linux/net/rds/iw_rdma.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006 Oracle.  All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 *
  32 */
  33#include <linux/kernel.h>
  34#include <linux/slab.h>
  35#include <linux/ratelimit.h>
  36
  37#include "rds.h"
  38#include "iw.h"
  39
  40
  41/*
  42 * This is stored as mr->r_trans_private.
  43 */
  44struct rds_iw_mr {
  45        struct rds_iw_device    *device;
  46        struct rds_iw_mr_pool   *pool;
  47        struct rdma_cm_id       *cm_id;
  48
  49        struct ib_mr    *mr;
  50        struct ib_fast_reg_page_list *page_list;
  51
  52        struct rds_iw_mapping   mapping;
  53        unsigned char           remap_count;
  54};
  55
  56/*
  57 * Our own little MR pool
  58 */
  59struct rds_iw_mr_pool {
  60        struct rds_iw_device    *device;                /* back ptr to the device that owns us */
  61
  62        struct mutex            flush_lock;             /* serialize fmr invalidate */
  63        struct work_struct      flush_worker;           /* flush worker */
  64
  65        spinlock_t              list_lock;              /* protect variables below */
  66        atomic_t                item_count;             /* total # of MRs */
  67        atomic_t                dirty_count;            /* # dirty of MRs */
  68        struct list_head        dirty_list;             /* dirty mappings */
  69        struct list_head        clean_list;             /* unused & unamapped MRs */
  70        atomic_t                free_pinned;            /* memory pinned by free MRs */
  71        unsigned long           max_message_size;       /* in pages */
  72        unsigned long           max_items;
  73        unsigned long           max_items_soft;
  74        unsigned long           max_free_pinned;
  75        int                     max_pages;
  76};
  77
  78static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
  79static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
  80static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
  81static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
  82                          struct rds_iw_mr *ibmr,
  83                          struct scatterlist *sg, unsigned int nents);
  84static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
  85static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
  86                        struct list_head *unmap_list,
  87                        struct list_head *kill_list,
  88                        int *unpinned);
  89static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
  90
  91static int rds_iw_get_device(struct sockaddr_in *src, struct sockaddr_in *dst,
  92                             struct rds_iw_device **rds_iwdev,
  93                             struct rdma_cm_id **cm_id)
  94{
  95        struct rds_iw_device *iwdev;
  96        struct rds_iw_cm_id *i_cm_id;
  97
  98        *rds_iwdev = NULL;
  99        *cm_id = NULL;
 100
 101        list_for_each_entry(iwdev, &rds_iw_devices, list) {
 102                spin_lock_irq(&iwdev->spinlock);
 103                list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
 104                        struct sockaddr_in *src_addr, *dst_addr;
 105
 106                        src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
 107                        dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
 108
 109                        rdsdebug("local ipaddr = %x port %d, "
 110                                 "remote ipaddr = %x port %d"
 111                                 "..looking for %x port %d, "
 112                                 "remote ipaddr = %x port %d\n",
 113                                src_addr->sin_addr.s_addr,
 114                                src_addr->sin_port,
 115                                dst_addr->sin_addr.s_addr,
 116                                dst_addr->sin_port,
 117                                src->sin_addr.s_addr,
 118                                src->sin_port,
 119                                dst->sin_addr.s_addr,
 120                                dst->sin_port);
 121#ifdef WORKING_TUPLE_DETECTION
 122                        if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr &&
 123                            src_addr->sin_port == src->sin_port &&
 124                            dst_addr->sin_addr.s_addr == dst->sin_addr.s_addr &&
 125                            dst_addr->sin_port == dst->sin_port) {
 126#else
 127                        /* FIXME - needs to compare the local and remote
 128                         * ipaddr/port tuple, but the ipaddr is the only
 129                         * available information in the rds_sock (as the rest are
 130                         * zero'ed.  It doesn't appear to be properly populated
 131                         * during connection setup...
 132                         */
 133                        if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr) {
 134#endif
 135                                spin_unlock_irq(&iwdev->spinlock);
 136                                *rds_iwdev = iwdev;
 137                                *cm_id = i_cm_id->cm_id;
 138                                return 0;
 139                        }
 140                }
 141                spin_unlock_irq(&iwdev->spinlock);
 142        }
 143
 144        return 1;
 145}
 146
 147static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
 148{
 149        struct rds_iw_cm_id *i_cm_id;
 150
 151        i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
 152        if (!i_cm_id)
 153                return -ENOMEM;
 154
 155        i_cm_id->cm_id = cm_id;
 156
 157        spin_lock_irq(&rds_iwdev->spinlock);
 158        list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
 159        spin_unlock_irq(&rds_iwdev->spinlock);
 160
 161        return 0;
 162}
 163
 164static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
 165                                struct rdma_cm_id *cm_id)
 166{
 167        struct rds_iw_cm_id *i_cm_id;
 168
 169        spin_lock_irq(&rds_iwdev->spinlock);
 170        list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
 171                if (i_cm_id->cm_id == cm_id) {
 172                        list_del(&i_cm_id->list);
 173                        kfree(i_cm_id);
 174                        break;
 175                }
 176        }
 177        spin_unlock_irq(&rds_iwdev->spinlock);
 178}
 179
 180
 181int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
 182{
 183        struct sockaddr_in *src_addr, *dst_addr;
 184        struct rds_iw_device *rds_iwdev_old;
 185        struct rdma_cm_id *pcm_id;
 186        int rc;
 187
 188        src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
 189        dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
 190
 191        rc = rds_iw_get_device(src_addr, dst_addr, &rds_iwdev_old, &pcm_id);
 192        if (rc)
 193                rds_iw_remove_cm_id(rds_iwdev, cm_id);
 194
 195        return rds_iw_add_cm_id(rds_iwdev, cm_id);
 196}
 197
 198void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
 199{
 200        struct rds_iw_connection *ic = conn->c_transport_data;
 201
 202        /* conn was previously on the nodev_conns_list */
 203        spin_lock_irq(&iw_nodev_conns_lock);
 204        BUG_ON(list_empty(&iw_nodev_conns));
 205        BUG_ON(list_empty(&ic->iw_node));
 206        list_del(&ic->iw_node);
 207
 208        spin_lock(&rds_iwdev->spinlock);
 209        list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
 210        spin_unlock(&rds_iwdev->spinlock);
 211        spin_unlock_irq(&iw_nodev_conns_lock);
 212
 213        ic->rds_iwdev = rds_iwdev;
 214}
 215
 216void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
 217{
 218        struct rds_iw_connection *ic = conn->c_transport_data;
 219
 220        /* place conn on nodev_conns_list */
 221        spin_lock(&iw_nodev_conns_lock);
 222
 223        spin_lock_irq(&rds_iwdev->spinlock);
 224        BUG_ON(list_empty(&ic->iw_node));
 225        list_del(&ic->iw_node);
 226        spin_unlock_irq(&rds_iwdev->spinlock);
 227
 228        list_add_tail(&ic->iw_node, &iw_nodev_conns);
 229
 230        spin_unlock(&iw_nodev_conns_lock);
 231
 232        rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
 233        ic->rds_iwdev = NULL;
 234}
 235
 236void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
 237{
 238        struct rds_iw_connection *ic, *_ic;
 239        LIST_HEAD(tmp_list);
 240
 241        /* avoid calling conn_destroy with irqs off */
 242        spin_lock_irq(list_lock);
 243        list_splice(list, &tmp_list);
 244        INIT_LIST_HEAD(list);
 245        spin_unlock_irq(list_lock);
 246
 247        list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
 248                rds_conn_destroy(ic->conn);
 249}
 250
 251static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
 252                struct scatterlist *list, unsigned int sg_len)
 253{
 254        sg->list = list;
 255        sg->len = sg_len;
 256        sg->dma_len = 0;
 257        sg->dma_npages = 0;
 258        sg->bytes = 0;
 259}
 260
 261static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
 262                        struct rds_iw_scatterlist *sg)
 263{
 264        struct ib_device *dev = rds_iwdev->dev;
 265        u64 *dma_pages = NULL;
 266        int i, j, ret;
 267
 268        WARN_ON(sg->dma_len);
 269
 270        sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
 271        if (unlikely(!sg->dma_len)) {
 272                printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
 273                return ERR_PTR(-EBUSY);
 274        }
 275
 276        sg->bytes = 0;
 277        sg->dma_npages = 0;
 278
 279        ret = -EINVAL;
 280        for (i = 0; i < sg->dma_len; ++i) {
 281                unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
 282                u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
 283                u64 end_addr;
 284
 285                sg->bytes += dma_len;
 286
 287                end_addr = dma_addr + dma_len;
 288                if (dma_addr & PAGE_MASK) {
 289                        if (i > 0)
 290                                goto out_unmap;
 291                        dma_addr &= ~PAGE_MASK;
 292                }
 293                if (end_addr & PAGE_MASK) {
 294                        if (i < sg->dma_len - 1)
 295                                goto out_unmap;
 296                        end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
 297                }
 298
 299                sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
 300        }
 301
 302        /* Now gather the dma addrs into one list */
 303        if (sg->dma_npages > fastreg_message_size)
 304                goto out_unmap;
 305
 306        dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
 307        if (!dma_pages) {
 308                ret = -ENOMEM;
 309                goto out_unmap;
 310        }
 311
 312        for (i = j = 0; i < sg->dma_len; ++i) {
 313                unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
 314                u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
 315                u64 end_addr;
 316
 317                end_addr = dma_addr + dma_len;
 318                dma_addr &= ~PAGE_MASK;
 319                for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
 320                        dma_pages[j++] = dma_addr;
 321                BUG_ON(j > sg->dma_npages);
 322        }
 323
 324        return dma_pages;
 325
 326out_unmap:
 327        ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
 328        sg->dma_len = 0;
 329        kfree(dma_pages);
 330        return ERR_PTR(ret);
 331}
 332
 333
 334struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
 335{
 336        struct rds_iw_mr_pool *pool;
 337
 338        pool = kzalloc(sizeof(*pool), GFP_KERNEL);
 339        if (!pool) {
 340                printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
 341                return ERR_PTR(-ENOMEM);
 342        }
 343
 344        pool->device = rds_iwdev;
 345        INIT_LIST_HEAD(&pool->dirty_list);
 346        INIT_LIST_HEAD(&pool->clean_list);
 347        mutex_init(&pool->flush_lock);
 348        spin_lock_init(&pool->list_lock);
 349        INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
 350
 351        pool->max_message_size = fastreg_message_size;
 352        pool->max_items = fastreg_pool_size;
 353        pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
 354        pool->max_pages = fastreg_message_size;
 355
 356        /* We never allow more than max_items MRs to be allocated.
 357         * When we exceed more than max_items_soft, we start freeing
 358         * items more aggressively.
 359         * Make sure that max_items > max_items_soft > max_items / 2
 360         */
 361        pool->max_items_soft = pool->max_items * 3 / 4;
 362
 363        return pool;
 364}
 365
 366void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
 367{
 368        struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
 369
 370        iinfo->rdma_mr_max = pool->max_items;
 371        iinfo->rdma_mr_size = pool->max_pages;
 372}
 373
 374void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
 375{
 376        flush_workqueue(rds_wq);
 377        rds_iw_flush_mr_pool(pool, 1);
 378        BUG_ON(atomic_read(&pool->item_count));
 379        BUG_ON(atomic_read(&pool->free_pinned));
 380        kfree(pool);
 381}
 382
 383static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
 384{
 385        struct rds_iw_mr *ibmr = NULL;
 386        unsigned long flags;
 387
 388        spin_lock_irqsave(&pool->list_lock, flags);
 389        if (!list_empty(&pool->clean_list)) {
 390                ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
 391                list_del_init(&ibmr->mapping.m_list);
 392        }
 393        spin_unlock_irqrestore(&pool->list_lock, flags);
 394
 395        return ibmr;
 396}
 397
 398static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
 399{
 400        struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
 401        struct rds_iw_mr *ibmr = NULL;
 402        int err = 0, iter = 0;
 403
 404        while (1) {
 405                ibmr = rds_iw_reuse_fmr(pool);
 406                if (ibmr)
 407                        return ibmr;
 408
 409                /* No clean MRs - now we have the choice of either
 410                 * allocating a fresh MR up to the limit imposed by the
 411                 * driver, or flush any dirty unused MRs.
 412                 * We try to avoid stalling in the send path if possible,
 413                 * so we allocate as long as we're allowed to.
 414                 *
 415                 * We're fussy with enforcing the FMR limit, though. If the driver
 416                 * tells us we can't use more than N fmrs, we shouldn't start
 417                 * arguing with it */
 418                if (atomic_inc_return(&pool->item_count) <= pool->max_items)
 419                        break;
 420
 421                atomic_dec(&pool->item_count);
 422
 423                if (++iter > 2) {
 424                        rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
 425                        return ERR_PTR(-EAGAIN);
 426                }
 427
 428                /* We do have some empty MRs. Flush them out. */
 429                rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
 430                rds_iw_flush_mr_pool(pool, 0);
 431        }
 432
 433        ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
 434        if (!ibmr) {
 435                err = -ENOMEM;
 436                goto out_no_cigar;
 437        }
 438
 439        spin_lock_init(&ibmr->mapping.m_lock);
 440        INIT_LIST_HEAD(&ibmr->mapping.m_list);
 441        ibmr->mapping.m_mr = ibmr;
 442
 443        err = rds_iw_init_fastreg(pool, ibmr);
 444        if (err)
 445                goto out_no_cigar;
 446
 447        rds_iw_stats_inc(s_iw_rdma_mr_alloc);
 448        return ibmr;
 449
 450out_no_cigar:
 451        if (ibmr) {
 452                rds_iw_destroy_fastreg(pool, ibmr);
 453                kfree(ibmr);
 454        }
 455        atomic_dec(&pool->item_count);
 456        return ERR_PTR(err);
 457}
 458
 459void rds_iw_sync_mr(void *trans_private, int direction)
 460{
 461        struct rds_iw_mr *ibmr = trans_private;
 462        struct rds_iw_device *rds_iwdev = ibmr->device;
 463
 464        switch (direction) {
 465        case DMA_FROM_DEVICE:
 466                ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
 467                        ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
 468                break;
 469        case DMA_TO_DEVICE:
 470                ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
 471                        ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
 472                break;
 473        }
 474}
 475
 476/*
 477 * Flush our pool of MRs.
 478 * At a minimum, all currently unused MRs are unmapped.
 479 * If the number of MRs allocated exceeds the limit, we also try
 480 * to free as many MRs as needed to get back to this limit.
 481 */
 482static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
 483{
 484        struct rds_iw_mr *ibmr, *next;
 485        LIST_HEAD(unmap_list);
 486        LIST_HEAD(kill_list);
 487        unsigned long flags;
 488        unsigned int nfreed = 0, ncleaned = 0, unpinned = 0;
 489        int ret = 0;
 490
 491        rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
 492
 493        mutex_lock(&pool->flush_lock);
 494
 495        spin_lock_irqsave(&pool->list_lock, flags);
 496        /* Get the list of all mappings to be destroyed */
 497        list_splice_init(&pool->dirty_list, &unmap_list);
 498        if (free_all)
 499                list_splice_init(&pool->clean_list, &kill_list);
 500        spin_unlock_irqrestore(&pool->list_lock, flags);
 501
 502        /* Batched invalidate of dirty MRs.
 503         * For FMR based MRs, the mappings on the unmap list are
 504         * actually members of an ibmr (ibmr->mapping). They either
 505         * migrate to the kill_list, or have been cleaned and should be
 506         * moved to the clean_list.
 507         * For fastregs, they will be dynamically allocated, and
 508         * will be destroyed by the unmap function.
 509         */
 510        if (!list_empty(&unmap_list)) {
 511                ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list,
 512                                                     &kill_list, &unpinned);
 513                /* If we've been asked to destroy all MRs, move those
 514                 * that were simply cleaned to the kill list */
 515                if (free_all)
 516                        list_splice_init(&unmap_list, &kill_list);
 517        }
 518
 519        /* Destroy any MRs that are past their best before date */
 520        list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
 521                rds_iw_stats_inc(s_iw_rdma_mr_free);
 522                list_del(&ibmr->mapping.m_list);
 523                rds_iw_destroy_fastreg(pool, ibmr);
 524                kfree(ibmr);
 525                nfreed++;
 526        }
 527
 528        /* Anything that remains are laundered ibmrs, which we can add
 529         * back to the clean list. */
 530        if (!list_empty(&unmap_list)) {
 531                spin_lock_irqsave(&pool->list_lock, flags);
 532                list_splice(&unmap_list, &pool->clean_list);
 533                spin_unlock_irqrestore(&pool->list_lock, flags);
 534        }
 535
 536        atomic_sub(unpinned, &pool->free_pinned);
 537        atomic_sub(ncleaned, &pool->dirty_count);
 538        atomic_sub(nfreed, &pool->item_count);
 539
 540        mutex_unlock(&pool->flush_lock);
 541        return ret;
 542}
 543
 544static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
 545{
 546        struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
 547
 548        rds_iw_flush_mr_pool(pool, 0);
 549}
 550
 551void rds_iw_free_mr(void *trans_private, int invalidate)
 552{
 553        struct rds_iw_mr *ibmr = trans_private;
 554        struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
 555
 556        rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
 557        if (!pool)
 558                return;
 559
 560        /* Return it to the pool's free list */
 561        rds_iw_free_fastreg(pool, ibmr);
 562
 563        /* If we've pinned too many pages, request a flush */
 564        if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
 565            atomic_read(&pool->dirty_count) >= pool->max_items / 10)
 566                queue_work(rds_wq, &pool->flush_worker);
 567
 568        if (invalidate) {
 569                if (likely(!in_interrupt())) {
 570                        rds_iw_flush_mr_pool(pool, 0);
 571                } else {
 572                        /* We get here if the user created a MR marked
 573                         * as use_once and invalidate at the same time. */
 574                        queue_work(rds_wq, &pool->flush_worker);
 575                }
 576        }
 577}
 578
 579void rds_iw_flush_mrs(void)
 580{
 581        struct rds_iw_device *rds_iwdev;
 582
 583        list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
 584                struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
 585
 586                if (pool)
 587                        rds_iw_flush_mr_pool(pool, 0);
 588        }
 589}
 590
 591void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
 592                    struct rds_sock *rs, u32 *key_ret)
 593{
 594        struct rds_iw_device *rds_iwdev;
 595        struct rds_iw_mr *ibmr = NULL;
 596        struct rdma_cm_id *cm_id;
 597        struct sockaddr_in src = {
 598                .sin_addr.s_addr = rs->rs_bound_addr,
 599                .sin_port = rs->rs_bound_port,
 600        };
 601        struct sockaddr_in dst = {
 602                .sin_addr.s_addr = rs->rs_conn_addr,
 603                .sin_port = rs->rs_conn_port,
 604        };
 605        int ret;
 606
 607        ret = rds_iw_get_device(&src, &dst, &rds_iwdev, &cm_id);
 608        if (ret || !cm_id) {
 609                ret = -ENODEV;
 610                goto out;
 611        }
 612
 613        if (!rds_iwdev->mr_pool) {
 614                ret = -ENODEV;
 615                goto out;
 616        }
 617
 618        ibmr = rds_iw_alloc_mr(rds_iwdev);
 619        if (IS_ERR(ibmr))
 620                return ibmr;
 621
 622        ibmr->cm_id = cm_id;
 623        ibmr->device = rds_iwdev;
 624
 625        ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
 626        if (ret == 0)
 627                *key_ret = ibmr->mr->rkey;
 628        else
 629                printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
 630
 631out:
 632        if (ret) {
 633                if (ibmr)
 634                        rds_iw_free_mr(ibmr, 0);
 635                ibmr = ERR_PTR(ret);
 636        }
 637        return ibmr;
 638}
 639
 640/*
 641 * iWARP fastreg handling
 642 *
 643 * The life cycle of a fastreg registration is a bit different from
 644 * FMRs.
 645 * The idea behind fastreg is to have one MR, to which we bind different
 646 * mappings over time. To avoid stalling on the expensive map and invalidate
 647 * operations, these operations are pipelined on the same send queue on
 648 * which we want to send the message containing the r_key.
 649 *
 650 * This creates a bit of a problem for us, as we do not have the destination
 651 * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
 652 * RDMA to be correctly setup.  If a fastreg request is present, rds_iw_xmit
 653 * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
 654 * before queuing the SEND. When completions for these arrive, they are
 655 * dispatched to the MR has a bit set showing that RDMa can be performed.
 656 *
 657 * There is another interesting aspect that's related to invalidation.
 658 * The application can request that a mapping is invalidated in FREE_MR.
 659 * The expectation there is that this invalidation step includes ALL
 660 * PREVIOUSLY FREED MRs.
 661 */
 662static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
 663                                struct rds_iw_mr *ibmr)
 664{
 665        struct rds_iw_device *rds_iwdev = pool->device;
 666        struct ib_fast_reg_page_list *page_list = NULL;
 667        struct ib_mr *mr;
 668        int err;
 669
 670        mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
 671        if (IS_ERR(mr)) {
 672                err = PTR_ERR(mr);
 673
 674                printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
 675                return err;
 676        }
 677
 678        /* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
 679         * is not filled in.
 680         */
 681        page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
 682        if (IS_ERR(page_list)) {
 683                err = PTR_ERR(page_list);
 684
 685                printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
 686                ib_dereg_mr(mr);
 687                return err;
 688        }
 689
 690        ibmr->page_list = page_list;
 691        ibmr->mr = mr;
 692        return 0;
 693}
 694
 695static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
 696{
 697        struct rds_iw_mr *ibmr = mapping->m_mr;
 698        struct ib_send_wr f_wr, *failed_wr;
 699        int ret;
 700
 701        /*
 702         * Perform a WR for the fast_reg_mr. Each individual page
 703         * in the sg list is added to the fast reg page list and placed
 704         * inside the fast_reg_mr WR.  The key used is a rolling 8bit
 705         * counter, which should guarantee uniqueness.
 706         */
 707        ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
 708        mapping->m_rkey = ibmr->mr->rkey;
 709
 710        memset(&f_wr, 0, sizeof(f_wr));
 711        f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
 712        f_wr.opcode = IB_WR_FAST_REG_MR;
 713        f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
 714        f_wr.wr.fast_reg.rkey = mapping->m_rkey;
 715        f_wr.wr.fast_reg.page_list = ibmr->page_list;
 716        f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
 717        f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
 718        f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
 719                                IB_ACCESS_REMOTE_READ |
 720                                IB_ACCESS_REMOTE_WRITE;
 721        f_wr.wr.fast_reg.iova_start = 0;
 722        f_wr.send_flags = IB_SEND_SIGNALED;
 723
 724        failed_wr = &f_wr;
 725        ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
 726        BUG_ON(failed_wr != &f_wr);
 727        if (ret)
 728                printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
 729                        __func__, __LINE__, ret);
 730        return ret;
 731}
 732
 733static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
 734{
 735        struct ib_send_wr s_wr, *failed_wr;
 736        int ret = 0;
 737
 738        if (!ibmr->cm_id->qp || !ibmr->mr)
 739                goto out;
 740
 741        memset(&s_wr, 0, sizeof(s_wr));
 742        s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
 743        s_wr.opcode = IB_WR_LOCAL_INV;
 744        s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
 745        s_wr.send_flags = IB_SEND_SIGNALED;
 746
 747        failed_wr = &s_wr;
 748        ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
 749        if (ret) {
 750                printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
 751                        __func__, __LINE__, ret);
 752                goto out;
 753        }
 754out:
 755        return ret;
 756}
 757
 758static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
 759                        struct rds_iw_mr *ibmr,
 760                        struct scatterlist *sg,
 761                        unsigned int sg_len)
 762{
 763        struct rds_iw_device *rds_iwdev = pool->device;
 764        struct rds_iw_mapping *mapping = &ibmr->mapping;
 765        u64 *dma_pages;
 766        int i, ret = 0;
 767
 768        rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
 769
 770        dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
 771        if (IS_ERR(dma_pages)) {
 772                ret = PTR_ERR(dma_pages);
 773                dma_pages = NULL;
 774                goto out;
 775        }
 776
 777        if (mapping->m_sg.dma_len > pool->max_message_size) {
 778                ret = -EMSGSIZE;
 779                goto out;
 780        }
 781
 782        for (i = 0; i < mapping->m_sg.dma_npages; ++i)
 783                ibmr->page_list->page_list[i] = dma_pages[i];
 784
 785        ret = rds_iw_rdma_build_fastreg(mapping);
 786        if (ret)
 787                goto out;
 788
 789        rds_iw_stats_inc(s_iw_rdma_mr_used);
 790
 791out:
 792        kfree(dma_pages);
 793
 794        return ret;
 795}
 796
 797/*
 798 * "Free" a fastreg MR.
 799 */
 800static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
 801                struct rds_iw_mr *ibmr)
 802{
 803        unsigned long flags;
 804        int ret;
 805
 806        if (!ibmr->mapping.m_sg.dma_len)
 807                return;
 808
 809        ret = rds_iw_rdma_fastreg_inv(ibmr);
 810        if (ret)
 811                return;
 812
 813        /* Try to post the LOCAL_INV WR to the queue. */
 814        spin_lock_irqsave(&pool->list_lock, flags);
 815
 816        list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
 817        atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
 818        atomic_inc(&pool->dirty_count);
 819
 820        spin_unlock_irqrestore(&pool->list_lock, flags);
 821}
 822
 823static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
 824                                struct list_head *unmap_list,
 825                                struct list_head *kill_list,
 826                                int *unpinned)
 827{
 828        struct rds_iw_mapping *mapping, *next;
 829        unsigned int ncleaned = 0;
 830        LIST_HEAD(laundered);
 831
 832        /* Batched invalidation of fastreg MRs.
 833         * Why do we do it this way, even though we could pipeline unmap
 834         * and remap? The reason is the application semantics - when the
 835         * application requests an invalidation of MRs, it expects all
 836         * previously released R_Keys to become invalid.
 837         *
 838         * If we implement MR reuse naively, we risk memory corruption
 839         * (this has actually been observed). So the default behavior
 840         * requires that a MR goes through an explicit unmap operation before
 841         * we can reuse it again.
 842         *
 843         * We could probably improve on this a little, by allowing immediate
 844         * reuse of a MR on the same socket (eg you could add small
 845         * cache of unused MRs to strct rds_socket - GET_MR could grab one
 846         * of these without requiring an explicit invalidate).
 847         */
 848        while (!list_empty(unmap_list)) {
 849                unsigned long flags;
 850
 851                spin_lock_irqsave(&pool->list_lock, flags);
 852                list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
 853                        *unpinned += mapping->m_sg.len;
 854                        list_move(&mapping->m_list, &laundered);
 855                        ncleaned++;
 856                }
 857                spin_unlock_irqrestore(&pool->list_lock, flags);
 858        }
 859
 860        /* Move all laundered mappings back to the unmap list.
 861         * We do not kill any WRs right now - it doesn't seem the
 862         * fastreg API has a max_remap limit. */
 863        list_splice_init(&laundered, unmap_list);
 864
 865        return ncleaned;
 866}
 867
 868static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
 869                struct rds_iw_mr *ibmr)
 870{
 871        if (ibmr->page_list)
 872                ib_free_fast_reg_page_list(ibmr->page_list);
 873        if (ibmr->mr)
 874                ib_dereg_mr(ibmr->mr);
 875}
 876