linux/mm/nommu.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/nommu.c
   3 *
   4 *  Replacement code for mm functions to support CPU's that don't
   5 *  have any form of memory management unit (thus no virtual memory).
   6 *
   7 *  See Documentation/nommu-mmap.txt
   8 *
   9 *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
  10 *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
  11 *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
  12 *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
  13 *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
  14 */
  15
  16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  17
  18#include <linux/export.h>
  19#include <linux/mm.h>
  20#include <linux/vmacache.h>
  21#include <linux/mman.h>
  22#include <linux/swap.h>
  23#include <linux/file.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <linux/slab.h>
  27#include <linux/vmalloc.h>
  28#include <linux/blkdev.h>
  29#include <linux/backing-dev.h>
  30#include <linux/compiler.h>
  31#include <linux/mount.h>
  32#include <linux/personality.h>
  33#include <linux/security.h>
  34#include <linux/syscalls.h>
  35#include <linux/audit.h>
  36#include <linux/sched/sysctl.h>
  37#include <linux/printk.h>
  38
  39#include <asm/uaccess.h>
  40#include <asm/tlb.h>
  41#include <asm/tlbflush.h>
  42#include <asm/mmu_context.h>
  43#include "internal.h"
  44
  45#if 0
  46#define kenter(FMT, ...) \
  47        printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
  48#define kleave(FMT, ...) \
  49        printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
  50#define kdebug(FMT, ...) \
  51        printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
  52#else
  53#define kenter(FMT, ...) \
  54        no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
  55#define kleave(FMT, ...) \
  56        no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
  57#define kdebug(FMT, ...) \
  58        no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
  59#endif
  60
  61void *high_memory;
  62EXPORT_SYMBOL(high_memory);
  63struct page *mem_map;
  64unsigned long max_mapnr;
  65EXPORT_SYMBOL(max_mapnr);
  66unsigned long highest_memmap_pfn;
  67struct percpu_counter vm_committed_as;
  68int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
  69int sysctl_overcommit_ratio = 50; /* default is 50% */
  70unsigned long sysctl_overcommit_kbytes __read_mostly;
  71int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
  72int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
  73unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
  74unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
  75int heap_stack_gap = 0;
  76
  77atomic_long_t mmap_pages_allocated;
  78
  79/*
  80 * The global memory commitment made in the system can be a metric
  81 * that can be used to drive ballooning decisions when Linux is hosted
  82 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
  83 * balancing memory across competing virtual machines that are hosted.
  84 * Several metrics drive this policy engine including the guest reported
  85 * memory commitment.
  86 */
  87unsigned long vm_memory_committed(void)
  88{
  89        return percpu_counter_read_positive(&vm_committed_as);
  90}
  91
  92EXPORT_SYMBOL_GPL(vm_memory_committed);
  93
  94EXPORT_SYMBOL(mem_map);
  95
  96/* list of mapped, potentially shareable regions */
  97static struct kmem_cache *vm_region_jar;
  98struct rb_root nommu_region_tree = RB_ROOT;
  99DECLARE_RWSEM(nommu_region_sem);
 100
 101const struct vm_operations_struct generic_file_vm_ops = {
 102};
 103
 104/*
 105 * Return the total memory allocated for this pointer, not
 106 * just what the caller asked for.
 107 *
 108 * Doesn't have to be accurate, i.e. may have races.
 109 */
 110unsigned int kobjsize(const void *objp)
 111{
 112        struct page *page;
 113
 114        /*
 115         * If the object we have should not have ksize performed on it,
 116         * return size of 0
 117         */
 118        if (!objp || !virt_addr_valid(objp))
 119                return 0;
 120
 121        page = virt_to_head_page(objp);
 122
 123        /*
 124         * If the allocator sets PageSlab, we know the pointer came from
 125         * kmalloc().
 126         */
 127        if (PageSlab(page))
 128                return ksize(objp);
 129
 130        /*
 131         * If it's not a compound page, see if we have a matching VMA
 132         * region. This test is intentionally done in reverse order,
 133         * so if there's no VMA, we still fall through and hand back
 134         * PAGE_SIZE for 0-order pages.
 135         */
 136        if (!PageCompound(page)) {
 137                struct vm_area_struct *vma;
 138
 139                vma = find_vma(current->mm, (unsigned long)objp);
 140                if (vma)
 141                        return vma->vm_end - vma->vm_start;
 142        }
 143
 144        /*
 145         * The ksize() function is only guaranteed to work for pointers
 146         * returned by kmalloc(). So handle arbitrary pointers here.
 147         */
 148        return PAGE_SIZE << compound_order(page);
 149}
 150
 151long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 152                      unsigned long start, unsigned long nr_pages,
 153                      unsigned int foll_flags, struct page **pages,
 154                      struct vm_area_struct **vmas, int *nonblocking)
 155{
 156        struct vm_area_struct *vma;
 157        unsigned long vm_flags;
 158        int i;
 159
 160        /* calculate required read or write permissions.
 161         * If FOLL_FORCE is set, we only require the "MAY" flags.
 162         */
 163        vm_flags  = (foll_flags & FOLL_WRITE) ?
 164                        (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
 165        vm_flags &= (foll_flags & FOLL_FORCE) ?
 166                        (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
 167
 168        for (i = 0; i < nr_pages; i++) {
 169                vma = find_vma(mm, start);
 170                if (!vma)
 171                        goto finish_or_fault;
 172
 173                /* protect what we can, including chardevs */
 174                if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
 175                    !(vm_flags & vma->vm_flags))
 176                        goto finish_or_fault;
 177
 178                if (pages) {
 179                        pages[i] = virt_to_page(start);
 180                        if (pages[i])
 181                                page_cache_get(pages[i]);
 182                }
 183                if (vmas)
 184                        vmas[i] = vma;
 185                start = (start + PAGE_SIZE) & PAGE_MASK;
 186        }
 187
 188        return i;
 189
 190finish_or_fault:
 191        return i ? : -EFAULT;
 192}
 193
 194/*
 195 * get a list of pages in an address range belonging to the specified process
 196 * and indicate the VMA that covers each page
 197 * - this is potentially dodgy as we may end incrementing the page count of a
 198 *   slab page or a secondary page from a compound page
 199 * - don't permit access to VMAs that don't support it, such as I/O mappings
 200 */
 201long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 202                    unsigned long start, unsigned long nr_pages,
 203                    int write, int force, struct page **pages,
 204                    struct vm_area_struct **vmas)
 205{
 206        int flags = 0;
 207
 208        if (write)
 209                flags |= FOLL_WRITE;
 210        if (force)
 211                flags |= FOLL_FORCE;
 212
 213        return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
 214                                NULL);
 215}
 216EXPORT_SYMBOL(get_user_pages);
 217
 218long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
 219                           unsigned long start, unsigned long nr_pages,
 220                           int write, int force, struct page **pages,
 221                           int *locked)
 222{
 223        return get_user_pages(tsk, mm, start, nr_pages, write, force,
 224                              pages, NULL);
 225}
 226EXPORT_SYMBOL(get_user_pages_locked);
 227
 228long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
 229                               unsigned long start, unsigned long nr_pages,
 230                               int write, int force, struct page **pages,
 231                               unsigned int gup_flags)
 232{
 233        long ret;
 234        down_read(&mm->mmap_sem);
 235        ret = get_user_pages(tsk, mm, start, nr_pages, write, force,
 236                             pages, NULL);
 237        up_read(&mm->mmap_sem);
 238        return ret;
 239}
 240EXPORT_SYMBOL(__get_user_pages_unlocked);
 241
 242long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
 243                             unsigned long start, unsigned long nr_pages,
 244                             int write, int force, struct page **pages)
 245{
 246        return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
 247                                         force, pages, 0);
 248}
 249EXPORT_SYMBOL(get_user_pages_unlocked);
 250
 251/**
 252 * follow_pfn - look up PFN at a user virtual address
 253 * @vma: memory mapping
 254 * @address: user virtual address
 255 * @pfn: location to store found PFN
 256 *
 257 * Only IO mappings and raw PFN mappings are allowed.
 258 *
 259 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 260 */
 261int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 262        unsigned long *pfn)
 263{
 264        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
 265                return -EINVAL;
 266
 267        *pfn = address >> PAGE_SHIFT;
 268        return 0;
 269}
 270EXPORT_SYMBOL(follow_pfn);
 271
 272LIST_HEAD(vmap_area_list);
 273
 274void vfree(const void *addr)
 275{
 276        kfree(addr);
 277}
 278EXPORT_SYMBOL(vfree);
 279
 280void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
 281{
 282        /*
 283         *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
 284         * returns only a logical address.
 285         */
 286        return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
 287}
 288EXPORT_SYMBOL(__vmalloc);
 289
 290void *vmalloc_user(unsigned long size)
 291{
 292        void *ret;
 293
 294        ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 295                        PAGE_KERNEL);
 296        if (ret) {
 297                struct vm_area_struct *vma;
 298
 299                down_write(&current->mm->mmap_sem);
 300                vma = find_vma(current->mm, (unsigned long)ret);
 301                if (vma)
 302                        vma->vm_flags |= VM_USERMAP;
 303                up_write(&current->mm->mmap_sem);
 304        }
 305
 306        return ret;
 307}
 308EXPORT_SYMBOL(vmalloc_user);
 309
 310struct page *vmalloc_to_page(const void *addr)
 311{
 312        return virt_to_page(addr);
 313}
 314EXPORT_SYMBOL(vmalloc_to_page);
 315
 316unsigned long vmalloc_to_pfn(const void *addr)
 317{
 318        return page_to_pfn(virt_to_page(addr));
 319}
 320EXPORT_SYMBOL(vmalloc_to_pfn);
 321
 322long vread(char *buf, char *addr, unsigned long count)
 323{
 324        /* Don't allow overflow */
 325        if ((unsigned long) buf + count < count)
 326                count = -(unsigned long) buf;
 327
 328        memcpy(buf, addr, count);
 329        return count;
 330}
 331
 332long vwrite(char *buf, char *addr, unsigned long count)
 333{
 334        /* Don't allow overflow */
 335        if ((unsigned long) addr + count < count)
 336                count = -(unsigned long) addr;
 337
 338        memcpy(addr, buf, count);
 339        return count;
 340}
 341
 342/*
 343 *      vmalloc  -  allocate virtually continguos memory
 344 *
 345 *      @size:          allocation size
 346 *
 347 *      Allocate enough pages to cover @size from the page level
 348 *      allocator and map them into continguos kernel virtual space.
 349 *
 350 *      For tight control over page level allocator and protection flags
 351 *      use __vmalloc() instead.
 352 */
 353void *vmalloc(unsigned long size)
 354{
 355       return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
 356}
 357EXPORT_SYMBOL(vmalloc);
 358
 359/*
 360 *      vzalloc - allocate virtually continguos memory with zero fill
 361 *
 362 *      @size:          allocation size
 363 *
 364 *      Allocate enough pages to cover @size from the page level
 365 *      allocator and map them into continguos kernel virtual space.
 366 *      The memory allocated is set to zero.
 367 *
 368 *      For tight control over page level allocator and protection flags
 369 *      use __vmalloc() instead.
 370 */
 371void *vzalloc(unsigned long size)
 372{
 373        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 374                        PAGE_KERNEL);
 375}
 376EXPORT_SYMBOL(vzalloc);
 377
 378/**
 379 * vmalloc_node - allocate memory on a specific node
 380 * @size:       allocation size
 381 * @node:       numa node
 382 *
 383 * Allocate enough pages to cover @size from the page level
 384 * allocator and map them into contiguous kernel virtual space.
 385 *
 386 * For tight control over page level allocator and protection flags
 387 * use __vmalloc() instead.
 388 */
 389void *vmalloc_node(unsigned long size, int node)
 390{
 391        return vmalloc(size);
 392}
 393EXPORT_SYMBOL(vmalloc_node);
 394
 395/**
 396 * vzalloc_node - allocate memory on a specific node with zero fill
 397 * @size:       allocation size
 398 * @node:       numa node
 399 *
 400 * Allocate enough pages to cover @size from the page level
 401 * allocator and map them into contiguous kernel virtual space.
 402 * The memory allocated is set to zero.
 403 *
 404 * For tight control over page level allocator and protection flags
 405 * use __vmalloc() instead.
 406 */
 407void *vzalloc_node(unsigned long size, int node)
 408{
 409        return vzalloc(size);
 410}
 411EXPORT_SYMBOL(vzalloc_node);
 412
 413#ifndef PAGE_KERNEL_EXEC
 414# define PAGE_KERNEL_EXEC PAGE_KERNEL
 415#endif
 416
 417/**
 418 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
 419 *      @size:          allocation size
 420 *
 421 *      Kernel-internal function to allocate enough pages to cover @size
 422 *      the page level allocator and map them into contiguous and
 423 *      executable kernel virtual space.
 424 *
 425 *      For tight control over page level allocator and protection flags
 426 *      use __vmalloc() instead.
 427 */
 428
 429void *vmalloc_exec(unsigned long size)
 430{
 431        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
 432}
 433
 434/**
 435 * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 436 *      @size:          allocation size
 437 *
 438 *      Allocate enough 32bit PA addressable pages to cover @size from the
 439 *      page level allocator and map them into continguos kernel virtual space.
 440 */
 441void *vmalloc_32(unsigned long size)
 442{
 443        return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
 444}
 445EXPORT_SYMBOL(vmalloc_32);
 446
 447/**
 448 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
 449 *      @size:          allocation size
 450 *
 451 * The resulting memory area is 32bit addressable and zeroed so it can be
 452 * mapped to userspace without leaking data.
 453 *
 454 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
 455 * remap_vmalloc_range() are permissible.
 456 */
 457void *vmalloc_32_user(unsigned long size)
 458{
 459        /*
 460         * We'll have to sort out the ZONE_DMA bits for 64-bit,
 461         * but for now this can simply use vmalloc_user() directly.
 462         */
 463        return vmalloc_user(size);
 464}
 465EXPORT_SYMBOL(vmalloc_32_user);
 466
 467void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
 468{
 469        BUG();
 470        return NULL;
 471}
 472EXPORT_SYMBOL(vmap);
 473
 474void vunmap(const void *addr)
 475{
 476        BUG();
 477}
 478EXPORT_SYMBOL(vunmap);
 479
 480void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
 481{
 482        BUG();
 483        return NULL;
 484}
 485EXPORT_SYMBOL(vm_map_ram);
 486
 487void vm_unmap_ram(const void *mem, unsigned int count)
 488{
 489        BUG();
 490}
 491EXPORT_SYMBOL(vm_unmap_ram);
 492
 493void vm_unmap_aliases(void)
 494{
 495}
 496EXPORT_SYMBOL_GPL(vm_unmap_aliases);
 497
 498/*
 499 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 500 * have one.
 501 */
 502void __weak vmalloc_sync_all(void)
 503{
 504}
 505
 506/**
 507 *      alloc_vm_area - allocate a range of kernel address space
 508 *      @size:          size of the area
 509 *
 510 *      Returns:        NULL on failure, vm_struct on success
 511 *
 512 *      This function reserves a range of kernel address space, and
 513 *      allocates pagetables to map that range.  No actual mappings
 514 *      are created.  If the kernel address space is not shared
 515 *      between processes, it syncs the pagetable across all
 516 *      processes.
 517 */
 518struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
 519{
 520        BUG();
 521        return NULL;
 522}
 523EXPORT_SYMBOL_GPL(alloc_vm_area);
 524
 525void free_vm_area(struct vm_struct *area)
 526{
 527        BUG();
 528}
 529EXPORT_SYMBOL_GPL(free_vm_area);
 530
 531int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
 532                   struct page *page)
 533{
 534        return -EINVAL;
 535}
 536EXPORT_SYMBOL(vm_insert_page);
 537
 538/*
 539 *  sys_brk() for the most part doesn't need the global kernel
 540 *  lock, except when an application is doing something nasty
 541 *  like trying to un-brk an area that has already been mapped
 542 *  to a regular file.  in this case, the unmapping will need
 543 *  to invoke file system routines that need the global lock.
 544 */
 545SYSCALL_DEFINE1(brk, unsigned long, brk)
 546{
 547        struct mm_struct *mm = current->mm;
 548
 549        if (brk < mm->start_brk || brk > mm->context.end_brk)
 550                return mm->brk;
 551
 552        if (mm->brk == brk)
 553                return mm->brk;
 554
 555        /*
 556         * Always allow shrinking brk
 557         */
 558        if (brk <= mm->brk) {
 559                mm->brk = brk;
 560                return brk;
 561        }
 562
 563        /*
 564         * Ok, looks good - let it rip.
 565         */
 566        flush_icache_range(mm->brk, brk);
 567        return mm->brk = brk;
 568}
 569
 570/*
 571 * initialise the VMA and region record slabs
 572 */
 573void __init mmap_init(void)
 574{
 575        int ret;
 576
 577        ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
 578        VM_BUG_ON(ret);
 579        vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
 580}
 581
 582/*
 583 * validate the region tree
 584 * - the caller must hold the region lock
 585 */
 586#ifdef CONFIG_DEBUG_NOMMU_REGIONS
 587static noinline void validate_nommu_regions(void)
 588{
 589        struct vm_region *region, *last;
 590        struct rb_node *p, *lastp;
 591
 592        lastp = rb_first(&nommu_region_tree);
 593        if (!lastp)
 594                return;
 595
 596        last = rb_entry(lastp, struct vm_region, vm_rb);
 597        BUG_ON(unlikely(last->vm_end <= last->vm_start));
 598        BUG_ON(unlikely(last->vm_top < last->vm_end));
 599
 600        while ((p = rb_next(lastp))) {
 601                region = rb_entry(p, struct vm_region, vm_rb);
 602                last = rb_entry(lastp, struct vm_region, vm_rb);
 603
 604                BUG_ON(unlikely(region->vm_end <= region->vm_start));
 605                BUG_ON(unlikely(region->vm_top < region->vm_end));
 606                BUG_ON(unlikely(region->vm_start < last->vm_top));
 607
 608                lastp = p;
 609        }
 610}
 611#else
 612static void validate_nommu_regions(void)
 613{
 614}
 615#endif
 616
 617/*
 618 * add a region into the global tree
 619 */
 620static void add_nommu_region(struct vm_region *region)
 621{
 622        struct vm_region *pregion;
 623        struct rb_node **p, *parent;
 624
 625        validate_nommu_regions();
 626
 627        parent = NULL;
 628        p = &nommu_region_tree.rb_node;
 629        while (*p) {
 630                parent = *p;
 631                pregion = rb_entry(parent, struct vm_region, vm_rb);
 632                if (region->vm_start < pregion->vm_start)
 633                        p = &(*p)->rb_left;
 634                else if (region->vm_start > pregion->vm_start)
 635                        p = &(*p)->rb_right;
 636                else if (pregion == region)
 637                        return;
 638                else
 639                        BUG();
 640        }
 641
 642        rb_link_node(&region->vm_rb, parent, p);
 643        rb_insert_color(&region->vm_rb, &nommu_region_tree);
 644
 645        validate_nommu_regions();
 646}
 647
 648/*
 649 * delete a region from the global tree
 650 */
 651static void delete_nommu_region(struct vm_region *region)
 652{
 653        BUG_ON(!nommu_region_tree.rb_node);
 654
 655        validate_nommu_regions();
 656        rb_erase(&region->vm_rb, &nommu_region_tree);
 657        validate_nommu_regions();
 658}
 659
 660/*
 661 * free a contiguous series of pages
 662 */
 663static void free_page_series(unsigned long from, unsigned long to)
 664{
 665        for (; from < to; from += PAGE_SIZE) {
 666                struct page *page = virt_to_page(from);
 667
 668                kdebug("- free %lx", from);
 669                atomic_long_dec(&mmap_pages_allocated);
 670                if (page_count(page) != 1)
 671                        kdebug("free page %p: refcount not one: %d",
 672                               page, page_count(page));
 673                put_page(page);
 674        }
 675}
 676
 677/*
 678 * release a reference to a region
 679 * - the caller must hold the region semaphore for writing, which this releases
 680 * - the region may not have been added to the tree yet, in which case vm_top
 681 *   will equal vm_start
 682 */
 683static void __put_nommu_region(struct vm_region *region)
 684        __releases(nommu_region_sem)
 685{
 686        kenter("%p{%d}", region, region->vm_usage);
 687
 688        BUG_ON(!nommu_region_tree.rb_node);
 689
 690        if (--region->vm_usage == 0) {
 691                if (region->vm_top > region->vm_start)
 692                        delete_nommu_region(region);
 693                up_write(&nommu_region_sem);
 694
 695                if (region->vm_file)
 696                        fput(region->vm_file);
 697
 698                /* IO memory and memory shared directly out of the pagecache
 699                 * from ramfs/tmpfs mustn't be released here */
 700                if (region->vm_flags & VM_MAPPED_COPY) {
 701                        kdebug("free series");
 702                        free_page_series(region->vm_start, region->vm_top);
 703                }
 704                kmem_cache_free(vm_region_jar, region);
 705        } else {
 706                up_write(&nommu_region_sem);
 707        }
 708}
 709
 710/*
 711 * release a reference to a region
 712 */
 713static void put_nommu_region(struct vm_region *region)
 714{
 715        down_write(&nommu_region_sem);
 716        __put_nommu_region(region);
 717}
 718
 719/*
 720 * update protection on a vma
 721 */
 722static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
 723{
 724#ifdef CONFIG_MPU
 725        struct mm_struct *mm = vma->vm_mm;
 726        long start = vma->vm_start & PAGE_MASK;
 727        while (start < vma->vm_end) {
 728                protect_page(mm, start, flags);
 729                start += PAGE_SIZE;
 730        }
 731        update_protections(mm);
 732#endif
 733}
 734
 735/*
 736 * add a VMA into a process's mm_struct in the appropriate place in the list
 737 * and tree and add to the address space's page tree also if not an anonymous
 738 * page
 739 * - should be called with mm->mmap_sem held writelocked
 740 */
 741static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
 742{
 743        struct vm_area_struct *pvma, *prev;
 744        struct address_space *mapping;
 745        struct rb_node **p, *parent, *rb_prev;
 746
 747        kenter(",%p", vma);
 748
 749        BUG_ON(!vma->vm_region);
 750
 751        mm->map_count++;
 752        vma->vm_mm = mm;
 753
 754        protect_vma(vma, vma->vm_flags);
 755
 756        /* add the VMA to the mapping */
 757        if (vma->vm_file) {
 758                mapping = vma->vm_file->f_mapping;
 759
 760                i_mmap_lock_write(mapping);
 761                flush_dcache_mmap_lock(mapping);
 762                vma_interval_tree_insert(vma, &mapping->i_mmap);
 763                flush_dcache_mmap_unlock(mapping);
 764                i_mmap_unlock_write(mapping);
 765        }
 766
 767        /* add the VMA to the tree */
 768        parent = rb_prev = NULL;
 769        p = &mm->mm_rb.rb_node;
 770        while (*p) {
 771                parent = *p;
 772                pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
 773
 774                /* sort by: start addr, end addr, VMA struct addr in that order
 775                 * (the latter is necessary as we may get identical VMAs) */
 776                if (vma->vm_start < pvma->vm_start)
 777                        p = &(*p)->rb_left;
 778                else if (vma->vm_start > pvma->vm_start) {
 779                        rb_prev = parent;
 780                        p = &(*p)->rb_right;
 781                } else if (vma->vm_end < pvma->vm_end)
 782                        p = &(*p)->rb_left;
 783                else if (vma->vm_end > pvma->vm_end) {
 784                        rb_prev = parent;
 785                        p = &(*p)->rb_right;
 786                } else if (vma < pvma)
 787                        p = &(*p)->rb_left;
 788                else if (vma > pvma) {
 789                        rb_prev = parent;
 790                        p = &(*p)->rb_right;
 791                } else
 792                        BUG();
 793        }
 794
 795        rb_link_node(&vma->vm_rb, parent, p);
 796        rb_insert_color(&vma->vm_rb, &mm->mm_rb);
 797
 798        /* add VMA to the VMA list also */
 799        prev = NULL;
 800        if (rb_prev)
 801                prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 802
 803        __vma_link_list(mm, vma, prev, parent);
 804}
 805
 806/*
 807 * delete a VMA from its owning mm_struct and address space
 808 */
 809static void delete_vma_from_mm(struct vm_area_struct *vma)
 810{
 811        int i;
 812        struct address_space *mapping;
 813        struct mm_struct *mm = vma->vm_mm;
 814        struct task_struct *curr = current;
 815
 816        kenter("%p", vma);
 817
 818        protect_vma(vma, 0);
 819
 820        mm->map_count--;
 821        for (i = 0; i < VMACACHE_SIZE; i++) {
 822                /* if the vma is cached, invalidate the entire cache */
 823                if (curr->vmacache[i] == vma) {
 824                        vmacache_invalidate(mm);
 825                        break;
 826                }
 827        }
 828
 829        /* remove the VMA from the mapping */
 830        if (vma->vm_file) {
 831                mapping = vma->vm_file->f_mapping;
 832
 833                i_mmap_lock_write(mapping);
 834                flush_dcache_mmap_lock(mapping);
 835                vma_interval_tree_remove(vma, &mapping->i_mmap);
 836                flush_dcache_mmap_unlock(mapping);
 837                i_mmap_unlock_write(mapping);
 838        }
 839
 840        /* remove from the MM's tree and list */
 841        rb_erase(&vma->vm_rb, &mm->mm_rb);
 842
 843        if (vma->vm_prev)
 844                vma->vm_prev->vm_next = vma->vm_next;
 845        else
 846                mm->mmap = vma->vm_next;
 847
 848        if (vma->vm_next)
 849                vma->vm_next->vm_prev = vma->vm_prev;
 850}
 851
 852/*
 853 * destroy a VMA record
 854 */
 855static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
 856{
 857        kenter("%p", vma);
 858        if (vma->vm_ops && vma->vm_ops->close)
 859                vma->vm_ops->close(vma);
 860        if (vma->vm_file)
 861                fput(vma->vm_file);
 862        put_nommu_region(vma->vm_region);
 863        kmem_cache_free(vm_area_cachep, vma);
 864}
 865
 866/*
 867 * look up the first VMA in which addr resides, NULL if none
 868 * - should be called with mm->mmap_sem at least held readlocked
 869 */
 870struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 871{
 872        struct vm_area_struct *vma;
 873
 874        /* check the cache first */
 875        vma = vmacache_find(mm, addr);
 876        if (likely(vma))
 877                return vma;
 878
 879        /* trawl the list (there may be multiple mappings in which addr
 880         * resides) */
 881        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 882                if (vma->vm_start > addr)
 883                        return NULL;
 884                if (vma->vm_end > addr) {
 885                        vmacache_update(addr, vma);
 886                        return vma;
 887                }
 888        }
 889
 890        return NULL;
 891}
 892EXPORT_SYMBOL(find_vma);
 893
 894/*
 895 * find a VMA
 896 * - we don't extend stack VMAs under NOMMU conditions
 897 */
 898struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
 899{
 900        return find_vma(mm, addr);
 901}
 902
 903/*
 904 * expand a stack to a given address
 905 * - not supported under NOMMU conditions
 906 */
 907int expand_stack(struct vm_area_struct *vma, unsigned long address)
 908{
 909        return -ENOMEM;
 910}
 911
 912/*
 913 * look up the first VMA exactly that exactly matches addr
 914 * - should be called with mm->mmap_sem at least held readlocked
 915 */
 916static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
 917                                             unsigned long addr,
 918                                             unsigned long len)
 919{
 920        struct vm_area_struct *vma;
 921        unsigned long end = addr + len;
 922
 923        /* check the cache first */
 924        vma = vmacache_find_exact(mm, addr, end);
 925        if (vma)
 926                return vma;
 927
 928        /* trawl the list (there may be multiple mappings in which addr
 929         * resides) */
 930        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 931                if (vma->vm_start < addr)
 932                        continue;
 933                if (vma->vm_start > addr)
 934                        return NULL;
 935                if (vma->vm_end == end) {
 936                        vmacache_update(addr, vma);
 937                        return vma;
 938                }
 939        }
 940
 941        return NULL;
 942}
 943
 944/*
 945 * determine whether a mapping should be permitted and, if so, what sort of
 946 * mapping we're capable of supporting
 947 */
 948static int validate_mmap_request(struct file *file,
 949                                 unsigned long addr,
 950                                 unsigned long len,
 951                                 unsigned long prot,
 952                                 unsigned long flags,
 953                                 unsigned long pgoff,
 954                                 unsigned long *_capabilities)
 955{
 956        unsigned long capabilities, rlen;
 957        int ret;
 958
 959        /* do the simple checks first */
 960        if (flags & MAP_FIXED) {
 961                printk(KERN_DEBUG
 962                       "%d: Can't do fixed-address/overlay mmap of RAM\n",
 963                       current->pid);
 964                return -EINVAL;
 965        }
 966
 967        if ((flags & MAP_TYPE) != MAP_PRIVATE &&
 968            (flags & MAP_TYPE) != MAP_SHARED)
 969                return -EINVAL;
 970
 971        if (!len)
 972                return -EINVAL;
 973
 974        /* Careful about overflows.. */
 975        rlen = PAGE_ALIGN(len);
 976        if (!rlen || rlen > TASK_SIZE)
 977                return -ENOMEM;
 978
 979        /* offset overflow? */
 980        if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
 981                return -EOVERFLOW;
 982
 983        if (file) {
 984                /* files must support mmap */
 985                if (!file->f_op->mmap)
 986                        return -ENODEV;
 987
 988                /* work out if what we've got could possibly be shared
 989                 * - we support chardevs that provide their own "memory"
 990                 * - we support files/blockdevs that are memory backed
 991                 */
 992                if (file->f_op->mmap_capabilities) {
 993                        capabilities = file->f_op->mmap_capabilities(file);
 994                } else {
 995                        /* no explicit capabilities set, so assume some
 996                         * defaults */
 997                        switch (file_inode(file)->i_mode & S_IFMT) {
 998                        case S_IFREG:
 999                        case S_IFBLK:
1000                                capabilities = NOMMU_MAP_COPY;
1001                                break;
1002
1003                        case S_IFCHR:
1004                                capabilities =
1005                                        NOMMU_MAP_DIRECT |
1006                                        NOMMU_MAP_READ |
1007                                        NOMMU_MAP_WRITE;
1008                                break;
1009
1010                        default:
1011                                return -EINVAL;
1012                        }
1013                }
1014
1015                /* eliminate any capabilities that we can't support on this
1016                 * device */
1017                if (!file->f_op->get_unmapped_area)
1018                        capabilities &= ~NOMMU_MAP_DIRECT;
1019                if (!file->f_op->read)
1020                        capabilities &= ~NOMMU_MAP_COPY;
1021
1022                /* The file shall have been opened with read permission. */
1023                if (!(file->f_mode & FMODE_READ))
1024                        return -EACCES;
1025
1026                if (flags & MAP_SHARED) {
1027                        /* do checks for writing, appending and locking */
1028                        if ((prot & PROT_WRITE) &&
1029                            !(file->f_mode & FMODE_WRITE))
1030                                return -EACCES;
1031
1032                        if (IS_APPEND(file_inode(file)) &&
1033                            (file->f_mode & FMODE_WRITE))
1034                                return -EACCES;
1035
1036                        if (locks_verify_locked(file))
1037                                return -EAGAIN;
1038
1039                        if (!(capabilities & NOMMU_MAP_DIRECT))
1040                                return -ENODEV;
1041
1042                        /* we mustn't privatise shared mappings */
1043                        capabilities &= ~NOMMU_MAP_COPY;
1044                } else {
1045                        /* we're going to read the file into private memory we
1046                         * allocate */
1047                        if (!(capabilities & NOMMU_MAP_COPY))
1048                                return -ENODEV;
1049
1050                        /* we don't permit a private writable mapping to be
1051                         * shared with the backing device */
1052                        if (prot & PROT_WRITE)
1053                                capabilities &= ~NOMMU_MAP_DIRECT;
1054                }
1055
1056                if (capabilities & NOMMU_MAP_DIRECT) {
1057                        if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
1058                            ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1059                            ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
1060                            ) {
1061                                capabilities &= ~NOMMU_MAP_DIRECT;
1062                                if (flags & MAP_SHARED) {
1063                                        printk(KERN_WARNING
1064                                               "MAP_SHARED not completely supported on !MMU\n");
1065                                        return -EINVAL;
1066                                }
1067                        }
1068                }
1069
1070                /* handle executable mappings and implied executable
1071                 * mappings */
1072                if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1073                        if (prot & PROT_EXEC)
1074                                return -EPERM;
1075                } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1076                        /* handle implication of PROT_EXEC by PROT_READ */
1077                        if (current->personality & READ_IMPLIES_EXEC) {
1078                                if (capabilities & NOMMU_MAP_EXEC)
1079                                        prot |= PROT_EXEC;
1080                        }
1081                } else if ((prot & PROT_READ) &&
1082                         (prot & PROT_EXEC) &&
1083                         !(capabilities & NOMMU_MAP_EXEC)
1084                         ) {
1085                        /* backing file is not executable, try to copy */
1086                        capabilities &= ~NOMMU_MAP_DIRECT;
1087                }
1088        } else {
1089                /* anonymous mappings are always memory backed and can be
1090                 * privately mapped
1091                 */
1092                capabilities = NOMMU_MAP_COPY;
1093
1094                /* handle PROT_EXEC implication by PROT_READ */
1095                if ((prot & PROT_READ) &&
1096                    (current->personality & READ_IMPLIES_EXEC))
1097                        prot |= PROT_EXEC;
1098        }
1099
1100        /* allow the security API to have its say */
1101        ret = security_mmap_addr(addr);
1102        if (ret < 0)
1103                return ret;
1104
1105        /* looks okay */
1106        *_capabilities = capabilities;
1107        return 0;
1108}
1109
1110/*
1111 * we've determined that we can make the mapping, now translate what we
1112 * now know into VMA flags
1113 */
1114static unsigned long determine_vm_flags(struct file *file,
1115                                        unsigned long prot,
1116                                        unsigned long flags,
1117                                        unsigned long capabilities)
1118{
1119        unsigned long vm_flags;
1120
1121        vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1122        /* vm_flags |= mm->def_flags; */
1123
1124        if (!(capabilities & NOMMU_MAP_DIRECT)) {
1125                /* attempt to share read-only copies of mapped file chunks */
1126                vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1127                if (file && !(prot & PROT_WRITE))
1128                        vm_flags |= VM_MAYSHARE;
1129        } else {
1130                /* overlay a shareable mapping on the backing device or inode
1131                 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1132                 * romfs/cramfs */
1133                vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1134                if (flags & MAP_SHARED)
1135                        vm_flags |= VM_SHARED;
1136        }
1137
1138        /* refuse to let anyone share private mappings with this process if
1139         * it's being traced - otherwise breakpoints set in it may interfere
1140         * with another untraced process
1141         */
1142        if ((flags & MAP_PRIVATE) && current->ptrace)
1143                vm_flags &= ~VM_MAYSHARE;
1144
1145        return vm_flags;
1146}
1147
1148/*
1149 * set up a shared mapping on a file (the driver or filesystem provides and
1150 * pins the storage)
1151 */
1152static int do_mmap_shared_file(struct vm_area_struct *vma)
1153{
1154        int ret;
1155
1156        ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1157        if (ret == 0) {
1158                vma->vm_region->vm_top = vma->vm_region->vm_end;
1159                return 0;
1160        }
1161        if (ret != -ENOSYS)
1162                return ret;
1163
1164        /* getting -ENOSYS indicates that direct mmap isn't possible (as
1165         * opposed to tried but failed) so we can only give a suitable error as
1166         * it's not possible to make a private copy if MAP_SHARED was given */
1167        return -ENODEV;
1168}
1169
1170/*
1171 * set up a private mapping or an anonymous shared mapping
1172 */
1173static int do_mmap_private(struct vm_area_struct *vma,
1174                           struct vm_region *region,
1175                           unsigned long len,
1176                           unsigned long capabilities)
1177{
1178        unsigned long total, point;
1179        void *base;
1180        int ret, order;
1181
1182        /* invoke the file's mapping function so that it can keep track of
1183         * shared mappings on devices or memory
1184         * - VM_MAYSHARE will be set if it may attempt to share
1185         */
1186        if (capabilities & NOMMU_MAP_DIRECT) {
1187                ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1188                if (ret == 0) {
1189                        /* shouldn't return success if we're not sharing */
1190                        BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1191                        vma->vm_region->vm_top = vma->vm_region->vm_end;
1192                        return 0;
1193                }
1194                if (ret != -ENOSYS)
1195                        return ret;
1196
1197                /* getting an ENOSYS error indicates that direct mmap isn't
1198                 * possible (as opposed to tried but failed) so we'll try to
1199                 * make a private copy of the data and map that instead */
1200        }
1201
1202
1203        /* allocate some memory to hold the mapping
1204         * - note that this may not return a page-aligned address if the object
1205         *   we're allocating is smaller than a page
1206         */
1207        order = get_order(len);
1208        kdebug("alloc order %d for %lx", order, len);
1209
1210        total = 1 << order;
1211        point = len >> PAGE_SHIFT;
1212
1213        /* we don't want to allocate a power-of-2 sized page set */
1214        if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1215                total = point;
1216                kdebug("try to alloc exact %lu pages", total);
1217        }
1218
1219        base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1220        if (!base)
1221                goto enomem;
1222
1223        atomic_long_add(total, &mmap_pages_allocated);
1224
1225        region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1226        region->vm_start = (unsigned long) base;
1227        region->vm_end   = region->vm_start + len;
1228        region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1229
1230        vma->vm_start = region->vm_start;
1231        vma->vm_end   = region->vm_start + len;
1232
1233        if (vma->vm_file) {
1234                /* read the contents of a file into the copy */
1235                mm_segment_t old_fs;
1236                loff_t fpos;
1237
1238                fpos = vma->vm_pgoff;
1239                fpos <<= PAGE_SHIFT;
1240
1241                old_fs = get_fs();
1242                set_fs(KERNEL_DS);
1243                ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1244                set_fs(old_fs);
1245
1246                if (ret < 0)
1247                        goto error_free;
1248
1249                /* clear the last little bit */
1250                if (ret < len)
1251                        memset(base + ret, 0, len - ret);
1252
1253        }
1254
1255        return 0;
1256
1257error_free:
1258        free_page_series(region->vm_start, region->vm_top);
1259        region->vm_start = vma->vm_start = 0;
1260        region->vm_end   = vma->vm_end = 0;
1261        region->vm_top   = 0;
1262        return ret;
1263
1264enomem:
1265        pr_err("Allocation of length %lu from process %d (%s) failed\n",
1266               len, current->pid, current->comm);
1267        show_free_areas(0);
1268        return -ENOMEM;
1269}
1270
1271/*
1272 * handle mapping creation for uClinux
1273 */
1274unsigned long do_mmap_pgoff(struct file *file,
1275                            unsigned long addr,
1276                            unsigned long len,
1277                            unsigned long prot,
1278                            unsigned long flags,
1279                            unsigned long pgoff,
1280                            unsigned long *populate)
1281{
1282        struct vm_area_struct *vma;
1283        struct vm_region *region;
1284        struct rb_node *rb;
1285        unsigned long capabilities, vm_flags, result;
1286        int ret;
1287
1288        kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1289
1290        *populate = 0;
1291
1292        /* decide whether we should attempt the mapping, and if so what sort of
1293         * mapping */
1294        ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1295                                    &capabilities);
1296        if (ret < 0) {
1297                kleave(" = %d [val]", ret);
1298                return ret;
1299        }
1300
1301        /* we ignore the address hint */
1302        addr = 0;
1303        len = PAGE_ALIGN(len);
1304
1305        /* we've determined that we can make the mapping, now translate what we
1306         * now know into VMA flags */
1307        vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1308
1309        /* we're going to need to record the mapping */
1310        region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1311        if (!region)
1312                goto error_getting_region;
1313
1314        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1315        if (!vma)
1316                goto error_getting_vma;
1317
1318        region->vm_usage = 1;
1319        region->vm_flags = vm_flags;
1320        region->vm_pgoff = pgoff;
1321
1322        INIT_LIST_HEAD(&vma->anon_vma_chain);
1323        vma->vm_flags = vm_flags;
1324        vma->vm_pgoff = pgoff;
1325
1326        if (file) {
1327                region->vm_file = get_file(file);
1328                vma->vm_file = get_file(file);
1329        }
1330
1331        down_write(&nommu_region_sem);
1332
1333        /* if we want to share, we need to check for regions created by other
1334         * mmap() calls that overlap with our proposed mapping
1335         * - we can only share with a superset match on most regular files
1336         * - shared mappings on character devices and memory backed files are
1337         *   permitted to overlap inexactly as far as we are concerned for in
1338         *   these cases, sharing is handled in the driver or filesystem rather
1339         *   than here
1340         */
1341        if (vm_flags & VM_MAYSHARE) {
1342                struct vm_region *pregion;
1343                unsigned long pglen, rpglen, pgend, rpgend, start;
1344
1345                pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1346                pgend = pgoff + pglen;
1347
1348                for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1349                        pregion = rb_entry(rb, struct vm_region, vm_rb);
1350
1351                        if (!(pregion->vm_flags & VM_MAYSHARE))
1352                                continue;
1353
1354                        /* search for overlapping mappings on the same file */
1355                        if (file_inode(pregion->vm_file) !=
1356                            file_inode(file))
1357                                continue;
1358
1359                        if (pregion->vm_pgoff >= pgend)
1360                                continue;
1361
1362                        rpglen = pregion->vm_end - pregion->vm_start;
1363                        rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1364                        rpgend = pregion->vm_pgoff + rpglen;
1365                        if (pgoff >= rpgend)
1366                                continue;
1367
1368                        /* handle inexactly overlapping matches between
1369                         * mappings */
1370                        if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1371                            !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1372                                /* new mapping is not a subset of the region */
1373                                if (!(capabilities & NOMMU_MAP_DIRECT))
1374                                        goto sharing_violation;
1375                                continue;
1376                        }
1377
1378                        /* we've found a region we can share */
1379                        pregion->vm_usage++;
1380                        vma->vm_region = pregion;
1381                        start = pregion->vm_start;
1382                        start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1383                        vma->vm_start = start;
1384                        vma->vm_end = start + len;
1385
1386                        if (pregion->vm_flags & VM_MAPPED_COPY) {
1387                                kdebug("share copy");
1388                                vma->vm_flags |= VM_MAPPED_COPY;
1389                        } else {
1390                                kdebug("share mmap");
1391                                ret = do_mmap_shared_file(vma);
1392                                if (ret < 0) {
1393                                        vma->vm_region = NULL;
1394                                        vma->vm_start = 0;
1395                                        vma->vm_end = 0;
1396                                        pregion->vm_usage--;
1397                                        pregion = NULL;
1398                                        goto error_just_free;
1399                                }
1400                        }
1401                        fput(region->vm_file);
1402                        kmem_cache_free(vm_region_jar, region);
1403                        region = pregion;
1404                        result = start;
1405                        goto share;
1406                }
1407
1408                /* obtain the address at which to make a shared mapping
1409                 * - this is the hook for quasi-memory character devices to
1410                 *   tell us the location of a shared mapping
1411                 */
1412                if (capabilities & NOMMU_MAP_DIRECT) {
1413                        addr = file->f_op->get_unmapped_area(file, addr, len,
1414                                                             pgoff, flags);
1415                        if (IS_ERR_VALUE(addr)) {
1416                                ret = addr;
1417                                if (ret != -ENOSYS)
1418                                        goto error_just_free;
1419
1420                                /* the driver refused to tell us where to site
1421                                 * the mapping so we'll have to attempt to copy
1422                                 * it */
1423                                ret = -ENODEV;
1424                                if (!(capabilities & NOMMU_MAP_COPY))
1425                                        goto error_just_free;
1426
1427                                capabilities &= ~NOMMU_MAP_DIRECT;
1428                        } else {
1429                                vma->vm_start = region->vm_start = addr;
1430                                vma->vm_end = region->vm_end = addr + len;
1431                        }
1432                }
1433        }
1434
1435        vma->vm_region = region;
1436
1437        /* set up the mapping
1438         * - the region is filled in if NOMMU_MAP_DIRECT is still set
1439         */
1440        if (file && vma->vm_flags & VM_SHARED)
1441                ret = do_mmap_shared_file(vma);
1442        else
1443                ret = do_mmap_private(vma, region, len, capabilities);
1444        if (ret < 0)
1445                goto error_just_free;
1446        add_nommu_region(region);
1447
1448        /* clear anonymous mappings that don't ask for uninitialized data */
1449        if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1450                memset((void *)region->vm_start, 0,
1451                       region->vm_end - region->vm_start);
1452
1453        /* okay... we have a mapping; now we have to register it */
1454        result = vma->vm_start;
1455
1456        current->mm->total_vm += len >> PAGE_SHIFT;
1457
1458share:
1459        add_vma_to_mm(current->mm, vma);
1460
1461        /* we flush the region from the icache only when the first executable
1462         * mapping of it is made  */
1463        if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1464                flush_icache_range(region->vm_start, region->vm_end);
1465                region->vm_icache_flushed = true;
1466        }
1467
1468        up_write(&nommu_region_sem);
1469
1470        kleave(" = %lx", result);
1471        return result;
1472
1473error_just_free:
1474        up_write(&nommu_region_sem);
1475error:
1476        if (region->vm_file)
1477                fput(region->vm_file);
1478        kmem_cache_free(vm_region_jar, region);
1479        if (vma->vm_file)
1480                fput(vma->vm_file);
1481        kmem_cache_free(vm_area_cachep, vma);
1482        kleave(" = %d", ret);
1483        return ret;
1484
1485sharing_violation:
1486        up_write(&nommu_region_sem);
1487        printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1488        ret = -EINVAL;
1489        goto error;
1490
1491error_getting_vma:
1492        kmem_cache_free(vm_region_jar, region);
1493        printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1494               " from process %d failed\n",
1495               len, current->pid);
1496        show_free_areas(0);
1497        return -ENOMEM;
1498
1499error_getting_region:
1500        printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1501               " from process %d failed\n",
1502               len, current->pid);
1503        show_free_areas(0);
1504        return -ENOMEM;
1505}
1506
1507SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1508                unsigned long, prot, unsigned long, flags,
1509                unsigned long, fd, unsigned long, pgoff)
1510{
1511        struct file *file = NULL;
1512        unsigned long retval = -EBADF;
1513
1514        audit_mmap_fd(fd, flags);
1515        if (!(flags & MAP_ANONYMOUS)) {
1516                file = fget(fd);
1517                if (!file)
1518                        goto out;
1519        }
1520
1521        flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1522
1523        retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1524
1525        if (file)
1526                fput(file);
1527out:
1528        return retval;
1529}
1530
1531#ifdef __ARCH_WANT_SYS_OLD_MMAP
1532struct mmap_arg_struct {
1533        unsigned long addr;
1534        unsigned long len;
1535        unsigned long prot;
1536        unsigned long flags;
1537        unsigned long fd;
1538        unsigned long offset;
1539};
1540
1541SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1542{
1543        struct mmap_arg_struct a;
1544
1545        if (copy_from_user(&a, arg, sizeof(a)))
1546                return -EFAULT;
1547        if (a.offset & ~PAGE_MASK)
1548                return -EINVAL;
1549
1550        return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1551                              a.offset >> PAGE_SHIFT);
1552}
1553#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1554
1555/*
1556 * split a vma into two pieces at address 'addr', a new vma is allocated either
1557 * for the first part or the tail.
1558 */
1559int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1560              unsigned long addr, int new_below)
1561{
1562        struct vm_area_struct *new;
1563        struct vm_region *region;
1564        unsigned long npages;
1565
1566        kenter("");
1567
1568        /* we're only permitted to split anonymous regions (these should have
1569         * only a single usage on the region) */
1570        if (vma->vm_file)
1571                return -ENOMEM;
1572
1573        if (mm->map_count >= sysctl_max_map_count)
1574                return -ENOMEM;
1575
1576        region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1577        if (!region)
1578                return -ENOMEM;
1579
1580        new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1581        if (!new) {
1582                kmem_cache_free(vm_region_jar, region);
1583                return -ENOMEM;
1584        }
1585
1586        /* most fields are the same, copy all, and then fixup */
1587        *new = *vma;
1588        *region = *vma->vm_region;
1589        new->vm_region = region;
1590
1591        npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1592
1593        if (new_below) {
1594                region->vm_top = region->vm_end = new->vm_end = addr;
1595        } else {
1596                region->vm_start = new->vm_start = addr;
1597                region->vm_pgoff = new->vm_pgoff += npages;
1598        }
1599
1600        if (new->vm_ops && new->vm_ops->open)
1601                new->vm_ops->open(new);
1602
1603        delete_vma_from_mm(vma);
1604        down_write(&nommu_region_sem);
1605        delete_nommu_region(vma->vm_region);
1606        if (new_below) {
1607                vma->vm_region->vm_start = vma->vm_start = addr;
1608                vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1609        } else {
1610                vma->vm_region->vm_end = vma->vm_end = addr;
1611                vma->vm_region->vm_top = addr;
1612        }
1613        add_nommu_region(vma->vm_region);
1614        add_nommu_region(new->vm_region);
1615        up_write(&nommu_region_sem);
1616        add_vma_to_mm(mm, vma);
1617        add_vma_to_mm(mm, new);
1618        return 0;
1619}
1620
1621/*
1622 * shrink a VMA by removing the specified chunk from either the beginning or
1623 * the end
1624 */
1625static int shrink_vma(struct mm_struct *mm,
1626                      struct vm_area_struct *vma,
1627                      unsigned long from, unsigned long to)
1628{
1629        struct vm_region *region;
1630
1631        kenter("");
1632
1633        /* adjust the VMA's pointers, which may reposition it in the MM's tree
1634         * and list */
1635        delete_vma_from_mm(vma);
1636        if (from > vma->vm_start)
1637                vma->vm_end = from;
1638        else
1639                vma->vm_start = to;
1640        add_vma_to_mm(mm, vma);
1641
1642        /* cut the backing region down to size */
1643        region = vma->vm_region;
1644        BUG_ON(region->vm_usage != 1);
1645
1646        down_write(&nommu_region_sem);
1647        delete_nommu_region(region);
1648        if (from > region->vm_start) {
1649                to = region->vm_top;
1650                region->vm_top = region->vm_end = from;
1651        } else {
1652                region->vm_start = to;
1653        }
1654        add_nommu_region(region);
1655        up_write(&nommu_region_sem);
1656
1657        free_page_series(from, to);
1658        return 0;
1659}
1660
1661/*
1662 * release a mapping
1663 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1664 *   VMA, though it need not cover the whole VMA
1665 */
1666int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1667{
1668        struct vm_area_struct *vma;
1669        unsigned long end;
1670        int ret;
1671
1672        kenter(",%lx,%zx", start, len);
1673
1674        len = PAGE_ALIGN(len);
1675        if (len == 0)
1676                return -EINVAL;
1677
1678        end = start + len;
1679
1680        /* find the first potentially overlapping VMA */
1681        vma = find_vma(mm, start);
1682        if (!vma) {
1683                static int limit;
1684                if (limit < 5) {
1685                        printk(KERN_WARNING
1686                               "munmap of memory not mmapped by process %d"
1687                               " (%s): 0x%lx-0x%lx\n",
1688                               current->pid, current->comm,
1689                               start, start + len - 1);
1690                        limit++;
1691                }
1692                return -EINVAL;
1693        }
1694
1695        /* we're allowed to split an anonymous VMA but not a file-backed one */
1696        if (vma->vm_file) {
1697                do {
1698                        if (start > vma->vm_start) {
1699                                kleave(" = -EINVAL [miss]");
1700                                return -EINVAL;
1701                        }
1702                        if (end == vma->vm_end)
1703                                goto erase_whole_vma;
1704                        vma = vma->vm_next;
1705                } while (vma);
1706                kleave(" = -EINVAL [split file]");
1707                return -EINVAL;
1708        } else {
1709                /* the chunk must be a subset of the VMA found */
1710                if (start == vma->vm_start && end == vma->vm_end)
1711                        goto erase_whole_vma;
1712                if (start < vma->vm_start || end > vma->vm_end) {
1713                        kleave(" = -EINVAL [superset]");
1714                        return -EINVAL;
1715                }
1716                if (start & ~PAGE_MASK) {
1717                        kleave(" = -EINVAL [unaligned start]");
1718                        return -EINVAL;
1719                }
1720                if (end != vma->vm_end && end & ~PAGE_MASK) {
1721                        kleave(" = -EINVAL [unaligned split]");
1722                        return -EINVAL;
1723                }
1724                if (start != vma->vm_start && end != vma->vm_end) {
1725                        ret = split_vma(mm, vma, start, 1);
1726                        if (ret < 0) {
1727                                kleave(" = %d [split]", ret);
1728                                return ret;
1729                        }
1730                }
1731                return shrink_vma(mm, vma, start, end);
1732        }
1733
1734erase_whole_vma:
1735        delete_vma_from_mm(vma);
1736        delete_vma(mm, vma);
1737        kleave(" = 0");
1738        return 0;
1739}
1740EXPORT_SYMBOL(do_munmap);
1741
1742int vm_munmap(unsigned long addr, size_t len)
1743{
1744        struct mm_struct *mm = current->mm;
1745        int ret;
1746
1747        down_write(&mm->mmap_sem);
1748        ret = do_munmap(mm, addr, len);
1749        up_write(&mm->mmap_sem);
1750        return ret;
1751}
1752EXPORT_SYMBOL(vm_munmap);
1753
1754SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1755{
1756        return vm_munmap(addr, len);
1757}
1758
1759/*
1760 * release all the mappings made in a process's VM space
1761 */
1762void exit_mmap(struct mm_struct *mm)
1763{
1764        struct vm_area_struct *vma;
1765
1766        if (!mm)
1767                return;
1768
1769        kenter("");
1770
1771        mm->total_vm = 0;
1772
1773        while ((vma = mm->mmap)) {
1774                mm->mmap = vma->vm_next;
1775                delete_vma_from_mm(vma);
1776                delete_vma(mm, vma);
1777                cond_resched();
1778        }
1779
1780        kleave("");
1781}
1782
1783unsigned long vm_brk(unsigned long addr, unsigned long len)
1784{
1785        return -ENOMEM;
1786}
1787
1788/*
1789 * expand (or shrink) an existing mapping, potentially moving it at the same
1790 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1791 *
1792 * under NOMMU conditions, we only permit changing a mapping's size, and only
1793 * as long as it stays within the region allocated by do_mmap_private() and the
1794 * block is not shareable
1795 *
1796 * MREMAP_FIXED is not supported under NOMMU conditions
1797 */
1798static unsigned long do_mremap(unsigned long addr,
1799                        unsigned long old_len, unsigned long new_len,
1800                        unsigned long flags, unsigned long new_addr)
1801{
1802        struct vm_area_struct *vma;
1803
1804        /* insanity checks first */
1805        old_len = PAGE_ALIGN(old_len);
1806        new_len = PAGE_ALIGN(new_len);
1807        if (old_len == 0 || new_len == 0)
1808                return (unsigned long) -EINVAL;
1809
1810        if (addr & ~PAGE_MASK)
1811                return -EINVAL;
1812
1813        if (flags & MREMAP_FIXED && new_addr != addr)
1814                return (unsigned long) -EINVAL;
1815
1816        vma = find_vma_exact(current->mm, addr, old_len);
1817        if (!vma)
1818                return (unsigned long) -EINVAL;
1819
1820        if (vma->vm_end != vma->vm_start + old_len)
1821                return (unsigned long) -EFAULT;
1822
1823        if (vma->vm_flags & VM_MAYSHARE)
1824                return (unsigned long) -EPERM;
1825
1826        if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1827                return (unsigned long) -ENOMEM;
1828
1829        /* all checks complete - do it */
1830        vma->vm_end = vma->vm_start + new_len;
1831        return vma->vm_start;
1832}
1833
1834SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1835                unsigned long, new_len, unsigned long, flags,
1836                unsigned long, new_addr)
1837{
1838        unsigned long ret;
1839
1840        down_write(&current->mm->mmap_sem);
1841        ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1842        up_write(&current->mm->mmap_sem);
1843        return ret;
1844}
1845
1846struct page *follow_page_mask(struct vm_area_struct *vma,
1847                              unsigned long address, unsigned int flags,
1848                              unsigned int *page_mask)
1849{
1850        *page_mask = 0;
1851        return NULL;
1852}
1853
1854int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1855                unsigned long pfn, unsigned long size, pgprot_t prot)
1856{
1857        if (addr != (pfn << PAGE_SHIFT))
1858                return -EINVAL;
1859
1860        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1861        return 0;
1862}
1863EXPORT_SYMBOL(remap_pfn_range);
1864
1865int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1866{
1867        unsigned long pfn = start >> PAGE_SHIFT;
1868        unsigned long vm_len = vma->vm_end - vma->vm_start;
1869
1870        pfn += vma->vm_pgoff;
1871        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1872}
1873EXPORT_SYMBOL(vm_iomap_memory);
1874
1875int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1876                        unsigned long pgoff)
1877{
1878        unsigned int size = vma->vm_end - vma->vm_start;
1879
1880        if (!(vma->vm_flags & VM_USERMAP))
1881                return -EINVAL;
1882
1883        vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1884        vma->vm_end = vma->vm_start + size;
1885
1886        return 0;
1887}
1888EXPORT_SYMBOL(remap_vmalloc_range);
1889
1890unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1891        unsigned long len, unsigned long pgoff, unsigned long flags)
1892{
1893        return -ENOMEM;
1894}
1895
1896void unmap_mapping_range(struct address_space *mapping,
1897                         loff_t const holebegin, loff_t const holelen,
1898                         int even_cows)
1899{
1900}
1901EXPORT_SYMBOL(unmap_mapping_range);
1902
1903/*
1904 * Check that a process has enough memory to allocate a new virtual
1905 * mapping. 0 means there is enough memory for the allocation to
1906 * succeed and -ENOMEM implies there is not.
1907 *
1908 * We currently support three overcommit policies, which are set via the
1909 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1910 *
1911 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1912 * Additional code 2002 Jul 20 by Robert Love.
1913 *
1914 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1915 *
1916 * Note this is a helper function intended to be used by LSMs which
1917 * wish to use this logic.
1918 */
1919int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1920{
1921        long free, allowed, reserve;
1922
1923        vm_acct_memory(pages);
1924
1925        /*
1926         * Sometimes we want to use more memory than we have
1927         */
1928        if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1929                return 0;
1930
1931        if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1932                free = global_page_state(NR_FREE_PAGES);
1933                free += global_page_state(NR_FILE_PAGES);
1934
1935                /*
1936                 * shmem pages shouldn't be counted as free in this
1937                 * case, they can't be purged, only swapped out, and
1938                 * that won't affect the overall amount of available
1939                 * memory in the system.
1940                 */
1941                free -= global_page_state(NR_SHMEM);
1942
1943                free += get_nr_swap_pages();
1944
1945                /*
1946                 * Any slabs which are created with the
1947                 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1948                 * which are reclaimable, under pressure.  The dentry
1949                 * cache and most inode caches should fall into this
1950                 */
1951                free += global_page_state(NR_SLAB_RECLAIMABLE);
1952
1953                /*
1954                 * Leave reserved pages. The pages are not for anonymous pages.
1955                 */
1956                if (free <= totalreserve_pages)
1957                        goto error;
1958                else
1959                        free -= totalreserve_pages;
1960
1961                /*
1962                 * Reserve some for root
1963                 */
1964                if (!cap_sys_admin)
1965                        free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1966
1967                if (free > pages)
1968                        return 0;
1969
1970                goto error;
1971        }
1972
1973        allowed = vm_commit_limit();
1974        /*
1975         * Reserve some 3% for root
1976         */
1977        if (!cap_sys_admin)
1978                allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1979
1980        /*
1981         * Don't let a single process grow so big a user can't recover
1982         */
1983        if (mm) {
1984                reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1985                allowed -= min_t(long, mm->total_vm / 32, reserve);
1986        }
1987
1988        if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1989                return 0;
1990
1991error:
1992        vm_unacct_memory(pages);
1993
1994        return -ENOMEM;
1995}
1996
1997int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1998{
1999        BUG();
2000        return 0;
2001}
2002EXPORT_SYMBOL(filemap_fault);
2003
2004void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2005{
2006        BUG();
2007}
2008EXPORT_SYMBOL(filemap_map_pages);
2009
2010static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2011                unsigned long addr, void *buf, int len, int write)
2012{
2013        struct vm_area_struct *vma;
2014
2015        down_read(&mm->mmap_sem);
2016
2017        /* the access must start within one of the target process's mappings */
2018        vma = find_vma(mm, addr);
2019        if (vma) {
2020                /* don't overrun this mapping */
2021                if (addr + len >= vma->vm_end)
2022                        len = vma->vm_end - addr;
2023
2024                /* only read or write mappings where it is permitted */
2025                if (write && vma->vm_flags & VM_MAYWRITE)
2026                        copy_to_user_page(vma, NULL, addr,
2027                                         (void *) addr, buf, len);
2028                else if (!write && vma->vm_flags & VM_MAYREAD)
2029                        copy_from_user_page(vma, NULL, addr,
2030                                            buf, (void *) addr, len);
2031                else
2032                        len = 0;
2033        } else {
2034                len = 0;
2035        }
2036
2037        up_read(&mm->mmap_sem);
2038
2039        return len;
2040}
2041
2042/**
2043 * @access_remote_vm - access another process' address space
2044 * @mm:         the mm_struct of the target address space
2045 * @addr:       start address to access
2046 * @buf:        source or destination buffer
2047 * @len:        number of bytes to transfer
2048 * @write:      whether the access is a write
2049 *
2050 * The caller must hold a reference on @mm.
2051 */
2052int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2053                void *buf, int len, int write)
2054{
2055        return __access_remote_vm(NULL, mm, addr, buf, len, write);
2056}
2057
2058/*
2059 * Access another process' address space.
2060 * - source/target buffer must be kernel space
2061 */
2062int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2063{
2064        struct mm_struct *mm;
2065
2066        if (addr + len < addr)
2067                return 0;
2068
2069        mm = get_task_mm(tsk);
2070        if (!mm)
2071                return 0;
2072
2073        len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2074
2075        mmput(mm);
2076        return len;
2077}
2078
2079/**
2080 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2081 * @inode: The inode to check
2082 * @size: The current filesize of the inode
2083 * @newsize: The proposed filesize of the inode
2084 *
2085 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2086 * make sure that that any outstanding VMAs aren't broken and then shrink the
2087 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2088 * automatically grant mappings that are too large.
2089 */
2090int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2091                                size_t newsize)
2092{
2093        struct vm_area_struct *vma;
2094        struct vm_region *region;
2095        pgoff_t low, high;
2096        size_t r_size, r_top;
2097
2098        low = newsize >> PAGE_SHIFT;
2099        high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2100
2101        down_write(&nommu_region_sem);
2102        i_mmap_lock_read(inode->i_mapping);
2103
2104        /* search for VMAs that fall within the dead zone */
2105        vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2106                /* found one - only interested if it's shared out of the page
2107                 * cache */
2108                if (vma->vm_flags & VM_SHARED) {
2109                        i_mmap_unlock_read(inode->i_mapping);
2110                        up_write(&nommu_region_sem);
2111                        return -ETXTBSY; /* not quite true, but near enough */
2112                }
2113        }
2114
2115        /* reduce any regions that overlap the dead zone - if in existence,
2116         * these will be pointed to by VMAs that don't overlap the dead zone
2117         *
2118         * we don't check for any regions that start beyond the EOF as there
2119         * shouldn't be any
2120         */
2121        vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2122                if (!(vma->vm_flags & VM_SHARED))
2123                        continue;
2124
2125                region = vma->vm_region;
2126                r_size = region->vm_top - region->vm_start;
2127                r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2128
2129                if (r_top > newsize) {
2130                        region->vm_top -= r_top - newsize;
2131                        if (region->vm_end > region->vm_top)
2132                                region->vm_end = region->vm_top;
2133                }
2134        }
2135
2136        i_mmap_unlock_read(inode->i_mapping);
2137        up_write(&nommu_region_sem);
2138        return 0;
2139}
2140
2141/*
2142 * Initialise sysctl_user_reserve_kbytes.
2143 *
2144 * This is intended to prevent a user from starting a single memory hogging
2145 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2146 * mode.
2147 *
2148 * The default value is min(3% of free memory, 128MB)
2149 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2150 */
2151static int __meminit init_user_reserve(void)
2152{
2153        unsigned long free_kbytes;
2154
2155        free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2156
2157        sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2158        return 0;
2159}
2160module_init(init_user_reserve)
2161
2162/*
2163 * Initialise sysctl_admin_reserve_kbytes.
2164 *
2165 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2166 * to log in and kill a memory hogging process.
2167 *
2168 * Systems with more than 256MB will reserve 8MB, enough to recover
2169 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2170 * only reserve 3% of free pages by default.
2171 */
2172static int __meminit init_admin_reserve(void)
2173{
2174        unsigned long free_kbytes;
2175
2176        free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2177
2178        sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2179        return 0;
2180}
2181module_init(init_admin_reserve)
2182