linux/mm/vmstat.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmstat.c
   3 *
   4 *  Manages VM statistics
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  zoned VM statistics
   8 *  Copyright (C) 2006 Silicon Graphics, Inc.,
   9 *              Christoph Lameter <christoph@lameter.com>
  10 *  Copyright (C) 2008-2014 Christoph Lameter
  11 */
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/err.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/cpu.h>
  18#include <linux/cpumask.h>
  19#include <linux/vmstat.h>
  20#include <linux/proc_fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/debugfs.h>
  23#include <linux/sched.h>
  24#include <linux/math64.h>
  25#include <linux/writeback.h>
  26#include <linux/compaction.h>
  27#include <linux/mm_inline.h>
  28#include <linux/page_ext.h>
  29#include <linux/page_owner.h>
  30
  31#include "internal.h"
  32
  33#ifdef CONFIG_VM_EVENT_COUNTERS
  34DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
  35EXPORT_PER_CPU_SYMBOL(vm_event_states);
  36
  37static void sum_vm_events(unsigned long *ret)
  38{
  39        int cpu;
  40        int i;
  41
  42        memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
  43
  44        for_each_online_cpu(cpu) {
  45                struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
  46
  47                for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
  48                        ret[i] += this->event[i];
  49        }
  50}
  51
  52/*
  53 * Accumulate the vm event counters across all CPUs.
  54 * The result is unavoidably approximate - it can change
  55 * during and after execution of this function.
  56*/
  57void all_vm_events(unsigned long *ret)
  58{
  59        get_online_cpus();
  60        sum_vm_events(ret);
  61        put_online_cpus();
  62}
  63EXPORT_SYMBOL_GPL(all_vm_events);
  64
  65/*
  66 * Fold the foreign cpu events into our own.
  67 *
  68 * This is adding to the events on one processor
  69 * but keeps the global counts constant.
  70 */
  71void vm_events_fold_cpu(int cpu)
  72{
  73        struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
  74        int i;
  75
  76        for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
  77                count_vm_events(i, fold_state->event[i]);
  78                fold_state->event[i] = 0;
  79        }
  80}
  81
  82#endif /* CONFIG_VM_EVENT_COUNTERS */
  83
  84/*
  85 * Manage combined zone based / global counters
  86 *
  87 * vm_stat contains the global counters
  88 */
  89atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
  90EXPORT_SYMBOL(vm_stat);
  91
  92#ifdef CONFIG_SMP
  93
  94int calculate_pressure_threshold(struct zone *zone)
  95{
  96        int threshold;
  97        int watermark_distance;
  98
  99        /*
 100         * As vmstats are not up to date, there is drift between the estimated
 101         * and real values. For high thresholds and a high number of CPUs, it
 102         * is possible for the min watermark to be breached while the estimated
 103         * value looks fine. The pressure threshold is a reduced value such
 104         * that even the maximum amount of drift will not accidentally breach
 105         * the min watermark
 106         */
 107        watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
 108        threshold = max(1, (int)(watermark_distance / num_online_cpus()));
 109
 110        /*
 111         * Maximum threshold is 125
 112         */
 113        threshold = min(125, threshold);
 114
 115        return threshold;
 116}
 117
 118int calculate_normal_threshold(struct zone *zone)
 119{
 120        int threshold;
 121        int mem;        /* memory in 128 MB units */
 122
 123        /*
 124         * The threshold scales with the number of processors and the amount
 125         * of memory per zone. More memory means that we can defer updates for
 126         * longer, more processors could lead to more contention.
 127         * fls() is used to have a cheap way of logarithmic scaling.
 128         *
 129         * Some sample thresholds:
 130         *
 131         * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
 132         * ------------------------------------------------------------------
 133         * 8            1               1       0.9-1 GB        4
 134         * 16           2               2       0.9-1 GB        4
 135         * 20           2               2       1-2 GB          5
 136         * 24           2               2       2-4 GB          6
 137         * 28           2               2       4-8 GB          7
 138         * 32           2               2       8-16 GB         8
 139         * 4            2               2       <128M           1
 140         * 30           4               3       2-4 GB          5
 141         * 48           4               3       8-16 GB         8
 142         * 32           8               4       1-2 GB          4
 143         * 32           8               4       0.9-1GB         4
 144         * 10           16              5       <128M           1
 145         * 40           16              5       900M            4
 146         * 70           64              7       2-4 GB          5
 147         * 84           64              7       4-8 GB          6
 148         * 108          512             9       4-8 GB          6
 149         * 125          1024            10      8-16 GB         8
 150         * 125          1024            10      16-32 GB        9
 151         */
 152
 153        mem = zone->managed_pages >> (27 - PAGE_SHIFT);
 154
 155        threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
 156
 157        /*
 158         * Maximum threshold is 125
 159         */
 160        threshold = min(125, threshold);
 161
 162        return threshold;
 163}
 164
 165/*
 166 * Refresh the thresholds for each zone.
 167 */
 168void refresh_zone_stat_thresholds(void)
 169{
 170        struct zone *zone;
 171        int cpu;
 172        int threshold;
 173
 174        for_each_populated_zone(zone) {
 175                unsigned long max_drift, tolerate_drift;
 176
 177                threshold = calculate_normal_threshold(zone);
 178
 179                for_each_online_cpu(cpu)
 180                        per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 181                                                        = threshold;
 182
 183                /*
 184                 * Only set percpu_drift_mark if there is a danger that
 185                 * NR_FREE_PAGES reports the low watermark is ok when in fact
 186                 * the min watermark could be breached by an allocation
 187                 */
 188                tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
 189                max_drift = num_online_cpus() * threshold;
 190                if (max_drift > tolerate_drift)
 191                        zone->percpu_drift_mark = high_wmark_pages(zone) +
 192                                        max_drift;
 193        }
 194}
 195
 196void set_pgdat_percpu_threshold(pg_data_t *pgdat,
 197                                int (*calculate_pressure)(struct zone *))
 198{
 199        struct zone *zone;
 200        int cpu;
 201        int threshold;
 202        int i;
 203
 204        for (i = 0; i < pgdat->nr_zones; i++) {
 205                zone = &pgdat->node_zones[i];
 206                if (!zone->percpu_drift_mark)
 207                        continue;
 208
 209                threshold = (*calculate_pressure)(zone);
 210                for_each_online_cpu(cpu)
 211                        per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 212                                                        = threshold;
 213        }
 214}
 215
 216/*
 217 * For use when we know that interrupts are disabled,
 218 * or when we know that preemption is disabled and that
 219 * particular counter cannot be updated from interrupt context.
 220 */
 221void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 222                                int delta)
 223{
 224        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 225        s8 __percpu *p = pcp->vm_stat_diff + item;
 226        long x;
 227        long t;
 228
 229        x = delta + __this_cpu_read(*p);
 230
 231        t = __this_cpu_read(pcp->stat_threshold);
 232
 233        if (unlikely(x > t || x < -t)) {
 234                zone_page_state_add(x, zone, item);
 235                x = 0;
 236        }
 237        __this_cpu_write(*p, x);
 238}
 239EXPORT_SYMBOL(__mod_zone_page_state);
 240
 241/*
 242 * Optimized increment and decrement functions.
 243 *
 244 * These are only for a single page and therefore can take a struct page *
 245 * argument instead of struct zone *. This allows the inclusion of the code
 246 * generated for page_zone(page) into the optimized functions.
 247 *
 248 * No overflow check is necessary and therefore the differential can be
 249 * incremented or decremented in place which may allow the compilers to
 250 * generate better code.
 251 * The increment or decrement is known and therefore one boundary check can
 252 * be omitted.
 253 *
 254 * NOTE: These functions are very performance sensitive. Change only
 255 * with care.
 256 *
 257 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 258 * However, the code must first determine the differential location in a zone
 259 * based on the processor number and then inc/dec the counter. There is no
 260 * guarantee without disabling preemption that the processor will not change
 261 * in between and therefore the atomicity vs. interrupt cannot be exploited
 262 * in a useful way here.
 263 */
 264void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 265{
 266        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 267        s8 __percpu *p = pcp->vm_stat_diff + item;
 268        s8 v, t;
 269
 270        v = __this_cpu_inc_return(*p);
 271        t = __this_cpu_read(pcp->stat_threshold);
 272        if (unlikely(v > t)) {
 273                s8 overstep = t >> 1;
 274
 275                zone_page_state_add(v + overstep, zone, item);
 276                __this_cpu_write(*p, -overstep);
 277        }
 278}
 279
 280void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
 281{
 282        __inc_zone_state(page_zone(page), item);
 283}
 284EXPORT_SYMBOL(__inc_zone_page_state);
 285
 286void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 287{
 288        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 289        s8 __percpu *p = pcp->vm_stat_diff + item;
 290        s8 v, t;
 291
 292        v = __this_cpu_dec_return(*p);
 293        t = __this_cpu_read(pcp->stat_threshold);
 294        if (unlikely(v < - t)) {
 295                s8 overstep = t >> 1;
 296
 297                zone_page_state_add(v - overstep, zone, item);
 298                __this_cpu_write(*p, overstep);
 299        }
 300}
 301
 302void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
 303{
 304        __dec_zone_state(page_zone(page), item);
 305}
 306EXPORT_SYMBOL(__dec_zone_page_state);
 307
 308#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
 309/*
 310 * If we have cmpxchg_local support then we do not need to incur the overhead
 311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 312 *
 313 * mod_state() modifies the zone counter state through atomic per cpu
 314 * operations.
 315 *
 316 * Overstep mode specifies how overstep should handled:
 317 *     0       No overstepping
 318 *     1       Overstepping half of threshold
 319 *     -1      Overstepping minus half of threshold
 320*/
 321static inline void mod_state(struct zone *zone,
 322       enum zone_stat_item item, int delta, int overstep_mode)
 323{
 324        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 325        s8 __percpu *p = pcp->vm_stat_diff + item;
 326        long o, n, t, z;
 327
 328        do {
 329                z = 0;  /* overflow to zone counters */
 330
 331                /*
 332                 * The fetching of the stat_threshold is racy. We may apply
 333                 * a counter threshold to the wrong the cpu if we get
 334                 * rescheduled while executing here. However, the next
 335                 * counter update will apply the threshold again and
 336                 * therefore bring the counter under the threshold again.
 337                 *
 338                 * Most of the time the thresholds are the same anyways
 339                 * for all cpus in a zone.
 340                 */
 341                t = this_cpu_read(pcp->stat_threshold);
 342
 343                o = this_cpu_read(*p);
 344                n = delta + o;
 345
 346                if (n > t || n < -t) {
 347                        int os = overstep_mode * (t >> 1) ;
 348
 349                        /* Overflow must be added to zone counters */
 350                        z = n + os;
 351                        n = -os;
 352                }
 353        } while (this_cpu_cmpxchg(*p, o, n) != o);
 354
 355        if (z)
 356                zone_page_state_add(z, zone, item);
 357}
 358
 359void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 360                                        int delta)
 361{
 362        mod_state(zone, item, delta, 0);
 363}
 364EXPORT_SYMBOL(mod_zone_page_state);
 365
 366void inc_zone_state(struct zone *zone, enum zone_stat_item item)
 367{
 368        mod_state(zone, item, 1, 1);
 369}
 370
 371void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 372{
 373        mod_state(page_zone(page), item, 1, 1);
 374}
 375EXPORT_SYMBOL(inc_zone_page_state);
 376
 377void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 378{
 379        mod_state(page_zone(page), item, -1, -1);
 380}
 381EXPORT_SYMBOL(dec_zone_page_state);
 382#else
 383/*
 384 * Use interrupt disable to serialize counter updates
 385 */
 386void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 387                                        int delta)
 388{
 389        unsigned long flags;
 390
 391        local_irq_save(flags);
 392        __mod_zone_page_state(zone, item, delta);
 393        local_irq_restore(flags);
 394}
 395EXPORT_SYMBOL(mod_zone_page_state);
 396
 397void inc_zone_state(struct zone *zone, enum zone_stat_item item)
 398{
 399        unsigned long flags;
 400
 401        local_irq_save(flags);
 402        __inc_zone_state(zone, item);
 403        local_irq_restore(flags);
 404}
 405
 406void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 407{
 408        unsigned long flags;
 409        struct zone *zone;
 410
 411        zone = page_zone(page);
 412        local_irq_save(flags);
 413        __inc_zone_state(zone, item);
 414        local_irq_restore(flags);
 415}
 416EXPORT_SYMBOL(inc_zone_page_state);
 417
 418void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 419{
 420        unsigned long flags;
 421
 422        local_irq_save(flags);
 423        __dec_zone_page_state(page, item);
 424        local_irq_restore(flags);
 425}
 426EXPORT_SYMBOL(dec_zone_page_state);
 427#endif
 428
 429
 430/*
 431 * Fold a differential into the global counters.
 432 * Returns the number of counters updated.
 433 */
 434static int fold_diff(int *diff)
 435{
 436        int i;
 437        int changes = 0;
 438
 439        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 440                if (diff[i]) {
 441                        atomic_long_add(diff[i], &vm_stat[i]);
 442                        changes++;
 443        }
 444        return changes;
 445}
 446
 447/*
 448 * Update the zone counters for the current cpu.
 449 *
 450 * Note that refresh_cpu_vm_stats strives to only access
 451 * node local memory. The per cpu pagesets on remote zones are placed
 452 * in the memory local to the processor using that pageset. So the
 453 * loop over all zones will access a series of cachelines local to
 454 * the processor.
 455 *
 456 * The call to zone_page_state_add updates the cachelines with the
 457 * statistics in the remote zone struct as well as the global cachelines
 458 * with the global counters. These could cause remote node cache line
 459 * bouncing and will have to be only done when necessary.
 460 *
 461 * The function returns the number of global counters updated.
 462 */
 463static int refresh_cpu_vm_stats(void)
 464{
 465        struct zone *zone;
 466        int i;
 467        int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 468        int changes = 0;
 469
 470        for_each_populated_zone(zone) {
 471                struct per_cpu_pageset __percpu *p = zone->pageset;
 472
 473                for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 474                        int v;
 475
 476                        v = this_cpu_xchg(p->vm_stat_diff[i], 0);
 477                        if (v) {
 478
 479                                atomic_long_add(v, &zone->vm_stat[i]);
 480                                global_diff[i] += v;
 481#ifdef CONFIG_NUMA
 482                                /* 3 seconds idle till flush */
 483                                __this_cpu_write(p->expire, 3);
 484#endif
 485                        }
 486                }
 487                cond_resched();
 488#ifdef CONFIG_NUMA
 489                /*
 490                 * Deal with draining the remote pageset of this
 491                 * processor
 492                 *
 493                 * Check if there are pages remaining in this pageset
 494                 * if not then there is nothing to expire.
 495                 */
 496                if (!__this_cpu_read(p->expire) ||
 497                               !__this_cpu_read(p->pcp.count))
 498                        continue;
 499
 500                /*
 501                 * We never drain zones local to this processor.
 502                 */
 503                if (zone_to_nid(zone) == numa_node_id()) {
 504                        __this_cpu_write(p->expire, 0);
 505                        continue;
 506                }
 507
 508                if (__this_cpu_dec_return(p->expire))
 509                        continue;
 510
 511                if (__this_cpu_read(p->pcp.count)) {
 512                        drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
 513                        changes++;
 514                }
 515#endif
 516        }
 517        changes += fold_diff(global_diff);
 518        return changes;
 519}
 520
 521/*
 522 * Fold the data for an offline cpu into the global array.
 523 * There cannot be any access by the offline cpu and therefore
 524 * synchronization is simplified.
 525 */
 526void cpu_vm_stats_fold(int cpu)
 527{
 528        struct zone *zone;
 529        int i;
 530        int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 531
 532        for_each_populated_zone(zone) {
 533                struct per_cpu_pageset *p;
 534
 535                p = per_cpu_ptr(zone->pageset, cpu);
 536
 537                for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 538                        if (p->vm_stat_diff[i]) {
 539                                int v;
 540
 541                                v = p->vm_stat_diff[i];
 542                                p->vm_stat_diff[i] = 0;
 543                                atomic_long_add(v, &zone->vm_stat[i]);
 544                                global_diff[i] += v;
 545                        }
 546        }
 547
 548        fold_diff(global_diff);
 549}
 550
 551/*
 552 * this is only called if !populated_zone(zone), which implies no other users of
 553 * pset->vm_stat_diff[] exsist.
 554 */
 555void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
 556{
 557        int i;
 558
 559        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 560                if (pset->vm_stat_diff[i]) {
 561                        int v = pset->vm_stat_diff[i];
 562                        pset->vm_stat_diff[i] = 0;
 563                        atomic_long_add(v, &zone->vm_stat[i]);
 564                        atomic_long_add(v, &vm_stat[i]);
 565                }
 566}
 567#endif
 568
 569#ifdef CONFIG_NUMA
 570/*
 571 * zonelist = the list of zones passed to the allocator
 572 * z        = the zone from which the allocation occurred.
 573 *
 574 * Must be called with interrupts disabled.
 575 *
 576 * When __GFP_OTHER_NODE is set assume the node of the preferred
 577 * zone is the local node. This is useful for daemons who allocate
 578 * memory on behalf of other processes.
 579 */
 580void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
 581{
 582        if (z->zone_pgdat == preferred_zone->zone_pgdat) {
 583                __inc_zone_state(z, NUMA_HIT);
 584        } else {
 585                __inc_zone_state(z, NUMA_MISS);
 586                __inc_zone_state(preferred_zone, NUMA_FOREIGN);
 587        }
 588        if (z->node == ((flags & __GFP_OTHER_NODE) ?
 589                        preferred_zone->node : numa_node_id()))
 590                __inc_zone_state(z, NUMA_LOCAL);
 591        else
 592                __inc_zone_state(z, NUMA_OTHER);
 593}
 594#endif
 595
 596#ifdef CONFIG_COMPACTION
 597
 598struct contig_page_info {
 599        unsigned long free_pages;
 600        unsigned long free_blocks_total;
 601        unsigned long free_blocks_suitable;
 602};
 603
 604/*
 605 * Calculate the number of free pages in a zone, how many contiguous
 606 * pages are free and how many are large enough to satisfy an allocation of
 607 * the target size. Note that this function makes no attempt to estimate
 608 * how many suitable free blocks there *might* be if MOVABLE pages were
 609 * migrated. Calculating that is possible, but expensive and can be
 610 * figured out from userspace
 611 */
 612static void fill_contig_page_info(struct zone *zone,
 613                                unsigned int suitable_order,
 614                                struct contig_page_info *info)
 615{
 616        unsigned int order;
 617
 618        info->free_pages = 0;
 619        info->free_blocks_total = 0;
 620        info->free_blocks_suitable = 0;
 621
 622        for (order = 0; order < MAX_ORDER; order++) {
 623                unsigned long blocks;
 624
 625                /* Count number of free blocks */
 626                blocks = zone->free_area[order].nr_free;
 627                info->free_blocks_total += blocks;
 628
 629                /* Count free base pages */
 630                info->free_pages += blocks << order;
 631
 632                /* Count the suitable free blocks */
 633                if (order >= suitable_order)
 634                        info->free_blocks_suitable += blocks <<
 635                                                (order - suitable_order);
 636        }
 637}
 638
 639/*
 640 * A fragmentation index only makes sense if an allocation of a requested
 641 * size would fail. If that is true, the fragmentation index indicates
 642 * whether external fragmentation or a lack of memory was the problem.
 643 * The value can be used to determine if page reclaim or compaction
 644 * should be used
 645 */
 646static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
 647{
 648        unsigned long requested = 1UL << order;
 649
 650        if (!info->free_blocks_total)
 651                return 0;
 652
 653        /* Fragmentation index only makes sense when a request would fail */
 654        if (info->free_blocks_suitable)
 655                return -1000;
 656
 657        /*
 658         * Index is between 0 and 1 so return within 3 decimal places
 659         *
 660         * 0 => allocation would fail due to lack of memory
 661         * 1 => allocation would fail due to fragmentation
 662         */
 663        return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
 664}
 665
 666/* Same as __fragmentation index but allocs contig_page_info on stack */
 667int fragmentation_index(struct zone *zone, unsigned int order)
 668{
 669        struct contig_page_info info;
 670
 671        fill_contig_page_info(zone, order, &info);
 672        return __fragmentation_index(order, &info);
 673}
 674#endif
 675
 676#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
 677#ifdef CONFIG_ZONE_DMA
 678#define TEXT_FOR_DMA(xx) xx "_dma",
 679#else
 680#define TEXT_FOR_DMA(xx)
 681#endif
 682
 683#ifdef CONFIG_ZONE_DMA32
 684#define TEXT_FOR_DMA32(xx) xx "_dma32",
 685#else
 686#define TEXT_FOR_DMA32(xx)
 687#endif
 688
 689#ifdef CONFIG_HIGHMEM
 690#define TEXT_FOR_HIGHMEM(xx) xx "_high",
 691#else
 692#define TEXT_FOR_HIGHMEM(xx)
 693#endif
 694
 695#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
 696                                        TEXT_FOR_HIGHMEM(xx) xx "_movable",
 697
 698const char * const vmstat_text[] = {
 699        /* enum zone_stat_item countes */
 700        "nr_free_pages",
 701        "nr_alloc_batch",
 702        "nr_inactive_anon",
 703        "nr_active_anon",
 704        "nr_inactive_file",
 705        "nr_active_file",
 706        "nr_unevictable",
 707        "nr_mlock",
 708        "nr_anon_pages",
 709        "nr_mapped",
 710        "nr_file_pages",
 711        "nr_dirty",
 712        "nr_writeback",
 713        "nr_slab_reclaimable",
 714        "nr_slab_unreclaimable",
 715        "nr_page_table_pages",
 716        "nr_kernel_stack",
 717        "nr_unstable",
 718        "nr_bounce",
 719        "nr_vmscan_write",
 720        "nr_vmscan_immediate_reclaim",
 721        "nr_writeback_temp",
 722        "nr_isolated_anon",
 723        "nr_isolated_file",
 724        "nr_shmem",
 725        "nr_dirtied",
 726        "nr_written",
 727        "nr_pages_scanned",
 728
 729#ifdef CONFIG_NUMA
 730        "numa_hit",
 731        "numa_miss",
 732        "numa_foreign",
 733        "numa_interleave",
 734        "numa_local",
 735        "numa_other",
 736#endif
 737        "workingset_refault",
 738        "workingset_activate",
 739        "workingset_nodereclaim",
 740        "nr_anon_transparent_hugepages",
 741        "nr_free_cma",
 742
 743        /* enum writeback_stat_item counters */
 744        "nr_dirty_threshold",
 745        "nr_dirty_background_threshold",
 746
 747#ifdef CONFIG_VM_EVENT_COUNTERS
 748        /* enum vm_event_item counters */
 749        "pgpgin",
 750        "pgpgout",
 751        "pswpin",
 752        "pswpout",
 753
 754        TEXTS_FOR_ZONES("pgalloc")
 755
 756        "pgfree",
 757        "pgactivate",
 758        "pgdeactivate",
 759
 760        "pgfault",
 761        "pgmajfault",
 762
 763        TEXTS_FOR_ZONES("pgrefill")
 764        TEXTS_FOR_ZONES("pgsteal_kswapd")
 765        TEXTS_FOR_ZONES("pgsteal_direct")
 766        TEXTS_FOR_ZONES("pgscan_kswapd")
 767        TEXTS_FOR_ZONES("pgscan_direct")
 768        "pgscan_direct_throttle",
 769
 770#ifdef CONFIG_NUMA
 771        "zone_reclaim_failed",
 772#endif
 773        "pginodesteal",
 774        "slabs_scanned",
 775        "kswapd_inodesteal",
 776        "kswapd_low_wmark_hit_quickly",
 777        "kswapd_high_wmark_hit_quickly",
 778        "pageoutrun",
 779        "allocstall",
 780
 781        "pgrotated",
 782
 783        "drop_pagecache",
 784        "drop_slab",
 785
 786#ifdef CONFIG_NUMA_BALANCING
 787        "numa_pte_updates",
 788        "numa_huge_pte_updates",
 789        "numa_hint_faults",
 790        "numa_hint_faults_local",
 791        "numa_pages_migrated",
 792#endif
 793#ifdef CONFIG_MIGRATION
 794        "pgmigrate_success",
 795        "pgmigrate_fail",
 796#endif
 797#ifdef CONFIG_COMPACTION
 798        "compact_migrate_scanned",
 799        "compact_free_scanned",
 800        "compact_isolated",
 801        "compact_stall",
 802        "compact_fail",
 803        "compact_success",
 804#endif
 805
 806#ifdef CONFIG_HUGETLB_PAGE
 807        "htlb_buddy_alloc_success",
 808        "htlb_buddy_alloc_fail",
 809#endif
 810        "unevictable_pgs_culled",
 811        "unevictable_pgs_scanned",
 812        "unevictable_pgs_rescued",
 813        "unevictable_pgs_mlocked",
 814        "unevictable_pgs_munlocked",
 815        "unevictable_pgs_cleared",
 816        "unevictable_pgs_stranded",
 817
 818#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 819        "thp_fault_alloc",
 820        "thp_fault_fallback",
 821        "thp_collapse_alloc",
 822        "thp_collapse_alloc_failed",
 823        "thp_split",
 824        "thp_zero_page_alloc",
 825        "thp_zero_page_alloc_failed",
 826#endif
 827#ifdef CONFIG_MEMORY_BALLOON
 828        "balloon_inflate",
 829        "balloon_deflate",
 830#ifdef CONFIG_BALLOON_COMPACTION
 831        "balloon_migrate",
 832#endif
 833#endif /* CONFIG_MEMORY_BALLOON */
 834#ifdef CONFIG_DEBUG_TLBFLUSH
 835#ifdef CONFIG_SMP
 836        "nr_tlb_remote_flush",
 837        "nr_tlb_remote_flush_received",
 838#endif /* CONFIG_SMP */
 839        "nr_tlb_local_flush_all",
 840        "nr_tlb_local_flush_one",
 841#endif /* CONFIG_DEBUG_TLBFLUSH */
 842
 843#ifdef CONFIG_DEBUG_VM_VMACACHE
 844        "vmacache_find_calls",
 845        "vmacache_find_hits",
 846        "vmacache_full_flushes",
 847#endif
 848#endif /* CONFIG_VM_EVENTS_COUNTERS */
 849};
 850#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
 851
 852
 853#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
 854     defined(CONFIG_PROC_FS)
 855static void *frag_start(struct seq_file *m, loff_t *pos)
 856{
 857        pg_data_t *pgdat;
 858        loff_t node = *pos;
 859
 860        for (pgdat = first_online_pgdat();
 861             pgdat && node;
 862             pgdat = next_online_pgdat(pgdat))
 863                --node;
 864
 865        return pgdat;
 866}
 867
 868static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
 869{
 870        pg_data_t *pgdat = (pg_data_t *)arg;
 871
 872        (*pos)++;
 873        return next_online_pgdat(pgdat);
 874}
 875
 876static void frag_stop(struct seq_file *m, void *arg)
 877{
 878}
 879
 880/* Walk all the zones in a node and print using a callback */
 881static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
 882                void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
 883{
 884        struct zone *zone;
 885        struct zone *node_zones = pgdat->node_zones;
 886        unsigned long flags;
 887
 888        for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
 889                if (!populated_zone(zone))
 890                        continue;
 891
 892                spin_lock_irqsave(&zone->lock, flags);
 893                print(m, pgdat, zone);
 894                spin_unlock_irqrestore(&zone->lock, flags);
 895        }
 896}
 897#endif
 898
 899#ifdef CONFIG_PROC_FS
 900static char * const migratetype_names[MIGRATE_TYPES] = {
 901        "Unmovable",
 902        "Reclaimable",
 903        "Movable",
 904        "Reserve",
 905#ifdef CONFIG_CMA
 906        "CMA",
 907#endif
 908#ifdef CONFIG_MEMORY_ISOLATION
 909        "Isolate",
 910#endif
 911};
 912
 913static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
 914                                                struct zone *zone)
 915{
 916        int order;
 917
 918        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
 919        for (order = 0; order < MAX_ORDER; ++order)
 920                seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
 921        seq_putc(m, '\n');
 922}
 923
 924/*
 925 * This walks the free areas for each zone.
 926 */
 927static int frag_show(struct seq_file *m, void *arg)
 928{
 929        pg_data_t *pgdat = (pg_data_t *)arg;
 930        walk_zones_in_node(m, pgdat, frag_show_print);
 931        return 0;
 932}
 933
 934static void pagetypeinfo_showfree_print(struct seq_file *m,
 935                                        pg_data_t *pgdat, struct zone *zone)
 936{
 937        int order, mtype;
 938
 939        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
 940                seq_printf(m, "Node %4d, zone %8s, type %12s ",
 941                                        pgdat->node_id,
 942                                        zone->name,
 943                                        migratetype_names[mtype]);
 944                for (order = 0; order < MAX_ORDER; ++order) {
 945                        unsigned long freecount = 0;
 946                        struct free_area *area;
 947                        struct list_head *curr;
 948
 949                        area = &(zone->free_area[order]);
 950
 951                        list_for_each(curr, &area->free_list[mtype])
 952                                freecount++;
 953                        seq_printf(m, "%6lu ", freecount);
 954                }
 955                seq_putc(m, '\n');
 956        }
 957}
 958
 959/* Print out the free pages at each order for each migatetype */
 960static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
 961{
 962        int order;
 963        pg_data_t *pgdat = (pg_data_t *)arg;
 964
 965        /* Print header */
 966        seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
 967        for (order = 0; order < MAX_ORDER; ++order)
 968                seq_printf(m, "%6d ", order);
 969        seq_putc(m, '\n');
 970
 971        walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
 972
 973        return 0;
 974}
 975
 976static void pagetypeinfo_showblockcount_print(struct seq_file *m,
 977                                        pg_data_t *pgdat, struct zone *zone)
 978{
 979        int mtype;
 980        unsigned long pfn;
 981        unsigned long start_pfn = zone->zone_start_pfn;
 982        unsigned long end_pfn = zone_end_pfn(zone);
 983        unsigned long count[MIGRATE_TYPES] = { 0, };
 984
 985        for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
 986                struct page *page;
 987
 988                if (!pfn_valid(pfn))
 989                        continue;
 990
 991                page = pfn_to_page(pfn);
 992
 993                /* Watch for unexpected holes punched in the memmap */
 994                if (!memmap_valid_within(pfn, page, zone))
 995                        continue;
 996
 997                mtype = get_pageblock_migratetype(page);
 998
 999                if (mtype < MIGRATE_TYPES)
1000                        count[mtype]++;
1001        }
1002
1003        /* Print counts */
1004        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1005        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1006                seq_printf(m, "%12lu ", count[mtype]);
1007        seq_putc(m, '\n');
1008}
1009
1010/* Print out the free pages at each order for each migratetype */
1011static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1012{
1013        int mtype;
1014        pg_data_t *pgdat = (pg_data_t *)arg;
1015
1016        seq_printf(m, "\n%-23s", "Number of blocks type ");
1017        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1018                seq_printf(m, "%12s ", migratetype_names[mtype]);
1019        seq_putc(m, '\n');
1020        walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1021
1022        return 0;
1023}
1024
1025#ifdef CONFIG_PAGE_OWNER
1026static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1027                                                        pg_data_t *pgdat,
1028                                                        struct zone *zone)
1029{
1030        struct page *page;
1031        struct page_ext *page_ext;
1032        unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1033        unsigned long end_pfn = pfn + zone->spanned_pages;
1034        unsigned long count[MIGRATE_TYPES] = { 0, };
1035        int pageblock_mt, page_mt;
1036        int i;
1037
1038        /* Scan block by block. First and last block may be incomplete */
1039        pfn = zone->zone_start_pfn;
1040
1041        /*
1042         * Walk the zone in pageblock_nr_pages steps. If a page block spans
1043         * a zone boundary, it will be double counted between zones. This does
1044         * not matter as the mixed block count will still be correct
1045         */
1046        for (; pfn < end_pfn; ) {
1047                if (!pfn_valid(pfn)) {
1048                        pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1049                        continue;
1050                }
1051
1052                block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1053                block_end_pfn = min(block_end_pfn, end_pfn);
1054
1055                page = pfn_to_page(pfn);
1056                pageblock_mt = get_pfnblock_migratetype(page, pfn);
1057
1058                for (; pfn < block_end_pfn; pfn++) {
1059                        if (!pfn_valid_within(pfn))
1060                                continue;
1061
1062                        page = pfn_to_page(pfn);
1063                        if (PageBuddy(page)) {
1064                                pfn += (1UL << page_order(page)) - 1;
1065                                continue;
1066                        }
1067
1068                        if (PageReserved(page))
1069                                continue;
1070
1071                        page_ext = lookup_page_ext(page);
1072
1073                        if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1074                                continue;
1075
1076                        page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1077                        if (pageblock_mt != page_mt) {
1078                                if (is_migrate_cma(pageblock_mt))
1079                                        count[MIGRATE_MOVABLE]++;
1080                                else
1081                                        count[pageblock_mt]++;
1082
1083                                pfn = block_end_pfn;
1084                                break;
1085                        }
1086                        pfn += (1UL << page_ext->order) - 1;
1087                }
1088        }
1089
1090        /* Print counts */
1091        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1092        for (i = 0; i < MIGRATE_TYPES; i++)
1093                seq_printf(m, "%12lu ", count[i]);
1094        seq_putc(m, '\n');
1095}
1096#endif /* CONFIG_PAGE_OWNER */
1097
1098/*
1099 * Print out the number of pageblocks for each migratetype that contain pages
1100 * of other types. This gives an indication of how well fallbacks are being
1101 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1102 * to determine what is going on
1103 */
1104static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1105{
1106#ifdef CONFIG_PAGE_OWNER
1107        int mtype;
1108
1109        if (!page_owner_inited)
1110                return;
1111
1112        drain_all_pages(NULL);
1113
1114        seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1115        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1116                seq_printf(m, "%12s ", migratetype_names[mtype]);
1117        seq_putc(m, '\n');
1118
1119        walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1120#endif /* CONFIG_PAGE_OWNER */
1121}
1122
1123/*
1124 * This prints out statistics in relation to grouping pages by mobility.
1125 * It is expensive to collect so do not constantly read the file.
1126 */
1127static int pagetypeinfo_show(struct seq_file *m, void *arg)
1128{
1129        pg_data_t *pgdat = (pg_data_t *)arg;
1130
1131        /* check memoryless node */
1132        if (!node_state(pgdat->node_id, N_MEMORY))
1133                return 0;
1134
1135        seq_printf(m, "Page block order: %d\n", pageblock_order);
1136        seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1137        seq_putc(m, '\n');
1138        pagetypeinfo_showfree(m, pgdat);
1139        pagetypeinfo_showblockcount(m, pgdat);
1140        pagetypeinfo_showmixedcount(m, pgdat);
1141
1142        return 0;
1143}
1144
1145static const struct seq_operations fragmentation_op = {
1146        .start  = frag_start,
1147        .next   = frag_next,
1148        .stop   = frag_stop,
1149        .show   = frag_show,
1150};
1151
1152static int fragmentation_open(struct inode *inode, struct file *file)
1153{
1154        return seq_open(file, &fragmentation_op);
1155}
1156
1157static const struct file_operations fragmentation_file_operations = {
1158        .open           = fragmentation_open,
1159        .read           = seq_read,
1160        .llseek         = seq_lseek,
1161        .release        = seq_release,
1162};
1163
1164static const struct seq_operations pagetypeinfo_op = {
1165        .start  = frag_start,
1166        .next   = frag_next,
1167        .stop   = frag_stop,
1168        .show   = pagetypeinfo_show,
1169};
1170
1171static int pagetypeinfo_open(struct inode *inode, struct file *file)
1172{
1173        return seq_open(file, &pagetypeinfo_op);
1174}
1175
1176static const struct file_operations pagetypeinfo_file_ops = {
1177        .open           = pagetypeinfo_open,
1178        .read           = seq_read,
1179        .llseek         = seq_lseek,
1180        .release        = seq_release,
1181};
1182
1183static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1184                                                        struct zone *zone)
1185{
1186        int i;
1187        seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1188        seq_printf(m,
1189                   "\n  pages free     %lu"
1190                   "\n        min      %lu"
1191                   "\n        low      %lu"
1192                   "\n        high     %lu"
1193                   "\n        scanned  %lu"
1194                   "\n        spanned  %lu"
1195                   "\n        present  %lu"
1196                   "\n        managed  %lu",
1197                   zone_page_state(zone, NR_FREE_PAGES),
1198                   min_wmark_pages(zone),
1199                   low_wmark_pages(zone),
1200                   high_wmark_pages(zone),
1201                   zone_page_state(zone, NR_PAGES_SCANNED),
1202                   zone->spanned_pages,
1203                   zone->present_pages,
1204                   zone->managed_pages);
1205
1206        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1207                seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1208                                zone_page_state(zone, i));
1209
1210        seq_printf(m,
1211                   "\n        protection: (%ld",
1212                   zone->lowmem_reserve[0]);
1213        for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1214                seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1215        seq_printf(m,
1216                   ")"
1217                   "\n  pagesets");
1218        for_each_online_cpu(i) {
1219                struct per_cpu_pageset *pageset;
1220
1221                pageset = per_cpu_ptr(zone->pageset, i);
1222                seq_printf(m,
1223                           "\n    cpu: %i"
1224                           "\n              count: %i"
1225                           "\n              high:  %i"
1226                           "\n              batch: %i",
1227                           i,
1228                           pageset->pcp.count,
1229                           pageset->pcp.high,
1230                           pageset->pcp.batch);
1231#ifdef CONFIG_SMP
1232                seq_printf(m, "\n  vm stats threshold: %d",
1233                                pageset->stat_threshold);
1234#endif
1235        }
1236        seq_printf(m,
1237                   "\n  all_unreclaimable: %u"
1238                   "\n  start_pfn:         %lu"
1239                   "\n  inactive_ratio:    %u",
1240                   !zone_reclaimable(zone),
1241                   zone->zone_start_pfn,
1242                   zone->inactive_ratio);
1243        seq_putc(m, '\n');
1244}
1245
1246/*
1247 * Output information about zones in @pgdat.
1248 */
1249static int zoneinfo_show(struct seq_file *m, void *arg)
1250{
1251        pg_data_t *pgdat = (pg_data_t *)arg;
1252        walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1253        return 0;
1254}
1255
1256static const struct seq_operations zoneinfo_op = {
1257        .start  = frag_start, /* iterate over all zones. The same as in
1258                               * fragmentation. */
1259        .next   = frag_next,
1260        .stop   = frag_stop,
1261        .show   = zoneinfo_show,
1262};
1263
1264static int zoneinfo_open(struct inode *inode, struct file *file)
1265{
1266        return seq_open(file, &zoneinfo_op);
1267}
1268
1269static const struct file_operations proc_zoneinfo_file_operations = {
1270        .open           = zoneinfo_open,
1271        .read           = seq_read,
1272        .llseek         = seq_lseek,
1273        .release        = seq_release,
1274};
1275
1276enum writeback_stat_item {
1277        NR_DIRTY_THRESHOLD,
1278        NR_DIRTY_BG_THRESHOLD,
1279        NR_VM_WRITEBACK_STAT_ITEMS,
1280};
1281
1282static void *vmstat_start(struct seq_file *m, loff_t *pos)
1283{
1284        unsigned long *v;
1285        int i, stat_items_size;
1286
1287        if (*pos >= ARRAY_SIZE(vmstat_text))
1288                return NULL;
1289        stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1290                          NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1291
1292#ifdef CONFIG_VM_EVENT_COUNTERS
1293        stat_items_size += sizeof(struct vm_event_state);
1294#endif
1295
1296        v = kmalloc(stat_items_size, GFP_KERNEL);
1297        m->private = v;
1298        if (!v)
1299                return ERR_PTR(-ENOMEM);
1300        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1301                v[i] = global_page_state(i);
1302        v += NR_VM_ZONE_STAT_ITEMS;
1303
1304        global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1305                            v + NR_DIRTY_THRESHOLD);
1306        v += NR_VM_WRITEBACK_STAT_ITEMS;
1307
1308#ifdef CONFIG_VM_EVENT_COUNTERS
1309        all_vm_events(v);
1310        v[PGPGIN] /= 2;         /* sectors -> kbytes */
1311        v[PGPGOUT] /= 2;
1312#endif
1313        return (unsigned long *)m->private + *pos;
1314}
1315
1316static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1317{
1318        (*pos)++;
1319        if (*pos >= ARRAY_SIZE(vmstat_text))
1320                return NULL;
1321        return (unsigned long *)m->private + *pos;
1322}
1323
1324static int vmstat_show(struct seq_file *m, void *arg)
1325{
1326        unsigned long *l = arg;
1327        unsigned long off = l - (unsigned long *)m->private;
1328
1329        seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1330        return 0;
1331}
1332
1333static void vmstat_stop(struct seq_file *m, void *arg)
1334{
1335        kfree(m->private);
1336        m->private = NULL;
1337}
1338
1339static const struct seq_operations vmstat_op = {
1340        .start  = vmstat_start,
1341        .next   = vmstat_next,
1342        .stop   = vmstat_stop,
1343        .show   = vmstat_show,
1344};
1345
1346static int vmstat_open(struct inode *inode, struct file *file)
1347{
1348        return seq_open(file, &vmstat_op);
1349}
1350
1351static const struct file_operations proc_vmstat_file_operations = {
1352        .open           = vmstat_open,
1353        .read           = seq_read,
1354        .llseek         = seq_lseek,
1355        .release        = seq_release,
1356};
1357#endif /* CONFIG_PROC_FS */
1358
1359#ifdef CONFIG_SMP
1360static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1361int sysctl_stat_interval __read_mostly = HZ;
1362static cpumask_var_t cpu_stat_off;
1363
1364static void vmstat_update(struct work_struct *w)
1365{
1366        if (refresh_cpu_vm_stats())
1367                /*
1368                 * Counters were updated so we expect more updates
1369                 * to occur in the future. Keep on running the
1370                 * update worker thread.
1371                 */
1372                schedule_delayed_work(this_cpu_ptr(&vmstat_work),
1373                        round_jiffies_relative(sysctl_stat_interval));
1374        else {
1375                /*
1376                 * We did not update any counters so the app may be in
1377                 * a mode where it does not cause counter updates.
1378                 * We may be uselessly running vmstat_update.
1379                 * Defer the checking for differentials to the
1380                 * shepherd thread on a different processor.
1381                 */
1382                int r;
1383                /*
1384                 * Shepherd work thread does not race since it never
1385                 * changes the bit if its zero but the cpu
1386                 * online / off line code may race if
1387                 * worker threads are still allowed during
1388                 * shutdown / startup.
1389                 */
1390                r = cpumask_test_and_set_cpu(smp_processor_id(),
1391                        cpu_stat_off);
1392                VM_BUG_ON(r);
1393        }
1394}
1395
1396/*
1397 * Check if the diffs for a certain cpu indicate that
1398 * an update is needed.
1399 */
1400static bool need_update(int cpu)
1401{
1402        struct zone *zone;
1403
1404        for_each_populated_zone(zone) {
1405                struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1406
1407                BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1408                /*
1409                 * The fast way of checking if there are any vmstat diffs.
1410                 * This works because the diffs are byte sized items.
1411                 */
1412                if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1413                        return true;
1414
1415        }
1416        return false;
1417}
1418
1419
1420/*
1421 * Shepherd worker thread that checks the
1422 * differentials of processors that have their worker
1423 * threads for vm statistics updates disabled because of
1424 * inactivity.
1425 */
1426static void vmstat_shepherd(struct work_struct *w);
1427
1428static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd);
1429
1430static void vmstat_shepherd(struct work_struct *w)
1431{
1432        int cpu;
1433
1434        get_online_cpus();
1435        /* Check processors whose vmstat worker threads have been disabled */
1436        for_each_cpu(cpu, cpu_stat_off)
1437                if (need_update(cpu) &&
1438                        cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1439
1440                        schedule_delayed_work_on(cpu,
1441                                &per_cpu(vmstat_work, cpu), 0);
1442
1443        put_online_cpus();
1444
1445        schedule_delayed_work(&shepherd,
1446                round_jiffies_relative(sysctl_stat_interval));
1447
1448}
1449
1450static void __init start_shepherd_timer(void)
1451{
1452        int cpu;
1453
1454        for_each_possible_cpu(cpu)
1455                INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work, cpu),
1456                        vmstat_update);
1457
1458        if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1459                BUG();
1460        cpumask_copy(cpu_stat_off, cpu_online_mask);
1461
1462        schedule_delayed_work(&shepherd,
1463                round_jiffies_relative(sysctl_stat_interval));
1464}
1465
1466static void vmstat_cpu_dead(int node)
1467{
1468        int cpu;
1469
1470        get_online_cpus();
1471        for_each_online_cpu(cpu)
1472                if (cpu_to_node(cpu) == node)
1473                        goto end;
1474
1475        node_clear_state(node, N_CPU);
1476end:
1477        put_online_cpus();
1478}
1479
1480/*
1481 * Use the cpu notifier to insure that the thresholds are recalculated
1482 * when necessary.
1483 */
1484static int vmstat_cpuup_callback(struct notifier_block *nfb,
1485                unsigned long action,
1486                void *hcpu)
1487{
1488        long cpu = (long)hcpu;
1489
1490        switch (action) {
1491        case CPU_ONLINE:
1492        case CPU_ONLINE_FROZEN:
1493                refresh_zone_stat_thresholds();
1494                node_set_state(cpu_to_node(cpu), N_CPU);
1495                cpumask_set_cpu(cpu, cpu_stat_off);
1496                break;
1497        case CPU_DOWN_PREPARE:
1498        case CPU_DOWN_PREPARE_FROZEN:
1499                cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1500                cpumask_clear_cpu(cpu, cpu_stat_off);
1501                break;
1502        case CPU_DOWN_FAILED:
1503        case CPU_DOWN_FAILED_FROZEN:
1504                cpumask_set_cpu(cpu, cpu_stat_off);
1505                break;
1506        case CPU_DEAD:
1507        case CPU_DEAD_FROZEN:
1508                refresh_zone_stat_thresholds();
1509                vmstat_cpu_dead(cpu_to_node(cpu));
1510                break;
1511        default:
1512                break;
1513        }
1514        return NOTIFY_OK;
1515}
1516
1517static struct notifier_block vmstat_notifier =
1518        { &vmstat_cpuup_callback, NULL, 0 };
1519#endif
1520
1521static int __init setup_vmstat(void)
1522{
1523#ifdef CONFIG_SMP
1524        cpu_notifier_register_begin();
1525        __register_cpu_notifier(&vmstat_notifier);
1526
1527        start_shepherd_timer();
1528        cpu_notifier_register_done();
1529#endif
1530#ifdef CONFIG_PROC_FS
1531        proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1532        proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1533        proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1534        proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1535#endif
1536        return 0;
1537}
1538module_init(setup_vmstat)
1539
1540#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1541
1542/*
1543 * Return an index indicating how much of the available free memory is
1544 * unusable for an allocation of the requested size.
1545 */
1546static int unusable_free_index(unsigned int order,
1547                                struct contig_page_info *info)
1548{
1549        /* No free memory is interpreted as all free memory is unusable */
1550        if (info->free_pages == 0)
1551                return 1000;
1552
1553        /*
1554         * Index should be a value between 0 and 1. Return a value to 3
1555         * decimal places.
1556         *
1557         * 0 => no fragmentation
1558         * 1 => high fragmentation
1559         */
1560        return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1561
1562}
1563
1564static void unusable_show_print(struct seq_file *m,
1565                                        pg_data_t *pgdat, struct zone *zone)
1566{
1567        unsigned int order;
1568        int index;
1569        struct contig_page_info info;
1570
1571        seq_printf(m, "Node %d, zone %8s ",
1572                                pgdat->node_id,
1573                                zone->name);
1574        for (order = 0; order < MAX_ORDER; ++order) {
1575                fill_contig_page_info(zone, order, &info);
1576                index = unusable_free_index(order, &info);
1577                seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1578        }
1579
1580        seq_putc(m, '\n');
1581}
1582
1583/*
1584 * Display unusable free space index
1585 *
1586 * The unusable free space index measures how much of the available free
1587 * memory cannot be used to satisfy an allocation of a given size and is a
1588 * value between 0 and 1. The higher the value, the more of free memory is
1589 * unusable and by implication, the worse the external fragmentation is. This
1590 * can be expressed as a percentage by multiplying by 100.
1591 */
1592static int unusable_show(struct seq_file *m, void *arg)
1593{
1594        pg_data_t *pgdat = (pg_data_t *)arg;
1595
1596        /* check memoryless node */
1597        if (!node_state(pgdat->node_id, N_MEMORY))
1598                return 0;
1599
1600        walk_zones_in_node(m, pgdat, unusable_show_print);
1601
1602        return 0;
1603}
1604
1605static const struct seq_operations unusable_op = {
1606        .start  = frag_start,
1607        .next   = frag_next,
1608        .stop   = frag_stop,
1609        .show   = unusable_show,
1610};
1611
1612static int unusable_open(struct inode *inode, struct file *file)
1613{
1614        return seq_open(file, &unusable_op);
1615}
1616
1617static const struct file_operations unusable_file_ops = {
1618        .open           = unusable_open,
1619        .read           = seq_read,
1620        .llseek         = seq_lseek,
1621        .release        = seq_release,
1622};
1623
1624static void extfrag_show_print(struct seq_file *m,
1625                                        pg_data_t *pgdat, struct zone *zone)
1626{
1627        unsigned int order;
1628        int index;
1629
1630        /* Alloc on stack as interrupts are disabled for zone walk */
1631        struct contig_page_info info;
1632
1633        seq_printf(m, "Node %d, zone %8s ",
1634                                pgdat->node_id,
1635                                zone->name);
1636        for (order = 0; order < MAX_ORDER; ++order) {
1637                fill_contig_page_info(zone, order, &info);
1638                index = __fragmentation_index(order, &info);
1639                seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1640        }
1641
1642        seq_putc(m, '\n');
1643}
1644
1645/*
1646 * Display fragmentation index for orders that allocations would fail for
1647 */
1648static int extfrag_show(struct seq_file *m, void *arg)
1649{
1650        pg_data_t *pgdat = (pg_data_t *)arg;
1651
1652        walk_zones_in_node(m, pgdat, extfrag_show_print);
1653
1654        return 0;
1655}
1656
1657static const struct seq_operations extfrag_op = {
1658        .start  = frag_start,
1659        .next   = frag_next,
1660        .stop   = frag_stop,
1661        .show   = extfrag_show,
1662};
1663
1664static int extfrag_open(struct inode *inode, struct file *file)
1665{
1666        return seq_open(file, &extfrag_op);
1667}
1668
1669static const struct file_operations extfrag_file_ops = {
1670        .open           = extfrag_open,
1671        .read           = seq_read,
1672        .llseek         = seq_lseek,
1673        .release        = seq_release,
1674};
1675
1676static int __init extfrag_debug_init(void)
1677{
1678        struct dentry *extfrag_debug_root;
1679
1680        extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1681        if (!extfrag_debug_root)
1682                return -ENOMEM;
1683
1684        if (!debugfs_create_file("unusable_index", 0444,
1685                        extfrag_debug_root, NULL, &unusable_file_ops))
1686                goto fail;
1687
1688        if (!debugfs_create_file("extfrag_index", 0444,
1689                        extfrag_debug_root, NULL, &extfrag_file_ops))
1690                goto fail;
1691
1692        return 0;
1693fail:
1694        debugfs_remove_recursive(extfrag_debug_root);
1695        return -ENOMEM;
1696}
1697
1698module_init(extfrag_debug_init);
1699#endif
1700