linux/mm/slab_common.c
<<
>>
Prefs
   1/*
   2 * Slab allocator functions that are independent of the allocator strategy
   3 *
   4 * (C) 2012 Christoph Lameter <cl@linux.com>
   5 */
   6#include <linux/slab.h>
   7
   8#include <linux/mm.h>
   9#include <linux/poison.h>
  10#include <linux/interrupt.h>
  11#include <linux/memory.h>
  12#include <linux/compiler.h>
  13#include <linux/module.h>
  14#include <linux/cpu.h>
  15#include <linux/uaccess.h>
  16#include <linux/seq_file.h>
  17#include <linux/proc_fs.h>
  18#include <asm/cacheflush.h>
  19#include <asm/tlbflush.h>
  20#include <asm/page.h>
  21#include <linux/memcontrol.h>
  22
  23#define CREATE_TRACE_POINTS
  24#include <trace/events/kmem.h>
  25
  26#include "slab.h"
  27
  28enum slab_state slab_state;
  29LIST_HEAD(slab_caches);
  30DEFINE_MUTEX(slab_mutex);
  31struct kmem_cache *kmem_cache;
  32
  33/*
  34 * Set of flags that will prevent slab merging
  35 */
  36#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  37                SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  38                SLAB_FAILSLAB)
  39
  40#define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  41                SLAB_CACHE_DMA | SLAB_NOTRACK)
  42
  43/*
  44 * Merge control. If this is set then no merging of slab caches will occur.
  45 * (Could be removed. This was introduced to pacify the merge skeptics.)
  46 */
  47static int slab_nomerge;
  48
  49static int __init setup_slab_nomerge(char *str)
  50{
  51        slab_nomerge = 1;
  52        return 1;
  53}
  54
  55#ifdef CONFIG_SLUB
  56__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
  57#endif
  58
  59__setup("slab_nomerge", setup_slab_nomerge);
  60
  61/*
  62 * Determine the size of a slab object
  63 */
  64unsigned int kmem_cache_size(struct kmem_cache *s)
  65{
  66        return s->object_size;
  67}
  68EXPORT_SYMBOL(kmem_cache_size);
  69
  70#ifdef CONFIG_DEBUG_VM
  71static int kmem_cache_sanity_check(const char *name, size_t size)
  72{
  73        struct kmem_cache *s = NULL;
  74
  75        if (!name || in_interrupt() || size < sizeof(void *) ||
  76                size > KMALLOC_MAX_SIZE) {
  77                pr_err("kmem_cache_create(%s) integrity check failed\n", name);
  78                return -EINVAL;
  79        }
  80
  81        list_for_each_entry(s, &slab_caches, list) {
  82                char tmp;
  83                int res;
  84
  85                /*
  86                 * This happens when the module gets unloaded and doesn't
  87                 * destroy its slab cache and no-one else reuses the vmalloc
  88                 * area of the module.  Print a warning.
  89                 */
  90                res = probe_kernel_address(s->name, tmp);
  91                if (res) {
  92                        pr_err("Slab cache with size %d has lost its name\n",
  93                               s->object_size);
  94                        continue;
  95                }
  96        }
  97
  98        WARN_ON(strchr(name, ' '));     /* It confuses parsers */
  99        return 0;
 100}
 101#else
 102static inline int kmem_cache_sanity_check(const char *name, size_t size)
 103{
 104        return 0;
 105}
 106#endif
 107
 108#ifdef CONFIG_MEMCG_KMEM
 109void slab_init_memcg_params(struct kmem_cache *s)
 110{
 111        s->memcg_params.is_root_cache = true;
 112        INIT_LIST_HEAD(&s->memcg_params.list);
 113        RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
 114}
 115
 116static int init_memcg_params(struct kmem_cache *s,
 117                struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 118{
 119        struct memcg_cache_array *arr;
 120
 121        if (memcg) {
 122                s->memcg_params.is_root_cache = false;
 123                s->memcg_params.memcg = memcg;
 124                s->memcg_params.root_cache = root_cache;
 125                return 0;
 126        }
 127
 128        slab_init_memcg_params(s);
 129
 130        if (!memcg_nr_cache_ids)
 131                return 0;
 132
 133        arr = kzalloc(sizeof(struct memcg_cache_array) +
 134                      memcg_nr_cache_ids * sizeof(void *),
 135                      GFP_KERNEL);
 136        if (!arr)
 137                return -ENOMEM;
 138
 139        RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
 140        return 0;
 141}
 142
 143static void destroy_memcg_params(struct kmem_cache *s)
 144{
 145        if (is_root_cache(s))
 146                kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
 147}
 148
 149static int update_memcg_params(struct kmem_cache *s, int new_array_size)
 150{
 151        struct memcg_cache_array *old, *new;
 152
 153        if (!is_root_cache(s))
 154                return 0;
 155
 156        new = kzalloc(sizeof(struct memcg_cache_array) +
 157                      new_array_size * sizeof(void *), GFP_KERNEL);
 158        if (!new)
 159                return -ENOMEM;
 160
 161        old = rcu_dereference_protected(s->memcg_params.memcg_caches,
 162                                        lockdep_is_held(&slab_mutex));
 163        if (old)
 164                memcpy(new->entries, old->entries,
 165                       memcg_nr_cache_ids * sizeof(void *));
 166
 167        rcu_assign_pointer(s->memcg_params.memcg_caches, new);
 168        if (old)
 169                kfree_rcu(old, rcu);
 170        return 0;
 171}
 172
 173int memcg_update_all_caches(int num_memcgs)
 174{
 175        struct kmem_cache *s;
 176        int ret = 0;
 177
 178        mutex_lock(&slab_mutex);
 179        list_for_each_entry(s, &slab_caches, list) {
 180                ret = update_memcg_params(s, num_memcgs);
 181                /*
 182                 * Instead of freeing the memory, we'll just leave the caches
 183                 * up to this point in an updated state.
 184                 */
 185                if (ret)
 186                        break;
 187        }
 188        mutex_unlock(&slab_mutex);
 189        return ret;
 190}
 191#else
 192static inline int init_memcg_params(struct kmem_cache *s,
 193                struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 194{
 195        return 0;
 196}
 197
 198static inline void destroy_memcg_params(struct kmem_cache *s)
 199{
 200}
 201#endif /* CONFIG_MEMCG_KMEM */
 202
 203/*
 204 * Find a mergeable slab cache
 205 */
 206int slab_unmergeable(struct kmem_cache *s)
 207{
 208        if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 209                return 1;
 210
 211        if (!is_root_cache(s))
 212                return 1;
 213
 214        if (s->ctor)
 215                return 1;
 216
 217        /*
 218         * We may have set a slab to be unmergeable during bootstrap.
 219         */
 220        if (s->refcount < 0)
 221                return 1;
 222
 223        return 0;
 224}
 225
 226struct kmem_cache *find_mergeable(size_t size, size_t align,
 227                unsigned long flags, const char *name, void (*ctor)(void *))
 228{
 229        struct kmem_cache *s;
 230
 231        if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
 232                return NULL;
 233
 234        if (ctor)
 235                return NULL;
 236
 237        size = ALIGN(size, sizeof(void *));
 238        align = calculate_alignment(flags, align, size);
 239        size = ALIGN(size, align);
 240        flags = kmem_cache_flags(size, flags, name, NULL);
 241
 242        list_for_each_entry_reverse(s, &slab_caches, list) {
 243                if (slab_unmergeable(s))
 244                        continue;
 245
 246                if (size > s->size)
 247                        continue;
 248
 249                if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 250                        continue;
 251                /*
 252                 * Check if alignment is compatible.
 253                 * Courtesy of Adrian Drzewiecki
 254                 */
 255                if ((s->size & ~(align - 1)) != s->size)
 256                        continue;
 257
 258                if (s->size - size >= sizeof(void *))
 259                        continue;
 260
 261                if (IS_ENABLED(CONFIG_SLAB) && align &&
 262                        (align > s->align || s->align % align))
 263                        continue;
 264
 265                return s;
 266        }
 267        return NULL;
 268}
 269
 270/*
 271 * Figure out what the alignment of the objects will be given a set of
 272 * flags, a user specified alignment and the size of the objects.
 273 */
 274unsigned long calculate_alignment(unsigned long flags,
 275                unsigned long align, unsigned long size)
 276{
 277        /*
 278         * If the user wants hardware cache aligned objects then follow that
 279         * suggestion if the object is sufficiently large.
 280         *
 281         * The hardware cache alignment cannot override the specified
 282         * alignment though. If that is greater then use it.
 283         */
 284        if (flags & SLAB_HWCACHE_ALIGN) {
 285                unsigned long ralign = cache_line_size();
 286                while (size <= ralign / 2)
 287                        ralign /= 2;
 288                align = max(align, ralign);
 289        }
 290
 291        if (align < ARCH_SLAB_MINALIGN)
 292                align = ARCH_SLAB_MINALIGN;
 293
 294        return ALIGN(align, sizeof(void *));
 295}
 296
 297static struct kmem_cache *
 298do_kmem_cache_create(const char *name, size_t object_size, size_t size,
 299                     size_t align, unsigned long flags, void (*ctor)(void *),
 300                     struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 301{
 302        struct kmem_cache *s;
 303        int err;
 304
 305        err = -ENOMEM;
 306        s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 307        if (!s)
 308                goto out;
 309
 310        s->name = name;
 311        s->object_size = object_size;
 312        s->size = size;
 313        s->align = align;
 314        s->ctor = ctor;
 315
 316        err = init_memcg_params(s, memcg, root_cache);
 317        if (err)
 318                goto out_free_cache;
 319
 320        err = __kmem_cache_create(s, flags);
 321        if (err)
 322                goto out_free_cache;
 323
 324        s->refcount = 1;
 325        list_add(&s->list, &slab_caches);
 326out:
 327        if (err)
 328                return ERR_PTR(err);
 329        return s;
 330
 331out_free_cache:
 332        destroy_memcg_params(s);
 333        kmem_cache_free(kmem_cache, s);
 334        goto out;
 335}
 336
 337/*
 338 * kmem_cache_create - Create a cache.
 339 * @name: A string which is used in /proc/slabinfo to identify this cache.
 340 * @size: The size of objects to be created in this cache.
 341 * @align: The required alignment for the objects.
 342 * @flags: SLAB flags
 343 * @ctor: A constructor for the objects.
 344 *
 345 * Returns a ptr to the cache on success, NULL on failure.
 346 * Cannot be called within a interrupt, but can be interrupted.
 347 * The @ctor is run when new pages are allocated by the cache.
 348 *
 349 * The flags are
 350 *
 351 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 352 * to catch references to uninitialised memory.
 353 *
 354 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 355 * for buffer overruns.
 356 *
 357 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 358 * cacheline.  This can be beneficial if you're counting cycles as closely
 359 * as davem.
 360 */
 361struct kmem_cache *
 362kmem_cache_create(const char *name, size_t size, size_t align,
 363                  unsigned long flags, void (*ctor)(void *))
 364{
 365        struct kmem_cache *s;
 366        const char *cache_name;
 367        int err;
 368
 369        get_online_cpus();
 370        get_online_mems();
 371        memcg_get_cache_ids();
 372
 373        mutex_lock(&slab_mutex);
 374
 375        err = kmem_cache_sanity_check(name, size);
 376        if (err) {
 377                s = NULL;       /* suppress uninit var warning */
 378                goto out_unlock;
 379        }
 380
 381        /*
 382         * Some allocators will constraint the set of valid flags to a subset
 383         * of all flags. We expect them to define CACHE_CREATE_MASK in this
 384         * case, and we'll just provide them with a sanitized version of the
 385         * passed flags.
 386         */
 387        flags &= CACHE_CREATE_MASK;
 388
 389        s = __kmem_cache_alias(name, size, align, flags, ctor);
 390        if (s)
 391                goto out_unlock;
 392
 393        cache_name = kstrdup_const(name, GFP_KERNEL);
 394        if (!cache_name) {
 395                err = -ENOMEM;
 396                goto out_unlock;
 397        }
 398
 399        s = do_kmem_cache_create(cache_name, size, size,
 400                                 calculate_alignment(flags, align, size),
 401                                 flags, ctor, NULL, NULL);
 402        if (IS_ERR(s)) {
 403                err = PTR_ERR(s);
 404                kfree_const(cache_name);
 405        }
 406
 407out_unlock:
 408        mutex_unlock(&slab_mutex);
 409
 410        memcg_put_cache_ids();
 411        put_online_mems();
 412        put_online_cpus();
 413
 414        if (err) {
 415                if (flags & SLAB_PANIC)
 416                        panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
 417                                name, err);
 418                else {
 419                        printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
 420                                name, err);
 421                        dump_stack();
 422                }
 423                return NULL;
 424        }
 425        return s;
 426}
 427EXPORT_SYMBOL(kmem_cache_create);
 428
 429static int do_kmem_cache_shutdown(struct kmem_cache *s,
 430                struct list_head *release, bool *need_rcu_barrier)
 431{
 432        if (__kmem_cache_shutdown(s) != 0) {
 433                printk(KERN_ERR "kmem_cache_destroy %s: "
 434                       "Slab cache still has objects\n", s->name);
 435                dump_stack();
 436                return -EBUSY;
 437        }
 438
 439        if (s->flags & SLAB_DESTROY_BY_RCU)
 440                *need_rcu_barrier = true;
 441
 442#ifdef CONFIG_MEMCG_KMEM
 443        if (!is_root_cache(s))
 444                list_del(&s->memcg_params.list);
 445#endif
 446        list_move(&s->list, release);
 447        return 0;
 448}
 449
 450static void do_kmem_cache_release(struct list_head *release,
 451                                  bool need_rcu_barrier)
 452{
 453        struct kmem_cache *s, *s2;
 454
 455        if (need_rcu_barrier)
 456                rcu_barrier();
 457
 458        list_for_each_entry_safe(s, s2, release, list) {
 459#ifdef SLAB_SUPPORTS_SYSFS
 460                sysfs_slab_remove(s);
 461#else
 462                slab_kmem_cache_release(s);
 463#endif
 464        }
 465}
 466
 467#ifdef CONFIG_MEMCG_KMEM
 468/*
 469 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
 470 * @memcg: The memory cgroup the new cache is for.
 471 * @root_cache: The parent of the new cache.
 472 *
 473 * This function attempts to create a kmem cache that will serve allocation
 474 * requests going from @memcg to @root_cache. The new cache inherits properties
 475 * from its parent.
 476 */
 477void memcg_create_kmem_cache(struct mem_cgroup *memcg,
 478                             struct kmem_cache *root_cache)
 479{
 480        static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
 481        struct cgroup_subsys_state *css = mem_cgroup_css(memcg);
 482        struct memcg_cache_array *arr;
 483        struct kmem_cache *s = NULL;
 484        char *cache_name;
 485        int idx;
 486
 487        get_online_cpus();
 488        get_online_mems();
 489
 490        mutex_lock(&slab_mutex);
 491
 492        /*
 493         * The memory cgroup could have been deactivated while the cache
 494         * creation work was pending.
 495         */
 496        if (!memcg_kmem_is_active(memcg))
 497                goto out_unlock;
 498
 499        idx = memcg_cache_id(memcg);
 500        arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
 501                                        lockdep_is_held(&slab_mutex));
 502
 503        /*
 504         * Since per-memcg caches are created asynchronously on first
 505         * allocation (see memcg_kmem_get_cache()), several threads can try to
 506         * create the same cache, but only one of them may succeed.
 507         */
 508        if (arr->entries[idx])
 509                goto out_unlock;
 510
 511        cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
 512        cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
 513                               css->id, memcg_name_buf);
 514        if (!cache_name)
 515                goto out_unlock;
 516
 517        s = do_kmem_cache_create(cache_name, root_cache->object_size,
 518                                 root_cache->size, root_cache->align,
 519                                 root_cache->flags, root_cache->ctor,
 520                                 memcg, root_cache);
 521        /*
 522         * If we could not create a memcg cache, do not complain, because
 523         * that's not critical at all as we can always proceed with the root
 524         * cache.
 525         */
 526        if (IS_ERR(s)) {
 527                kfree(cache_name);
 528                goto out_unlock;
 529        }
 530
 531        list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
 532
 533        /*
 534         * Since readers won't lock (see cache_from_memcg_idx()), we need a
 535         * barrier here to ensure nobody will see the kmem_cache partially
 536         * initialized.
 537         */
 538        smp_wmb();
 539        arr->entries[idx] = s;
 540
 541out_unlock:
 542        mutex_unlock(&slab_mutex);
 543
 544        put_online_mems();
 545        put_online_cpus();
 546}
 547
 548void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
 549{
 550        int idx;
 551        struct memcg_cache_array *arr;
 552        struct kmem_cache *s, *c;
 553
 554        idx = memcg_cache_id(memcg);
 555
 556        get_online_cpus();
 557        get_online_mems();
 558
 559        mutex_lock(&slab_mutex);
 560        list_for_each_entry(s, &slab_caches, list) {
 561                if (!is_root_cache(s))
 562                        continue;
 563
 564                arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
 565                                                lockdep_is_held(&slab_mutex));
 566                c = arr->entries[idx];
 567                if (!c)
 568                        continue;
 569
 570                __kmem_cache_shrink(c, true);
 571                arr->entries[idx] = NULL;
 572        }
 573        mutex_unlock(&slab_mutex);
 574
 575        put_online_mems();
 576        put_online_cpus();
 577}
 578
 579void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
 580{
 581        LIST_HEAD(release);
 582        bool need_rcu_barrier = false;
 583        struct kmem_cache *s, *s2;
 584
 585        get_online_cpus();
 586        get_online_mems();
 587
 588        mutex_lock(&slab_mutex);
 589        list_for_each_entry_safe(s, s2, &slab_caches, list) {
 590                if (is_root_cache(s) || s->memcg_params.memcg != memcg)
 591                        continue;
 592                /*
 593                 * The cgroup is about to be freed and therefore has no charges
 594                 * left. Hence, all its caches must be empty by now.
 595                 */
 596                BUG_ON(do_kmem_cache_shutdown(s, &release, &need_rcu_barrier));
 597        }
 598        mutex_unlock(&slab_mutex);
 599
 600        put_online_mems();
 601        put_online_cpus();
 602
 603        do_kmem_cache_release(&release, need_rcu_barrier);
 604}
 605#endif /* CONFIG_MEMCG_KMEM */
 606
 607void slab_kmem_cache_release(struct kmem_cache *s)
 608{
 609        destroy_memcg_params(s);
 610        kfree_const(s->name);
 611        kmem_cache_free(kmem_cache, s);
 612}
 613
 614void kmem_cache_destroy(struct kmem_cache *s)
 615{
 616        struct kmem_cache *c, *c2;
 617        LIST_HEAD(release);
 618        bool need_rcu_barrier = false;
 619        bool busy = false;
 620
 621        BUG_ON(!is_root_cache(s));
 622
 623        get_online_cpus();
 624        get_online_mems();
 625
 626        mutex_lock(&slab_mutex);
 627
 628        s->refcount--;
 629        if (s->refcount)
 630                goto out_unlock;
 631
 632        for_each_memcg_cache_safe(c, c2, s) {
 633                if (do_kmem_cache_shutdown(c, &release, &need_rcu_barrier))
 634                        busy = true;
 635        }
 636
 637        if (!busy)
 638                do_kmem_cache_shutdown(s, &release, &need_rcu_barrier);
 639
 640out_unlock:
 641        mutex_unlock(&slab_mutex);
 642
 643        put_online_mems();
 644        put_online_cpus();
 645
 646        do_kmem_cache_release(&release, need_rcu_barrier);
 647}
 648EXPORT_SYMBOL(kmem_cache_destroy);
 649
 650/**
 651 * kmem_cache_shrink - Shrink a cache.
 652 * @cachep: The cache to shrink.
 653 *
 654 * Releases as many slabs as possible for a cache.
 655 * To help debugging, a zero exit status indicates all slabs were released.
 656 */
 657int kmem_cache_shrink(struct kmem_cache *cachep)
 658{
 659        int ret;
 660
 661        get_online_cpus();
 662        get_online_mems();
 663        ret = __kmem_cache_shrink(cachep, false);
 664        put_online_mems();
 665        put_online_cpus();
 666        return ret;
 667}
 668EXPORT_SYMBOL(kmem_cache_shrink);
 669
 670int slab_is_available(void)
 671{
 672        return slab_state >= UP;
 673}
 674
 675#ifndef CONFIG_SLOB
 676/* Create a cache during boot when no slab services are available yet */
 677void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
 678                unsigned long flags)
 679{
 680        int err;
 681
 682        s->name = name;
 683        s->size = s->object_size = size;
 684        s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
 685
 686        slab_init_memcg_params(s);
 687
 688        err = __kmem_cache_create(s, flags);
 689
 690        if (err)
 691                panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
 692                                        name, size, err);
 693
 694        s->refcount = -1;       /* Exempt from merging for now */
 695}
 696
 697struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
 698                                unsigned long flags)
 699{
 700        struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 701
 702        if (!s)
 703                panic("Out of memory when creating slab %s\n", name);
 704
 705        create_boot_cache(s, name, size, flags);
 706        list_add(&s->list, &slab_caches);
 707        s->refcount = 1;
 708        return s;
 709}
 710
 711struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
 712EXPORT_SYMBOL(kmalloc_caches);
 713
 714#ifdef CONFIG_ZONE_DMA
 715struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
 716EXPORT_SYMBOL(kmalloc_dma_caches);
 717#endif
 718
 719/*
 720 * Conversion table for small slabs sizes / 8 to the index in the
 721 * kmalloc array. This is necessary for slabs < 192 since we have non power
 722 * of two cache sizes there. The size of larger slabs can be determined using
 723 * fls.
 724 */
 725static s8 size_index[24] = {
 726        3,      /* 8 */
 727        4,      /* 16 */
 728        5,      /* 24 */
 729        5,      /* 32 */
 730        6,      /* 40 */
 731        6,      /* 48 */
 732        6,      /* 56 */
 733        6,      /* 64 */
 734        1,      /* 72 */
 735        1,      /* 80 */
 736        1,      /* 88 */
 737        1,      /* 96 */
 738        7,      /* 104 */
 739        7,      /* 112 */
 740        7,      /* 120 */
 741        7,      /* 128 */
 742        2,      /* 136 */
 743        2,      /* 144 */
 744        2,      /* 152 */
 745        2,      /* 160 */
 746        2,      /* 168 */
 747        2,      /* 176 */
 748        2,      /* 184 */
 749        2       /* 192 */
 750};
 751
 752static inline int size_index_elem(size_t bytes)
 753{
 754        return (bytes - 1) / 8;
 755}
 756
 757/*
 758 * Find the kmem_cache structure that serves a given size of
 759 * allocation
 760 */
 761struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
 762{
 763        int index;
 764
 765        if (unlikely(size > KMALLOC_MAX_SIZE)) {
 766                WARN_ON_ONCE(!(flags & __GFP_NOWARN));
 767                return NULL;
 768        }
 769
 770        if (size <= 192) {
 771                if (!size)
 772                        return ZERO_SIZE_PTR;
 773
 774                index = size_index[size_index_elem(size)];
 775        } else
 776                index = fls(size - 1);
 777
 778#ifdef CONFIG_ZONE_DMA
 779        if (unlikely((flags & GFP_DMA)))
 780                return kmalloc_dma_caches[index];
 781
 782#endif
 783        return kmalloc_caches[index];
 784}
 785
 786/*
 787 * Create the kmalloc array. Some of the regular kmalloc arrays
 788 * may already have been created because they were needed to
 789 * enable allocations for slab creation.
 790 */
 791void __init create_kmalloc_caches(unsigned long flags)
 792{
 793        int i;
 794
 795        /*
 796         * Patch up the size_index table if we have strange large alignment
 797         * requirements for the kmalloc array. This is only the case for
 798         * MIPS it seems. The standard arches will not generate any code here.
 799         *
 800         * Largest permitted alignment is 256 bytes due to the way we
 801         * handle the index determination for the smaller caches.
 802         *
 803         * Make sure that nothing crazy happens if someone starts tinkering
 804         * around with ARCH_KMALLOC_MINALIGN
 805         */
 806        BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 807                (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
 808
 809        for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 810                int elem = size_index_elem(i);
 811
 812                if (elem >= ARRAY_SIZE(size_index))
 813                        break;
 814                size_index[elem] = KMALLOC_SHIFT_LOW;
 815        }
 816
 817        if (KMALLOC_MIN_SIZE >= 64) {
 818                /*
 819                 * The 96 byte size cache is not used if the alignment
 820                 * is 64 byte.
 821                 */
 822                for (i = 64 + 8; i <= 96; i += 8)
 823                        size_index[size_index_elem(i)] = 7;
 824
 825        }
 826
 827        if (KMALLOC_MIN_SIZE >= 128) {
 828                /*
 829                 * The 192 byte sized cache is not used if the alignment
 830                 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 831                 * instead.
 832                 */
 833                for (i = 128 + 8; i <= 192; i += 8)
 834                        size_index[size_index_elem(i)] = 8;
 835        }
 836        for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
 837                if (!kmalloc_caches[i]) {
 838                        kmalloc_caches[i] = create_kmalloc_cache(NULL,
 839                                                        1 << i, flags);
 840                }
 841
 842                /*
 843                 * Caches that are not of the two-to-the-power-of size.
 844                 * These have to be created immediately after the
 845                 * earlier power of two caches
 846                 */
 847                if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
 848                        kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
 849
 850                if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
 851                        kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
 852        }
 853
 854        /* Kmalloc array is now usable */
 855        slab_state = UP;
 856
 857        for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
 858                struct kmem_cache *s = kmalloc_caches[i];
 859                char *n;
 860
 861                if (s) {
 862                        n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
 863
 864                        BUG_ON(!n);
 865                        s->name = n;
 866                }
 867        }
 868
 869#ifdef CONFIG_ZONE_DMA
 870        for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
 871                struct kmem_cache *s = kmalloc_caches[i];
 872
 873                if (s) {
 874                        int size = kmalloc_size(i);
 875                        char *n = kasprintf(GFP_NOWAIT,
 876                                 "dma-kmalloc-%d", size);
 877
 878                        BUG_ON(!n);
 879                        kmalloc_dma_caches[i] = create_kmalloc_cache(n,
 880                                size, SLAB_CACHE_DMA | flags);
 881                }
 882        }
 883#endif
 884}
 885#endif /* !CONFIG_SLOB */
 886
 887/*
 888 * To avoid unnecessary overhead, we pass through large allocation requests
 889 * directly to the page allocator. We use __GFP_COMP, because we will need to
 890 * know the allocation order to free the pages properly in kfree.
 891 */
 892void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
 893{
 894        void *ret;
 895        struct page *page;
 896
 897        flags |= __GFP_COMP;
 898        page = alloc_kmem_pages(flags, order);
 899        ret = page ? page_address(page) : NULL;
 900        kmemleak_alloc(ret, size, 1, flags);
 901        kasan_kmalloc_large(ret, size);
 902        return ret;
 903}
 904EXPORT_SYMBOL(kmalloc_order);
 905
 906#ifdef CONFIG_TRACING
 907void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
 908{
 909        void *ret = kmalloc_order(size, flags, order);
 910        trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
 911        return ret;
 912}
 913EXPORT_SYMBOL(kmalloc_order_trace);
 914#endif
 915
 916#ifdef CONFIG_SLABINFO
 917
 918#ifdef CONFIG_SLAB
 919#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
 920#else
 921#define SLABINFO_RIGHTS S_IRUSR
 922#endif
 923
 924static void print_slabinfo_header(struct seq_file *m)
 925{
 926        /*
 927         * Output format version, so at least we can change it
 928         * without _too_ many complaints.
 929         */
 930#ifdef CONFIG_DEBUG_SLAB
 931        seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
 932#else
 933        seq_puts(m, "slabinfo - version: 2.1\n");
 934#endif
 935        seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
 936                 "<objperslab> <pagesperslab>");
 937        seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
 938        seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
 939#ifdef CONFIG_DEBUG_SLAB
 940        seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
 941                 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
 942        seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
 943#endif
 944        seq_putc(m, '\n');
 945}
 946
 947void *slab_start(struct seq_file *m, loff_t *pos)
 948{
 949        mutex_lock(&slab_mutex);
 950        return seq_list_start(&slab_caches, *pos);
 951}
 952
 953void *slab_next(struct seq_file *m, void *p, loff_t *pos)
 954{
 955        return seq_list_next(p, &slab_caches, pos);
 956}
 957
 958void slab_stop(struct seq_file *m, void *p)
 959{
 960        mutex_unlock(&slab_mutex);
 961}
 962
 963static void
 964memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
 965{
 966        struct kmem_cache *c;
 967        struct slabinfo sinfo;
 968
 969        if (!is_root_cache(s))
 970                return;
 971
 972        for_each_memcg_cache(c, s) {
 973                memset(&sinfo, 0, sizeof(sinfo));
 974                get_slabinfo(c, &sinfo);
 975
 976                info->active_slabs += sinfo.active_slabs;
 977                info->num_slabs += sinfo.num_slabs;
 978                info->shared_avail += sinfo.shared_avail;
 979                info->active_objs += sinfo.active_objs;
 980                info->num_objs += sinfo.num_objs;
 981        }
 982}
 983
 984static void cache_show(struct kmem_cache *s, struct seq_file *m)
 985{
 986        struct slabinfo sinfo;
 987
 988        memset(&sinfo, 0, sizeof(sinfo));
 989        get_slabinfo(s, &sinfo);
 990
 991        memcg_accumulate_slabinfo(s, &sinfo);
 992
 993        seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
 994                   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
 995                   sinfo.objects_per_slab, (1 << sinfo.cache_order));
 996
 997        seq_printf(m, " : tunables %4u %4u %4u",
 998                   sinfo.limit, sinfo.batchcount, sinfo.shared);
 999        seq_printf(m, " : slabdata %6lu %6lu %6lu",
1000                   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1001        slabinfo_show_stats(m, s);
1002        seq_putc(m, '\n');
1003}
1004
1005static int slab_show(struct seq_file *m, void *p)
1006{
1007        struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1008
1009        if (p == slab_caches.next)
1010                print_slabinfo_header(m);
1011        if (is_root_cache(s))
1012                cache_show(s, m);
1013        return 0;
1014}
1015
1016#ifdef CONFIG_MEMCG_KMEM
1017int memcg_slab_show(struct seq_file *m, void *p)
1018{
1019        struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1020        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1021
1022        if (p == slab_caches.next)
1023                print_slabinfo_header(m);
1024        if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1025                cache_show(s, m);
1026        return 0;
1027}
1028#endif
1029
1030/*
1031 * slabinfo_op - iterator that generates /proc/slabinfo
1032 *
1033 * Output layout:
1034 * cache-name
1035 * num-active-objs
1036 * total-objs
1037 * object size
1038 * num-active-slabs
1039 * total-slabs
1040 * num-pages-per-slab
1041 * + further values on SMP and with statistics enabled
1042 */
1043static const struct seq_operations slabinfo_op = {
1044        .start = slab_start,
1045        .next = slab_next,
1046        .stop = slab_stop,
1047        .show = slab_show,
1048};
1049
1050static int slabinfo_open(struct inode *inode, struct file *file)
1051{
1052        return seq_open(file, &slabinfo_op);
1053}
1054
1055static const struct file_operations proc_slabinfo_operations = {
1056        .open           = slabinfo_open,
1057        .read           = seq_read,
1058        .write          = slabinfo_write,
1059        .llseek         = seq_lseek,
1060        .release        = seq_release,
1061};
1062
1063static int __init slab_proc_init(void)
1064{
1065        proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1066                                                &proc_slabinfo_operations);
1067        return 0;
1068}
1069module_init(slab_proc_init);
1070#endif /* CONFIG_SLABINFO */
1071
1072static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1073                                           gfp_t flags)
1074{
1075        void *ret;
1076        size_t ks = 0;
1077
1078        if (p)
1079                ks = ksize(p);
1080
1081        if (ks >= new_size) {
1082                kasan_krealloc((void *)p, new_size);
1083                return (void *)p;
1084        }
1085
1086        ret = kmalloc_track_caller(new_size, flags);
1087        if (ret && p)
1088                memcpy(ret, p, ks);
1089
1090        return ret;
1091}
1092
1093/**
1094 * __krealloc - like krealloc() but don't free @p.
1095 * @p: object to reallocate memory for.
1096 * @new_size: how many bytes of memory are required.
1097 * @flags: the type of memory to allocate.
1098 *
1099 * This function is like krealloc() except it never frees the originally
1100 * allocated buffer. Use this if you don't want to free the buffer immediately
1101 * like, for example, with RCU.
1102 */
1103void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1104{
1105        if (unlikely(!new_size))
1106                return ZERO_SIZE_PTR;
1107
1108        return __do_krealloc(p, new_size, flags);
1109
1110}
1111EXPORT_SYMBOL(__krealloc);
1112
1113/**
1114 * krealloc - reallocate memory. The contents will remain unchanged.
1115 * @p: object to reallocate memory for.
1116 * @new_size: how many bytes of memory are required.
1117 * @flags: the type of memory to allocate.
1118 *
1119 * The contents of the object pointed to are preserved up to the
1120 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1121 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1122 * %NULL pointer, the object pointed to is freed.
1123 */
1124void *krealloc(const void *p, size_t new_size, gfp_t flags)
1125{
1126        void *ret;
1127
1128        if (unlikely(!new_size)) {
1129                kfree(p);
1130                return ZERO_SIZE_PTR;
1131        }
1132
1133        ret = __do_krealloc(p, new_size, flags);
1134        if (ret && p != ret)
1135                kfree(p);
1136
1137        return ret;
1138}
1139EXPORT_SYMBOL(krealloc);
1140
1141/**
1142 * kzfree - like kfree but zero memory
1143 * @p: object to free memory of
1144 *
1145 * The memory of the object @p points to is zeroed before freed.
1146 * If @p is %NULL, kzfree() does nothing.
1147 *
1148 * Note: this function zeroes the whole allocated buffer which can be a good
1149 * deal bigger than the requested buffer size passed to kmalloc(). So be
1150 * careful when using this function in performance sensitive code.
1151 */
1152void kzfree(const void *p)
1153{
1154        size_t ks;
1155        void *mem = (void *)p;
1156
1157        if (unlikely(ZERO_OR_NULL_PTR(mem)))
1158                return;
1159        ks = ksize(mem);
1160        memset(mem, 0, ks);
1161        kfree(mem);
1162}
1163EXPORT_SYMBOL(kzfree);
1164
1165/* Tracepoints definitions. */
1166EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1167EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1168EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1169EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1170EXPORT_TRACEPOINT_SYMBOL(kfree);
1171EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1172