skip_account = 1;
2616        __memcg_schedule_kmem_cache_create(memcg, cachep);
2617        current->memcg_kmem_skip_account = 0;
2618}
2619
2620/*
2621 * Return the kmem_cache we're supposed to use for a slab allocation.
2622 * We try to use the current memcg's version of the cache.
2623 *
2624 * If the cache does not exist yet, if we are the first user of it,
2625 * we either create it immediately, if possible, or create it asynchronously
2626 * in a workqueue.
2627 * In the latter case, we will let the current allocation go through with
2628 * the original cache.
2629 *
2630 * Can't be called in interrupt context or from kernel threads.
2631 * This function needs to be called with rcu_read_lock() held.
2632 */
2633struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2634{
2635        struct mem_cgroup *memcg;
2636        struct kmem_cache *memcg_cachep;
2637        int kmemcg_id;
2638
2639        VM_BUG_ON(!is_root_cache(cachep));
2640
2641        if (current->memcg_kmem_skip_account)
2642                return cachep;
2643
2644        memcg = get_mem_cgroup_from_mm(current->mm);
2645        kmemcg_id = ACCESS_ONCE(memcg->kmemcg_id);
2646        if (kmemcg_id < 0)
2647                goto out;
2648
2649        memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2650        if (likely(memcg_cachep))
2651                return memcg_cachep;
2652
2653        /*
2654         * If we are in a safe context (can wait, and not in interrupt
2655         * context), we could be be predictable and return right away.
2656         * This would guarantee that the allocation being performed
2657         * already belongs in the new cache.
2658         *
2659         * However, there are some clashes that can arrive from locking.
2660         * For instance, because we acquire the slab_mutex while doing
2661         * memcg_create_kmem_cache, this means no further allocation
2662         * could happen with the slab_mutex held. So it's better to
2663         * defer everything.
2664         */
2665        memcg_schedule_kmem_cache_create(memcg, cachep);
2666out:
2667        css_put(&memcg->css);
2668        return cachep;
2669}
2670
2671void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2672{
2673        if (!is_root_cache(cachep))
2674                css_put(&cachep->memcg_params.memcg->css);
2675}
2676
2677/*
2678 * We need to verify if the allocation against current->mm->owner's memcg is
2679 * possible for the given order. But the page is not allocated yet, so we'll
2680 * need a further commit step to do the final arrangements.
2681 *
2682 * It is possible for the task to switch cgroups in this mean time, so at
2683 * commit time, we can't rely on task conversion any longer.  We'll then use
2684 * the handle argument to return to the caller which cgroup we should commit
2685 * against. We could also return the memcg directly and avoid the pointer
2686 * passing, but a boolean return value gives better semantics considering
2687 * the compiled-out case as well.
2688 *
2689 * Returning true means the allocation is possible.
2690 */
2691bool
2692__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2693{
2694        struct mem_cgroup *memcg;
2695        int ret;
2696
2697        *_memcg = NULL;
2698
2699        memcg = get_mem_cgroup_from_mm(current->mm);
2700
2701        if (!memcg_kmem_is_active(memcg)) {
2702                css_put(&memcg->css);
2703                return true;
2704        }
2705
2706        ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2707        if (!ret)
2708                *_memcg = memcg;
2709
2710        css_put(&memcg->css);
2711        return (ret == 0);
2712}
2713
2714void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2715                              int order)
2716{
2717        VM_BUG_ON(mem_cgroup_is_root(memcg));
2718
2719        /* The page allocation failed. Revert */
2720        if (!page) {
2721                memcg_uncharge_kmem(memcg, 1 << order);
2722                return;
2723        }
2724        page->mem_cgroup = memcg;
2725}
2726
2727void __memcg_kmem_uncharge_pages(struct page *page, int order)
2728{
2729        struct mem_cgroup *memcg = page->mem_cgroup;
2730
2731        if (!memcg)
2732                return;
2733
2734        VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2735
2736        memcg_uncharge_kmem(memcg, 1 << order);
2737        page->mem_cgroup = NULL;
2738}
2739
2740struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2741{
2742        struct mem_cgroup *memcg = NULL;
2743        struct kmem_cache *cachep;
2744        struct page *page;
2745
2746        page = virt_to_head_page(ptr);
2747        if (PageSlab(page)) {
2748                cachep = page->slab_cache;
2749                if (!is_root_cache(cachep))
2750                        memcg = cachep->memcg_params.memcg;
2751        } else
2752                /* page allocated by alloc_kmem_pages */
2753                memcg = page->mem_cgroup;
2754
2755        return memcg;
2756}
2757#endif /* CONFIG_MEMCG_KMEM */
2758
2759#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2760
2761/*
2762 * Because tail pages are not marked as "used", set it. We're under
2763 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2764 * charge/uncharge will be never happen and move_account() is done under
2765 * compound_lock(), so we don't have to take care of races.
2766 */
2767void mem_cgroup_split_huge_fixup(struct page *head)
2768{
2769        int i;
2770
2771        if (mem_cgroup_disabled())
2772                return;
2773
2774        for (i = 1; i < HPAGE_PMD_NR; i++)
2775                head[i].mem_cgroup = head->mem_cgroup;
2776
2777        __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2778                       HPAGE_PMD_NR);
2779}
2780#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2781
2782/**
2783 * mem_cgroup_move_account - move account of the page
2784 * @page: the page
2785 * @nr_pages: number of regular pages (>1 for huge pages)
2786 * @from: mem_cgroup which the page is moved from.
2787 * @to: mem_cgroup which the page is moved to. @from != @to.
2788 *
2789 * The caller must confirm following.
2790 * - page is not on LRU (isolate_page() is useful.)
2791 * - compound_lock is held when nr_pages > 1
2792 *
2793 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2794 * from old cgroup.
2795 */
2796static int mem_cgroup_move_account(struct page *page,
2797                                   unsigned int nr_pages,
2798                                   struct mem_cgroup *from,
2799                                   struct mem_cgroup *to)
2800{
2801        unsigned long flags;
2802        int ret;
2803
2804        VM_BUG_ON(from == to);
2805        VM_BUG_ON_PAGE(PageLRU(page), page);
2806        /*
2807         * The page is isolated from LRU. So, collapse function
2808         * will not handle this page. But page splitting can happen.
2809         * Do this check under compound_page_lock(). The caller should
2810         * hold it.
2811         */
2812        ret = -EBUSY;
2813        if (nr_pages > 1 && !PageTransHuge(page))
2814                goto out;
2815
2816        /*
2817         * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2818         * of its source page while we change it: page migration takes
2819         * both pages off the LRU, but page cache replacement doesn't.
2820         */
2821        if (!trylock_page(page))
2822                goto out;
2823
2824        ret = -EINVAL;
2825        if (page->mem_cgroup != from)
2826                goto out_unlock;
2827
2828        spin_lock_irqsave(&from->move_lock, flags);
2829
2830        if (!PageAnon(page) && page_mapped(page)) {
2831                __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2832                               nr_pages);
2833                __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2834                               nr_pages);
2835        }
2836
2837        if (PageWriteback(page)) {
2838                __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2839                               nr_pages);
2840                __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2841                               nr_pages);
2842        }
2843
2844        /*
2845         * It is safe to change page->mem_cgroup here because the page
2846         * is referenced, charged, and isolated - we can't race with
2847         * uncharging, charging, migration, or LRU putback.
2848         */
2849
2850        /* caller should have done css_get */
2851        page->mem_cgroup = to;
2852        spin_unlock_irqrestore(&from->move_lock, flags);
2853
2854        ret = 0;
2855
2856        local_irq_disable();
2857        mem_cgroup_charge_statistics(to, page, nr_pages);
2858        memcg_check_events(to, page);
2859        mem_cgroup_charge_statistics(from, page, -nr_pages);
2860        memcg_check_events(from, page);
2861        local_irq_enable();
2862out_unlock:
2863        unlock_page(page);
2864out:
2865        return ret;
2866}
2867
2868#ifdef CONFIG_MEMCG_SWAP
2869static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2870                                         bool charge)
2871{
2872        int val = (charge) ? 1 : -1;
2873        this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2874}
2875
2876/**
2877 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2878 * @entry: swap entry to be moved
2879 * @from:  mem_cgroup which the entry is moved from
2880 * @to:  mem_cgroup which the entry is moved to
2881 *
2882 * It succeeds only when the swap_cgroup's record for this entry is the same
2883 * as the mem_cgroup's id of @from.
2884 *
2885 * Returns 0 on success, -EINVAL on failure.
2886 *
2887 * The caller must have charged to @to, IOW, called page_counter_charge() about
2888 * both res and memsw, and called css_get().
2889 */
2890static int mem_cgroup_move_swap_account(swp_entry_t entry,
2891                                struct mem_cgroup *from, struct mem_cgroup *to)
2892{
2893        unsigned short old_id, new_id;
2894
2895        old_id = mem_cgroup_id(from);
2896        new_id = mem_cgroup_id(to);
2897
2898        if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2899                mem_cgroup_swap_statistics(from, false);
2900                mem_cgroup_swap_statistics(to, true);
2901                return 0;
2902        }
2903        return -EINVAL;
2904}
2905#else
2906static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2907                                struct mem_cgroup *from, struct mem_cgroup *to)
2908{
2909        return -EINVAL;
2910}
2911#endif
2912
2913static DEFINE_MUTEX(memcg_limit_mutex);
2914
2915static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2916                                   unsigned long limit)
2917{
2918        unsigned long curusage;
2919        unsigned long oldusage;
2920        bool enlarge = false;
2921        int retry_count;
2922        int ret;
2923
2924        /*
2925         * For keeping hierarchical_reclaim simple, how long we should retry
2926         * is depends on callers. We set our retry-count to be function
2927         * of # of children which we should visit in this loop.
2928         */
2929        retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2930                      mem_cgroup_count_children(memcg);
2931
2932        oldusage = page_counter_read(&memcg->memory);
2933
2934        do {
2935                if (signal_pending(current)) {
2936                        ret = -EINTR;
2937                        break;
2938                }
2939
2940                mutex_lock(&memcg_limit_mutex);
2941                if (limit > memcg->memsw.limit) {
2942                        mutex_unlock(&memcg_limit_mutex);
2943                        ret = -EINVAL;
2944                        break;
2945                }
2946                if (limit > memcg->memory.limit)
2947                        enlarge = true;
2948                ret = page_counter_limit(&memcg->memory, limit);
2949                mutex_unlock(&memcg_limit_mutex);
2950
2951                if (!ret)
2952                        break;
2953
2954                try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2955
2956                curusage = page_counter_read(&memcg->memory);
2957                /* Usage is reduced ? */
2958                if (curusage >= oldusage)
2959                        retry_count--;
2960                else
2961                        oldusage = curusage;
2962        } while (retry_count);
2963
2964        if (!ret && enlarge)
2965                memcg_oom_recover(memcg);
2966
2967        return ret;
2968}
2969
2970static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2971                                         unsigned long limit)
2972{
2973        unsigned long curusage;
2974        unsigned long oldusage;
2975        bool enlarge = false;
2976        int retry_count;
2977        int ret;
2978
2979        /* see mem_cgroup_resize_res_limit */
2980        retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2981                      mem_cgroup_count_children(memcg);
2982
2983        oldusage = page_counter_read(&memcg->memsw);
2984
2985        do {
2986                if (signal_pending(current)) {
2987                        ret = -EINTR;
2988                        break;
2989                }
2990
2991                mutex_lock(&memcg_limit_mutex);
2992                if (limit < memcg->memory.limit) {
2993                        mutex_unlock(&memcg_limit_mutex);
2994                        ret = -EINVAL;
2995                        break;
2996                }
2997                if (limit > memcg->memsw.limit)
2998                        enlarge = true;
2999                ret = page_counter_limit(&memcg->memsw, limit);
3000                mutex_unlock(&memcg_limit_mutex);
3001
3002                if (!ret)
3003                        break;
3004
3005                try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3006
3007                curusage = page_counter_read(&memcg->memsw);
3008                /* Usage is reduced ? */
3009                if (curusage >= oldusage)
3010                        retry_count--;
3011                else
3012                        oldusage = curusage;
3013        } while (retry_count);
3014
3015        if (!ret && enlarge)
3016                memcg_oom_recover(memcg);
3017
3018        return ret;
3019}
3020
3021unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3022                                            gfp_t gfp_mask,
3023                                            unsigned long *total_scanned)
3024{
3025        unsigned long nr_reclaimed = 0;
3026        struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3027        unsigned long reclaimed;
3028        int loop = 0;
3029        struct mem_cgroup_tree_per_zone *mctz;
3030        unsigned long excess;
3031        unsigned long nr_scanned;
3032
3033        if (order > 0)
3034                return 0;
3035
3036        mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3037        /*
3038         * This loop can run a while, specially if mem_cgroup's continuously
3039         * keep exceeding their soft limit and putting the system under
3040         * pressure
3041         */
3042        do {
3043                if (next_mz)
3044                        mz = next_mz;
3045                else
3046                        mz = mem_cgroup_largest_soft_limit_node(mctz);
3047                if (!mz)
3048                        break;
3049
3050                nr_scanned = 0;
3051                reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3052                                                    gfp_mask, &nr_scanned);
3053                nr_reclaimed += reclaimed;
3054                *total_scanned += nr_scanned;
3055                spin_lock_irq(&mctz->lock);
3056                __mem_cgroup_remove_exceeded(mz, mctz);
3057
3058                /*
3059                 * If we failed to reclaim anything from this memory cgroup
3060                 * it is time to move on to the next cgroup
3061                 */
3062                next_mz = NULL;
3063                if (!reclaimed)
3064                        next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3065
3066                excess = soft_limit_excess(mz->memcg);
3067                /*
3068                 * One school of thought says that we should not add
3069                 * back the node to the tree if reclaim returns 0.
3070                 * But our reclaim could return 0, simply because due
3071                 * to priority we are exposing a smaller subset of
3072                 * memory to reclaim from. Consider this as a longer
3073                 * term TODO.
3074                 */
3075                /* If excess == 0, no tree ops */
3076                __mem_cgroup_insert_exceeded(mz, mctz, excess);
3077                spin_unlock_irq(&mctz->lock);
3078                css_put(&mz->memcg->css);
3079                loop++;
3080                /*
3081                 * Could not reclaim anything and there are no more
3082                 * mem cgroups to try or we seem to be looping without
3083                 * reclaiming anything.
3084                 */
3085                if (!nr_reclaimed &&
3086                        (next_mz == NULL ||
3087                        loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3088                        break;
3089        } while (!nr_reclaimed);
3090        if (next_mz)
3091                css_put(&next_mz->memcg->css);
3092        return nr_reclaimed;
3093}
3094
3095/*
3096 * Test whether @memcg has children, dead or alive.  Note that this
3097 * function doesn't care whether @memcg has use_hierarchy enabled and
3098 * returns %true if there are child csses according to the cgroup
3099 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3100 */
3101static inline bool memcg_has_children(struct mem_cgroup *memcg)
3102{
3103        bool ret;
3104
3105        /*
3106         * The lock does not prevent addition or deletion of children, but
3107         * it prevents a new child from being initialized based on this
3108         * parent in css_online(), so it's enough to decide whether
3109         * hierarchically inherited attributes can still be changed or not.
3110         */
3111        lockdep_assert_held(&memcg_create_mutex);
3112
3113        rcu_read_lock();
3114        ret = css_next_child(NULL, &memcg->css);
3115        rcu_read_unlock();
3116        return ret;
3117}
3118
3119/*
3120 * Reclaims as many pages from the given memcg as possible and moves
3121 * the rest to the parent.
3122 *
3123 * Caller is responsible for holding css reference for memcg.
3124 */
3125static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3126{
3127        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3128
3129        /* we call try-to-free pages for make this cgroup empty */
3130        lru_add_drain_all();
3131        /* try to free all pages in this cgroup */
3132        while (nr_retries && page_counter_read(&memcg->memory)) {
3133                int progress;
3134
3135                if (signal_pending(current))
3136                        return -EINTR;
3137
3138                progress = try_to_free_mem_cgroup_pages(memcg, 1,
3139                                                        GFP_KERNEL, true);
3140                if (!progress) {
3141                        nr_retries--;
3142                        /* maybe some writeback is necessary */
3143                        congestion_wait(BLK_RW_ASYNC, HZ/10);
3144                }
3145
3146        }
3147
3148        return 0;
3149}
3150
3151static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3152                                            char *buf, size_t nbytes,
3153                                            loff_t off)
3154{
3155        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3156
3157        if (mem_cgroup_is_root(memcg))
3158                return -EINVAL;
3159        return mem_cgroup_force_empty(memcg) ?: nbytes;
3160}
3161
3162static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3163                                     struct cftype *cft)
3164{
3165        return mem_cgroup_from_css(css)->use_hierarchy;
3166}
3167
3168static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3169                                      struct cftype *cft, u64 val)
3170{
3171        int retval = 0;
3172        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3173        struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3174
3175        mutex_lock(&memcg_create_mutex);
3176
3177        if (memcg->use_hierarchy == val)
3178                goto out;
3179
3180        /*
3181         * If parent's use_hierarchy is set, we can't make any modifications
3182         * in the child subtrees. If it is unset, then the change can
3183         * occur, provided the current cgroup has no children.
3184         *
3185         * For the root cgroup, parent_mem is NULL, we allow value to be
3186         * set if there are no children.
3187         */
3188        if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3189                                (val == 1 || val == 0)) {
3190                if (!memcg_has_children(memcg))
3191                        memcg->use_hierarchy = val;
3192                else
3193                        retval = -EBUSY;
3194        } else
3195                retval = -EINVAL;
3196
3197out:
3198        mutex_unlock(&memcg_create_mutex);
3199
3200        return retval;
3201}
3202
3203static unsigned long tree_stat(struct mem_cgroup *memcg,
3204                               enum mem_cgroup_stat_index idx)
3205{
3206        struct mem_cgroup *iter;
3207        long val = 0;
3208
3209        /* Per-cpu values can be negative, use a signed accumulator */
3210        for_each_mem_cgroup_tree(iter, memcg)
3211                val += mem_cgroup_read_stat(iter, idx);
3212
3213        if (val < 0) /* race ? */
3214                val = 0;
3215        return val;
3216}
3217
3218static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3219{
3220        u64 val;
3221
3222        if (mem_cgroup_is_root(memcg)) {
3223                val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3224                val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3225                if (swap)
3226                        val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3227        } else {
3228                if (!swap)
3229                        val = page_counter_read(&memcg->memory);
3230                else
3231                        val = page_counter_read(&memcg->memsw);
3232        }
3233        return val << PAGE_SHIFT;
3234}
3235
3236enum {
3237        RES_USAGE,
3238        RES_LIMIT,
3239        RES_MAX_USAGE,
3240        RES_FAILCNT,
3241        RES_SOFT_LIMIT,
3242};
3243
3244static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3245                               struct cftype *cft)
3246{
3247        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3248        struct page_counter *counter;
3249
3250        switch (MEMFILE_TYPE(cft->private)) {
3251        case _MEM:
3252                counter = &memcg->memory;
3253                break;
3254        case _MEMSWAP:
3255                counter = &memcg->memsw;
3256                break;
3257        case _KMEM:
3258                counter = &memcg->kmem;
3259                break;
3260        default:
3261                BUG();
3262        }
3263
3264        switch (MEMFILE_ATTR(cft->private)) {
3265        case RES_USAGE:
3266                if (counter == &memcg->memory)
3267                        return mem_cgroup_usage(memcg, false);
3268                if (counter == &memcg->memsw)
3269                        return mem_cgroup_usage(memcg, true);
3270                return (u64)page_counter_read(counter) * PAGE_SIZE;
3271        case RES_LIMIT:
3272                return (u64)counter->limit * PAGE_SIZE;
3273        case RES_MAX_USAGE:
3274                return (u64)counter->watermark * PAGE_SIZE;
3275        case RES_FAILCNT:
3276                return counter->failcnt;
3277        case RES_SOFT_LIMIT:
3278                return (u64)memcg->soft_limit * PAGE_SIZE;
3279        default:
3280                BUG();
3281        }
3282}
3283
3284#ifdef CONFIG_MEMCG_KMEM
3285static int memcg_activate_kmem(struct mem_cgroup *memcg,
3286                               unsigned long nr_pages)
3287{
3288        int err = 0;
3289        int memcg_id;
3290
3291        BUG_ON(memcg->kmemcg_id >= 0);
3292        BUG_ON(memcg->kmem_acct_activated);
3293        BUG_ON(memcg->kmem_acct_active);
3294
3295        /*
3296         * For simplicity, we won't allow this to be disabled.  It also can't
3297         * be changed if the cgroup has children already, or if tasks had
3298         * already joined.
3299         *
3300         * If tasks join before we set the limit, a person looking at
3301         * kmem.usage_in_bytes will have no way to determine when it took
3302         * place, which makes the value quite meaningless.
3303         *
3304         * After it first became limited, changes in the value of the limit are
3305         * of course permitted.
3306         */
3307        mutex_lock(&memcg_create_mutex);
3308        if (cgroup_has_tasks(memcg->css.cgroup) ||
3309            (memcg->use_hierarchy && memcg_has_children(memcg)))
3310                err = -EBUSY;
3311        mutex_unlock(&memcg_create_mutex);
3312        if (err)
3313                goto out;
3314
3315        memcg_id = memcg_alloc_cache_id();
3316        if (memcg_id < 0) {
3317                err = memcg_id;
3318                goto out;
3319        }
3320
3321        /*
3322         * We couldn't have accounted to this cgroup, because it hasn't got
3323         * activated yet, so this should succeed.
3324         */
3325        err = page_counter_limit(&memcg->kmem, nr_pages);
3326        VM_BUG_ON(err);
3327
3328        static_key_slow_inc(&memcg_kmem_enabled_key);
3329        /*
3330         * A memory cgroup is considered kmem-active as soon as it gets
3331         * kmemcg_id. Setting the id after enabling static branching will
3332         * guarantee no one starts accounting before all call sites are
3333         * patched.
3334         */
3335        memcg->kmemcg_id = memcg_id;
3336        memcg->kmem_acct_activated = true;
3337        memcg->kmem_acct_active = true;
3338out:
3339        return err;
3340}
3341
3342static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3343                                   unsigned long limit)
3344{
3345        int ret;
3346
3347        mutex_lock(&memcg_limit_mutex);
3348        if (!memcg_kmem_is_active(memcg))
3349                ret = memcg_activate_kmem(memcg, limit);
3350        else
3351                ret = page_counter_limit(&memcg->kmem, limit);
3352        mutex_unlock(&memcg_limit_mutex);
3353        return ret;
3354}
3355
3356static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3357{
3358        int ret = 0;
3359        struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3360
3361        if (!parent)
3362                return 0;
3363
3364        mutex_lock(&memcg_limit_mutex);
3365        /*
3366         * If the parent cgroup is not kmem-active now, it cannot be activated
3367         * after this point, because it has at least one child already.
3368         */
3369        if (memcg_kmem_is_active(parent))
3370                ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3371        mutex_unlock(&memcg_limit_mutex);
3372        return ret;
3373}
3374#else
3375static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3376                                   unsigned long limit)
3377{
3378        return -EINVAL;
3379}
3380#endif /* CONFIG_MEMCG_KMEM */
3381
3382/*
3383 * The user of this function is...
3384 * RES_LIMIT.
3385 */
3386static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3387                                char *buf, size_t nbytes, loff_t off)
3388{
3389        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3390        unsigned long nr_pages;
3391        int ret;
3392
3393        buf = strstrip(buf);
3394        ret = page_counter_memparse(buf, "-1", &nr_pages);
3395        if (ret)
3396                return ret;
3397
3398        switch (MEMFILE_ATTR(of_cft(of)->private)) {
3399        case RES_LIMIT:
3400                if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3401                        ret = -EINVAL;
3402                        break;
3403                }
3404                switch (MEMFILE_TYPE(of_cft(of)->private)) {
3405                case _MEM:
3406                        ret = mem_cgroup_resize_limit(memcg, nr_pages);
3407                        break;
3408                case _MEMSWAP:
3409                        ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3410                        break;
3411                case _KMEM:
3412                        ret = memcg_update_kmem_limit(memcg, nr_pages);
3413                        break;
3414                }
3415                break;
3416        case RES_SOFT_LIMIT:
3417                memcg->soft_limit = nr_pages;
3418                ret = 0;
3419                break;
3420        }
3421        return ret ?: nbytes;
3422}
3423
3424static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3425                                size_t nbytes, loff_t off)
3426{
3427        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3428        struct page_counter *counter;
3429
3430        switch (MEMFILE_TYPE(of_cft(of)->private)) {
3431        case _MEM:
3432                counter = &memcg->memory;
3433                break;
3434        case _MEMSWAP:
3435                counter = &memcg->memsw;
3436                break;
3437        case _KMEM:
3438                counter = &memcg->kmem;
3439                break;
3440        default:
3441                BUG();
3442        }
3443
3444        switch (MEMFILE_ATTR(of_cft(of)->private)) {
3445        case RES_MAX_USAGE:
3446                page_counter_reset_watermark(counter);
3447                break;
3448        case RES_FAILCNT:
3449                counter->failcnt = 0;
3450                break;
3451        default:
3452                BUG();
3453        }
3454
3455        return nbytes;
3456}
3457
3458static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3459                                        struct cftype *cft)
3460{
3461        return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3462}
3463
3464#ifdef CONFIG_MMU
3465static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3466                                        struct cftype *cft, u64 val)
3467{
3468        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3469
3470        if (val & ~MOVE_MASK)
3471                return -EINVAL;
3472
3473        /*
3474         * No kind of locking is needed in here, because ->can_attach() will
3475         * check this value once in the beginning of the process, and then carry
3476         * on with stale data. This means that changes to this value will only
3477         * affect task migrations starting after the change.
3478         */
3479        memcg->move_charge_at_immigrate = val;
3480        return 0;
3481}
3482#else
3483static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3484                                        struct cftype *cft, u64 val)
3485{
3486        return -ENOSYS;
3487}
3488#endif
3489
3490#ifdef CONFIG_NUMA
3491static int memcg_numa_stat_show(struct seq_file *m, void *v)
3492{
3493        struct numa_stat {
3494                const char *name;
3495                unsigned int lru_mask;
3496        };
3497
3498        static const struct numa_stat stats[] = {
3499                { "total", LRU_ALL },
3500                { "file", LRU_ALL_FILE },
3501                { "anon", LRU_ALL_ANON },
3502                { "unevictable", BIT(LRU_UNEVICTABLE) },
3503        };
3504        const struct numa_stat *stat;
3505        int nid;
3506        unsigned long nr;
3507        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3508
3509        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3510                nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3511                seq_printf(m, "%s=%lu", stat->name, nr);
3512                for_each_node_state(nid, N_MEMORY) {
3513                        nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3514                                                          stat->lru_mask);
3515                        seq_printf(m, " N%d=%lu", nid, nr);
3516                }
3517                seq_putc(m, '\n');
3518        }
3519
3520        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3521                struct mem_cgroup *iter;
3522
3523                nr = 0;
3524                for_each_mem_cgroup_tree(iter, memcg)
3525                        nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3526                seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3527                for_each_node_state(nid, N_MEMORY) {
3528                        nr = 0;
3529                        for_each_mem_cgroup_tree(iter, memcg)
3530                                nr += mem_cgroup_node_nr_lru_pages(
3531                                        iter, nid, stat->lru_mask);
3532                        seq_printf(m, " N%d=%lu", nid, nr);
3533                }
3534                seq_putc(m, '\n');
3535        }
3536
3537        return 0;
3538}
3539#endif /* CONFIG_NUMA */
3540
3541static int memcg_stat_show(struct seq_file *m, void *v)
3542{
3543        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3544        unsigned long memory, memsw;
3545        struct mem_cgroup *mi;
3546        unsigned int i;
3547
3548        BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3549                     MEM_CGROUP_STAT_NSTATS);
3550        BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3551                     MEM_CGROUP_EVENTS_NSTATS);
3552        BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3553
3554        for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3555                if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3556                        continue;
3557                seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3558                           mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3559        }
3560
3561        for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3562                seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3563                           mem_cgroup_read_events(memcg, i));
3564
3565        for (i = 0; i < NR_LRU_LISTS; i++)
3566                seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3567                           mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3568
3569        /* Hierarchical information */
3570        memory = memsw = PAGE_COUNTER_MAX;
3571        for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3572                memory = min(memory, mi->memory.limit);
3573                memsw = min(memsw, mi->memsw.limit);
3574        }
3575        seq_printf(m, "hierarchical_memory_limit %llu\n",
3576                   (u64)memory * PAGE_SIZE);
3577        if (do_swap_account)
3578                seq_printf(m, "hierarchical_memsw_limit %llu\n",
3579                           (u64)memsw * PAGE_SIZE);
3580
3581        for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3582                long long val = 0;
3583
3584                if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3585                        continue;
3586                for_each_mem_cgroup_tree(mi, memcg)
3587                        val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3588                seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3589        }
3590
3591        for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3592                unsigned long long val = 0;
3593
3594                for_each_mem_cgroup_tree(mi, memcg)
3595                        val += mem_cgroup_read_events(mi, i);
3596                seq_printf(m, "total_%s %llu\n",
3597                           mem_cgroup_events_names[i], val);
3598        }
3599
3600        for (i = 0; i < NR_LRU_LISTS; i++) {
3601                unsigned long long val = 0;
3602
3603                for_each_mem_cgroup_tree(mi, memcg)
3604                        val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3605                seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3606        }
3607
3608#ifdef CONFIG_DEBUG_VM
3609        {
3610                int nid, zid;
3611                struct mem_cgroup_per_zone *mz;
3612                struct zone_reclaim_stat *rstat;
3613                unsigned long recent_rotated[2] = {0, 0};
3614                unsigned long recent_scanned[2] = {0, 0};
3615
3616                for_each_online_node(nid)
3617                        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3618                                mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3619                                rstat = &mz->lruvec.reclaim_stat;
3620
3621                                recent_rotated[0] += rstat->recent_rotated[0];
3622                                recent_rotated[1] += rstat->recent_rotated[1];
3623                                recent_scanned[0] += rstat->recent_scanned[0];
3624                                recent_scanned[1] += rstat->recent_scanned[1];
3625                        }
3626                seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3627                seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3628                seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3629                seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3630        }
3631#endif
3632
3633        return 0;
3634}
3635
3636static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3637                                      struct cftype *cft)
3638{
3639        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3640
3641        return mem_cgroup_swappiness(memcg);
3642}
3643
3644static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3645                                       struct cftype *cft, u64 val)
3646{
3647        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3648
3649        if (val > 100)
3650                return -EINVAL;
3651
3652        if (css->parent)
3653                memcg->swappiness = val;
3654        else
3655                vm_swappiness = val;
3656
3657        return 0;
3658}
3659
3660static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3661{
3662        struct mem_cgroup_threshold_ary *t;
3663        unsigned long usage;
3664        int i;
3665
3666        rcu_read_lock();
3667        if (!swap)
3668                t = rcu_dereference(memcg->thresholds.primary);
3669        else
3670                t = rcu_dereference(memcg->memsw_thresholds.primary);
3671
3672        if (!t)
3673                goto unlock;
3674
3675        usage = mem_cgroup_usage(memcg, swap);
3676
3677        /*
3678         * current_threshold points to threshold just below or equal to usage.
3679         * If it's not true, a threshold was crossed after last
3680         * call of __mem_cgroup_threshold().
3681         */
3682        i = t->current_threshold;
3683
3684        /*
3685         * Iterate backward over array of thresholds starting from
3686         * current_threshold and check if a threshold is crossed.
3687         * If none of thresholds below usage is crossed, we read
3688         * only one element of the array here.
3689         */
3690        for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3691                eventfd_signal(t->entries[i].eventfd, 1);
3692
3693        /* i = current_threshold + 1 */
3694        i++;
3695
3696        /*
3697         * Iterate forward over array of thresholds starting from
3698         * current_threshold+1 and check if a threshold is crossed.
3699         * If none of thresholds above usage is crossed, we read
3700         * only one element of the array here.
3701         */
3702        for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3703                eventfd_signal(t->entries[i].eventfd, 1);
3704
3705        /* Update current_threshold */
3706        t->current_threshold = i - 1;
3707unlock:
3708        rcu_read_unlock();
3709}
3710
3711static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3712{
3713        while (memcg) {
3714                __mem_cgroup_threshold(memcg, false);
3715                if (do_swap_account)
3716                        __mem_cgroup_threshold(memcg, true);
3717
3718                memcg = parent_mem_cgroup(memcg);
3719        }
3720}
3721
3722static int compare_thresholds(const void *a, const void *b)
3723{
3724        const struct mem_cgroup_threshold *_a = a;
3725        const struct mem_cgroup_threshold *_b = b;
3726
3727        if (_a->threshold > _b->threshold)
3728                return 1;
3729
3730        if (_a->threshold < _b->threshold)
3731                return -1;
3732
3733        return 0;
3734}
3735
3736static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3737{
3738        struct mem_cgroup_eventfd_list *ev;
3739
3740        spin_lock(&memcg_oom_lock);
3741
3742        list_for_each_entry(ev, &memcg->oom_notify, list)
3743                eventfd_signal(ev->eventfd, 1);
3744
3745        spin_unlock(&memcg_oom_lock);
3746        return 0;
3747}
3748
3749static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3750{
3751        struct mem_cgroup *iter;
3752
3753        for_each_mem_cgroup_tree(iter, memcg)
3754                mem_cgroup_oom_notify_cb(iter);
3755}
3756
3757static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3758        struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3759{
3760        struct mem_cgroup_thresholds *thresholds;
3761        struct mem_cgroup_threshold_ary *new;
3762        unsigned long threshold;
3763        unsigned long usage;
3764        int i, size, ret;
3765
3766        ret = page_counter_memparse(args, "-1", &threshold);
3767        if (ret)
3768                return ret;
3769
3770        mutex_lock(&memcg->thresholds_lock);
3771
3772        if (type == _MEM) {
3773                thresholds = &memcg->thresholds;
3774                usage = mem_cgroup_usage(memcg, false);
3775        } else if (type == _MEMSWAP) {
3776                thresholds = &memcg->memsw_thresholds;
3777                usage = mem_cgroup_usage(memcg, true);
3778        } else
3779                BUG();
3780
3781        /* Check if a threshold crossed before adding a new one */
3782        if (thresholds->primary)
3783                __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3784
3785        size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3786
3787        /* Allocate memory for new array of thresholds */
3788        new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3789                        GFP_KERNEL);
3790        if (!new) {
3791                ret = -ENOMEM;
3792                goto unlock;
3793        }
3794        new->size = size;
3795
3796        /* Copy thresholds (if any) to new array */
3797        if (thresholds->primary) {
3798                memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3799                                sizeof(struct mem_cgroup_threshold));
3800        }
3801
3802        /* Add new threshold */
3803        new->entries[size - 1].eventfd = eventfd;
3804        new->entries[size - 1].threshold = threshold;
3805
3806        /* Sort thresholds. Registering of new threshold isn't time-critical */
3807        sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3808                        compare_thresholds, NULL);
3809
3810        /* Find current threshold */
3811        new->current_threshold = -1;
3812        for (i = 0; i < size; i++) {
3813                if (new->entries[i].threshold <= usage) {
3814                        /*
3815                         * new->current_threshold will not be used until
3816                         * rcu_assign_pointer(), so it's safe to increment
3817                         * it here.
3818                         */
3819                        ++new->current_threshold;
3820                } else
3821                        break;
3822        }
3823
3824        /* Free old spare buffer and save old primary buffer as spare */
3825        kfree(thresholds->spare);
3826        thresholds->spare = thresholds->primary;
3827
3828        rcu_assign_pointer(thresholds->primary, new);
3829
3830        /* To be sure that nobody uses thresholds */
3831        synchronize_rcu();
3832
3833unlock:
3834        mutex_unlock(&memcg->thresholds_lock);
3835
3836        return ret;
3837}
3838
3839static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3840        struct eventfd_ctx *eventfd, const char *args)
3841{
3842        return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3843}
3844
3845static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3846        struct eventfd_ctx *eventfd, const char *args)
3847{
3848        return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3849}
3850
3851static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3852        struct eventfd_ctx *eventfd, enum res_type type)
3853{
3854        struct mem_cgroup_thresholds *thresholds;
3855        struct mem_cgroup_threshold_ary *new;
3856        unsigned long usage;
3857        int i, j, size;
3858
3859        mutex_lock(&memcg->thresholds_lock);
3860
3861        if (type == _MEM) {
3862                thresholds = &memcg->thresholds;
3863                usage = mem_cgroup_usage(memcg, false);
3864        } else if (type == _MEMSWAP) {
3865                thresholds = &memcg->memsw_thresholds;
3866                usage = mem_cgroup_usage(memcg, true);
3867        } else
3868                BUG();
3869
3870        if (!thresholds->primary)
3871                goto unlock;
3872
3873        /* Check if a threshold crossed before removing */
3874        __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3875
3876        /* Calculate new number of threshold */
3877        size = 0;
3878        for (i = 0; i < thresholds->primary->size; i++) {
3879                if (thresholds->primary->entries[i].eventfd != eventfd)
3880                        size++;
3881        }
3882
3883        new = thresholds->spare;
3884
3885        /* Set thresholds array to NULL if we don't have thresholds */
3886        if (!size) {
3887                kfree(new);
3888                new = NULL;
3889                goto swap_buffers;
3890        }
3891
3892        new->size = size;
3893
3894        /* Copy thresholds and find current threshold */
3895        new->current_threshold = -1;
3896        for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3897                if (thresholds->primary->entries[i].eventfd == eventfd)
3898                        continue;
3899
3900                new->entries[j] = thresholds->primary->entries[i];
3901                if (new->entries[j].threshold <= usage) {
3902                        /*
3903                         * new->current_threshold will not be used
3904                         * until rcu_assign_pointer(), so it's safe to increment
3905                         * it here.
3906                         */
3907                        ++new->current_threshold;
3908                }
3909                j++;
3910        }
3911
3912swap_buffers:
3913        /* Swap primary and spare array */
3914        thresholds->spare = thresholds->primary;
3915        /* If all events are unregistered, free the spare array */
3916        if (!new) {
3917                kfree(thresholds->spare);
3918                thresholds->spare = NULL;
3919        }
3920
3921        rcu_assign_pointer(thresholds->primary, new);
3922
3923        /* To be sure that nobody uses thresholds */
3924        synchronize_rcu();
3925unlock:
3926        mutex_unlock(&memcg->thresholds_lock);
3927}
3928
3929static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3930        struct eventfd_ctx *eventfd)
3931{
3932        return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3933}
3934
3935static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3936        struct eventfd_ctx *eventfd)
3937{
3938        return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3939}
3940
3941static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3942        struct eventfd_ctx *eventfd, const char *args)
3943{
3944        struct mem_cgroup_eventfd_list *event;
3945
3946        event = kmalloc(sizeof(*event), GFP_KERNEL);
3947        if (!event)
3948                return -ENOMEM;
3949
3950        spin_lock(&memcg_oom_lock);
3951
3952        event->eventfd = eventfd;
3953        list_add(&event->list, &memcg->oom_notify);
3954
3955        /* already in OOM ? */
3956        if (atomic_read(&memcg->under_oom))
3957                eventfd_signal(eventfd, 1);
3958        spin_unlock(&memcg_oom_lock);
3959
3960        return 0;
3961}
3962
3963static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3964        struct eventfd_ctx *eventfd)
3965{
3966        struct mem_cgroup_eventfd_list *ev, *tmp;
3967
3968        spin_lock(&memcg_oom_lock);
3969
3970        list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3971                if (ev->eventfd == eventfd) {
3972                        list_del(&ev->list);
3973                        kfree(ev);
3974                }
3975        }
3976
3977        spin_unlock(&memcg_oom_lock);
3978}
3979
3980static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3981{
3982        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3983
3984        seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3985        seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3986        return 0;
3987}
3988
3989static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3990        struct cftype *cft, u64 val)
3991{
3992        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3993
3994        /* cannot set to root cgroup and only 0 and 1 are allowed */
3995        if (!css->parent || !((val == 0) || (val == 1)))
3996                return -EINVAL;
3997
3998        memcg->oom_kill_disable = val;
3999        if (!val)
4000                memcg_oom_recover(memcg);
4001
4002        return 0;
4003}
4004
4005#ifdef CONFIG_MEMCG_KMEM
4006static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4007{
4008        int ret;
4009
4010        ret = memcg_propagate_kmem(memcg);
4011        if (ret)
4012                return ret;
4013
4014        return mem_cgroup_sockets_init(memcg, ss);
4015}
4016
4017static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
4018{
4019        struct cgroup_subsys_state *css;
4020        struct mem_cgroup *parent, *child;
4021        int kmemcg_id;
4022
4023        if (!memcg->kmem_acct_active)
4024                return;
4025
4026        /*
4027         * Clear the 'active' flag before clearing memcg_caches arrays entries.
4028         * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
4029         * guarantees no cache will be created for this cgroup after we are
4030         * done (see memcg_create_kmem_cache()).
4031         */
4032        memcg->kmem_acct_active = false;
4033
4034        memcg_deactivate_kmem_caches(memcg);
4035
4036        kmemcg_id = memcg->kmemcg_id;
4037        BUG_ON(kmemcg_id < 0);
4038
4039        parent = parent_mem_cgroup(memcg);
4040        if (!parent)
4041                parent = root_mem_cgroup;
4042
4043        /*
4044         * Change kmemcg_id of this cgroup and all its descendants to the
4045         * parent's id, and then move all entries from this cgroup's list_lrus
4046         * to ones of the parent. After we have finished, all list_lrus
4047         * corresponding to this cgroup are guaranteed to remain empty. The
4048         * ordering is imposed by list_lru_node->lock taken by
4049         * memcg_drain_all_list_lrus().
4050         */
4051        css_for_each_descendant_pre(css, &memcg->css) {
4052                child = mem_cgroup_from_css(css);
4053                BUG_ON(child->kmemcg_id != kmemcg_id);
4054                child->kmemcg_id = parent->kmemcg_id;
4055                if (!memcg->use_hierarchy)
4056                        break;
4057        }
4058        memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
4059
4060        memcg_free_cache_id(kmemcg_id);
4061}
4062
4063static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4064{
4065        if (memcg->kmem_acct_activated) {
4066                memcg_destroy_kmem_caches(memcg);
4067                static_key_slow_dec(&memcg_kmem_enabled_key);
4068                WARN_ON(page_counter_read(&memcg->kmem));
4069        }
4070        mem_cgroup_sockets_destroy(memcg);
4071}
4072#else
4073static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4074{
4075        return 0;
4076}
4077
4078static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
4079{
4080}
4081
4082static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4083{
4084}
4085#endif
4086
4087/*
4088 * DO NOT USE IN NEW FILES.
4089 *
4090 * "cgroup.event_control" implementation.
4091 *
4092 * This is way over-engineered.  It tries to support fully configurable
4093 * events for each user.  Such level of flexibility is completely
4094 * unnecessary especially in the light of the planned unified hierarchy.
4095 *
4096 * Please deprecate this and replace with something simpler if at all
4097 * possible.
4098 */
4099
4100/*
4101 * Unregister event and free resources.
4102 *
4103 * Gets called from workqueue.
4104 */
4105static void memcg_event_remove(struct work_struct *work)
4106{
4107        struct mem_cgroup_event *event =
4108                container_of(work, struct mem_cgroup_event, remove);
4109        struct mem_cgroup *memcg = event->memcg;
4110
4111        remove_wait_queue(event->wqh, &event->wait);
4112
4113        event->unregister_event(memcg, event->eventfd);
4114
4115        /* Notify userspace the event is going away. */
4116        eventfd_signal(event->eventfd, 1);
4117
4118        eventfd_ctx_put(event->eventfd);
4119        kfree(event);
4120        css_put(&memcg->css);
4121}
4122
4123/*
4124 * Gets called on POLLHUP on eventfd when user closes it.
4125 *
4126 * Called with wqh->lock held and interrupts disabled.
4127 */
4128static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4129                            int sync, void *key)
4130{
4131        struct mem_cgroup_event *event =
4132                container_of(wait, struct mem_cgroup_event, wait);
4133        struct mem_cgroup *memcg = event->memcg;
4134        unsigned long flags = (unsigned long)key;
4135
4136        if (flags & POLLHUP) {
4137                /*
4138                 * If the event has been detached at cgroup removal, we
4139                 * can simply return knowing the other side will cleanup
4140                 * for us.
4141                 *
4142                 * We can't race against event freeing since the other
4143                 * side will require wqh->lock via remove_wait_queue(),
4144                 * which we hold.
4145                 */
4146                spin_lock(&memcg->event_list_lock);
4147                if (!list_empty(&event->list)) {
4148                        list_del_init(&event->list);
4149                        /*
4150                         * We are in atomic context, but cgroup_event_remove()
4151                         * may sleep, so we have to call it in workqueue.
4152                         */
4153                        schedule_work(&event->remove);
4154                }
4155                spin_unlock(&memcg->event_list_lock);
4156        }
4157
4158        return 0;
4159}
4160
4161static void memcg_event_ptable_queue_proc(struct file *file,
4162                wait_queue_head_t *wqh, poll_table *pt)
4163{
4164        struct mem_cgroup_event *event =
4165                container_of(pt, struct mem_cgroup_event, pt);
4166
4167        event->wqh = wqh;
4168        add_wait_queue(wqh, &event->wait);
4169}
4170
4171/*
4172 * DO NOT USE IN NEW FILES.
4173 *
4174 * Parse input and register new cgroup event handler.
4175 *
4176 * Input must be in format '<event_fd> <control_fd> <args>'.
4177 * Interpretation of args is defined by control file implementation.
4178 */
4179static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4180                                         char *buf, size_t nbytes, loff_t off)
4181{
4182        struct cgroup_subsys_state *css = of_css(of);
4183        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4184        struct mem_cgroup_event *event;
4185        struct cgroup_subsys_state *cfile_css;
4186        unsigned int efd, cfd;
4187        struct fd efile;
4188        struct fd cfile;
4189        const char *name;
4190        char *endp;
4191        int ret;
4192
4193        buf = strstrip(buf);
4194
4195        efd = simple_strtoul(buf, &endp, 10);
4196        if (*endp != ' ')
4197                return -EINVAL;
4198        buf = endp + 1;
4199
4200        cfd = simple_strtoul(buf, &endp, 10);
4201        if ((*endp != ' ') && (*endp != '\0'))
4202                return -EINVAL;
4203        buf = endp + 1;
4204
4205        event = kzalloc(sizeof(*event), GFP_KERNEL);
4206        if (!event)
4207                return -ENOMEM;
4208
4209        event->memcg = memcg;
4210        INIT_LIST_HEAD(&event->list);
4211        init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4212        init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4213        INIT_WORK(&event->remove, memcg_event_remove);
4214
4215        efile = fdget(efd);
4216        if (!efile.file) {
4217                ret = -EBADF;
4218                goto out_kfree;
4219        }
4220
4221        event->eventfd = eventfd_ctx_fileget(efile.file);
4222        if (IS_ERR(event->eventfd)) {
4223                ret = PTR_ERR(event->eventfd);
4224                goto out_put_efile;
4225        }
4226
4227        cfile = fdget(cfd);
4228        if (!cfile.file) {
4229                ret = -EBADF;
4230                goto out_put_eventfd;
4231        }
4232
4233        /* the process need read permission on control file */
4234        /* AV: shouldn't we check that it's been opened for read instead? */
4235        ret = inode_permission(file_inode(cfile.file), MAY_READ);
4236        if (ret < 0)
4237                goto out_put_cfile;
4238
4239        /*
4240         * Determine the event callbacks and set them in @event.  This used
4241         * to be done via struct cftype but cgroup core no longer knows
4242         * about these events.  The following is crude but the whole thing
4243         * is for compatibility anyway.
4244         *
4245         * DO NOT ADD NEW FILES.
4246         */
4247        name = cfile.file->f_path.dentry->d_name.name;
4248
4249        if (!strcmp(name, "memory.usage_in_bytes")) {
4250                event->register_event = mem_cgroup_usage_register_event;
4251                event->unregister_event = mem_cgroup_usage_unregister_event;
4252        } else if (!strcmp(name, "memory.oom_control")) {
4253                event->register_event = mem_cgroup_oom_register_event;
4254                event->unregister_event = mem_cgroup_oom_unregister_event;
4255        } else if (!strcmp(name, "memory.pressure_level")) {
4256                event->register_event = vmpressure_register_event;
4257                event->unregister_event = vmpressure_unregister_event;
4258        } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4259                event->register_event = memsw_cgroup_usage_register_event;
4260                event->unregister_event = memsw_cgroup_usage_unregister_event;
4261        } else {
4262                ret = -EINVAL;
4263                goto out_put_cfile;
4264        }
4265
4266        /*
4267         * Verify @cfile should belong to @css.  Also, remaining events are
4268         * automatically removed on cgroup destruction but the removal is
4269         * asynchronous, so take an extra ref on @css.
4270         */
4271        cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4272                                               &memory_cgrp_subsys);
4273        ret = -EINVAL;
4274        if (IS_ERR(cfile_css))
4275                goto out_put_cfile;
4276        if (cfile_css != css) {
4277                css_put(cfile_css);
4278                goto out_put_cfile;
4279        }
4280
4281        ret = event->register_event(memcg, event->eventfd, buf);
4282        if (ret)
4283                goto out_put_css;
4284
4285        efile.file->f_op->poll(efile.file, &event->pt);
4286
4287        spin_lock(&memcg->event_list_lock);
4288        list_add(&event->list, &memcg->event_list);
4289        spin_unlock(&memcg->event_list_lock);
4290
4291        fdput(cfile);
4292        fdput(efile);
4293
4294        return nbytes;
4295
4296out_put_css:
4297        css_put(css);
4298out_put_cfile:
4299        fdput(cfile);
4300out_put_eventfd:
4301        eventfd_ctx_put(event->eventfd);
4302out_put_efile:
4303        fdput(efile);
4304out_kfree:
4305        kfree(event);
4306
4307        return ret;
4308}
4309
4310static struct cftype mem_cgroup_legacy_files[] = {
4311        {
4312                .name = "usage_in_bytes",
4313                .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4314                .read_u64 = mem_cgroup_read_u64,
4315        },
4316        {
4317                .name = "max_usage_in_bytes",
4318                .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4319                .write = mem_cgroup_reset,
4320                .read_u64 = mem_cgroup_read_u64,
4321        },
4322        {
4323                .name = "limit_in_bytes",
4324                .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4325                .write = mem_cgroup_write,
4326                .read_u64 = mem_cgroup_read_u64,
4327        },
4328        {
4329                .name = "soft_limit_in_bytes",
4330                .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4331                .write = mem_cgroup_write,
4332                .read_u64 = mem_cgroup_read_u64,
4333        },
4334        {
4335                .name = "failcnt",
4336                .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4337                .write = mem_cgroup_reset,
4338                .read_u64 = mem_cgroup_read_u64,
4339        },
4340        {
4341                .name = "stat",
4342                .seq_show = memcg_stat_show,
4343        },
4344        {
4345                .name = "force_empty",
4346                .write = mem_cgroup_force_empty_write,
4347        },
4348        {
4349                .name = "use_hierarchy",
4350                .write_u64 = mem_cgroup_hierarchy_write,
4351                .read_u64 = mem_cgroup_hierarchy_read,
4352        },
4353        {
4354                .name = "cgroup.event_control",         /* XXX: for compat */
4355                .write = memcg_write_event_control,
4356                .flags = CFTYPE_NO_PREFIX,
4357                .mode = S_IWUGO,
4358        },
4359        {
4360                .name = "swappiness",
4361                .read_u64 = mem_cgroup_swappiness_read,
4362                .write_u64 = mem_cgroup_swappiness_write,
4363        },
4364        {
4365                .name = "move_charge_at_immigrate",
4366                .read_u64 = mem_cgroup_move_charge_read,
4367                .write_u64 = mem_cgroup_move_charge_write,
4368        },
4369        {
4370                .name = "oom_control",
4371                .seq_show = mem_cgroup_oom_control_read,
4372                .write_u64 = mem_cgroup_oom_control_write,
4373                .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4374        },
4375        {
4376                .name = "pressure_level",
4377        },
4378#ifdef CONFIG_NUMA
4379        {
4380                .name = "numa_stat",
4381                .seq_show = memcg_numa_stat_show,
4382        },
4383#endif
4384#ifdef CONFIG_MEMCG_KMEM
4385        {
4386                .name = "kmem.limit_in_bytes",
4387                .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4388                .write = mem_cgroup_write,
4389                .read_u64 = mem_cgroup_read_u64,
4390        },
4391        {
4392                .name = "kmem.usage_in_bytes",
4393                .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4394                .read_u64 = mem_cgroup_read_u64,
4395        },
4396        {
4397                .name = "kmem.failcnt",
4398                .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4399                .write = mem_cgroup_reset,
4400                .read_u64 = mem_cgroup_read_u64,
4401        },
4402        {
4403                .name = "kmem.max_usage_in_bytes",
4404                .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4405                .write = mem_cgroup_reset,
4406                .read_u64 = mem_cgroup_read_u64,
4407        },
4408#ifdef CONFIG_SLABINFO
4409        {
4410                .name = "kmem.slabinfo",
4411                .seq_start = slab_start,
4412                .seq_next = slab_next,
4413                .seq_stop = slab_stop,
4414                .seq_show = memcg_slab_show,
4415        },
4416#endif
4417#endif
4418        { },    /* terminate */
4419};
4420
4421static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4422{
4423        struct mem_cgroup_per_node *pn;
4424        struct mem_cgroup_per_zone *mz;
4425        int zone, tmp = node;
4426        /*
4427         * This routine is called against possible nodes.
4428         * But it's BUG to call kmalloc() against offline node.
4429         *
4430         * TODO: this routine can waste much memory for nodes which will
4431         *       never be onlined. It's better to use memory hotplug callback
4432         *       function.
4433         */
4434        if (!node_state(node, N_NORMAL_MEMORY))
4435                tmp = -1;
4436        pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4437        if (!pn)
4438                return 1;
4439
4440        for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4441                mz = &pn->zoneinfo[zone];
4442                lruvec_init(&mz->lruvec);
4443                mz->usage_in_excess = 0;
4444                mz->on_tree = false;
4445                mz->memcg = memcg;
4446        }
4447        memcg->nodeinfo[node] = pn;
4448        return 0;
4449}
4450
4451static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4452{
4453        kfree(memcg->nodeinfo[node]);
4454}
4455
4456static struct mem_cgroup *mem_cgroup_alloc(void)
4457{
4458        struct mem_cgroup *memcg;
4459        size_t size;
4460
4461        size = sizeof(struct mem_cgroup);
4462        size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4463
4464        memcg = kzalloc(size, GFP_KERNEL);
4465        if (!memcg)
4466                return NULL;
4467
4468        memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4469        if (!memcg->stat)
4470                goto out_free;
4471        spin_lock_init(&memcg->pcp_counter_lock);
4472        return memcg;
4473
4474out_free:
4475        kfree(memcg);
4476        return NULL;
4477}
4478
4479/*
4480 * At destroying mem_cgroup, references from swap_cgroup can remain.
4481 * (scanning all at force_empty is too costly...)
4482 *
4483 * Instead of clearing all references at force_empty, we remember
4484 * the number of reference from swap_cgroup and free mem_cgroup when
4485 * it goes down to 0.
4486 *
4487 * Removal of cgroup itself succeeds regardless of refs from swap.
4488 */
4489
4490static void __mem_cgroup_free(struct mem_cgroup *memcg)
4491{
4492        int node;
4493
4494        mem_cgroup_remove_from_trees(memcg);
4495
4496        for_each_node(node)
4497                free_mem_cgroup_per_zone_info(memcg, node);
4498
4499        free_percpu(memcg->stat);
4500        kfree(memcg);
4501}
4502
4503/*
4504 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4505 */
4506struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4507{
4508        if (!memcg->memory.parent)
4509                return NULL;
4510        return mem_cgroup_from_counter(memcg->memory.parent, memory);
4511}
4512EXPORT_SYMBOL(parent_mem_cgroup);
4513
4514static struct cgroup_subsys_state * __ref
4515mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4516{
4517        struct mem_cgroup *memcg;
4518        long error = -ENOMEM;
4519        int node;
4520
4521        memcg = mem_cgroup_alloc();
4522        if (!memcg)
4523                return ERR_PTR(error);
4524
4525        for_each_node(node)
4526                if (alloc_mem_cgroup_per_zone_info(memcg, node))
4527                        goto free_out;
4528
4529        /* root ? */
4530        if (parent_css == NULL) {
4531                root_mem_cgroup = memcg;
4532                page_counter_init(&memcg->memory, NULL);
4533                memcg->high = PAGE_COUNTER_MAX;
4534                memcg->soft_limit = PAGE_COUNTER_MAX;
4535                page_counter_init(&memcg->memsw, NULL);
4536                page_counter_init(&memcg->kmem, NULL);
4537        }
4538
4539        memcg->last_scanned_node = MAX_NUMNODES;
4540        INIT_LIST_HEAD(&memcg->oom_notify);
4541        memcg->move_charge_at_immigrate = 0;
4542        mutex_init(&memcg->thresholds_lock);
4543        spin_lock_init(&memcg->move_lock);
4544        vmpressure_init(&memcg->vmpressure);
4545        INIT_LIST_HEAD(&memcg->event_list);
4546        spin_lock_init(&memcg->event_list_lock);
4547#ifdef CONFIG_MEMCG_KMEM
4548        memcg->kmemcg_id = -1;
4549#endif
4550
4551        return &memcg->css;
4552
4553free_out:
4554        __mem_cgroup_free(memcg);
4555        return ERR_PTR(error);
4556}
4557
4558static int
4559mem_cgroup_css_online(struct cgroup_subsys_state *css)
4560{
4561        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4562        struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4563        int ret;
4564
4565        if (css->id > MEM_CGROUP_ID_MAX)
4566                return -ENOSPC;
4567
4568        if (!parent)
4569                return 0;
4570
4571        mutex_lock(&memcg_create_mutex);
4572
4573        memcg->use_hierarchy = parent->use_hierarchy;
4574        memcg->oom_kill_disable = parent->oom_kill_disable;
4575        memcg->swappiness = mem_cgroup_swappiness(parent);
4576
4577        if (parent->use_hierarchy) {
4578                page_counter_init(&memcg->memory, &parent->memory);
4579                memcg->high = PAGE_COUNTER_MAX;
4580                memcg->soft_limit = PAGE_COUNTER_MAX;
4581                page_counter_init(&memcg->memsw, &parent->memsw);
4582                page_counter_init(&memcg->kmem, &parent->kmem);
4583
4584                /*
4585                 * No need to take a reference to the parent because cgroup
4586                 * core guarantees its existence.
4587                 */
4588        } else {
4589                page_counter_init(&memcg->memory, NULL);
4590                memcg->high = PAGE_COUNTER_MAX;
4591                memcg->soft_limit = PAGE_COUNTER_MAX;
4592                page_counter_init(&memcg->memsw, NULL);
4593                page_counter_init(&memcg->kmem, NULL);
4594                /*
4595                 * Deeper hierachy with use_hierarchy == false doesn't make
4596                 * much sense so let cgroup subsystem know about this
4597                 * unfortunate state in our controller.
4598                 */
4599                if (parent != root_mem_cgroup)
4600                        memory_cgrp_subsys.broken_hierarchy = true;
4601        }
4602        mutex_unlock(&memcg_create_mutex);
4603
4604        ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4605        if (ret)
4606                return ret;
4607
4608        /*
4609         * Make sure the memcg is initialized: mem_cgroup_iter()
4610         * orders reading memcg->initialized against its callers
4611         * reading the memcg members.
4612         */
4613        smp_store_release(&memcg->initialized, 1);
4614
4615        return 0;
4616}
4617
4618static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4619{
4620        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4621        struct mem_cgroup_event *event, *tmp;
4622
4623        /*
4624         * Unregister events and notify userspace.
4625         * Notify userspace about cgroup removing only after rmdir of cgroup
4626         * directory to avoid race between userspace and kernelspace.
4627         */
4628        spin_lock(&memcg->event_list_lock);
4629        list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4630                list_del_init(&event->list);
4631                schedule_work(&event->remove);
4632        }
4633        spin_unlock(&memcg->event_list_lock);
4634
4635        vmpressure_cleanup(&memcg->vmpressure);
4636
4637        memcg_deactivate_kmem(memcg);
4638}
4639
4640static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4641{
4642        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4643
4644        memcg_destroy_kmem(memcg);
4645        __mem_cgroup_free(memcg);
4646}
4647
4648/**
4649 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4650 * @css: the target css
4651 *
4652 * Reset the states of the mem_cgroup associated with @css.  This is
4653 * invoked when the userland requests disabling on the default hierarchy
4654 * but the memcg is pinned through dependency.  The memcg should stop
4655 * applying policies and should revert to the vanilla state as it may be
4656 * made visible again.
4657 *
4658 * The current implementation only resets the essential configurations.
4659 * This needs to be expanded to cover all the visible parts.
4660 */
4661static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4662{
4663        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4664
4665        mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4666        mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4667        memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4668        memcg->low = 0;
4669        memcg->high = PAGE_COUNTER_MAX;
4670        memcg->soft_limit = PAGE_COUNTER_MAX;
4671}
4672
4673#ifdef CONFIG_MMU
4674/* Handlers for move charge at task migration. */
4675static int mem_cgroup_do_precharge(unsigned long count)
4676{
4677        int ret;
4678
4679        /* Try a single bulk charge without reclaim first */
4680        ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4681        if (!ret) {
4682                mc.precharge += count;
4683                return ret;
4684        }
4685        if (ret == -EINTR) {
4686                cancel_charge(root_mem_cgroup, count);
4687                return ret;
4688        }
4689
4690        /* Try charges one by one with reclaim */
4691        while (count--) {
4692                ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4693                /*
4694                 * In case of failure, any residual charges against
4695                 * mc.to will be dropped by mem_cgroup_clear_mc()
4696                 * later on.  However, cancel any charges that are
4697                 * bypassed to root right away or they'll be lost.
4698                 */
4699                if (ret == -EINTR)
4700                        cancel_charge(root_mem_cgroup, 1);
4701                if (ret)
4702                        return ret;
4703                mc.precharge++;
4704                cond_resched();
4705        }
4706        return 0;
4707}
4708
4709/**
4710 * get_mctgt_type - get target type of moving charge
4711 * @vma: the vma the pte to be checked belongs
4712 * @addr: the address corresponding to the pte to be checked
4713 * @ptent: the pte to be checked
4714 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4715 *
4716 * Returns
4717 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4718 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4719 *     move charge. if @target is not NULL, the page is stored in target->page
4720 *     with extra refcnt got(Callers should handle it).
4721 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4722 *     target for charge migration. if @target is not NULL, the entry is stored
4723 *     in target->ent.
4724 *
4725 * Called with pte lock held.
4726 */
4727union mc_target {
4728        struct page     *page;
4729        swp_entry_t     ent;
4730};
4731
4732enum mc_target_type {
4733        MC_TARGET_NONE = 0,
4734        MC_TARGET_PAGE,
4735        MC_TARGET_SWAP,
4736};
4737
4738static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4739                                                unsigned long addr, pte_t ptent)
4740{
4741        struct page *page = vm_normal_page(vma, addr, ptent);
4742
4743        if (!page || !page_mapped(page))
4744                return NULL;
4745        if (PageAnon(page)) {
4746                if (!(mc.flags & MOVE_ANON))
4747                        return NULL;
4748        } else {
4749                if (!(mc.flags & MOVE_FILE))
4750                        return NULL;
4751        }
4752        if (!get_page_unless_zero(page))
4753                return NULL;
4754
4755        return page;
4756}
4757
4758#ifdef CONFIG_SWAP
4759static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4760                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
4761{
4762        struct page *page = NULL;
4763        swp_entry_t ent = pte_to_swp_entry(ptent);
4764
4765        if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4766                return NULL;
4767        /*
4768         * Because lookup_swap_cache() updates some statistics counter,
4769         * we call find_get_page() with swapper_space directly.
4770         */
4771        page = find_get_page(swap_address_space(ent), ent.val);
4772        if (do_swap_account)
4773                entry->val = ent.val;
4774
4775        return page;
4776}
4777#else
4778static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4779                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
4780{
4781        return NULL;
4782}
4783#endif
4784
4785static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4786                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
4787{
4788        struct page *page = NULL;
4789        struct address_space *mapping;
4790        pgoff_t pgoff;
4791
4792        if (!vma->vm_file) /* anonymous vma */
4793                return NULL;
4794        if (!(mc.flags & MOVE_FILE))
4795                return NULL;
4796
4797        mapping = vma->vm_file->f_mapping;
4798        pgoff = linear_page_index(vma, addr);
4799
4800        /* page is moved even if it's not RSS of this task(page-faulted). */
4801#ifdef CONFIG_SWAP
4802        /* shmem/tmpfs may report page out on swap: account for that too. */
4803        if (shmem_mapping(mapping)) {
4804                page = find_get_entry(mapping, pgoff);
4805                if (radix_tree_exceptional_entry(page)) {
4806                        swp_entry_t swp = radix_to_swp_entry(page);
4807                        if (do_swap_account)
4808                                *entry = swp;
4809                        page = find_get_page(swap_address_space(swp), swp.val);
4810                }
4811        } else
4812                page = find_get_page(mapping, pgoff);
4813#else
4814        page = find_get_page(mapping, pgoff);
4815#endif
4816        return page;
4817}
4818
4819static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4820                unsigned long addr, pte_t ptent, union mc_target *target)
4821{
4822        struct page *page = NULL;
4823        enum mc_target_type ret = MC_TARGET_NONE;
4824        swp_entry_t ent = { .val = 0 };
4825
4826        if (pte_present(ptent))
4827                page = mc_handle_present_pte(vma, addr, ptent);
4828        else if (is_swap_pte(ptent))
4829                page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4830        else if (pte_none(ptent))
4831                page = mc_handle_file_pte(vma, addr, ptent, &ent);
4832
4833        if (!page && !ent.val)
4834                return ret;
4835        if (page) {
4836                /*
4837                 * Do only loose check w/o serialization.
4838                 * mem_cgroup_move_account() checks the page is valid or
4839                 * not under LRU exclusion.
4840                 */
4841                if (page->mem_cgroup == mc.from) {
4842                        ret = MC_TARGET_PAGE;
4843                        if (target)
4844                                target->page = page;
4845                }
4846                if (!ret || !target)
4847                        put_page(page);
4848        }
4849        /* There is a swap entry and a page doesn't exist or isn't charged */
4850        if (ent.val && !ret &&
4851            mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4852                ret = MC_TARGET_SWAP;
4853                if (target)
4854                        target->ent = ent;
4855        }
4856        return ret;
4857}
4858
4859#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4860/*
4861 * We don't consider swapping or file mapped pages because THP does not
4862 * support them for now.
4863 * Caller should make sure that pmd_trans_huge(pmd) is true.
4864 */
4865static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4866                unsigned long addr, pmd_t pmd, union mc_target *target)
4867{
4868        struct page *page = NULL;
4869        enum mc_target_type ret = MC_TARGET_NONE;
4870
4871        page = pmd_page(pmd);
4872        VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4873        if (!(mc.flags & MOVE_ANON))
4874                return ret;
4875        if (page->mem_cgroup == mc.from) {
4876                ret = MC_TARGET_PAGE;
4877                if (target) {
4878                        get_page(page);
4879                        target->page = page;
4880                }
4881        }
4882        return ret;
4883}
4884#else
4885static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4886                unsigned long addr, pmd_t pmd, union mc_target *target)
4887{
4888        return MC_TARGET_NONE;
4889}
4890#endif
4891
4892static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4893                                        unsigned long addr, unsigned long end,
4894                                        struct mm_walk *walk)
4895{
4896        struct vm_area_struct *vma = walk->vma;
4897        pte_t *pte;
4898        spinlock_t *ptl;
4899
4900        if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4901                if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4902                        mc.precharge += HPAGE_PMD_NR;
4903                spin_unlock(ptl);
4904                return 0;
4905        }
4906
4907        if (pmd_trans_unstable(pmd))
4908                return 0;
4909        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4910        for (; addr != end; pte++, addr += PAGE_SIZE)
4911                if (get_mctgt_type(vma, addr, *pte, NULL))
4912                        mc.precharge++; /* increment precharge temporarily */
4913        pte_unmap_unlock(pte - 1, ptl);
4914        cond_resched();
4915
4916        return 0;
4917}
4918
4919static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4920{
4921        unsigned long precharge;
4922
4923        struct mm_walk mem_cgroup_count_precharge_walk = {
4924                .pmd_entry = mem_cgroup_count_precharge_pte_range,
4925                .mm = mm,
4926        };
4927        down_read(&mm->mmap_sem);
4928        walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4929        up_read(&mm->mmap_sem);
4930
4931        precharge = mc.precharge;
4932        mc.precharge = 0;
4933
4934        return precharge;
4935}
4936
4937static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4938{
4939        unsigned long precharge = mem_cgroup_count_precharge(mm);
4940
4941        VM_BUG_ON(mc.moving_task);
4942        mc.moving_task = current;
4943        return mem_cgroup_do_precharge(precharge);
4944}
4945
4946/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4947static void __mem_cgroup_clear_mc(void)
4948{
4949        struct mem_cgroup *from = mc.from;
4950        struct mem_cgroup *to = mc.to;
4951
4952        /* we must uncharge all the leftover precharges from mc.to */
4953        if (mc.precharge) {
4954                cancel_charge(mc.to, mc.precharge);
4955                mc.precharge = 0;
4956        }
4957        /*
4958         * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4959         * we must uncharge here.
4960         */
4961        if (mc.moved_charge) {
4962                cancel_charge(mc.from, mc.moved_charge);
4963                mc.moved_charge = 0;
4964        }
4965        /* we must fixup refcnts and charges */
4966        if (mc.moved_swap) {
4967                /* uncharge swap account from the old cgroup */
4968                if (!mem_cgroup_is_root(mc.from))
4969                        page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4970
4971                /*
4972                 * we charged both to->memory and to->memsw, so we
4973                 * should uncharge to->memory.
4974                 */
4975                if (!mem_cgroup_is_root(mc.to))
4976                        page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4977
4978                css_put_many(&mc.from->css, mc.moved_swap);
4979
4980                /* we've already done css_get(mc.to) */
4981                mc.moved_swap = 0;
4982        }
4983        memcg_oom_recover(from);
4984        memcg_oom_recover(to);
4985        wake_up_all(&mc.waitq);
4986}
4987
4988static void mem_cgroup_clear_mc(void)
4989{
4990        /*
4991         * we must clear moving_task before waking up waiters at the end of
4992         * task migration.
4993         */
4994        mc.moving_task = NULL;
4995        __mem_cgroup_clear_mc();
4996        spin_lock(&mc.lock);
4997        mc.from = NULL;
4998        mc.to = NULL;
4999        spin_unlock(&mc.lock);
5000}
5001
5002static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5003                                 struct cgroup_taskset *tset)
5004{
5005        struct task_struct *p = cgroup_taskset_first(tset);
5006        int ret = 0;
5007        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5008        unsigned long move_flags;
5009
5010        /*
5011         * We are now commited to this value whatever it is. Changes in this
5012         * tunable will only affect upcoming migrations, not the current one.
5013         * So we need to save it, and keep it going.
5014         */
5015        move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
5016        if (move_flags) {
5017                struct mm_struct *mm;
5018                struct mem_cgroup *from = mem_cgroup_from_task(p);
5019
5020                VM_BUG_ON(from == memcg);
5021
5022                mm = get_task_mm(p);
5023                if (!mm)
5024                        return 0;
5025                /* We move charges only when we move a owner of the mm */
5026                if (mm->owner == p) {
5027                        VM_BUG_ON(mc.from);
5028                        VM_BUG_ON(mc.to);
5029                        VM_BUG_ON(mc.precharge);
5030                        VM_BUG_ON(mc.moved_charge);
5031                        VM_BUG_ON(mc.moved_swap);
5032
5033                        spin_lock(&mc.lock);
5034                        mc.from = from;
5035                        mc.to = memcg;
5036                        mc.flags = move_flags;
5037                        spin_unlock(&mc.lock);
5038                        /* We set mc.moving_task later */
5039
5040                        ret = mem_cgroup_precharge_mc(mm);
5041                        if (ret)
5042                                mem_cgroup_clear_mc();
5043                }
5044                mmput(mm);
5045        }
5046        return ret;
5047}
5048
5049static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5050                                     struct cgroup_taskset *tset)
5051{
5052        if (mc.to)
5053                mem_cgroup_clear_mc();
5054}
5055
5056static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5057                                unsigned long addr, unsigned long end,
5058                                struct mm_walk *walk)
5059{
5060        int ret = 0;
5061        struct vm_area_struct *vma = walk->vma;
5062        pte_t *pte;
5063        spinlock_t *ptl;
5064        enum mc_target_type target_type;
5065        union mc_target target;
5066        struct page *page;
5067
5068        /*
5069         * We don't take compound_lock() here but no race with splitting thp
5070         * happens because:
5071         *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5072         *    under splitting, which means there's no concurrent thp split,
5073         *  - if another thread runs into split_huge_page() just after we
5074         *    entered this if-block, the thread must wait for page table lock
5075         *    to be unlocked in __split_huge_page_splitting(), where the main
5076         *    part of thp split is not executed yet.
5077         */
5078        if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5079                if (mc.precharge < HPAGE_PMD_NR) {
5080                        spin_unlock(ptl);
5081                        return 0;
5082                }
5083                target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5084                if (target_type == MC_TARGET_PAGE) {
5085                        page = target.page;
5086                        if (!isolate_lru_page(page)) {
5087                                if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5088                                                             mc.from, mc.to)) {
5089                                        mc.precharge -= HPAGE_PMD_NR;
5090                                        mc.moved_charge += HPAGE_PMD_NR;
5091                                }
5092                                putback_lru_page(page);
5093                        }
5094                        put_page(page);
5095                }
5096                spin_unlock(ptl);
5097                return 0;
5098        }
5099
5100        if (pmd_trans_unstable(pmd))
5101                return 0;
5102retry:
5103        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5104        for (; addr != end; addr += PAGE_SIZE) {
5105                pte_t ptent = *(pte++);
5106                swp_entry_t ent;
5107
5108                if (!mc.precharge)
5109                        break;
5110
5111                switch (get_mctgt_type(vma, addr, ptent, &target)) {
5112                case MC_TARGET_PAGE:
5113                        page = target.page;
5114                        if (isolate_lru_page(page))
5115                                goto put;
5116                        if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5117                                mc.precharge--;
5118                                /* we uncharge from mc.from later. */
5119                                mc.moved_charge++;
5120                        }
5121                        putback_lru_page(page);
5122put:                    /* get_mctgt_type() gets the page */
5123                        put_page(page);
5124                        break;
5125                case MC_TARGET_SWAP:
5126                        ent = target.ent;
5127                        if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5128                                mc.precharge--;
5129                                /* we fixup refcnts and charges later. */
5130                                mc.moved_swap++;
5131                        }
5132                        break;
5133                default:
5134                        break;
5135                }
5136        }
5137        pte_unmap_unlock(pte - 1, ptl);
5138        cond_resched();
5139
5140        if (addr != end) {
5141                /*
5142                 * We have consumed all precharges we got in can_attach().
5143                 * We try charge one by one, but don't do any additional
5144                 * charges to mc.to if we have failed in charge once in attach()
5145                 * phase.
5146                 */
5147                ret = mem_cgroup_do_precharge(1);
5148                if (!ret)
5149                        goto retry;
5150        }
5151
5152        return ret;
5153}
5154
5155static void mem_cgroup_move_charge(struct mm_struct *mm)
5156{
5157        struct mm_walk mem_cgroup_move_charge_walk = {
5158                .pmd_entry = mem_cgroup_move_charge_pte_range,
5159                .mm = mm,
5160        };
5161
5162        lru_add_drain_all();
5163        /*
5164         * Signal mem_cgroup_begin_page_stat() to take the memcg's
5165         * move_lock while we're moving its pages to another memcg.
5166         * Then wait for already started RCU-only updates to finish.
5167         */
5168        atomic_inc(&mc.from->moving_account);
5169        synchronize_rcu();
5170retry:
5171        if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5172                /*
5173                 * Someone who are holding the mmap_sem might be waiting in
5174                 * waitq. So we cancel all extra charges, wake up all waiters,
5175                 * and retry. Because we cancel precharges, we might not be able
5176                 * to move enough charges, but moving charge is a best-effort
5177                 * feature anyway, so it wouldn't be a big problem.
5178                 */
5179                __mem_cgroup_clear_mc();
5180                cond_resched();
5181                goto retry;
5182        }
5183        /*
5184         * When we have consumed all precharges and failed in doing
5185         * additional charge, the page walk just aborts.
5186         */
5187        walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5188        up_read(&mm->mmap_sem);
5189        atomic_dec(&mc.from->moving_account);
5190}
5191
5192static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5193                                 struct cgroup_taskset *tset)
5194{
5195        struct task_struct *p = cgroup_taskset_first(tset);
5196        struct mm_struct *mm = get_task_mm(p);
5197
5198        if (mm) {
5199                if (mc.to)
5200                        mem_cgroup_move_charge(mm);
5201                mmput(mm);
5202        }
5203        if (mc.to)
5204                mem_cgroup_clear_mc();
5205}
5206#else   /* !CONFIG_MMU */
5207static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5208                                 struct cgroup_taskset *tset)
5209{
5210        return 0;
5211}
5212static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5213                                     struct cgroup_taskset *tset)
5214{
5215}
5216static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5217                                 struct cgroup_taskset *tset)
5218{
5219}
5220#endif
5221
5222/*
5223 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5224 * to verify whether we're attached to the default hierarchy on each mount
5225 * attempt.
5226 */
5227static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5228{
5229        /*
5230         * use_hierarchy is forced on the default hierarchy.  cgroup core
5231         * guarantees that @root doesn't have any children, so turning it
5232         * on for the root memcg is enough.
5233         */
5234        if (cgroup_on_dfl(root_css->cgroup))
5235                root_mem_cgroup->use_hierarchy = true;
5236        else
5237                root_mem_cgroup->use_hierarchy = false;
5238}
5239
5240static u64 memory_current_read(struct cgroup_subsys_state *css,
5241                               struct cftype *cft)
5242{
5243        return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5244}
5245
5246static int memory_low_show(struct seq_file *m, void *v)
5247{
5248        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5249        unsigned long low = ACCESS_ONCE(memcg->low);
5250
5251        if (low == PAGE_COUNTER_MAX)
5252                seq_puts(m, "max\n");
5253        else
5254                seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5255
5256        return 0;
5257}
5258
5259static ssize_t memory_low_write(struct kernfs_open_file *of,
5260                                char *buf, size_t nbytes, loff_t off)
5261{
5262        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5263        unsigned long low;
5264        int err;
5265
5266        buf = strstrip(buf);
5267        err = page_counter_memparse(buf, "max", &low);
5268        if (err)
5269                return err;
5270
5271        memcg->low = low;
5272
5273        return nbytes;
5274}
5275
5276static int memory_high_show(struct seq_file *m, void *v)
5277{
5278        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5279        unsigned long high = ACCESS_ONCE(memcg->high);
5280
5281        if (high == PAGE_COUNTER_MAX)
5282                seq_puts(m, "max\n");
5283        else
5284                seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5285
5286        return 0;
5287}
5288
5289static ssize_t memory_high_write(struct kernfs_open_file *of,
5290                                 char *buf, size_t nbytes, loff_t off)
5291{
5292        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5293        unsigned long high;
5294        int err;
5295
5296        buf = strstrip(buf);
5297        err = page_counter_memparse(buf, "max", &high);
5298        if (err)
5299                return err;
5300
5301        memcg->high = high;
5302
5303        return nbytes;
5304}
5305
5306static int memory_max_show(struct seq_file *m, void *v)
5307{
5308        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5309        unsigned long max = ACCESS_ONCE(memcg->memory.limit);
5310
5311        if (max == PAGE_COUNTER_MAX)
5312                seq_puts(m, "max\n");
5313        else
5314                seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5315
5316        return 0;
5317}
5318
5319static ssize_t memory_max_write(struct kernfs_open_file *of,
5320                                char *buf, size_t nbytes, loff_t off)
5321{
5322        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5323        unsigned long max;
5324        int err;
5325
5326        buf = strstrip(buf);
5327        err = page_counter_memparse(buf, "max", &max);
5328        if (err)
5329                return err;
5330
5331        err = mem_cgroup_resize_limit(memcg, max);
5332        if (err)
5333                return err;
5334
5335        return nbytes;
5336}
5337
5338static int memory_events_show(struct seq_file *m, void *v)
5339{
5340        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5341
5342        seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5343        seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5344        seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5345        seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5346
5347        return 0;
5348}
5349
5350static struct cftype memory_files[] = {
5351        {
5352                .name = "current",
5353                .read_u64 = memory_current_read,
5354        },
5355        {
5356                .name = "low",
5357                .flags = CFTYPE_NOT_ON_ROOT,
5358                .seq_show = memory_low_show,
5359                .write = memory_low_write,
5360        },
5361        {
5362                .name = "high",
5363                .flags = CFTYPE_NOT_ON_ROOT,
5364                .seq_show = memory_high_show,
5365                .write = memory_high_write,
5366        },
5367        {
5368                .name = "max",
5369                .flags = CFTYPE_NOT_ON_ROOT,
5370                .seq_show = memory_max_show,
5371                .write = memory_max_write,
5372        },
5373        {
5374                .name = "events",
5375                .flags = CFTYPE_NOT_ON_ROOT,
5376                .seq_show = memory_events_show,
5377        },
5378        { }     /* terminate */
5379};
5380
5381struct cgroup_subsys memory_cgrp_subsys = {
5382        .css_alloc = mem_cgroup_css_alloc,
5383        .css_online = mem_cgroup_css_online,
5384        .css_offline = mem_cgroup_css_offline,
5385        .css_free = mem_cgroup_css_free,
5386        .css_reset = mem_cgroup_css_reset,
5387        .can_attach = mem_cgroup_can_attach,
5388        .cancel_attach = mem_cgroup_cancel_attach,
5389        .attach = mem_cgroup_move_task,
5390        .bind = mem_cgroup_bind,
5391        .dfl_cftypes = memory_files,
5392        .legacy_cftypes = mem_cgroup_legacy_files,
5393        .early_init = 0,
5394};
5395
5396/**
5397 * mem_cgroup_events - count memory events against a cgroup
5398 * @memcg: the memory cgroup
5399 * @idx: the event index
5400 * @nr: the number of events to account for
5401 */
5402void mem_cgroup_events(struct mem_cgroup *memcg,
5403                       enum mem_cgroup_events_index idx,
5404                       unsigned int nr)
5405{
5406        this_cpu_add(memcg->stat->events[idx], nr);
5407}
5408
5409/**
5410 * mem_cgroup_low - check if memory consumption is below the normal range
5411 * @root: the highest ancestor to consider
5412 * @memcg: the memory cgroup to check
5413 *
5414 * Returns %true if memory consumption of @memcg, and that of all
5415 * configurable ancestors up to @root, is below the normal range.
5416 */
5417bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5418{
5419        if (mem_cgroup_disabled())
5420                return false;
5421
5422        /*
5423         * The toplevel group doesn't have a configurable range, so
5424         * it's never low when looked at directly, and it is not
5425         * considered an ancestor when assessing the hierarchy.
5426         */
5427
5428        if (memcg == root_mem_cgroup)
5429                return false;
5430
5431        if (page_counter_read(&memcg->memory) >= memcg->low)
5432                return false;
5433
5434        while (memcg != root) {
5435                memcg = parent_mem_cgroup(memcg);
5436
5437                if (memcg == root_mem_cgroup)
5438                        break;
5439
5440                if (page_counter_read(&memcg->memory) >= memcg->low)
5441                        return false;
5442        }
5443        return true;
5444}
5445
5446/**
5447 * mem_cgroup_try_charge - try charging a page
5448 * @page: page to charge
5449 * @mm: mm context of the victim
5450 * @gfp_mask: reclaim mode
5451 * @memcgp: charged memcg return
5452 *
5453 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5454 * pages according to @gfp_mask if necessary.
5455 *
5456 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5457 * Otherwise, an error code is returned.
5458 *
5459 * After page->mapping has been set up, the caller must finalize the
5460 * charge with mem_cgroup_commit_charge().  Or abort the transaction
5461 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5462 */
5463int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5464                          gfp_t gfp_mask, struct mem_cgroup **memcgp)
5465{
5466        struct mem_cgroup *memcg = NULL;
5467        unsigned int nr_pages = 1;
5468        int ret = 0;
5469
5470        if (mem_cgroup_disabled())
5471                goto out;
5472
5473        if (PageSwapCache(page)) {
5474                /*
5475                 * Every swap fault against a single page tries to charge the
5476                 * page, bail as early as possible.  shmem_unuse() encounters
5477                 * already charged pages, too.  The USED bit is protected by
5478                 * the page lock, which serializes swap cache removal, which
5479                 * in turn serializes uncharging.
5480                 */
5481                if (page->mem_cgroup)
5482                        goto out;
5483        }
5484
5485        if (PageTransHuge(page)) {
5486                nr_pages <<= compound_order(page);
5487                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5488        }
5489
5490        if (do_swap_account && PageSwapCache(page))
5491                memcg = try_get_mem_cgroup_from_page(page);
5492        if (!memcg)
5493                memcg = get_mem_cgroup_from_mm(mm);
5494
5495        ret = try_charge(memcg, gfp_mask, nr_pages);
5496
5497        css_put(&memcg->css);
5498
5499        if (ret == -EINTR) {
5500                memcg = root_mem_cgroup;
5501                ret = 0;
5502        }
5503out:
5504        *memcgp = memcg;
5505        return ret;
5506}
5507
5508/**
5509 * mem_cgroup_commit_charge - commit a page charge
5510 * @page: page to charge
5511 * @memcg: memcg to charge the page to
5512 * @lrucare: page might be on LRU already
5513 *
5514 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5515 * after page->mapping has been set up.  This must happen atomically
5516 * as part of the page instantiation, i.e. under the page table lock
5517 * for anonymous pages, under the page lock for page and swap cache.
5518 *
5519 * In addition, the page must not be on the LRU during the commit, to
5520 * prevent racing with task migration.  If it might be, use @lrucare.
5521 *
5522 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5523 */
5524void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5525                              bool lrucare)
5526{
5527        unsigned int nr_pages = 1;
5528
5529        VM_BUG_ON_PAGE(!page->mapping, page);
5530        VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5531
5532        if (mem_cgroup_disabled())
5533                return;
5534        /*
5535         * Swap faults will attempt to charge the same page multiple
5536         * times.  But reuse_swap_page() might have removed the page
5537         * from swapcache already, so we can't check PageSwapCache().
5538         */
5539        if (!memcg)
5540                return;
5541
5542        commit_charge(page, memcg, lrucare);
5543
5544        if (PageTransHuge(page)) {
5545                nr_pages <<= compound_order(page);
5546                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5547        }
5548
5549        local_irq_disable();
5550        mem_cgroup_charge_statistics(memcg, page, nr_pages);
5551        memcg_check_events(memcg, page);
5552        local_irq_enable();
5553
5554        if (do_swap_account && PageSwapCache(page)) {
5555                swp_entry_t entry = { .val = page_private(page) };
5556                /*
5557                 * The swap entry might not get freed for a long time,
5558                 * let's not wait for it.  The page already received a
5559                 * memory+swap charge, drop the swap entry duplicate.
5560                 */
5561                mem_cgroup_uncharge_swap(entry);
5562        }
5563}
5564
5565/**
5566 * mem_cgroup_cancel_charge - cancel a page charge
5567 * @page: page to charge
5568 * @memcg: memcg to charge the page to
5569 *
5570 * Cancel a charge transaction started by mem_cgroup_try_charge().
5571 */
5572void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5573{
5574        unsigned int nr_pages = 1;
5575
5576        if (mem_cgroup_disabled())
5577                return;
5578        /*
5579         * Swap faults will attempt to charge the same page multiple
5580         * times.  But reuse_swap_page() might have removed the page
5581         * from swapcache already, so we can't check PageSwapCache().
5582         */
5583        if (!memcg)
5584                return;
5585
5586        if (PageTransHuge(page)) {
5587                nr_pages <<= compound_order(page);
5588                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5589        }
5590
5591        cancel_charge(memcg, nr_pages);
5592}
5593
5594static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5595                           unsigned long nr_anon, unsigned long nr_file,
5596                           unsigned long nr_huge, struct page *dummy_page)
5597{
5598        unsigned long nr_pages = nr_anon + nr_file;
5599        unsigned long flags;
5600
5601        if (!mem_cgroup_is_root(memcg)) {
5602                page_counter_uncharge(&memcg->memory, nr_pages);
5603                if (do_swap_account)
5604                        page_counter_uncharge(&memcg->memsw, nr_pages);
5605                memcg_oom_recover(memcg);
5606        }
5607
5608        local_irq_save(flags);
5609        __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5610        __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5611        __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5612        __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5613        __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5614        memcg_check_events(memcg, dummy_page);
5615        local_irq_restore(flags);
5616
5617        if (!mem_cgroup_is_root(memcg))
5618                css_put_many(&memcg->css, nr_pages);
5619}
5620
5621static void uncharge_list(struct list_head *page_list)
5622{
5623        struct mem_cgroup *memcg = NULL;
5624        unsigned long nr_anon = 0;
5625        unsigned long nr_file = 0;
5626        unsigned long nr_huge = 0;
5627        unsigned long pgpgout = 0;
5628        struct list_head *next;
5629        struct page *page;
5630
5631        next = page_list->next;
5632        do {
5633                unsigned int nr_pages = 1;
5634
5635                page = list_entry(next, struct page, lru);
5636                next = page->lru.next;
5637
5638                VM_BUG_ON_PAGE(PageLRU(page), page);
5639                VM_BUG_ON_PAGE(page_count(page), page);
5640
5641                if (!page->mem_cgroup)
5642                        continue;
5643
5644                /*
5645                 * Nobody should be changing or seriously looking at
5646                 * page->mem_cgroup at this point, we have fully
5647                 * exclusive access to the page.
5648                 */
5649
5650                if (memcg != page->mem_cgroup) {
5651                        if (memcg) {
5652                                uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5653                                               nr_huge, page);
5654                                pgpgout = nr_anon = nr_file = nr_huge = 0;
5655                        }
5656                        memcg = page->mem_cgroup;
5657                }
5658
5659                if (PageTransHuge(page)) {
5660                        nr_pages <<= compound_order(page);
5661                        VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5662                        nr_huge += nr_pages;
5663                }
5664
5665                if (PageAnon(page))
5666                        nr_anon += nr_pages;
5667                else
5668                        nr_file += nr_pages;
5669
5670                page->mem_cgroup = NULL;
5671
5672                pgpgout++;
5673        } while (next != page_list);
5674
5675        if (memcg)
5676                uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5677                               nr_huge, page);
5678}
5679
5680/**
5681 * mem_cgroup_uncharge - uncharge a page
5682 * @page: page to uncharge
5683 *
5684 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5685 * mem_cgroup_commit_charge().
5686 */
5687void mem_cgroup_uncharge(struct page *page)
5688{
5689        if (mem_cgroup_disabled())
5690                return;
5691
5692        /* Don't touch page->lru of any random page, pre-check: */
5693        if (!page->mem_cgroup)
5694                return;
5695
5696        INIT_LIST_HEAD(&page->lru);
5697        uncharge_list(&page->lru);
5698}
5699
5700/**
5701 * mem_cgroup_uncharge_list - uncharge a list of page
5702 * @page_list: list of pages to uncharge
5703 *
5704 * Uncharge a list of pages previously charged with
5705 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5706 */
5707void mem_cgroup_uncharge_list(struct list_head *page_list)
5708{
5709        if (mem_cgroup_disabled())
5710                return;
5711
5712        if (!list_empty(page_list))
5713                uncharge_list(page_list);
5714}
5715
5716/**
5717 * mem_cgroup_migrate - migrate a charge to another page
5718 * @oldpage: currently charged page
5719 * @newpage: page to transfer the charge to
5720 * @lrucare: either or both pages might be on the LRU already
5721 *
5722 * Migrate the charge from @oldpage to @newpage.
5723 *
5724 * Both pages must be locked, @newpage->mapping must be set up.
5725 */
5726void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5727                        bool lrucare)
5728{
5729        struct mem_cgroup *memcg;
5730        int isolated;
5731
5732        VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5733        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5734        VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5735        VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5736        VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5737        VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5738                       newpage);
5739
5740        if (mem_cgroup_disabled())
5741                return;
5742
5743        /* Page cache replacement: new page already charged? */
5744        if (newpage->mem_cgroup)
5745                return;
5746
5747        /*
5748         * Swapcache readahead pages can get migrated before being
5749         * charged, and migration from compaction can happen to an
5750         * uncharged page when the PFN walker finds a page that
5751         * reclaim just put back on the LRU but has not released yet.
5752         */
5753        memcg = oldpage->mem_cgroup;
5754        if (!memcg)
5755                return;
5756
5757        if (lrucare)
5758                lock_page_lru(oldpage, &isolated);
5759
5760        oldpage->mem_cgroup = NULL;
5761
5762        if (lrucare)
5763                unlock_page_lru(oldpage, isolated);
5764
5765        commit_charge(newpage, memcg, lrucare);
5766}
5767
5768/*
5769 * subsys_initcall() for memory controller.
5770 *
5771 * Some parts like hotcpu_notifier() have to be initialized from this context
5772 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5773 * everything that doesn't depend on a specific mem_cgroup structure should
5774 * be initialized from here.
5775 */
5776static int __init mem_cgroup_init(void)
5777{
5778        int cpu, node;
5779
5780        hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5781
5782        for_each_possible_cpu(cpu)
5783                INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5784                          drain_local_stock);
5785
5786        for_each_node(node) {
5787                struct mem_cgroup_tree_per_node *rtpn;
5788                int zone;
5789
5790                rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5791                                    node_online(node) ? node : NUMA_NO_NODE);
5792
5793                for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5794                        struct mem_cgroup_tree_per_zone *rtpz;
5795
5796                        rtpz = &rtpn->rb_tree_per_zone[zone];
5797                        rtpz->rb_root = RB_ROOT;
5798                        spin_lock_init(&rtpz->lock);
5799                }
5800                soft_limit_tree.rb_tree_per_node[node] = rtpn;
5801        }
5802
5803        return 0;
5804}
5805subsys_initcall(mem_cgroup_init);
5806
5807#ifdef CONFIG_MEMCG_SWAP
5808/**
5809 * mem_cgroup_swapout - transfer a memsw charge to swap
5810 * @page: page whose memsw charge to transfer
5811 * @entry: swap entry to move the charge to
5812 *
5813 * Transfer the memsw charge of @page to @entry.
5814 */
5815void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5816{
5817        struct mem_cgroup *memcg;
5818        unsigned short oldid;
5819
5820        VM_BUG_ON_PAGE(PageLRU(page), page);
5821        VM_BUG_ON_PAGE(page_count(page), page);
5822
5823        if (!do_swap_account)
5824                return;
5825
5826        memcg = page->mem_cgroup;
5827
5828        /* Readahead page, never charged */
5829        if (!memcg)
5830                return;
5831
5832        oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5833        VM_BUG_ON_PAGE(oldid, page);
5834        mem_cgroup_swap_statistics(memcg, true);
5835
5836        page->mem_cgroup = NULL;
5837
5838        if (!mem_cgroup_is_root(memcg))
5839                page_counter_uncharge(&memcg->memory, 1);
5840
5841        /* XXX: caller holds IRQ-safe mapping->tree_lock */
5842        VM_BUG_ON(!irqs_disabled());
5843
5844        mem_cgroup_charge_statistics(memcg, page, -1);
5845        memcg_check_events(memcg, page);
5846}
5847
5848/**
5849 * mem_cgroup_uncharge_swap - uncharge a swap entry
5850 * @entry: swap entry to uncharge
5851 *
5852 * Drop the memsw charge associated with @entry.
5853 */
5854void mem_cgroup_uncharge_swap(swp_entry_t entry)
5855{
5856        struct mem_cgroup *memcg;
5857        unsigned short id;
5858
5859        if (!do_swap_account)
5860                return;
5861
5862        id = swap_cgroup_record(entry, 0);
5863        rcu_read_lock();
5864        memcg = mem_cgroup_lookup(id);
5865        if (memcg) {
5866                if (!mem_cgroup_is_root(memcg))
5867                        page_counter_uncharge(&memcg->memsw, 1);
5868                mem_cgroup_swap_statistics(memcg, false);
5869                css_put(&memcg->css);
5870        }
5871        rcu_read_unlock();
5872}
5873
5874/* for remember boot option*/
5875#ifdef CONFIG_MEMCG_SWAP_ENABLED
5876static int really_do_swap_account __initdata = 1;
5877#else
5878static int really_do_swap_account __initdata;
5879#endif
5880
5881static int __init enable_swap_account(char *s)
5882{
5883        if (!strcmp(s, "1"))
5884                really_do_swap_account = 1;
5885        else if (!strcmp(s, "0"))
5886                really_do_swap_account = 0;
5887        return 1;
5888}
5889__setup("swapaccount=", enable_swap_account);
5890
5891static struct cftype memsw_cgroup_files[] = {
5892        {
5893                .name = "memsw.usage_in_bytes",
5894                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5895                .read_u64 = mem_cgroup_read_u64,
5896        },
5897        {
5898                .name = "memsw.max_usage_in_bytes",
5899                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5900                .write = mem_cgroup_reset,
5901                .read_u64 = mem_cgroup_read_u64,
5902        },
5903        {
5904                .name = "memsw.limit_in_bytes",
5905                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5906                .write = mem_cgroup_write,
5907                .read_u64 = mem_cgroup_read_u64,
5908        },
5909        {
5910                .name = "memsw.failcnt",
5911                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5912                .write = mem_cgroup_reset,
5913                .read_u64 = mem_cgroup_read_u64,
5914        },
5915        { },    /* terminate */
5916};
5917
5918static int __init mem_cgroup_swap_init(void)
5919{
5920        if (!mem_cgroup_disabled() && really_do_swap_account) {
5921                do_swap_account = 1;
5922                WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5923                                                  memsw_cgroup_files));
5924        }
5925        return 0;
5926}
5927subsys_initcall(mem_cgroup_swap_init);
5928
5929#endif /* CONFIG_MEMCG_SWAP */
5930