1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89#include <linux/slab.h>
90#include <linux/mm.h>
91#include <linux/poison.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/cpuset.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
106#include <linux/string.h>
107#include <linux/uaccess.h>
108#include <linux/nodemask.h>
109#include <linux/kmemleak.h>
110#include <linux/mempolicy.h>
111#include <linux/mutex.h>
112#include <linux/fault-inject.h>
113#include <linux/rtmutex.h>
114#include <linux/reciprocal_div.h>
115#include <linux/debugobjects.h>
116#include <linux/kmemcheck.h>
117#include <linux/memory.h>
118#include <linux/prefetch.h>
119
120#include <net/sock.h>
121
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
126#include <trace/events/kmem.h>
127
128#include "internal.h"
129
130#include "slab.h"
131
132
133
134
135
136
137
138
139
140
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
152
153#define BYTES_PER_WORD sizeof(void *)
154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171
172
173
174
175static bool pfmemalloc_active __read_mostly;
176
177
178
179
180
181
182
183
184
185
186
187
188
189struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 void *entry[];
195
196
197
198
199
200
201
202
203};
204
205struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208};
209
210#define SLAB_OBJ_PFMEMALLOC 1
211static inline bool is_obj_pfmemalloc(void *objp)
212{
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214}
215
216static inline void set_obj_pfmemalloc(void **objp)
217{
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220}
221
222static inline void clear_obj_pfmemalloc(void **objp)
223{
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225}
226
227
228
229
230
231#define BOOT_CPUCACHE_ENTRIES 1
232struct arraycache_init {
233 struct array_cache cache;
234 void *entries[BOOT_CPUCACHE_ENTRIES];
235};
236
237
238
239
240#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242#define CACHE_CACHE 0
243#define SIZE_NODE (MAX_NUMNODES)
244
245static int drain_freelist(struct kmem_cache *cache,
246 struct kmem_cache_node *n, int tofree);
247static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248 int node, struct list_head *list);
249static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251static void cache_reap(struct work_struct *unused);
252
253static int slab_early_init = 1;
254
255#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
256
257static void kmem_cache_node_init(struct kmem_cache_node *parent)
258{
259 INIT_LIST_HEAD(&parent->slabs_full);
260 INIT_LIST_HEAD(&parent->slabs_partial);
261 INIT_LIST_HEAD(&parent->slabs_free);
262 parent->shared = NULL;
263 parent->alien = NULL;
264 parent->colour_next = 0;
265 spin_lock_init(&parent->list_lock);
266 parent->free_objects = 0;
267 parent->free_touched = 0;
268}
269
270#define MAKE_LIST(cachep, listp, slab, nodeid) \
271 do { \
272 INIT_LIST_HEAD(listp); \
273 list_splice(&get_node(cachep, nodeid)->slab, listp); \
274 } while (0)
275
276#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
277 do { \
278 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
279 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
281 } while (0)
282
283#define CFLGS_OFF_SLAB (0x80000000UL)
284#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
285
286#define BATCHREFILL_LIMIT 16
287
288
289
290
291
292
293
294#define REAPTIMEOUT_AC (2*HZ)
295#define REAPTIMEOUT_NODE (4*HZ)
296
297#if STATS
298#define STATS_INC_ACTIVE(x) ((x)->num_active++)
299#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
300#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
301#define STATS_INC_GROWN(x) ((x)->grown++)
302#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
303#define STATS_SET_HIGH(x) \
304 do { \
305 if ((x)->num_active > (x)->high_mark) \
306 (x)->high_mark = (x)->num_active; \
307 } while (0)
308#define STATS_INC_ERR(x) ((x)->errors++)
309#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
310#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
311#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
312#define STATS_SET_FREEABLE(x, i) \
313 do { \
314 if ((x)->max_freeable < i) \
315 (x)->max_freeable = i; \
316 } while (0)
317#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
318#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
319#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
320#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
321#else
322#define STATS_INC_ACTIVE(x) do { } while (0)
323#define STATS_DEC_ACTIVE(x) do { } while (0)
324#define STATS_INC_ALLOCED(x) do { } while (0)
325#define STATS_INC_GROWN(x) do { } while (0)
326#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
327#define STATS_SET_HIGH(x) do { } while (0)
328#define STATS_INC_ERR(x) do { } while (0)
329#define STATS_INC_NODEALLOCS(x) do { } while (0)
330#define STATS_INC_NODEFREES(x) do { } while (0)
331#define STATS_INC_ACOVERFLOW(x) do { } while (0)
332#define STATS_SET_FREEABLE(x, i) do { } while (0)
333#define STATS_INC_ALLOCHIT(x) do { } while (0)
334#define STATS_INC_ALLOCMISS(x) do { } while (0)
335#define STATS_INC_FREEHIT(x) do { } while (0)
336#define STATS_INC_FREEMISS(x) do { } while (0)
337#endif
338
339#if DEBUG
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354static int obj_offset(struct kmem_cache *cachep)
355{
356 return cachep->obj_offset;
357}
358
359static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
360{
361 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
362 return (unsigned long long*) (objp + obj_offset(cachep) -
363 sizeof(unsigned long long));
364}
365
366static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
367{
368 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
369 if (cachep->flags & SLAB_STORE_USER)
370 return (unsigned long long *)(objp + cachep->size -
371 sizeof(unsigned long long) -
372 REDZONE_ALIGN);
373 return (unsigned long long *) (objp + cachep->size -
374 sizeof(unsigned long long));
375}
376
377static void **dbg_userword(struct kmem_cache *cachep, void *objp)
378{
379 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
380 return (void **)(objp + cachep->size - BYTES_PER_WORD);
381}
382
383#else
384
385#define obj_offset(x) 0
386#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
387#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
388#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
389
390#endif
391
392#define OBJECT_FREE (0)
393#define OBJECT_ACTIVE (1)
394
395#ifdef CONFIG_DEBUG_SLAB_LEAK
396
397static void set_obj_status(struct page *page, int idx, int val)
398{
399 int freelist_size;
400 char *status;
401 struct kmem_cache *cachep = page->slab_cache;
402
403 freelist_size = cachep->num * sizeof(freelist_idx_t);
404 status = (char *)page->freelist + freelist_size;
405 status[idx] = val;
406}
407
408static inline unsigned int get_obj_status(struct page *page, int idx)
409{
410 int freelist_size;
411 char *status;
412 struct kmem_cache *cachep = page->slab_cache;
413
414 freelist_size = cachep->num * sizeof(freelist_idx_t);
415 status = (char *)page->freelist + freelist_size;
416
417 return status[idx];
418}
419
420#else
421static inline void set_obj_status(struct page *page, int idx, int val) {}
422
423#endif
424
425
426
427
428
429#define SLAB_MAX_ORDER_HI 1
430#define SLAB_MAX_ORDER_LO 0
431static int slab_max_order = SLAB_MAX_ORDER_LO;
432static bool slab_max_order_set __initdata;
433
434static inline struct kmem_cache *virt_to_cache(const void *obj)
435{
436 struct page *page = virt_to_head_page(obj);
437 return page->slab_cache;
438}
439
440static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
441 unsigned int idx)
442{
443 return page->s_mem + cache->size * idx;
444}
445
446
447
448
449
450
451
452static inline unsigned int obj_to_index(const struct kmem_cache *cache,
453 const struct page *page, void *obj)
454{
455 u32 offset = (obj - page->s_mem);
456 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
457}
458
459
460static struct kmem_cache kmem_cache_boot = {
461 .batchcount = 1,
462 .limit = BOOT_CPUCACHE_ENTRIES,
463 .shared = 1,
464 .size = sizeof(struct kmem_cache),
465 .name = "kmem_cache",
466};
467
468#define BAD_ALIEN_MAGIC 0x01020304ul
469
470static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
471
472static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
473{
474 return this_cpu_ptr(cachep->cpu_cache);
475}
476
477static size_t calculate_freelist_size(int nr_objs, size_t align)
478{
479 size_t freelist_size;
480
481 freelist_size = nr_objs * sizeof(freelist_idx_t);
482 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
483 freelist_size += nr_objs * sizeof(char);
484
485 if (align)
486 freelist_size = ALIGN(freelist_size, align);
487
488 return freelist_size;
489}
490
491static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
492 size_t idx_size, size_t align)
493{
494 int nr_objs;
495 size_t remained_size;
496 size_t freelist_size;
497 int extra_space = 0;
498
499 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
500 extra_space = sizeof(char);
501
502
503
504
505
506
507
508
509 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
510
511
512
513
514
515 remained_size = slab_size - nr_objs * buffer_size;
516 freelist_size = calculate_freelist_size(nr_objs, align);
517 if (remained_size < freelist_size)
518 nr_objs--;
519
520 return nr_objs;
521}
522
523
524
525
526static void cache_estimate(unsigned long gfporder, size_t buffer_size,
527 size_t align, int flags, size_t *left_over,
528 unsigned int *num)
529{
530 int nr_objs;
531 size_t mgmt_size;
532 size_t slab_size = PAGE_SIZE << gfporder;
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548 if (flags & CFLGS_OFF_SLAB) {
549 mgmt_size = 0;
550 nr_objs = slab_size / buffer_size;
551
552 } else {
553 nr_objs = calculate_nr_objs(slab_size, buffer_size,
554 sizeof(freelist_idx_t), align);
555 mgmt_size = calculate_freelist_size(nr_objs, align);
556 }
557 *num = nr_objs;
558 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
559}
560
561#if DEBUG
562#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
563
564static void __slab_error(const char *function, struct kmem_cache *cachep,
565 char *msg)
566{
567 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
568 function, cachep->name, msg);
569 dump_stack();
570 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
571}
572#endif
573
574
575
576
577
578
579
580
581
582static int use_alien_caches __read_mostly = 1;
583static int __init noaliencache_setup(char *s)
584{
585 use_alien_caches = 0;
586 return 1;
587}
588__setup("noaliencache", noaliencache_setup);
589
590static int __init slab_max_order_setup(char *str)
591{
592 get_option(&str, &slab_max_order);
593 slab_max_order = slab_max_order < 0 ? 0 :
594 min(slab_max_order, MAX_ORDER - 1);
595 slab_max_order_set = true;
596
597 return 1;
598}
599__setup("slab_max_order=", slab_max_order_setup);
600
601#ifdef CONFIG_NUMA
602
603
604
605
606
607
608static DEFINE_PER_CPU(unsigned long, slab_reap_node);
609
610static void init_reap_node(int cpu)
611{
612 int node;
613
614 node = next_node(cpu_to_mem(cpu), node_online_map);
615 if (node == MAX_NUMNODES)
616 node = first_node(node_online_map);
617
618 per_cpu(slab_reap_node, cpu) = node;
619}
620
621static void next_reap_node(void)
622{
623 int node = __this_cpu_read(slab_reap_node);
624
625 node = next_node(node, node_online_map);
626 if (unlikely(node >= MAX_NUMNODES))
627 node = first_node(node_online_map);
628 __this_cpu_write(slab_reap_node, node);
629}
630
631#else
632#define init_reap_node(cpu) do { } while (0)
633#define next_reap_node(void) do { } while (0)
634#endif
635
636
637
638
639
640
641
642
643static void start_cpu_timer(int cpu)
644{
645 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
646
647
648
649
650
651
652 if (keventd_up() && reap_work->work.func == NULL) {
653 init_reap_node(cpu);
654 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
655 schedule_delayed_work_on(cpu, reap_work,
656 __round_jiffies_relative(HZ, cpu));
657 }
658}
659
660static void init_arraycache(struct array_cache *ac, int limit, int batch)
661{
662
663
664
665
666
667
668
669 kmemleak_no_scan(ac);
670 if (ac) {
671 ac->avail = 0;
672 ac->limit = limit;
673 ac->batchcount = batch;
674 ac->touched = 0;
675 }
676}
677
678static struct array_cache *alloc_arraycache(int node, int entries,
679 int batchcount, gfp_t gfp)
680{
681 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
682 struct array_cache *ac = NULL;
683
684 ac = kmalloc_node(memsize, gfp, node);
685 init_arraycache(ac, entries, batchcount);
686 return ac;
687}
688
689static inline bool is_slab_pfmemalloc(struct page *page)
690{
691 return PageSlabPfmemalloc(page);
692}
693
694
695static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
696 struct array_cache *ac)
697{
698 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
699 struct page *page;
700 unsigned long flags;
701
702 if (!pfmemalloc_active)
703 return;
704
705 spin_lock_irqsave(&n->list_lock, flags);
706 list_for_each_entry(page, &n->slabs_full, lru)
707 if (is_slab_pfmemalloc(page))
708 goto out;
709
710 list_for_each_entry(page, &n->slabs_partial, lru)
711 if (is_slab_pfmemalloc(page))
712 goto out;
713
714 list_for_each_entry(page, &n->slabs_free, lru)
715 if (is_slab_pfmemalloc(page))
716 goto out;
717
718 pfmemalloc_active = false;
719out:
720 spin_unlock_irqrestore(&n->list_lock, flags);
721}
722
723static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
724 gfp_t flags, bool force_refill)
725{
726 int i;
727 void *objp = ac->entry[--ac->avail];
728
729
730 if (unlikely(is_obj_pfmemalloc(objp))) {
731 struct kmem_cache_node *n;
732
733 if (gfp_pfmemalloc_allowed(flags)) {
734 clear_obj_pfmemalloc(&objp);
735 return objp;
736 }
737
738
739 for (i = 0; i < ac->avail; i++) {
740
741 if (!is_obj_pfmemalloc(ac->entry[i])) {
742 objp = ac->entry[i];
743 ac->entry[i] = ac->entry[ac->avail];
744 ac->entry[ac->avail] = objp;
745 return objp;
746 }
747 }
748
749
750
751
752
753 n = get_node(cachep, numa_mem_id());
754 if (!list_empty(&n->slabs_free) && force_refill) {
755 struct page *page = virt_to_head_page(objp);
756 ClearPageSlabPfmemalloc(page);
757 clear_obj_pfmemalloc(&objp);
758 recheck_pfmemalloc_active(cachep, ac);
759 return objp;
760 }
761
762
763 ac->avail++;
764 objp = NULL;
765 }
766
767 return objp;
768}
769
770static inline void *ac_get_obj(struct kmem_cache *cachep,
771 struct array_cache *ac, gfp_t flags, bool force_refill)
772{
773 void *objp;
774
775 if (unlikely(sk_memalloc_socks()))
776 objp = __ac_get_obj(cachep, ac, flags, force_refill);
777 else
778 objp = ac->entry[--ac->avail];
779
780 return objp;
781}
782
783static noinline void *__ac_put_obj(struct kmem_cache *cachep,
784 struct array_cache *ac, void *objp)
785{
786 if (unlikely(pfmemalloc_active)) {
787
788 struct page *page = virt_to_head_page(objp);
789 if (PageSlabPfmemalloc(page))
790 set_obj_pfmemalloc(&objp);
791 }
792
793 return objp;
794}
795
796static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
797 void *objp)
798{
799 if (unlikely(sk_memalloc_socks()))
800 objp = __ac_put_obj(cachep, ac, objp);
801
802 ac->entry[ac->avail++] = objp;
803}
804
805
806
807
808
809
810
811static int transfer_objects(struct array_cache *to,
812 struct array_cache *from, unsigned int max)
813{
814
815 int nr = min3(from->avail, max, to->limit - to->avail);
816
817 if (!nr)
818 return 0;
819
820 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
821 sizeof(void *) *nr);
822
823 from->avail -= nr;
824 to->avail += nr;
825 return nr;
826}
827
828#ifndef CONFIG_NUMA
829
830#define drain_alien_cache(cachep, alien) do { } while (0)
831#define reap_alien(cachep, n) do { } while (0)
832
833static inline struct alien_cache **alloc_alien_cache(int node,
834 int limit, gfp_t gfp)
835{
836 return (struct alien_cache **)BAD_ALIEN_MAGIC;
837}
838
839static inline void free_alien_cache(struct alien_cache **ac_ptr)
840{
841}
842
843static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
844{
845 return 0;
846}
847
848static inline void *alternate_node_alloc(struct kmem_cache *cachep,
849 gfp_t flags)
850{
851 return NULL;
852}
853
854static inline void *____cache_alloc_node(struct kmem_cache *cachep,
855 gfp_t flags, int nodeid)
856{
857 return NULL;
858}
859
860#else
861
862static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
863static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
864
865static struct alien_cache *__alloc_alien_cache(int node, int entries,
866 int batch, gfp_t gfp)
867{
868 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
869 struct alien_cache *alc = NULL;
870
871 alc = kmalloc_node(memsize, gfp, node);
872 init_arraycache(&alc->ac, entries, batch);
873 spin_lock_init(&alc->lock);
874 return alc;
875}
876
877static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
878{
879 struct alien_cache **alc_ptr;
880 size_t memsize = sizeof(void *) * nr_node_ids;
881 int i;
882
883 if (limit > 1)
884 limit = 12;
885 alc_ptr = kzalloc_node(memsize, gfp, node);
886 if (!alc_ptr)
887 return NULL;
888
889 for_each_node(i) {
890 if (i == node || !node_online(i))
891 continue;
892 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
893 if (!alc_ptr[i]) {
894 for (i--; i >= 0; i--)
895 kfree(alc_ptr[i]);
896 kfree(alc_ptr);
897 return NULL;
898 }
899 }
900 return alc_ptr;
901}
902
903static void free_alien_cache(struct alien_cache **alc_ptr)
904{
905 int i;
906
907 if (!alc_ptr)
908 return;
909 for_each_node(i)
910 kfree(alc_ptr[i]);
911 kfree(alc_ptr);
912}
913
914static void __drain_alien_cache(struct kmem_cache *cachep,
915 struct array_cache *ac, int node,
916 struct list_head *list)
917{
918 struct kmem_cache_node *n = get_node(cachep, node);
919
920 if (ac->avail) {
921 spin_lock(&n->list_lock);
922
923
924
925
926
927 if (n->shared)
928 transfer_objects(n->shared, ac, ac->limit);
929
930 free_block(cachep, ac->entry, ac->avail, node, list);
931 ac->avail = 0;
932 spin_unlock(&n->list_lock);
933 }
934}
935
936
937
938
939static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
940{
941 int node = __this_cpu_read(slab_reap_node);
942
943 if (n->alien) {
944 struct alien_cache *alc = n->alien[node];
945 struct array_cache *ac;
946
947 if (alc) {
948 ac = &alc->ac;
949 if (ac->avail && spin_trylock_irq(&alc->lock)) {
950 LIST_HEAD(list);
951
952 __drain_alien_cache(cachep, ac, node, &list);
953 spin_unlock_irq(&alc->lock);
954 slabs_destroy(cachep, &list);
955 }
956 }
957 }
958}
959
960static void drain_alien_cache(struct kmem_cache *cachep,
961 struct alien_cache **alien)
962{
963 int i = 0;
964 struct alien_cache *alc;
965 struct array_cache *ac;
966 unsigned long flags;
967
968 for_each_online_node(i) {
969 alc = alien[i];
970 if (alc) {
971 LIST_HEAD(list);
972
973 ac = &alc->ac;
974 spin_lock_irqsave(&alc->lock, flags);
975 __drain_alien_cache(cachep, ac, i, &list);
976 spin_unlock_irqrestore(&alc->lock, flags);
977 slabs_destroy(cachep, &list);
978 }
979 }
980}
981
982static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
983 int node, int page_node)
984{
985 struct kmem_cache_node *n;
986 struct alien_cache *alien = NULL;
987 struct array_cache *ac;
988 LIST_HEAD(list);
989
990 n = get_node(cachep, node);
991 STATS_INC_NODEFREES(cachep);
992 if (n->alien && n->alien[page_node]) {
993 alien = n->alien[page_node];
994 ac = &alien->ac;
995 spin_lock(&alien->lock);
996 if (unlikely(ac->avail == ac->limit)) {
997 STATS_INC_ACOVERFLOW(cachep);
998 __drain_alien_cache(cachep, ac, page_node, &list);
999 }
1000 ac_put_obj(cachep, ac, objp);
1001 spin_unlock(&alien->lock);
1002 slabs_destroy(cachep, &list);
1003 } else {
1004 n = get_node(cachep, page_node);
1005 spin_lock(&n->list_lock);
1006 free_block(cachep, &objp, 1, page_node, &list);
1007 spin_unlock(&n->list_lock);
1008 slabs_destroy(cachep, &list);
1009 }
1010 return 1;
1011}
1012
1013static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1014{
1015 int page_node = page_to_nid(virt_to_page(objp));
1016 int node = numa_mem_id();
1017
1018
1019
1020
1021 if (likely(node == page_node))
1022 return 0;
1023
1024 return __cache_free_alien(cachep, objp, node, page_node);
1025}
1026#endif
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037static int init_cache_node_node(int node)
1038{
1039 struct kmem_cache *cachep;
1040 struct kmem_cache_node *n;
1041 const size_t memsize = sizeof(struct kmem_cache_node);
1042
1043 list_for_each_entry(cachep, &slab_caches, list) {
1044
1045
1046
1047
1048
1049 n = get_node(cachep, node);
1050 if (!n) {
1051 n = kmalloc_node(memsize, GFP_KERNEL, node);
1052 if (!n)
1053 return -ENOMEM;
1054 kmem_cache_node_init(n);
1055 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1056 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1057
1058
1059
1060
1061
1062
1063 cachep->node[node] = n;
1064 }
1065
1066 spin_lock_irq(&n->list_lock);
1067 n->free_limit =
1068 (1 + nr_cpus_node(node)) *
1069 cachep->batchcount + cachep->num;
1070 spin_unlock_irq(&n->list_lock);
1071 }
1072 return 0;
1073}
1074
1075static inline int slabs_tofree(struct kmem_cache *cachep,
1076 struct kmem_cache_node *n)
1077{
1078 return (n->free_objects + cachep->num - 1) / cachep->num;
1079}
1080
1081static void cpuup_canceled(long cpu)
1082{
1083 struct kmem_cache *cachep;
1084 struct kmem_cache_node *n = NULL;
1085 int node = cpu_to_mem(cpu);
1086 const struct cpumask *mask = cpumask_of_node(node);
1087
1088 list_for_each_entry(cachep, &slab_caches, list) {
1089 struct array_cache *nc;
1090 struct array_cache *shared;
1091 struct alien_cache **alien;
1092 LIST_HEAD(list);
1093
1094 n = get_node(cachep, node);
1095 if (!n)
1096 continue;
1097
1098 spin_lock_irq(&n->list_lock);
1099
1100
1101 n->free_limit -= cachep->batchcount;
1102
1103
1104 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1105 if (nc) {
1106 free_block(cachep, nc->entry, nc->avail, node, &list);
1107 nc->avail = 0;
1108 }
1109
1110 if (!cpumask_empty(mask)) {
1111 spin_unlock_irq(&n->list_lock);
1112 goto free_slab;
1113 }
1114
1115 shared = n->shared;
1116 if (shared) {
1117 free_block(cachep, shared->entry,
1118 shared->avail, node, &list);
1119 n->shared = NULL;
1120 }
1121
1122 alien = n->alien;
1123 n->alien = NULL;
1124
1125 spin_unlock_irq(&n->list_lock);
1126
1127 kfree(shared);
1128 if (alien) {
1129 drain_alien_cache(cachep, alien);
1130 free_alien_cache(alien);
1131 }
1132
1133free_slab:
1134 slabs_destroy(cachep, &list);
1135 }
1136
1137
1138
1139
1140
1141 list_for_each_entry(cachep, &slab_caches, list) {
1142 n = get_node(cachep, node);
1143 if (!n)
1144 continue;
1145 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1146 }
1147}
1148
1149static int cpuup_prepare(long cpu)
1150{
1151 struct kmem_cache *cachep;
1152 struct kmem_cache_node *n = NULL;
1153 int node = cpu_to_mem(cpu);
1154 int err;
1155
1156
1157
1158
1159
1160
1161
1162 err = init_cache_node_node(node);
1163 if (err < 0)
1164 goto bad;
1165
1166
1167
1168
1169
1170 list_for_each_entry(cachep, &slab_caches, list) {
1171 struct array_cache *shared = NULL;
1172 struct alien_cache **alien = NULL;
1173
1174 if (cachep->shared) {
1175 shared = alloc_arraycache(node,
1176 cachep->shared * cachep->batchcount,
1177 0xbaadf00d, GFP_KERNEL);
1178 if (!shared)
1179 goto bad;
1180 }
1181 if (use_alien_caches) {
1182 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1183 if (!alien) {
1184 kfree(shared);
1185 goto bad;
1186 }
1187 }
1188 n = get_node(cachep, node);
1189 BUG_ON(!n);
1190
1191 spin_lock_irq(&n->list_lock);
1192 if (!n->shared) {
1193
1194
1195
1196
1197 n->shared = shared;
1198 shared = NULL;
1199 }
1200#ifdef CONFIG_NUMA
1201 if (!n->alien) {
1202 n->alien = alien;
1203 alien = NULL;
1204 }
1205#endif
1206 spin_unlock_irq(&n->list_lock);
1207 kfree(shared);
1208 free_alien_cache(alien);
1209 }
1210
1211 return 0;
1212bad:
1213 cpuup_canceled(cpu);
1214 return -ENOMEM;
1215}
1216
1217static int cpuup_callback(struct notifier_block *nfb,
1218 unsigned long action, void *hcpu)
1219{
1220 long cpu = (long)hcpu;
1221 int err = 0;
1222
1223 switch (action) {
1224 case CPU_UP_PREPARE:
1225 case CPU_UP_PREPARE_FROZEN:
1226 mutex_lock(&slab_mutex);
1227 err = cpuup_prepare(cpu);
1228 mutex_unlock(&slab_mutex);
1229 break;
1230 case CPU_ONLINE:
1231 case CPU_ONLINE_FROZEN:
1232 start_cpu_timer(cpu);
1233 break;
1234#ifdef CONFIG_HOTPLUG_CPU
1235 case CPU_DOWN_PREPARE:
1236 case CPU_DOWN_PREPARE_FROZEN:
1237
1238
1239
1240
1241
1242
1243 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1244
1245 per_cpu(slab_reap_work, cpu).work.func = NULL;
1246 break;
1247 case CPU_DOWN_FAILED:
1248 case CPU_DOWN_FAILED_FROZEN:
1249 start_cpu_timer(cpu);
1250 break;
1251 case CPU_DEAD:
1252 case CPU_DEAD_FROZEN:
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262#endif
1263 case CPU_UP_CANCELED:
1264 case CPU_UP_CANCELED_FROZEN:
1265 mutex_lock(&slab_mutex);
1266 cpuup_canceled(cpu);
1267 mutex_unlock(&slab_mutex);
1268 break;
1269 }
1270 return notifier_from_errno(err);
1271}
1272
1273static struct notifier_block cpucache_notifier = {
1274 &cpuup_callback, NULL, 0
1275};
1276
1277#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1278
1279
1280
1281
1282
1283
1284
1285static int __meminit drain_cache_node_node(int node)
1286{
1287 struct kmem_cache *cachep;
1288 int ret = 0;
1289
1290 list_for_each_entry(cachep, &slab_caches, list) {
1291 struct kmem_cache_node *n;
1292
1293 n = get_node(cachep, node);
1294 if (!n)
1295 continue;
1296
1297 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1298
1299 if (!list_empty(&n->slabs_full) ||
1300 !list_empty(&n->slabs_partial)) {
1301 ret = -EBUSY;
1302 break;
1303 }
1304 }
1305 return ret;
1306}
1307
1308static int __meminit slab_memory_callback(struct notifier_block *self,
1309 unsigned long action, void *arg)
1310{
1311 struct memory_notify *mnb = arg;
1312 int ret = 0;
1313 int nid;
1314
1315 nid = mnb->status_change_nid;
1316 if (nid < 0)
1317 goto out;
1318
1319 switch (action) {
1320 case MEM_GOING_ONLINE:
1321 mutex_lock(&slab_mutex);
1322 ret = init_cache_node_node(nid);
1323 mutex_unlock(&slab_mutex);
1324 break;
1325 case MEM_GOING_OFFLINE:
1326 mutex_lock(&slab_mutex);
1327 ret = drain_cache_node_node(nid);
1328 mutex_unlock(&slab_mutex);
1329 break;
1330 case MEM_ONLINE:
1331 case MEM_OFFLINE:
1332 case MEM_CANCEL_ONLINE:
1333 case MEM_CANCEL_OFFLINE:
1334 break;
1335 }
1336out:
1337 return notifier_from_errno(ret);
1338}
1339#endif
1340
1341
1342
1343
1344static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1345 int nodeid)
1346{
1347 struct kmem_cache_node *ptr;
1348
1349 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1350 BUG_ON(!ptr);
1351
1352 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1353
1354
1355
1356 spin_lock_init(&ptr->list_lock);
1357
1358 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1359 cachep->node[nodeid] = ptr;
1360}
1361
1362
1363
1364
1365
1366static void __init set_up_node(struct kmem_cache *cachep, int index)
1367{
1368 int node;
1369
1370 for_each_online_node(node) {
1371 cachep->node[node] = &init_kmem_cache_node[index + node];
1372 cachep->node[node]->next_reap = jiffies +
1373 REAPTIMEOUT_NODE +
1374 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1375 }
1376}
1377
1378
1379
1380
1381
1382void __init kmem_cache_init(void)
1383{
1384 int i;
1385
1386 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1387 sizeof(struct rcu_head));
1388 kmem_cache = &kmem_cache_boot;
1389
1390 if (num_possible_nodes() == 1)
1391 use_alien_caches = 0;
1392
1393 for (i = 0; i < NUM_INIT_LISTS; i++)
1394 kmem_cache_node_init(&init_kmem_cache_node[i]);
1395
1396
1397
1398
1399
1400
1401 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1402 slab_max_order = SLAB_MAX_ORDER_HI;
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429 create_boot_cache(kmem_cache, "kmem_cache",
1430 offsetof(struct kmem_cache, node) +
1431 nr_node_ids * sizeof(struct kmem_cache_node *),
1432 SLAB_HWCACHE_ALIGN);
1433 list_add(&kmem_cache->list, &slab_caches);
1434 slab_state = PARTIAL;
1435
1436
1437
1438
1439
1440 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1441 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1442 slab_state = PARTIAL_NODE;
1443
1444 slab_early_init = 0;
1445
1446
1447 {
1448 int nid;
1449
1450 for_each_online_node(nid) {
1451 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1452
1453 init_list(kmalloc_caches[INDEX_NODE],
1454 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1455 }
1456 }
1457
1458 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1459}
1460
1461void __init kmem_cache_init_late(void)
1462{
1463 struct kmem_cache *cachep;
1464
1465 slab_state = UP;
1466
1467
1468 mutex_lock(&slab_mutex);
1469 list_for_each_entry(cachep, &slab_caches, list)
1470 if (enable_cpucache(cachep, GFP_NOWAIT))
1471 BUG();
1472 mutex_unlock(&slab_mutex);
1473
1474
1475 slab_state = FULL;
1476
1477
1478
1479
1480
1481 register_cpu_notifier(&cpucache_notifier);
1482
1483#ifdef CONFIG_NUMA
1484
1485
1486
1487
1488 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1489#endif
1490
1491
1492
1493
1494
1495}
1496
1497static int __init cpucache_init(void)
1498{
1499 int cpu;
1500
1501
1502
1503
1504 for_each_online_cpu(cpu)
1505 start_cpu_timer(cpu);
1506
1507
1508 slab_state = FULL;
1509 return 0;
1510}
1511__initcall(cpucache_init);
1512
1513static noinline void
1514slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1515{
1516#if DEBUG
1517 struct kmem_cache_node *n;
1518 struct page *page;
1519 unsigned long flags;
1520 int node;
1521 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1522 DEFAULT_RATELIMIT_BURST);
1523
1524 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1525 return;
1526
1527 printk(KERN_WARNING
1528 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1529 nodeid, gfpflags);
1530 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1531 cachep->name, cachep->size, cachep->gfporder);
1532
1533 for_each_kmem_cache_node(cachep, node, n) {
1534 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1535 unsigned long active_slabs = 0, num_slabs = 0;
1536
1537 spin_lock_irqsave(&n->list_lock, flags);
1538 list_for_each_entry(page, &n->slabs_full, lru) {
1539 active_objs += cachep->num;
1540 active_slabs++;
1541 }
1542 list_for_each_entry(page, &n->slabs_partial, lru) {
1543 active_objs += page->active;
1544 active_slabs++;
1545 }
1546 list_for_each_entry(page, &n->slabs_free, lru)
1547 num_slabs++;
1548
1549 free_objects += n->free_objects;
1550 spin_unlock_irqrestore(&n->list_lock, flags);
1551
1552 num_slabs += active_slabs;
1553 num_objs = num_slabs * cachep->num;
1554 printk(KERN_WARNING
1555 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1556 node, active_slabs, num_slabs, active_objs, num_objs,
1557 free_objects);
1558 }
1559#endif
1560}
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1571 int nodeid)
1572{
1573 struct page *page;
1574 int nr_pages;
1575
1576 flags |= cachep->allocflags;
1577 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1578 flags |= __GFP_RECLAIMABLE;
1579
1580 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1581 return NULL;
1582
1583 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1584 if (!page) {
1585 memcg_uncharge_slab(cachep, cachep->gfporder);
1586 slab_out_of_memory(cachep, flags, nodeid);
1587 return NULL;
1588 }
1589
1590
1591 if (unlikely(page->pfmemalloc))
1592 pfmemalloc_active = true;
1593
1594 nr_pages = (1 << cachep->gfporder);
1595 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1596 add_zone_page_state(page_zone(page),
1597 NR_SLAB_RECLAIMABLE, nr_pages);
1598 else
1599 add_zone_page_state(page_zone(page),
1600 NR_SLAB_UNRECLAIMABLE, nr_pages);
1601 __SetPageSlab(page);
1602 if (page->pfmemalloc)
1603 SetPageSlabPfmemalloc(page);
1604
1605 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1606 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1607
1608 if (cachep->ctor)
1609 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1610 else
1611 kmemcheck_mark_unallocated_pages(page, nr_pages);
1612 }
1613
1614 return page;
1615}
1616
1617
1618
1619
1620static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1621{
1622 const unsigned long nr_freed = (1 << cachep->gfporder);
1623
1624 kmemcheck_free_shadow(page, cachep->gfporder);
1625
1626 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1627 sub_zone_page_state(page_zone(page),
1628 NR_SLAB_RECLAIMABLE, nr_freed);
1629 else
1630 sub_zone_page_state(page_zone(page),
1631 NR_SLAB_UNRECLAIMABLE, nr_freed);
1632
1633 BUG_ON(!PageSlab(page));
1634 __ClearPageSlabPfmemalloc(page);
1635 __ClearPageSlab(page);
1636 page_mapcount_reset(page);
1637 page->mapping = NULL;
1638
1639 if (current->reclaim_state)
1640 current->reclaim_state->reclaimed_slab += nr_freed;
1641 __free_pages(page, cachep->gfporder);
1642 memcg_uncharge_slab(cachep, cachep->gfporder);
1643}
1644
1645static void kmem_rcu_free(struct rcu_head *head)
1646{
1647 struct kmem_cache *cachep;
1648 struct page *page;
1649
1650 page = container_of(head, struct page, rcu_head);
1651 cachep = page->slab_cache;
1652
1653 kmem_freepages(cachep, page);
1654}
1655
1656#if DEBUG
1657
1658#ifdef CONFIG_DEBUG_PAGEALLOC
1659static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1660 unsigned long caller)
1661{
1662 int size = cachep->object_size;
1663
1664 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1665
1666 if (size < 5 * sizeof(unsigned long))
1667 return;
1668
1669 *addr++ = 0x12345678;
1670 *addr++ = caller;
1671 *addr++ = smp_processor_id();
1672 size -= 3 * sizeof(unsigned long);
1673 {
1674 unsigned long *sptr = &caller;
1675 unsigned long svalue;
1676
1677 while (!kstack_end(sptr)) {
1678 svalue = *sptr++;
1679 if (kernel_text_address(svalue)) {
1680 *addr++ = svalue;
1681 size -= sizeof(unsigned long);
1682 if (size <= sizeof(unsigned long))
1683 break;
1684 }
1685 }
1686
1687 }
1688 *addr++ = 0x87654321;
1689}
1690#endif
1691
1692static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1693{
1694 int size = cachep->object_size;
1695 addr = &((char *)addr)[obj_offset(cachep)];
1696
1697 memset(addr, val, size);
1698 *(unsigned char *)(addr + size - 1) = POISON_END;
1699}
1700
1701static void dump_line(char *data, int offset, int limit)
1702{
1703 int i;
1704 unsigned char error = 0;
1705 int bad_count = 0;
1706
1707 printk(KERN_ERR "%03x: ", offset);
1708 for (i = 0; i < limit; i++) {
1709 if (data[offset + i] != POISON_FREE) {
1710 error = data[offset + i];
1711 bad_count++;
1712 }
1713 }
1714 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1715 &data[offset], limit, 1);
1716
1717 if (bad_count == 1) {
1718 error ^= POISON_FREE;
1719 if (!(error & (error - 1))) {
1720 printk(KERN_ERR "Single bit error detected. Probably "
1721 "bad RAM.\n");
1722#ifdef CONFIG_X86
1723 printk(KERN_ERR "Run memtest86+ or a similar memory "
1724 "test tool.\n");
1725#else
1726 printk(KERN_ERR "Run a memory test tool.\n");
1727#endif
1728 }
1729 }
1730}
1731#endif
1732
1733#if DEBUG
1734
1735static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1736{
1737 int i, size;
1738 char *realobj;
1739
1740 if (cachep->flags & SLAB_RED_ZONE) {
1741 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1742 *dbg_redzone1(cachep, objp),
1743 *dbg_redzone2(cachep, objp));
1744 }
1745
1746 if (cachep->flags & SLAB_STORE_USER) {
1747 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1748 *dbg_userword(cachep, objp),
1749 *dbg_userword(cachep, objp));
1750 }
1751 realobj = (char *)objp + obj_offset(cachep);
1752 size = cachep->object_size;
1753 for (i = 0; i < size && lines; i += 16, lines--) {
1754 int limit;
1755 limit = 16;
1756 if (i + limit > size)
1757 limit = size - i;
1758 dump_line(realobj, i, limit);
1759 }
1760}
1761
1762static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1763{
1764 char *realobj;
1765 int size, i;
1766 int lines = 0;
1767
1768 realobj = (char *)objp + obj_offset(cachep);
1769 size = cachep->object_size;
1770
1771 for (i = 0; i < size; i++) {
1772 char exp = POISON_FREE;
1773 if (i == size - 1)
1774 exp = POISON_END;
1775 if (realobj[i] != exp) {
1776 int limit;
1777
1778
1779 if (lines == 0) {
1780 printk(KERN_ERR
1781 "Slab corruption (%s): %s start=%p, len=%d\n",
1782 print_tainted(), cachep->name, realobj, size);
1783 print_objinfo(cachep, objp, 0);
1784 }
1785
1786 i = (i / 16) * 16;
1787 limit = 16;
1788 if (i + limit > size)
1789 limit = size - i;
1790 dump_line(realobj, i, limit);
1791 i += 16;
1792 lines++;
1793
1794 if (lines > 5)
1795 break;
1796 }
1797 }
1798 if (lines != 0) {
1799
1800
1801
1802 struct page *page = virt_to_head_page(objp);
1803 unsigned int objnr;
1804
1805 objnr = obj_to_index(cachep, page, objp);
1806 if (objnr) {
1807 objp = index_to_obj(cachep, page, objnr - 1);
1808 realobj = (char *)objp + obj_offset(cachep);
1809 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1810 realobj, size);
1811 print_objinfo(cachep, objp, 2);
1812 }
1813 if (objnr + 1 < cachep->num) {
1814 objp = index_to_obj(cachep, page, objnr + 1);
1815 realobj = (char *)objp + obj_offset(cachep);
1816 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1817 realobj, size);
1818 print_objinfo(cachep, objp, 2);
1819 }
1820 }
1821}
1822#endif
1823
1824#if DEBUG
1825static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1826 struct page *page)
1827{
1828 int i;
1829 for (i = 0; i < cachep->num; i++) {
1830 void *objp = index_to_obj(cachep, page, i);
1831
1832 if (cachep->flags & SLAB_POISON) {
1833#ifdef CONFIG_DEBUG_PAGEALLOC
1834 if (cachep->size % PAGE_SIZE == 0 &&
1835 OFF_SLAB(cachep))
1836 kernel_map_pages(virt_to_page(objp),
1837 cachep->size / PAGE_SIZE, 1);
1838 else
1839 check_poison_obj(cachep, objp);
1840#else
1841 check_poison_obj(cachep, objp);
1842#endif
1843 }
1844 if (cachep->flags & SLAB_RED_ZONE) {
1845 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1846 slab_error(cachep, "start of a freed object "
1847 "was overwritten");
1848 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1849 slab_error(cachep, "end of a freed object "
1850 "was overwritten");
1851 }
1852 }
1853}
1854#else
1855static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1856 struct page *page)
1857{
1858}
1859#endif
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1871{
1872 void *freelist;
1873
1874 freelist = page->freelist;
1875 slab_destroy_debugcheck(cachep, page);
1876 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1877 struct rcu_head *head;
1878
1879
1880
1881
1882
1883
1884
1885 head = (void *)&page->rcu_head;
1886 call_rcu(head, kmem_rcu_free);
1887
1888 } else {
1889 kmem_freepages(cachep, page);
1890 }
1891
1892
1893
1894
1895
1896 if (OFF_SLAB(cachep))
1897 kmem_cache_free(cachep->freelist_cache, freelist);
1898}
1899
1900static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1901{
1902 struct page *page, *n;
1903
1904 list_for_each_entry_safe(page, n, list, lru) {
1905 list_del(&page->lru);
1906 slab_destroy(cachep, page);
1907 }
1908}
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923static size_t calculate_slab_order(struct kmem_cache *cachep,
1924 size_t size, size_t align, unsigned long flags)
1925{
1926 unsigned long offslab_limit;
1927 size_t left_over = 0;
1928 int gfporder;
1929
1930 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1931 unsigned int num;
1932 size_t remainder;
1933
1934 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1935 if (!num)
1936 continue;
1937
1938
1939 if (num > SLAB_OBJ_MAX_NUM)
1940 break;
1941
1942 if (flags & CFLGS_OFF_SLAB) {
1943 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1944
1945
1946
1947
1948
1949 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1950 freelist_size_per_obj += sizeof(char);
1951 offslab_limit = size;
1952 offslab_limit /= freelist_size_per_obj;
1953
1954 if (num > offslab_limit)
1955 break;
1956 }
1957
1958
1959 cachep->num = num;
1960 cachep->gfporder = gfporder;
1961 left_over = remainder;
1962
1963
1964
1965
1966
1967
1968 if (flags & SLAB_RECLAIM_ACCOUNT)
1969 break;
1970
1971
1972
1973
1974
1975 if (gfporder >= slab_max_order)
1976 break;
1977
1978
1979
1980
1981 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1982 break;
1983 }
1984 return left_over;
1985}
1986
1987static struct array_cache __percpu *alloc_kmem_cache_cpus(
1988 struct kmem_cache *cachep, int entries, int batchcount)
1989{
1990 int cpu;
1991 size_t size;
1992 struct array_cache __percpu *cpu_cache;
1993
1994 size = sizeof(void *) * entries + sizeof(struct array_cache);
1995 cpu_cache = __alloc_percpu(size, sizeof(void *));
1996
1997 if (!cpu_cache)
1998 return NULL;
1999
2000 for_each_possible_cpu(cpu) {
2001 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2002 entries, batchcount);
2003 }
2004
2005 return cpu_cache;
2006}
2007
2008static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2009{
2010 if (slab_state >= FULL)
2011 return enable_cpucache(cachep, gfp);
2012
2013 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2014 if (!cachep->cpu_cache)
2015 return 1;
2016
2017 if (slab_state == DOWN) {
2018
2019 set_up_node(kmem_cache, CACHE_CACHE);
2020 } else if (slab_state == PARTIAL) {
2021
2022 set_up_node(cachep, SIZE_NODE);
2023 } else {
2024 int node;
2025
2026 for_each_online_node(node) {
2027 cachep->node[node] = kmalloc_node(
2028 sizeof(struct kmem_cache_node), gfp, node);
2029 BUG_ON(!cachep->node[node]);
2030 kmem_cache_node_init(cachep->node[node]);
2031 }
2032 }
2033
2034 cachep->node[numa_mem_id()]->next_reap =
2035 jiffies + REAPTIMEOUT_NODE +
2036 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2037
2038 cpu_cache_get(cachep)->avail = 0;
2039 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2040 cpu_cache_get(cachep)->batchcount = 1;
2041 cpu_cache_get(cachep)->touched = 0;
2042 cachep->batchcount = 1;
2043 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2044 return 0;
2045}
2046
2047unsigned long kmem_cache_flags(unsigned long object_size,
2048 unsigned long flags, const char *name,
2049 void (*ctor)(void *))
2050{
2051 return flags;
2052}
2053
2054struct kmem_cache *
2055__kmem_cache_alias(const char *name, size_t size, size_t align,
2056 unsigned long flags, void (*ctor)(void *))
2057{
2058 struct kmem_cache *cachep;
2059
2060 cachep = find_mergeable(size, align, flags, name, ctor);
2061 if (cachep) {
2062 cachep->refcount++;
2063
2064
2065
2066
2067
2068 cachep->object_size = max_t(int, cachep->object_size, size);
2069 }
2070 return cachep;
2071}
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094int
2095__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2096{
2097 size_t left_over, freelist_size;
2098 size_t ralign = BYTES_PER_WORD;
2099 gfp_t gfp;
2100 int err;
2101 size_t size = cachep->size;
2102
2103#if DEBUG
2104#if FORCED_DEBUG
2105
2106
2107
2108
2109
2110
2111 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2112 2 * sizeof(unsigned long long)))
2113 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2114 if (!(flags & SLAB_DESTROY_BY_RCU))
2115 flags |= SLAB_POISON;
2116#endif
2117 if (flags & SLAB_DESTROY_BY_RCU)
2118 BUG_ON(flags & SLAB_POISON);
2119#endif
2120
2121
2122
2123
2124
2125
2126 if (size & (BYTES_PER_WORD - 1)) {
2127 size += (BYTES_PER_WORD - 1);
2128 size &= ~(BYTES_PER_WORD - 1);
2129 }
2130
2131 if (flags & SLAB_RED_ZONE) {
2132 ralign = REDZONE_ALIGN;
2133
2134
2135 size += REDZONE_ALIGN - 1;
2136 size &= ~(REDZONE_ALIGN - 1);
2137 }
2138
2139
2140 if (ralign < cachep->align) {
2141 ralign = cachep->align;
2142 }
2143
2144 if (ralign > __alignof__(unsigned long long))
2145 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2146
2147
2148
2149 cachep->align = ralign;
2150
2151 if (slab_is_available())
2152 gfp = GFP_KERNEL;
2153 else
2154 gfp = GFP_NOWAIT;
2155
2156#if DEBUG
2157
2158
2159
2160
2161
2162 if (flags & SLAB_RED_ZONE) {
2163
2164 cachep->obj_offset += sizeof(unsigned long long);
2165 size += 2 * sizeof(unsigned long long);
2166 }
2167 if (flags & SLAB_STORE_USER) {
2168
2169
2170
2171
2172 if (flags & SLAB_RED_ZONE)
2173 size += REDZONE_ALIGN;
2174 else
2175 size += BYTES_PER_WORD;
2176 }
2177#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2178 if (size >= kmalloc_size(INDEX_NODE + 1)
2179 && cachep->object_size > cache_line_size()
2180 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2181 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2182 size = PAGE_SIZE;
2183 }
2184#endif
2185#endif
2186
2187
2188
2189
2190
2191
2192
2193 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2194 !(flags & SLAB_NOLEAKTRACE))
2195
2196
2197
2198
2199 flags |= CFLGS_OFF_SLAB;
2200
2201 size = ALIGN(size, cachep->align);
2202
2203
2204
2205
2206 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2207 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2208
2209 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2210
2211 if (!cachep->num)
2212 return -E2BIG;
2213
2214 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2215
2216
2217
2218
2219
2220 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2221 flags &= ~CFLGS_OFF_SLAB;
2222 left_over -= freelist_size;
2223 }
2224
2225 if (flags & CFLGS_OFF_SLAB) {
2226
2227 freelist_size = calculate_freelist_size(cachep->num, 0);
2228
2229#ifdef CONFIG_PAGE_POISONING
2230
2231
2232
2233
2234 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2235 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2236#endif
2237 }
2238
2239 cachep->colour_off = cache_line_size();
2240
2241 if (cachep->colour_off < cachep->align)
2242 cachep->colour_off = cachep->align;
2243 cachep->colour = left_over / cachep->colour_off;
2244 cachep->freelist_size = freelist_size;
2245 cachep->flags = flags;
2246 cachep->allocflags = __GFP_COMP;
2247 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2248 cachep->allocflags |= GFP_DMA;
2249 cachep->size = size;
2250 cachep->reciprocal_buffer_size = reciprocal_value(size);
2251
2252 if (flags & CFLGS_OFF_SLAB) {
2253 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2254
2255
2256
2257
2258
2259
2260
2261 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2262 }
2263
2264 err = setup_cpu_cache(cachep, gfp);
2265 if (err) {
2266 __kmem_cache_shutdown(cachep);
2267 return err;
2268 }
2269
2270 return 0;
2271}
2272
2273#if DEBUG
2274static void check_irq_off(void)
2275{
2276 BUG_ON(!irqs_disabled());
2277}
2278
2279static void check_irq_on(void)
2280{
2281 BUG_ON(irqs_disabled());
2282}
2283
2284static void check_spinlock_acquired(struct kmem_cache *cachep)
2285{
2286#ifdef CONFIG_SMP
2287 check_irq_off();
2288 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2289#endif
2290}
2291
2292static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2293{
2294#ifdef CONFIG_SMP
2295 check_irq_off();
2296 assert_spin_locked(&get_node(cachep, node)->list_lock);
2297#endif
2298}
2299
2300#else
2301#define check_irq_off() do { } while(0)
2302#define check_irq_on() do { } while(0)
2303#define check_spinlock_acquired(x) do { } while(0)
2304#define check_spinlock_acquired_node(x, y) do { } while(0)
2305#endif
2306
2307static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2308 struct array_cache *ac,
2309 int force, int node);
2310
2311static void do_drain(void *arg)
2312{
2313 struct kmem_cache *cachep = arg;
2314 struct array_cache *ac;
2315 int node = numa_mem_id();
2316 struct kmem_cache_node *n;
2317 LIST_HEAD(list);
2318
2319 check_irq_off();
2320 ac = cpu_cache_get(cachep);
2321 n = get_node(cachep, node);
2322 spin_lock(&n->list_lock);
2323 free_block(cachep, ac->entry, ac->avail, node, &list);
2324 spin_unlock(&n->list_lock);
2325 slabs_destroy(cachep, &list);
2326 ac->avail = 0;
2327}
2328
2329static void drain_cpu_caches(struct kmem_cache *cachep)
2330{
2331 struct kmem_cache_node *n;
2332 int node;
2333
2334 on_each_cpu(do_drain, cachep, 1);
2335 check_irq_on();
2336 for_each_kmem_cache_node(cachep, node, n)
2337 if (n->alien)
2338 drain_alien_cache(cachep, n->alien);
2339
2340 for_each_kmem_cache_node(cachep, node, n)
2341 drain_array(cachep, n, n->shared, 1, node);
2342}
2343
2344
2345
2346
2347
2348
2349
2350static int drain_freelist(struct kmem_cache *cache,
2351 struct kmem_cache_node *n, int tofree)
2352{
2353 struct list_head *p;
2354 int nr_freed;
2355 struct page *page;
2356
2357 nr_freed = 0;
2358 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2359
2360 spin_lock_irq(&n->list_lock);
2361 p = n->slabs_free.prev;
2362 if (p == &n->slabs_free) {
2363 spin_unlock_irq(&n->list_lock);
2364 goto out;
2365 }
2366
2367 page = list_entry(p, struct page, lru);
2368#if DEBUG
2369 BUG_ON(page->active);
2370#endif
2371 list_del(&page->lru);
2372
2373
2374
2375
2376 n->free_objects -= cache->num;
2377 spin_unlock_irq(&n->list_lock);
2378 slab_destroy(cache, page);
2379 nr_freed++;
2380 }
2381out:
2382 return nr_freed;
2383}
2384
2385int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2386{
2387 int ret = 0;
2388 int node;
2389 struct kmem_cache_node *n;
2390
2391 drain_cpu_caches(cachep);
2392
2393 check_irq_on();
2394 for_each_kmem_cache_node(cachep, node, n) {
2395 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2396
2397 ret += !list_empty(&n->slabs_full) ||
2398 !list_empty(&n->slabs_partial);
2399 }
2400 return (ret ? 1 : 0);
2401}
2402
2403int __kmem_cache_shutdown(struct kmem_cache *cachep)
2404{
2405 int i;
2406 struct kmem_cache_node *n;
2407 int rc = __kmem_cache_shrink(cachep, false);
2408
2409 if (rc)
2410 return rc;
2411
2412 free_percpu(cachep->cpu_cache);
2413
2414
2415 for_each_kmem_cache_node(cachep, i, n) {
2416 kfree(n->shared);
2417 free_alien_cache(n->alien);
2418 kfree(n);
2419 cachep->node[i] = NULL;
2420 }
2421 return 0;
2422}
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438static void *alloc_slabmgmt(struct kmem_cache *cachep,
2439 struct page *page, int colour_off,
2440 gfp_t local_flags, int nodeid)
2441{
2442 void *freelist;
2443 void *addr = page_address(page);
2444
2445 if (OFF_SLAB(cachep)) {
2446
2447 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2448 local_flags, nodeid);
2449 if (!freelist)
2450 return NULL;
2451 } else {
2452 freelist = addr + colour_off;
2453 colour_off += cachep->freelist_size;
2454 }
2455 page->active = 0;
2456 page->s_mem = addr + colour_off;
2457 return freelist;
2458}
2459
2460static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2461{
2462 return ((freelist_idx_t *)page->freelist)[idx];
2463}
2464
2465static inline void set_free_obj(struct page *page,
2466 unsigned int idx, freelist_idx_t val)
2467{
2468 ((freelist_idx_t *)(page->freelist))[idx] = val;
2469}
2470
2471static void cache_init_objs(struct kmem_cache *cachep,
2472 struct page *page)
2473{
2474 int i;
2475
2476 for (i = 0; i < cachep->num; i++) {
2477 void *objp = index_to_obj(cachep, page, i);
2478#if DEBUG
2479
2480 if (cachep->flags & SLAB_POISON)
2481 poison_obj(cachep, objp, POISON_FREE);
2482 if (cachep->flags & SLAB_STORE_USER)
2483 *dbg_userword(cachep, objp) = NULL;
2484
2485 if (cachep->flags & SLAB_RED_ZONE) {
2486 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2487 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2488 }
2489
2490
2491
2492
2493
2494 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2495 cachep->ctor(objp + obj_offset(cachep));
2496
2497 if (cachep->flags & SLAB_RED_ZONE) {
2498 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2499 slab_error(cachep, "constructor overwrote the"
2500 " end of an object");
2501 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2502 slab_error(cachep, "constructor overwrote the"
2503 " start of an object");
2504 }
2505 if ((cachep->size % PAGE_SIZE) == 0 &&
2506 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2507 kernel_map_pages(virt_to_page(objp),
2508 cachep->size / PAGE_SIZE, 0);
2509#else
2510 if (cachep->ctor)
2511 cachep->ctor(objp);
2512#endif
2513 set_obj_status(page, i, OBJECT_FREE);
2514 set_free_obj(page, i, i);
2515 }
2516}
2517
2518static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2519{
2520 if (CONFIG_ZONE_DMA_FLAG) {
2521 if (flags & GFP_DMA)
2522 BUG_ON(!(cachep->allocflags & GFP_DMA));
2523 else
2524 BUG_ON(cachep->allocflags & GFP_DMA);
2525 }
2526}
2527
2528static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2529 int nodeid)
2530{
2531 void *objp;
2532
2533 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2534 page->active++;
2535#if DEBUG
2536 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2537#endif
2538
2539 return objp;
2540}
2541
2542static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2543 void *objp, int nodeid)
2544{
2545 unsigned int objnr = obj_to_index(cachep, page, objp);
2546#if DEBUG
2547 unsigned int i;
2548
2549
2550 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2551
2552
2553 for (i = page->active; i < cachep->num; i++) {
2554 if (get_free_obj(page, i) == objnr) {
2555 printk(KERN_ERR "slab: double free detected in cache "
2556 "'%s', objp %p\n", cachep->name, objp);
2557 BUG();
2558 }
2559 }
2560#endif
2561 page->active--;
2562 set_free_obj(page, page->active, objnr);
2563}
2564
2565
2566
2567
2568
2569
2570static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2571 void *freelist)
2572{
2573 page->slab_cache = cache;
2574 page->freelist = freelist;
2575}
2576
2577
2578
2579
2580
2581static int cache_grow(struct kmem_cache *cachep,
2582 gfp_t flags, int nodeid, struct page *page)
2583{
2584 void *freelist;
2585 size_t offset;
2586 gfp_t local_flags;
2587 struct kmem_cache_node *n;
2588
2589
2590
2591
2592
2593 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2594 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2595 BUG();
2596 }
2597 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2598
2599
2600 check_irq_off();
2601 n = get_node(cachep, nodeid);
2602 spin_lock(&n->list_lock);
2603
2604
2605 offset = n->colour_next;
2606 n->colour_next++;
2607 if (n->colour_next >= cachep->colour)
2608 n->colour_next = 0;
2609 spin_unlock(&n->list_lock);
2610
2611 offset *= cachep->colour_off;
2612
2613 if (local_flags & __GFP_WAIT)
2614 local_irq_enable();
2615
2616
2617
2618
2619
2620
2621
2622 kmem_flagcheck(cachep, flags);
2623
2624
2625
2626
2627
2628 if (!page)
2629 page = kmem_getpages(cachep, local_flags, nodeid);
2630 if (!page)
2631 goto failed;
2632
2633
2634 freelist = alloc_slabmgmt(cachep, page, offset,
2635 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2636 if (!freelist)
2637 goto opps1;
2638
2639 slab_map_pages(cachep, page, freelist);
2640
2641 cache_init_objs(cachep, page);
2642
2643 if (local_flags & __GFP_WAIT)
2644 local_irq_disable();
2645 check_irq_off();
2646 spin_lock(&n->list_lock);
2647
2648
2649 list_add_tail(&page->lru, &(n->slabs_free));
2650 STATS_INC_GROWN(cachep);
2651 n->free_objects += cachep->num;
2652 spin_unlock(&n->list_lock);
2653 return 1;
2654opps1:
2655 kmem_freepages(cachep, page);
2656failed:
2657 if (local_flags & __GFP_WAIT)
2658 local_irq_disable();
2659 return 0;
2660}
2661
2662#if DEBUG
2663
2664
2665
2666
2667
2668
2669static void kfree_debugcheck(const void *objp)
2670{
2671 if (!virt_addr_valid(objp)) {
2672 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2673 (unsigned long)objp);
2674 BUG();
2675 }
2676}
2677
2678static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2679{
2680 unsigned long long redzone1, redzone2;
2681
2682 redzone1 = *dbg_redzone1(cache, obj);
2683 redzone2 = *dbg_redzone2(cache, obj);
2684
2685
2686
2687
2688 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2689 return;
2690
2691 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2692 slab_error(cache, "double free detected");
2693 else
2694 slab_error(cache, "memory outside object was overwritten");
2695
2696 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2697 obj, redzone1, redzone2);
2698}
2699
2700static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2701 unsigned long caller)
2702{
2703 unsigned int objnr;
2704 struct page *page;
2705
2706 BUG_ON(virt_to_cache(objp) != cachep);
2707
2708 objp -= obj_offset(cachep);
2709 kfree_debugcheck(objp);
2710 page = virt_to_head_page(objp);
2711
2712 if (cachep->flags & SLAB_RED_ZONE) {
2713 verify_redzone_free(cachep, objp);
2714 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2715 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2716 }
2717 if (cachep->flags & SLAB_STORE_USER)
2718 *dbg_userword(cachep, objp) = (void *)caller;
2719
2720 objnr = obj_to_index(cachep, page, objp);
2721
2722 BUG_ON(objnr >= cachep->num);
2723 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2724
2725 set_obj_status(page, objnr, OBJECT_FREE);
2726 if (cachep->flags & SLAB_POISON) {
2727#ifdef CONFIG_DEBUG_PAGEALLOC
2728 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2729 store_stackinfo(cachep, objp, caller);
2730 kernel_map_pages(virt_to_page(objp),
2731 cachep->size / PAGE_SIZE, 0);
2732 } else {
2733 poison_obj(cachep, objp, POISON_FREE);
2734 }
2735#else
2736 poison_obj(cachep, objp, POISON_FREE);
2737#endif
2738 }
2739 return objp;
2740}
2741
2742#else
2743#define kfree_debugcheck(x) do { } while(0)
2744#define cache_free_debugcheck(x,objp,z) (objp)
2745#endif
2746
2747static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2748 bool force_refill)
2749{
2750 int batchcount;
2751 struct kmem_cache_node *n;
2752 struct array_cache *ac;
2753 int node;
2754
2755 check_irq_off();
2756 node = numa_mem_id();
2757 if (unlikely(force_refill))
2758 goto force_grow;
2759retry:
2760 ac = cpu_cache_get(cachep);
2761 batchcount = ac->batchcount;
2762 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2763
2764
2765
2766
2767
2768 batchcount = BATCHREFILL_LIMIT;
2769 }
2770 n = get_node(cachep, node);
2771
2772 BUG_ON(ac->avail > 0 || !n);
2773 spin_lock(&n->list_lock);
2774
2775
2776 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2777 n->shared->touched = 1;
2778 goto alloc_done;
2779 }
2780
2781 while (batchcount > 0) {
2782 struct list_head *entry;
2783 struct page *page;
2784
2785 entry = n->slabs_partial.next;
2786 if (entry == &n->slabs_partial) {
2787 n->free_touched = 1;
2788 entry = n->slabs_free.next;
2789 if (entry == &n->slabs_free)
2790 goto must_grow;
2791 }
2792
2793 page = list_entry(entry, struct page, lru);
2794 check_spinlock_acquired(cachep);
2795
2796
2797
2798
2799
2800
2801 BUG_ON(page->active >= cachep->num);
2802
2803 while (page->active < cachep->num && batchcount--) {
2804 STATS_INC_ALLOCED(cachep);
2805 STATS_INC_ACTIVE(cachep);
2806 STATS_SET_HIGH(cachep);
2807
2808 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2809 node));
2810 }
2811
2812
2813 list_del(&page->lru);
2814 if (page->active == cachep->num)
2815 list_add(&page->lru, &n->slabs_full);
2816 else
2817 list_add(&page->lru, &n->slabs_partial);
2818 }
2819
2820must_grow:
2821 n->free_objects -= ac->avail;
2822alloc_done:
2823 spin_unlock(&n->list_lock);
2824
2825 if (unlikely(!ac->avail)) {
2826 int x;
2827force_grow:
2828 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2829
2830
2831 ac = cpu_cache_get(cachep);
2832 node = numa_mem_id();
2833
2834
2835 if (!x && (ac->avail == 0 || force_refill))
2836 return NULL;
2837
2838 if (!ac->avail)
2839 goto retry;
2840 }
2841 ac->touched = 1;
2842
2843 return ac_get_obj(cachep, ac, flags, force_refill);
2844}
2845
2846static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2847 gfp_t flags)
2848{
2849 might_sleep_if(flags & __GFP_WAIT);
2850#if DEBUG
2851 kmem_flagcheck(cachep, flags);
2852#endif
2853}
2854
2855#if DEBUG
2856static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2857 gfp_t flags, void *objp, unsigned long caller)
2858{
2859 struct page *page;
2860
2861 if (!objp)
2862 return objp;
2863 if (cachep->flags & SLAB_POISON) {
2864#ifdef CONFIG_DEBUG_PAGEALLOC
2865 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2866 kernel_map_pages(virt_to_page(objp),
2867 cachep->size / PAGE_SIZE, 1);
2868 else
2869 check_poison_obj(cachep, objp);
2870#else
2871 check_poison_obj(cachep, objp);
2872#endif
2873 poison_obj(cachep, objp, POISON_INUSE);
2874 }
2875 if (cachep->flags & SLAB_STORE_USER)
2876 *dbg_userword(cachep, objp) = (void *)caller;
2877
2878 if (cachep->flags & SLAB_RED_ZONE) {
2879 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2880 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2881 slab_error(cachep, "double free, or memory outside"
2882 " object was overwritten");
2883 printk(KERN_ERR
2884 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2885 objp, *dbg_redzone1(cachep, objp),
2886 *dbg_redzone2(cachep, objp));
2887 }
2888 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2889 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2890 }
2891
2892 page = virt_to_head_page(objp);
2893 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2894 objp += obj_offset(cachep);
2895 if (cachep->ctor && cachep->flags & SLAB_POISON)
2896 cachep->ctor(objp);
2897 if (ARCH_SLAB_MINALIGN &&
2898 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2899 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2900 objp, (int)ARCH_SLAB_MINALIGN);
2901 }
2902 return objp;
2903}
2904#else
2905#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2906#endif
2907
2908static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2909{
2910 if (unlikely(cachep == kmem_cache))
2911 return false;
2912
2913 return should_failslab(cachep->object_size, flags, cachep->flags);
2914}
2915
2916static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2917{
2918 void *objp;
2919 struct array_cache *ac;
2920 bool force_refill = false;
2921
2922 check_irq_off();
2923
2924 ac = cpu_cache_get(cachep);
2925 if (likely(ac->avail)) {
2926 ac->touched = 1;
2927 objp = ac_get_obj(cachep, ac, flags, false);
2928
2929
2930
2931
2932
2933 if (objp) {
2934 STATS_INC_ALLOCHIT(cachep);
2935 goto out;
2936 }
2937 force_refill = true;
2938 }
2939
2940 STATS_INC_ALLOCMISS(cachep);
2941 objp = cache_alloc_refill(cachep, flags, force_refill);
2942
2943
2944
2945
2946 ac = cpu_cache_get(cachep);
2947
2948out:
2949
2950
2951
2952
2953
2954 if (objp)
2955 kmemleak_erase(&ac->entry[ac->avail]);
2956 return objp;
2957}
2958
2959#ifdef CONFIG_NUMA
2960
2961
2962
2963
2964
2965
2966static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2967{
2968 int nid_alloc, nid_here;
2969
2970 if (in_interrupt() || (flags & __GFP_THISNODE))
2971 return NULL;
2972 nid_alloc = nid_here = numa_mem_id();
2973 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2974 nid_alloc = cpuset_slab_spread_node();
2975 else if (current->mempolicy)
2976 nid_alloc = mempolicy_slab_node();
2977 if (nid_alloc != nid_here)
2978 return ____cache_alloc_node(cachep, flags, nid_alloc);
2979 return NULL;
2980}
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2991{
2992 struct zonelist *zonelist;
2993 gfp_t local_flags;
2994 struct zoneref *z;
2995 struct zone *zone;
2996 enum zone_type high_zoneidx = gfp_zone(flags);
2997 void *obj = NULL;
2998 int nid;
2999 unsigned int cpuset_mems_cookie;
3000
3001 if (flags & __GFP_THISNODE)
3002 return NULL;
3003
3004 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3005
3006retry_cpuset:
3007 cpuset_mems_cookie = read_mems_allowed_begin();
3008 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3009
3010retry:
3011
3012
3013
3014
3015 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3016 nid = zone_to_nid(zone);
3017
3018 if (cpuset_zone_allowed(zone, flags) &&
3019 get_node(cache, nid) &&
3020 get_node(cache, nid)->free_objects) {
3021 obj = ____cache_alloc_node(cache,
3022 flags | GFP_THISNODE, nid);
3023 if (obj)
3024 break;
3025 }
3026 }
3027
3028 if (!obj) {
3029
3030
3031
3032
3033
3034
3035 struct page *page;
3036
3037 if (local_flags & __GFP_WAIT)
3038 local_irq_enable();
3039 kmem_flagcheck(cache, flags);
3040 page = kmem_getpages(cache, local_flags, numa_mem_id());
3041 if (local_flags & __GFP_WAIT)
3042 local_irq_disable();
3043 if (page) {
3044
3045
3046
3047 nid = page_to_nid(page);
3048 if (cache_grow(cache, flags, nid, page)) {
3049 obj = ____cache_alloc_node(cache,
3050 flags | GFP_THISNODE, nid);
3051 if (!obj)
3052
3053
3054
3055
3056
3057 goto retry;
3058 } else {
3059
3060 obj = NULL;
3061 }
3062 }
3063 }
3064
3065 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3066 goto retry_cpuset;
3067 return obj;
3068}
3069
3070
3071
3072
3073static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3074 int nodeid)
3075{
3076 struct list_head *entry;
3077 struct page *page;
3078 struct kmem_cache_node *n;
3079 void *obj;
3080 int x;
3081
3082 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3083 n = get_node(cachep, nodeid);
3084 BUG_ON(!n);
3085
3086retry:
3087 check_irq_off();
3088 spin_lock(&n->list_lock);
3089 entry = n->slabs_partial.next;
3090 if (entry == &n->slabs_partial) {
3091 n->free_touched = 1;
3092 entry = n->slabs_free.next;
3093 if (entry == &n->slabs_free)
3094 goto must_grow;
3095 }
3096
3097 page = list_entry(entry, struct page, lru);
3098 check_spinlock_acquired_node(cachep, nodeid);
3099
3100 STATS_INC_NODEALLOCS(cachep);
3101 STATS_INC_ACTIVE(cachep);
3102 STATS_SET_HIGH(cachep);
3103
3104 BUG_ON(page->active == cachep->num);
3105
3106 obj = slab_get_obj(cachep, page, nodeid);
3107 n->free_objects--;
3108
3109 list_del(&page->lru);
3110
3111 if (page->active == cachep->num)
3112 list_add(&page->lru, &n->slabs_full);
3113 else
3114 list_add(&page->lru, &n->slabs_partial);
3115
3116 spin_unlock(&n->list_lock);
3117 goto done;
3118
3119must_grow:
3120 spin_unlock(&n->list_lock);
3121 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3122 if (x)
3123 goto retry;
3124
3125 return fallback_alloc(cachep, flags);
3126
3127done:
3128 return obj;
3129}
3130
3131static __always_inline void *
3132slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3133 unsigned long caller)
3134{
3135 unsigned long save_flags;
3136 void *ptr;
3137 int slab_node = numa_mem_id();
3138
3139 flags &= gfp_allowed_mask;
3140
3141 lockdep_trace_alloc(flags);
3142
3143 if (slab_should_failslab(cachep, flags))
3144 return NULL;
3145
3146 cachep = memcg_kmem_get_cache(cachep, flags);
3147
3148 cache_alloc_debugcheck_before(cachep, flags);
3149 local_irq_save(save_flags);
3150
3151 if (nodeid == NUMA_NO_NODE)
3152 nodeid = slab_node;
3153
3154 if (unlikely(!get_node(cachep, nodeid))) {
3155
3156 ptr = fallback_alloc(cachep, flags);
3157 goto out;
3158 }
3159
3160 if (nodeid == slab_node) {
3161
3162
3163
3164
3165
3166
3167 ptr = ____cache_alloc(cachep, flags);
3168 if (ptr)
3169 goto out;
3170 }
3171
3172 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3173 out:
3174 local_irq_restore(save_flags);
3175 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3176 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3177 flags);
3178
3179 if (likely(ptr)) {
3180 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3181 if (unlikely(flags & __GFP_ZERO))
3182 memset(ptr, 0, cachep->object_size);
3183 }
3184
3185 memcg_kmem_put_cache(cachep);
3186 return ptr;
3187}
3188
3189static __always_inline void *
3190__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3191{
3192 void *objp;
3193
3194 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3195 objp = alternate_node_alloc(cache, flags);
3196 if (objp)
3197 goto out;
3198 }
3199 objp = ____cache_alloc(cache, flags);
3200
3201
3202
3203
3204
3205 if (!objp)
3206 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3207
3208 out:
3209 return objp;
3210}
3211#else
3212
3213static __always_inline void *
3214__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3215{
3216 return ____cache_alloc(cachep, flags);
3217}
3218
3219#endif
3220
3221static __always_inline void *
3222slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3223{
3224 unsigned long save_flags;
3225 void *objp;
3226
3227 flags &= gfp_allowed_mask;
3228
3229 lockdep_trace_alloc(flags);
3230
3231 if (slab_should_failslab(cachep, flags))
3232 return NULL;
3233
3234 cachep = memcg_kmem_get_cache(cachep, flags);
3235
3236 cache_alloc_debugcheck_before(cachep, flags);
3237 local_irq_save(save_flags);
3238 objp = __do_cache_alloc(cachep, flags);
3239 local_irq_restore(save_flags);
3240 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3241 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3242 flags);
3243 prefetchw(objp);
3244
3245 if (likely(objp)) {
3246 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3247 if (unlikely(flags & __GFP_ZERO))
3248 memset(objp, 0, cachep->object_size);
3249 }
3250
3251 memcg_kmem_put_cache(cachep);
3252 return objp;
3253}
3254
3255
3256
3257
3258
3259static void free_block(struct kmem_cache *cachep, void **objpp,
3260 int nr_objects, int node, struct list_head *list)
3261{
3262 int i;
3263 struct kmem_cache_node *n = get_node(cachep, node);
3264
3265 for (i = 0; i < nr_objects; i++) {
3266 void *objp;
3267 struct page *page;
3268
3269 clear_obj_pfmemalloc(&objpp[i]);
3270 objp = objpp[i];
3271
3272 page = virt_to_head_page(objp);
3273 list_del(&page->lru);
3274 check_spinlock_acquired_node(cachep, node);
3275 slab_put_obj(cachep, page, objp, node);
3276 STATS_DEC_ACTIVE(cachep);
3277 n->free_objects++;
3278
3279
3280 if (page->active == 0) {
3281 if (n->free_objects > n->free_limit) {
3282 n->free_objects -= cachep->num;
3283 list_add_tail(&page->lru, list);
3284 } else {
3285 list_add(&page->lru, &n->slabs_free);
3286 }
3287 } else {
3288
3289
3290
3291
3292 list_add_tail(&page->lru, &n->slabs_partial);
3293 }
3294 }
3295}
3296
3297static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3298{
3299 int batchcount;
3300 struct kmem_cache_node *n;
3301 int node = numa_mem_id();
3302 LIST_HEAD(list);
3303
3304 batchcount = ac->batchcount;
3305#if DEBUG
3306 BUG_ON(!batchcount || batchcount > ac->avail);
3307#endif
3308 check_irq_off();
3309 n = get_node(cachep, node);
3310 spin_lock(&n->list_lock);
3311 if (n->shared) {
3312 struct array_cache *shared_array = n->shared;
3313 int max = shared_array->limit - shared_array->avail;
3314 if (max) {
3315 if (batchcount > max)
3316 batchcount = max;
3317 memcpy(&(shared_array->entry[shared_array->avail]),
3318 ac->entry, sizeof(void *) * batchcount);
3319 shared_array->avail += batchcount;
3320 goto free_done;
3321 }
3322 }
3323
3324 free_block(cachep, ac->entry, batchcount, node, &list);
3325free_done:
3326#if STATS
3327 {
3328 int i = 0;
3329 struct list_head *p;
3330
3331 p = n->slabs_free.next;
3332 while (p != &(n->slabs_free)) {
3333 struct page *page;
3334
3335 page = list_entry(p, struct page, lru);
3336 BUG_ON(page->active);
3337
3338 i++;
3339 p = p->next;
3340 }
3341 STATS_SET_FREEABLE(cachep, i);
3342 }
3343#endif
3344 spin_unlock(&n->list_lock);
3345 slabs_destroy(cachep, &list);
3346 ac->avail -= batchcount;
3347 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3348}
3349
3350
3351
3352
3353
3354static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3355 unsigned long caller)
3356{
3357 struct array_cache *ac = cpu_cache_get(cachep);
3358
3359 check_irq_off();
3360 kmemleak_free_recursive(objp, cachep->flags);
3361 objp = cache_free_debugcheck(cachep, objp, caller);
3362
3363 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3364
3365
3366
3367
3368
3369
3370
3371
3372 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3373 return;
3374
3375 if (ac->avail < ac->limit) {
3376 STATS_INC_FREEHIT(cachep);
3377 } else {
3378 STATS_INC_FREEMISS(cachep);
3379 cache_flusharray(cachep, ac);
3380 }
3381
3382 ac_put_obj(cachep, ac, objp);
3383}
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3394{
3395 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3396
3397 trace_kmem_cache_alloc(_RET_IP_, ret,
3398 cachep->object_size, cachep->size, flags);
3399
3400 return ret;
3401}
3402EXPORT_SYMBOL(kmem_cache_alloc);
3403
3404#ifdef CONFIG_TRACING
3405void *
3406kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3407{
3408 void *ret;
3409
3410 ret = slab_alloc(cachep, flags, _RET_IP_);
3411
3412 trace_kmalloc(_RET_IP_, ret,
3413 size, cachep->size, flags);
3414 return ret;
3415}
3416EXPORT_SYMBOL(kmem_cache_alloc_trace);
3417#endif
3418
3419#ifdef CONFIG_NUMA
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3432{
3433 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3434
3435 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3436 cachep->object_size, cachep->size,
3437 flags, nodeid);
3438
3439 return ret;
3440}
3441EXPORT_SYMBOL(kmem_cache_alloc_node);
3442
3443#ifdef CONFIG_TRACING
3444void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3445 gfp_t flags,
3446 int nodeid,
3447 size_t size)
3448{
3449 void *ret;
3450
3451 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3452
3453 trace_kmalloc_node(_RET_IP_, ret,
3454 size, cachep->size,
3455 flags, nodeid);
3456 return ret;
3457}
3458EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3459#endif
3460
3461static __always_inline void *
3462__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3463{
3464 struct kmem_cache *cachep;
3465
3466 cachep = kmalloc_slab(size, flags);
3467 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3468 return cachep;
3469 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3470}
3471
3472void *__kmalloc_node(size_t size, gfp_t flags, int node)
3473{
3474 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3475}
3476EXPORT_SYMBOL(__kmalloc_node);
3477
3478void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3479 int node, unsigned long caller)
3480{
3481 return __do_kmalloc_node(size, flags, node, caller);
3482}
3483EXPORT_SYMBOL(__kmalloc_node_track_caller);
3484#endif
3485
3486
3487
3488
3489
3490
3491
3492static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3493 unsigned long caller)
3494{
3495 struct kmem_cache *cachep;
3496 void *ret;
3497
3498 cachep = kmalloc_slab(size, flags);
3499 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3500 return cachep;
3501 ret = slab_alloc(cachep, flags, caller);
3502
3503 trace_kmalloc(caller, ret,
3504 size, cachep->size, flags);
3505
3506 return ret;
3507}
3508
3509void *__kmalloc(size_t size, gfp_t flags)
3510{
3511 return __do_kmalloc(size, flags, _RET_IP_);
3512}
3513EXPORT_SYMBOL(__kmalloc);
3514
3515void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3516{
3517 return __do_kmalloc(size, flags, caller);
3518}
3519EXPORT_SYMBOL(__kmalloc_track_caller);
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3530{
3531 unsigned long flags;
3532 cachep = cache_from_obj(cachep, objp);
3533 if (!cachep)
3534 return;
3535
3536 local_irq_save(flags);
3537 debug_check_no_locks_freed(objp, cachep->object_size);
3538 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3539 debug_check_no_obj_freed(objp, cachep->object_size);
3540 __cache_free(cachep, objp, _RET_IP_);
3541 local_irq_restore(flags);
3542
3543 trace_kmem_cache_free(_RET_IP_, objp);
3544}
3545EXPORT_SYMBOL(kmem_cache_free);
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556void kfree(const void *objp)
3557{
3558 struct kmem_cache *c;
3559 unsigned long flags;
3560
3561 trace_kfree(_RET_IP_, objp);
3562
3563 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3564 return;
3565 local_irq_save(flags);
3566 kfree_debugcheck(objp);
3567 c = virt_to_cache(objp);
3568 debug_check_no_locks_freed(objp, c->object_size);
3569
3570 debug_check_no_obj_freed(objp, c->object_size);
3571 __cache_free(c, (void *)objp, _RET_IP_);
3572 local_irq_restore(flags);
3573}
3574EXPORT_SYMBOL(kfree);
3575
3576
3577
3578
3579static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3580{
3581 int node;
3582 struct kmem_cache_node *n;
3583 struct array_cache *new_shared;
3584 struct alien_cache **new_alien = NULL;
3585
3586 for_each_online_node(node) {
3587
3588 if (use_alien_caches) {
3589 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3590 if (!new_alien)
3591 goto fail;
3592 }
3593
3594 new_shared = NULL;
3595 if (cachep->shared) {
3596 new_shared = alloc_arraycache(node,
3597 cachep->shared*cachep->batchcount,
3598 0xbaadf00d, gfp);
3599 if (!new_shared) {
3600 free_alien_cache(new_alien);
3601 goto fail;
3602 }
3603 }
3604
3605 n = get_node(cachep, node);
3606 if (n) {
3607 struct array_cache *shared = n->shared;
3608 LIST_HEAD(list);
3609
3610 spin_lock_irq(&n->list_lock);
3611
3612 if (shared)
3613 free_block(cachep, shared->entry,
3614 shared->avail, node, &list);
3615
3616 n->shared = new_shared;
3617 if (!n->alien) {
3618 n->alien = new_alien;
3619 new_alien = NULL;
3620 }
3621 n->free_limit = (1 + nr_cpus_node(node)) *
3622 cachep->batchcount + cachep->num;
3623 spin_unlock_irq(&n->list_lock);
3624 slabs_destroy(cachep, &list);
3625 kfree(shared);
3626 free_alien_cache(new_alien);
3627 continue;
3628 }
3629 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3630 if (!n) {
3631 free_alien_cache(new_alien);
3632 kfree(new_shared);
3633 goto fail;
3634 }
3635
3636 kmem_cache_node_init(n);
3637 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3638 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3639 n->shared = new_shared;
3640 n->alien = new_alien;
3641 n->free_limit = (1 + nr_cpus_node(node)) *
3642 cachep->batchcount + cachep->num;
3643 cachep->node[node] = n;
3644 }
3645 return 0;
3646
3647fail:
3648 if (!cachep->list.next) {
3649
3650 node--;
3651 while (node >= 0) {
3652 n = get_node(cachep, node);
3653 if (n) {
3654 kfree(n->shared);
3655 free_alien_cache(n->alien);
3656 kfree(n);
3657 cachep->node[node] = NULL;
3658 }
3659 node--;
3660 }
3661 }
3662 return -ENOMEM;
3663}
3664
3665
3666static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3667 int batchcount, int shared, gfp_t gfp)
3668{
3669 struct array_cache __percpu *cpu_cache, *prev;
3670 int cpu;
3671
3672 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3673 if (!cpu_cache)
3674 return -ENOMEM;
3675
3676 prev = cachep->cpu_cache;
3677 cachep->cpu_cache = cpu_cache;
3678 kick_all_cpus_sync();
3679
3680 check_irq_on();
3681 cachep->batchcount = batchcount;
3682 cachep->limit = limit;
3683 cachep->shared = shared;
3684
3685 if (!prev)
3686 goto alloc_node;
3687
3688 for_each_online_cpu(cpu) {
3689 LIST_HEAD(list);
3690 int node;
3691 struct kmem_cache_node *n;
3692 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3693
3694 node = cpu_to_mem(cpu);
3695 n = get_node(cachep, node);
3696 spin_lock_irq(&n->list_lock);
3697 free_block(cachep, ac->entry, ac->avail, node, &list);
3698 spin_unlock_irq(&n->list_lock);
3699 slabs_destroy(cachep, &list);
3700 }
3701 free_percpu(prev);
3702
3703alloc_node:
3704 return alloc_kmem_cache_node(cachep, gfp);
3705}
3706
3707static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3708 int batchcount, int shared, gfp_t gfp)
3709{
3710 int ret;
3711 struct kmem_cache *c;
3712
3713 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3714
3715 if (slab_state < FULL)
3716 return ret;
3717
3718 if ((ret < 0) || !is_root_cache(cachep))
3719 return ret;
3720
3721 lockdep_assert_held(&slab_mutex);
3722 for_each_memcg_cache(c, cachep) {
3723
3724 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3725 }
3726
3727 return ret;
3728}
3729
3730
3731static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3732{
3733 int err;
3734 int limit = 0;
3735 int shared = 0;
3736 int batchcount = 0;
3737
3738 if (!is_root_cache(cachep)) {
3739 struct kmem_cache *root = memcg_root_cache(cachep);
3740 limit = root->limit;
3741 shared = root->shared;
3742 batchcount = root->batchcount;
3743 }
3744
3745 if (limit && shared && batchcount)
3746 goto skip_setup;
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756 if (cachep->size > 131072)
3757 limit = 1;
3758 else if (cachep->size > PAGE_SIZE)
3759 limit = 8;
3760 else if (cachep->size > 1024)
3761 limit = 24;
3762 else if (cachep->size > 256)
3763 limit = 54;
3764 else
3765 limit = 120;
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776 shared = 0;
3777 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3778 shared = 8;
3779
3780#if DEBUG
3781
3782
3783
3784
3785 if (limit > 32)
3786 limit = 32;
3787#endif
3788 batchcount = (limit + 1) / 2;
3789skip_setup:
3790 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3791 if (err)
3792 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3793 cachep->name, -err);
3794 return err;
3795}
3796
3797
3798
3799
3800
3801
3802static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3803 struct array_cache *ac, int force, int node)
3804{
3805 LIST_HEAD(list);
3806 int tofree;
3807
3808 if (!ac || !ac->avail)
3809 return;
3810 if (ac->touched && !force) {
3811 ac->touched = 0;
3812 } else {
3813 spin_lock_irq(&n->list_lock);
3814 if (ac->avail) {
3815 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3816 if (tofree > ac->avail)
3817 tofree = (ac->avail + 1) / 2;
3818 free_block(cachep, ac->entry, tofree, node, &list);
3819 ac->avail -= tofree;
3820 memmove(ac->entry, &(ac->entry[tofree]),
3821 sizeof(void *) * ac->avail);
3822 }
3823 spin_unlock_irq(&n->list_lock);
3824 slabs_destroy(cachep, &list);
3825 }
3826}
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840static void cache_reap(struct work_struct *w)
3841{
3842 struct kmem_cache *searchp;
3843 struct kmem_cache_node *n;
3844 int node = numa_mem_id();
3845 struct delayed_work *work = to_delayed_work(w);
3846
3847 if (!mutex_trylock(&slab_mutex))
3848
3849 goto out;
3850
3851 list_for_each_entry(searchp, &slab_caches, list) {
3852 check_irq_on();
3853
3854
3855
3856
3857
3858
3859 n = get_node(searchp, node);
3860
3861 reap_alien(searchp, n);
3862
3863 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3864
3865
3866
3867
3868
3869 if (time_after(n->next_reap, jiffies))
3870 goto next;
3871
3872 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3873
3874 drain_array(searchp, n, n->shared, 0, node);
3875
3876 if (n->free_touched)
3877 n->free_touched = 0;
3878 else {
3879 int freed;
3880
3881 freed = drain_freelist(searchp, n, (n->free_limit +
3882 5 * searchp->num - 1) / (5 * searchp->num));
3883 STATS_ADD_REAPED(searchp, freed);
3884 }
3885next:
3886 cond_resched();
3887 }
3888 check_irq_on();
3889 mutex_unlock(&slab_mutex);
3890 next_reap_node();
3891out:
3892
3893 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3894}
3895
3896#ifdef CONFIG_SLABINFO
3897void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3898{
3899 struct page *page;
3900 unsigned long active_objs;
3901 unsigned long num_objs;
3902 unsigned long active_slabs = 0;
3903 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3904 const char *name;
3905 char *error = NULL;
3906 int node;
3907 struct kmem_cache_node *n;
3908
3909 active_objs = 0;
3910 num_slabs = 0;
3911 for_each_kmem_cache_node(cachep, node, n) {
3912
3913 check_irq_on();
3914 spin_lock_irq(&n->list_lock);
3915
3916 list_for_each_entry(page, &n->slabs_full, lru) {
3917 if (page->active != cachep->num && !error)
3918 error = "slabs_full accounting error";
3919 active_objs += cachep->num;
3920 active_slabs++;
3921 }
3922 list_for_each_entry(page, &n->slabs_partial, lru) {
3923 if (page->active == cachep->num && !error)
3924 error = "slabs_partial accounting error";
3925 if (!page->active && !error)
3926 error = "slabs_partial accounting error";
3927 active_objs += page->active;
3928 active_slabs++;
3929 }
3930 list_for_each_entry(page, &n->slabs_free, lru) {
3931 if (page->active && !error)
3932 error = "slabs_free accounting error";
3933 num_slabs++;
3934 }
3935 free_objects += n->free_objects;
3936 if (n->shared)
3937 shared_avail += n->shared->avail;
3938
3939 spin_unlock_irq(&n->list_lock);
3940 }
3941 num_slabs += active_slabs;
3942 num_objs = num_slabs * cachep->num;
3943 if (num_objs - active_objs != free_objects && !error)
3944 error = "free_objects accounting error";
3945
3946 name = cachep->name;
3947 if (error)
3948 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3949
3950 sinfo->active_objs = active_objs;
3951 sinfo->num_objs = num_objs;
3952 sinfo->active_slabs = active_slabs;
3953 sinfo->num_slabs = num_slabs;
3954 sinfo->shared_avail = shared_avail;
3955 sinfo->limit = cachep->limit;
3956 sinfo->batchcount = cachep->batchcount;
3957 sinfo->shared = cachep->shared;
3958 sinfo->objects_per_slab = cachep->num;
3959 sinfo->cache_order = cachep->gfporder;
3960}
3961
3962void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3963{
3964#if STATS
3965 {
3966 unsigned long high = cachep->high_mark;
3967 unsigned long allocs = cachep->num_allocations;
3968 unsigned long grown = cachep->grown;
3969 unsigned long reaped = cachep->reaped;
3970 unsigned long errors = cachep->errors;
3971 unsigned long max_freeable = cachep->max_freeable;
3972 unsigned long node_allocs = cachep->node_allocs;
3973 unsigned long node_frees = cachep->node_frees;
3974 unsigned long overflows = cachep->node_overflow;
3975
3976 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
3977 "%4lu %4lu %4lu %4lu %4lu",
3978 allocs, high, grown,
3979 reaped, errors, max_freeable, node_allocs,
3980 node_frees, overflows);
3981 }
3982
3983 {
3984 unsigned long allochit = atomic_read(&cachep->allochit);
3985 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3986 unsigned long freehit = atomic_read(&cachep->freehit);
3987 unsigned long freemiss = atomic_read(&cachep->freemiss);
3988
3989 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3990 allochit, allocmiss, freehit, freemiss);
3991 }
3992#endif
3993}
3994
3995#define MAX_SLABINFO_WRITE 128
3996
3997
3998
3999
4000
4001
4002
4003ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4004 size_t count, loff_t *ppos)
4005{
4006 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4007 int limit, batchcount, shared, res;
4008 struct kmem_cache *cachep;
4009
4010 if (count > MAX_SLABINFO_WRITE)
4011 return -EINVAL;
4012 if (copy_from_user(&kbuf, buffer, count))
4013 return -EFAULT;
4014 kbuf[MAX_SLABINFO_WRITE] = '\0';
4015
4016 tmp = strchr(kbuf, ' ');
4017 if (!tmp)
4018 return -EINVAL;
4019 *tmp = '\0';
4020 tmp++;
4021 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4022 return -EINVAL;
4023
4024
4025 mutex_lock(&slab_mutex);
4026 res = -EINVAL;
4027 list_for_each_entry(cachep, &slab_caches, list) {
4028 if (!strcmp(cachep->name, kbuf)) {
4029 if (limit < 1 || batchcount < 1 ||
4030 batchcount > limit || shared < 0) {
4031 res = 0;
4032 } else {
4033 res = do_tune_cpucache(cachep, limit,
4034 batchcount, shared,
4035 GFP_KERNEL);
4036 }
4037 break;
4038 }
4039 }
4040 mutex_unlock(&slab_mutex);
4041 if (res >= 0)
4042 res = count;
4043 return res;
4044}
4045
4046#ifdef CONFIG_DEBUG_SLAB_LEAK
4047
4048static inline int add_caller(unsigned long *n, unsigned long v)
4049{
4050 unsigned long *p;
4051 int l;
4052 if (!v)
4053 return 1;
4054 l = n[1];
4055 p = n + 2;
4056 while (l) {
4057 int i = l/2;
4058 unsigned long *q = p + 2 * i;
4059 if (*q == v) {
4060 q[1]++;
4061 return 1;
4062 }
4063 if (*q > v) {
4064 l = i;
4065 } else {
4066 p = q + 2;
4067 l -= i + 1;
4068 }
4069 }
4070 if (++n[1] == n[0])
4071 return 0;
4072 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4073 p[0] = v;
4074 p[1] = 1;
4075 return 1;
4076}
4077
4078static void handle_slab(unsigned long *n, struct kmem_cache *c,
4079 struct page *page)
4080{
4081 void *p;
4082 int i;
4083
4084 if (n[0] == n[1])
4085 return;
4086 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4087 if (get_obj_status(page, i) != OBJECT_ACTIVE)
4088 continue;
4089
4090 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4091 return;
4092 }
4093}
4094
4095static void show_symbol(struct seq_file *m, unsigned long address)
4096{
4097#ifdef CONFIG_KALLSYMS
4098 unsigned long offset, size;
4099 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4100
4101 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4102 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4103 if (modname[0])
4104 seq_printf(m, " [%s]", modname);
4105 return;
4106 }
4107#endif
4108 seq_printf(m, "%p", (void *)address);
4109}
4110
4111static int leaks_show(struct seq_file *m, void *p)
4112{
4113 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4114 struct page *page;
4115 struct kmem_cache_node *n;
4116 const char *name;
4117 unsigned long *x = m->private;
4118 int node;
4119 int i;
4120
4121 if (!(cachep->flags & SLAB_STORE_USER))
4122 return 0;
4123 if (!(cachep->flags & SLAB_RED_ZONE))
4124 return 0;
4125
4126
4127
4128 x[1] = 0;
4129
4130 for_each_kmem_cache_node(cachep, node, n) {
4131
4132 check_irq_on();
4133 spin_lock_irq(&n->list_lock);
4134
4135 list_for_each_entry(page, &n->slabs_full, lru)
4136 handle_slab(x, cachep, page);
4137 list_for_each_entry(page, &n->slabs_partial, lru)
4138 handle_slab(x, cachep, page);
4139 spin_unlock_irq(&n->list_lock);
4140 }
4141 name = cachep->name;
4142 if (x[0] == x[1]) {
4143
4144 mutex_unlock(&slab_mutex);
4145 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4146 if (!m->private) {
4147
4148 m->private = x;
4149 mutex_lock(&slab_mutex);
4150 return -ENOMEM;
4151 }
4152 *(unsigned long *)m->private = x[0] * 2;
4153 kfree(x);
4154 mutex_lock(&slab_mutex);
4155
4156 m->count = m->size;
4157 return 0;
4158 }
4159 for (i = 0; i < x[1]; i++) {
4160 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4161 show_symbol(m, x[2*i+2]);
4162 seq_putc(m, '\n');
4163 }
4164
4165 return 0;
4166}
4167
4168static const struct seq_operations slabstats_op = {
4169 .start = slab_start,
4170 .next = slab_next,
4171 .stop = slab_stop,
4172 .show = leaks_show,
4173};
4174
4175static int slabstats_open(struct inode *inode, struct file *file)
4176{
4177 unsigned long *n;
4178
4179 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4180 if (!n)
4181 return -ENOMEM;
4182
4183 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4184
4185 return 0;
4186}
4187
4188static const struct file_operations proc_slabstats_operations = {
4189 .open = slabstats_open,
4190 .read = seq_read,
4191 .llseek = seq_lseek,
4192 .release = seq_release_private,
4193};
4194#endif
4195
4196static int __init slab_proc_init(void)
4197{
4198#ifdef CONFIG_DEBUG_SLAB_LEAK
4199 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4200#endif
4201 return 0;
4202}
4203module_init(slab_proc_init);
4204#endif
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218size_t ksize(const void *objp)
4219{
4220 BUG_ON(!objp);
4221 if (unlikely(objp == ZERO_SIZE_PTR))
4222 return 0;
4223
4224 return virt_to_cache(objp)->object_size;
4225}
4226EXPORT_SYMBOL(ksize);
4227