linux/arch/arm/common/edma.c
<<
>>
Prefs
   1/*
   2 * EDMA3 support for DaVinci
   3 *
   4 * Copyright (C) 2006-2009 Texas Instruments.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20#include <linux/err.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/module.h>
  24#include <linux/interrupt.h>
  25#include <linux/platform_device.h>
  26#include <linux/io.h>
  27#include <linux/slab.h>
  28#include <linux/edma.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/of_address.h>
  31#include <linux/of_device.h>
  32#include <linux/of_dma.h>
  33#include <linux/of_irq.h>
  34#include <linux/pm_runtime.h>
  35
  36#include <linux/platform_data/edma.h>
  37
  38/* Offsets matching "struct edmacc_param" */
  39#define PARM_OPT                0x00
  40#define PARM_SRC                0x04
  41#define PARM_A_B_CNT            0x08
  42#define PARM_DST                0x0c
  43#define PARM_SRC_DST_BIDX       0x10
  44#define PARM_LINK_BCNTRLD       0x14
  45#define PARM_SRC_DST_CIDX       0x18
  46#define PARM_CCNT               0x1c
  47
  48#define PARM_SIZE               0x20
  49
  50/* Offsets for EDMA CC global channel registers and their shadows */
  51#define SH_ER           0x00    /* 64 bits */
  52#define SH_ECR          0x08    /* 64 bits */
  53#define SH_ESR          0x10    /* 64 bits */
  54#define SH_CER          0x18    /* 64 bits */
  55#define SH_EER          0x20    /* 64 bits */
  56#define SH_EECR         0x28    /* 64 bits */
  57#define SH_EESR         0x30    /* 64 bits */
  58#define SH_SER          0x38    /* 64 bits */
  59#define SH_SECR         0x40    /* 64 bits */
  60#define SH_IER          0x50    /* 64 bits */
  61#define SH_IECR         0x58    /* 64 bits */
  62#define SH_IESR         0x60    /* 64 bits */
  63#define SH_IPR          0x68    /* 64 bits */
  64#define SH_ICR          0x70    /* 64 bits */
  65#define SH_IEVAL        0x78
  66#define SH_QER          0x80
  67#define SH_QEER         0x84
  68#define SH_QEECR        0x88
  69#define SH_QEESR        0x8c
  70#define SH_QSER         0x90
  71#define SH_QSECR        0x94
  72#define SH_SIZE         0x200
  73
  74/* Offsets for EDMA CC global registers */
  75#define EDMA_REV        0x0000
  76#define EDMA_CCCFG      0x0004
  77#define EDMA_QCHMAP     0x0200  /* 8 registers */
  78#define EDMA_DMAQNUM    0x0240  /* 8 registers (4 on OMAP-L1xx) */
  79#define EDMA_QDMAQNUM   0x0260
  80#define EDMA_QUETCMAP   0x0280
  81#define EDMA_QUEPRI     0x0284
  82#define EDMA_EMR        0x0300  /* 64 bits */
  83#define EDMA_EMCR       0x0308  /* 64 bits */
  84#define EDMA_QEMR       0x0310
  85#define EDMA_QEMCR      0x0314
  86#define EDMA_CCERR      0x0318
  87#define EDMA_CCERRCLR   0x031c
  88#define EDMA_EEVAL      0x0320
  89#define EDMA_DRAE       0x0340  /* 4 x 64 bits*/
  90#define EDMA_QRAE       0x0380  /* 4 registers */
  91#define EDMA_QUEEVTENTRY        0x0400  /* 2 x 16 registers */
  92#define EDMA_QSTAT      0x0600  /* 2 registers */
  93#define EDMA_QWMTHRA    0x0620
  94#define EDMA_QWMTHRB    0x0624
  95#define EDMA_CCSTAT     0x0640
  96
  97#define EDMA_M          0x1000  /* global channel registers */
  98#define EDMA_ECR        0x1008
  99#define EDMA_ECRH       0x100C
 100#define EDMA_SHADOW0    0x2000  /* 4 regions shadowing global channels */
 101#define EDMA_PARM       0x4000  /* 128 param entries */
 102
 103#define PARM_OFFSET(param_no)   (EDMA_PARM + ((param_no) << 5))
 104
 105#define EDMA_DCHMAP     0x0100  /* 64 registers */
 106
 107/* CCCFG register */
 108#define GET_NUM_DMACH(x)        (x & 0x7) /* bits 0-2 */
 109#define GET_NUM_PAENTRY(x)      ((x & 0x7000) >> 12) /* bits 12-14 */
 110#define GET_NUM_EVQUE(x)        ((x & 0x70000) >> 16) /* bits 16-18 */
 111#define GET_NUM_REGN(x)         ((x & 0x300000) >> 20) /* bits 20-21 */
 112#define CHMAP_EXIST             BIT(24)
 113
 114#define EDMA_MAX_DMACH           64
 115#define EDMA_MAX_PARAMENTRY     512
 116
 117/*****************************************************************************/
 118
 119static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
 120
 121static inline unsigned int edma_read(unsigned ctlr, int offset)
 122{
 123        return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
 124}
 125
 126static inline void edma_write(unsigned ctlr, int offset, int val)
 127{
 128        __raw_writel(val, edmacc_regs_base[ctlr] + offset);
 129}
 130static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
 131                unsigned or)
 132{
 133        unsigned val = edma_read(ctlr, offset);
 134        val &= and;
 135        val |= or;
 136        edma_write(ctlr, offset, val);
 137}
 138static inline void edma_and(unsigned ctlr, int offset, unsigned and)
 139{
 140        unsigned val = edma_read(ctlr, offset);
 141        val &= and;
 142        edma_write(ctlr, offset, val);
 143}
 144static inline void edma_or(unsigned ctlr, int offset, unsigned or)
 145{
 146        unsigned val = edma_read(ctlr, offset);
 147        val |= or;
 148        edma_write(ctlr, offset, val);
 149}
 150static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
 151{
 152        return edma_read(ctlr, offset + (i << 2));
 153}
 154static inline void edma_write_array(unsigned ctlr, int offset, int i,
 155                unsigned val)
 156{
 157        edma_write(ctlr, offset + (i << 2), val);
 158}
 159static inline void edma_modify_array(unsigned ctlr, int offset, int i,
 160                unsigned and, unsigned or)
 161{
 162        edma_modify(ctlr, offset + (i << 2), and, or);
 163}
 164static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
 165{
 166        edma_or(ctlr, offset + (i << 2), or);
 167}
 168static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
 169                unsigned or)
 170{
 171        edma_or(ctlr, offset + ((i*2 + j) << 2), or);
 172}
 173static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
 174                unsigned val)
 175{
 176        edma_write(ctlr, offset + ((i*2 + j) << 2), val);
 177}
 178static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
 179{
 180        return edma_read(ctlr, EDMA_SHADOW0 + offset);
 181}
 182static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
 183                int i)
 184{
 185        return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
 186}
 187static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
 188{
 189        edma_write(ctlr, EDMA_SHADOW0 + offset, val);
 190}
 191static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
 192                unsigned val)
 193{
 194        edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
 195}
 196static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
 197                int param_no)
 198{
 199        return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
 200}
 201static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
 202                unsigned val)
 203{
 204        edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
 205}
 206static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
 207                unsigned and, unsigned or)
 208{
 209        edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
 210}
 211static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
 212                unsigned and)
 213{
 214        edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
 215}
 216static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
 217                unsigned or)
 218{
 219        edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
 220}
 221
 222static inline void set_bits(int offset, int len, unsigned long *p)
 223{
 224        for (; len > 0; len--)
 225                set_bit(offset + (len - 1), p);
 226}
 227
 228static inline void clear_bits(int offset, int len, unsigned long *p)
 229{
 230        for (; len > 0; len--)
 231                clear_bit(offset + (len - 1), p);
 232}
 233
 234/*****************************************************************************/
 235
 236/* actual number of DMA channels and slots on this silicon */
 237struct edma {
 238        /* how many dma resources of each type */
 239        unsigned        num_channels;
 240        unsigned        num_region;
 241        unsigned        num_slots;
 242        unsigned        num_tc;
 243        enum dma_event_q        default_queue;
 244
 245        /* list of channels with no even trigger; terminated by "-1" */
 246        const s8        *noevent;
 247
 248        struct edma_soc_info *info;
 249
 250        /* The edma_inuse bit for each PaRAM slot is clear unless the
 251         * channel is in use ... by ARM or DSP, for QDMA, or whatever.
 252         */
 253        DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
 254
 255        /* The edma_unused bit for each channel is clear unless
 256         * it is not being used on this platform. It uses a bit
 257         * of SOC-specific initialization code.
 258         */
 259        DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
 260
 261        unsigned        irq_res_start;
 262        unsigned        irq_res_end;
 263
 264        struct dma_interrupt_data {
 265                void (*callback)(unsigned channel, unsigned short ch_status,
 266                                void *data);
 267                void *data;
 268        } intr_data[EDMA_MAX_DMACH];
 269};
 270
 271static struct edma *edma_cc[EDMA_MAX_CC];
 272static int arch_num_cc;
 273
 274/* dummy param set used to (re)initialize parameter RAM slots */
 275static const struct edmacc_param dummy_paramset = {
 276        .link_bcntrld = 0xffff,
 277        .ccnt = 1,
 278};
 279
 280static const struct of_device_id edma_of_ids[] = {
 281        { .compatible = "ti,edma3", },
 282        {}
 283};
 284
 285/*****************************************************************************/
 286
 287static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
 288                enum dma_event_q queue_no)
 289{
 290        int bit = (ch_no & 0x7) * 4;
 291
 292        /* default to low priority queue */
 293        if (queue_no == EVENTQ_DEFAULT)
 294                queue_no = edma_cc[ctlr]->default_queue;
 295
 296        queue_no &= 7;
 297        edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
 298                        ~(0x7 << bit), queue_no << bit);
 299}
 300
 301static void assign_priority_to_queue(unsigned ctlr, int queue_no,
 302                int priority)
 303{
 304        int bit = queue_no * 4;
 305        edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
 306                        ((priority & 0x7) << bit));
 307}
 308
 309/**
 310 * map_dmach_param - Maps channel number to param entry number
 311 *
 312 * This maps the dma channel number to param entry numberter. In
 313 * other words using the DMA channel mapping registers a param entry
 314 * can be mapped to any channel
 315 *
 316 * Callers are responsible for ensuring the channel mapping logic is
 317 * included in that particular EDMA variant (Eg : dm646x)
 318 *
 319 */
 320static void map_dmach_param(unsigned ctlr)
 321{
 322        int i;
 323        for (i = 0; i < EDMA_MAX_DMACH; i++)
 324                edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
 325}
 326
 327static inline void
 328setup_dma_interrupt(unsigned lch,
 329        void (*callback)(unsigned channel, u16 ch_status, void *data),
 330        void *data)
 331{
 332        unsigned ctlr;
 333
 334        ctlr = EDMA_CTLR(lch);
 335        lch = EDMA_CHAN_SLOT(lch);
 336
 337        if (!callback)
 338                edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
 339                                BIT(lch & 0x1f));
 340
 341        edma_cc[ctlr]->intr_data[lch].callback = callback;
 342        edma_cc[ctlr]->intr_data[lch].data = data;
 343
 344        if (callback) {
 345                edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
 346                                BIT(lch & 0x1f));
 347                edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
 348                                BIT(lch & 0x1f));
 349        }
 350}
 351
 352static int irq2ctlr(int irq)
 353{
 354        if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
 355                return 0;
 356        else if (irq >= edma_cc[1]->irq_res_start &&
 357                irq <= edma_cc[1]->irq_res_end)
 358                return 1;
 359
 360        return -1;
 361}
 362
 363/******************************************************************************
 364 *
 365 * DMA interrupt handler
 366 *
 367 *****************************************************************************/
 368static irqreturn_t dma_irq_handler(int irq, void *data)
 369{
 370        int ctlr;
 371        u32 sh_ier;
 372        u32 sh_ipr;
 373        u32 bank;
 374
 375        ctlr = irq2ctlr(irq);
 376        if (ctlr < 0)
 377                return IRQ_NONE;
 378
 379        dev_dbg(data, "dma_irq_handler\n");
 380
 381        sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 0);
 382        if (!sh_ipr) {
 383                sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 1);
 384                if (!sh_ipr)
 385                        return IRQ_NONE;
 386                sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 1);
 387                bank = 1;
 388        } else {
 389                sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 0);
 390                bank = 0;
 391        }
 392
 393        do {
 394                u32 slot;
 395                u32 channel;
 396
 397                dev_dbg(data, "IPR%d %08x\n", bank, sh_ipr);
 398
 399                slot = __ffs(sh_ipr);
 400                sh_ipr &= ~(BIT(slot));
 401
 402                if (sh_ier & BIT(slot)) {
 403                        channel = (bank << 5) | slot;
 404                        /* Clear the corresponding IPR bits */
 405                        edma_shadow0_write_array(ctlr, SH_ICR, bank,
 406                                        BIT(slot));
 407                        if (edma_cc[ctlr]->intr_data[channel].callback)
 408                                edma_cc[ctlr]->intr_data[channel].callback(
 409                                        channel, EDMA_DMA_COMPLETE,
 410                                        edma_cc[ctlr]->intr_data[channel].data);
 411                }
 412        } while (sh_ipr);
 413
 414        edma_shadow0_write(ctlr, SH_IEVAL, 1);
 415        return IRQ_HANDLED;
 416}
 417
 418/******************************************************************************
 419 *
 420 * DMA error interrupt handler
 421 *
 422 *****************************************************************************/
 423static irqreturn_t dma_ccerr_handler(int irq, void *data)
 424{
 425        int i;
 426        int ctlr;
 427        unsigned int cnt = 0;
 428
 429        ctlr = irq2ctlr(irq);
 430        if (ctlr < 0)
 431                return IRQ_NONE;
 432
 433        dev_dbg(data, "dma_ccerr_handler\n");
 434
 435        if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
 436            (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
 437            (edma_read(ctlr, EDMA_QEMR) == 0) &&
 438            (edma_read(ctlr, EDMA_CCERR) == 0))
 439                return IRQ_NONE;
 440
 441        while (1) {
 442                int j = -1;
 443                if (edma_read_array(ctlr, EDMA_EMR, 0))
 444                        j = 0;
 445                else if (edma_read_array(ctlr, EDMA_EMR, 1))
 446                        j = 1;
 447                if (j >= 0) {
 448                        dev_dbg(data, "EMR%d %08x\n", j,
 449                                        edma_read_array(ctlr, EDMA_EMR, j));
 450                        for (i = 0; i < 32; i++) {
 451                                int k = (j << 5) + i;
 452                                if (edma_read_array(ctlr, EDMA_EMR, j) &
 453                                                        BIT(i)) {
 454                                        /* Clear the corresponding EMR bits */
 455                                        edma_write_array(ctlr, EDMA_EMCR, j,
 456                                                        BIT(i));
 457                                        /* Clear any SER */
 458                                        edma_shadow0_write_array(ctlr, SH_SECR,
 459                                                                j, BIT(i));
 460                                        if (edma_cc[ctlr]->intr_data[k].
 461                                                                callback) {
 462                                                edma_cc[ctlr]->intr_data[k].
 463                                                callback(k,
 464                                                EDMA_DMA_CC_ERROR,
 465                                                edma_cc[ctlr]->intr_data
 466                                                [k].data);
 467                                        }
 468                                }
 469                        }
 470                } else if (edma_read(ctlr, EDMA_QEMR)) {
 471                        dev_dbg(data, "QEMR %02x\n",
 472                                edma_read(ctlr, EDMA_QEMR));
 473                        for (i = 0; i < 8; i++) {
 474                                if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
 475                                        /* Clear the corresponding IPR bits */
 476                                        edma_write(ctlr, EDMA_QEMCR, BIT(i));
 477                                        edma_shadow0_write(ctlr, SH_QSECR,
 478                                                                BIT(i));
 479
 480                                        /* NOTE:  not reported!! */
 481                                }
 482                        }
 483                } else if (edma_read(ctlr, EDMA_CCERR)) {
 484                        dev_dbg(data, "CCERR %08x\n",
 485                                edma_read(ctlr, EDMA_CCERR));
 486                        /* FIXME:  CCERR.BIT(16) ignored!  much better
 487                         * to just write CCERRCLR with CCERR value...
 488                         */
 489                        for (i = 0; i < 8; i++) {
 490                                if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
 491                                        /* Clear the corresponding IPR bits */
 492                                        edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
 493
 494                                        /* NOTE:  not reported!! */
 495                                }
 496                        }
 497                }
 498                if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
 499                    (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
 500                    (edma_read(ctlr, EDMA_QEMR) == 0) &&
 501                    (edma_read(ctlr, EDMA_CCERR) == 0))
 502                        break;
 503                cnt++;
 504                if (cnt > 10)
 505                        break;
 506        }
 507        edma_write(ctlr, EDMA_EEVAL, 1);
 508        return IRQ_HANDLED;
 509}
 510
 511static int reserve_contiguous_slots(int ctlr, unsigned int id,
 512                                     unsigned int num_slots,
 513                                     unsigned int start_slot)
 514{
 515        int i, j;
 516        unsigned int count = num_slots;
 517        int stop_slot = start_slot;
 518        DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
 519
 520        for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
 521                j = EDMA_CHAN_SLOT(i);
 522                if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
 523                        /* Record our current beginning slot */
 524                        if (count == num_slots)
 525                                stop_slot = i;
 526
 527                        count--;
 528                        set_bit(j, tmp_inuse);
 529
 530                        if (count == 0)
 531                                break;
 532                } else {
 533                        clear_bit(j, tmp_inuse);
 534
 535                        if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
 536                                stop_slot = i;
 537                                break;
 538                        } else {
 539                                count = num_slots;
 540                        }
 541                }
 542        }
 543
 544        /*
 545         * We have to clear any bits that we set
 546         * if we run out parameter RAM slots, i.e we do find a set
 547         * of contiguous parameter RAM slots but do not find the exact number
 548         * requested as we may reach the total number of parameter RAM slots
 549         */
 550        if (i == edma_cc[ctlr]->num_slots)
 551                stop_slot = i;
 552
 553        j = start_slot;
 554        for_each_set_bit_from(j, tmp_inuse, stop_slot)
 555                clear_bit(j, edma_cc[ctlr]->edma_inuse);
 556
 557        if (count)
 558                return -EBUSY;
 559
 560        for (j = i - num_slots + 1; j <= i; ++j)
 561                memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
 562                        &dummy_paramset, PARM_SIZE);
 563
 564        return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
 565}
 566
 567static int prepare_unused_channel_list(struct device *dev, void *data)
 568{
 569        struct platform_device *pdev = to_platform_device(dev);
 570        int i, count, ctlr;
 571        struct of_phandle_args  dma_spec;
 572
 573        if (dev->of_node) {
 574                count = of_property_count_strings(dev->of_node, "dma-names");
 575                if (count < 0)
 576                        return 0;
 577                for (i = 0; i < count; i++) {
 578                        if (of_parse_phandle_with_args(dev->of_node, "dmas",
 579                                                       "#dma-cells", i,
 580                                                       &dma_spec))
 581                                continue;
 582
 583                        if (!of_match_node(edma_of_ids, dma_spec.np)) {
 584                                of_node_put(dma_spec.np);
 585                                continue;
 586                        }
 587
 588                        clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]),
 589                                  edma_cc[0]->edma_unused);
 590                        of_node_put(dma_spec.np);
 591                }
 592                return 0;
 593        }
 594
 595        /* For non-OF case */
 596        for (i = 0; i < pdev->num_resources; i++) {
 597                if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
 598                                (int)pdev->resource[i].start >= 0) {
 599                        ctlr = EDMA_CTLR(pdev->resource[i].start);
 600                        clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
 601                                  edma_cc[ctlr]->edma_unused);
 602                }
 603        }
 604
 605        return 0;
 606}
 607
 608/*-----------------------------------------------------------------------*/
 609
 610static bool unused_chan_list_done;
 611
 612/* Resource alloc/free:  dma channels, parameter RAM slots */
 613
 614/**
 615 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
 616 * @channel: specific channel to allocate; negative for "any unmapped channel"
 617 * @callback: optional; to be issued on DMA completion or errors
 618 * @data: passed to callback
 619 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
 620 *      Controller (TC) executes requests using this channel.  Use
 621 *      EVENTQ_DEFAULT unless you really need a high priority queue.
 622 *
 623 * This allocates a DMA channel and its associated parameter RAM slot.
 624 * The parameter RAM is initialized to hold a dummy transfer.
 625 *
 626 * Normal use is to pass a specific channel number as @channel, to make
 627 * use of hardware events mapped to that channel.  When the channel will
 628 * be used only for software triggering or event chaining, channels not
 629 * mapped to hardware events (or mapped to unused events) are preferable.
 630 *
 631 * DMA transfers start from a channel using edma_start(), or by
 632 * chaining.  When the transfer described in that channel's parameter RAM
 633 * slot completes, that slot's data may be reloaded through a link.
 634 *
 635 * DMA errors are only reported to the @callback associated with the
 636 * channel driving that transfer, but transfer completion callbacks can
 637 * be sent to another channel under control of the TCC field in
 638 * the option word of the transfer's parameter RAM set.  Drivers must not
 639 * use DMA transfer completion callbacks for channels they did not allocate.
 640 * (The same applies to TCC codes used in transfer chaining.)
 641 *
 642 * Returns the number of the channel, else negative errno.
 643 */
 644int edma_alloc_channel(int channel,
 645                void (*callback)(unsigned channel, u16 ch_status, void *data),
 646                void *data,
 647                enum dma_event_q eventq_no)
 648{
 649        unsigned i, done = 0, ctlr = 0;
 650        int ret = 0;
 651
 652        if (!unused_chan_list_done) {
 653                /*
 654                 * Scan all the platform devices to find out the EDMA channels
 655                 * used and clear them in the unused list, making the rest
 656                 * available for ARM usage.
 657                 */
 658                ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
 659                                prepare_unused_channel_list);
 660                if (ret < 0)
 661                        return ret;
 662
 663                unused_chan_list_done = true;
 664        }
 665
 666        if (channel >= 0) {
 667                ctlr = EDMA_CTLR(channel);
 668                channel = EDMA_CHAN_SLOT(channel);
 669        }
 670
 671        if (channel < 0) {
 672                for (i = 0; i < arch_num_cc; i++) {
 673                        channel = 0;
 674                        for (;;) {
 675                                channel = find_next_bit(edma_cc[i]->edma_unused,
 676                                                edma_cc[i]->num_channels,
 677                                                channel);
 678                                if (channel == edma_cc[i]->num_channels)
 679                                        break;
 680                                if (!test_and_set_bit(channel,
 681                                                edma_cc[i]->edma_inuse)) {
 682                                        done = 1;
 683                                        ctlr = i;
 684                                        break;
 685                                }
 686                                channel++;
 687                        }
 688                        if (done)
 689                                break;
 690                }
 691                if (!done)
 692                        return -ENOMEM;
 693        } else if (channel >= edma_cc[ctlr]->num_channels) {
 694                return -EINVAL;
 695        } else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
 696                return -EBUSY;
 697        }
 698
 699        /* ensure access through shadow region 0 */
 700        edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
 701
 702        /* ensure no events are pending */
 703        edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
 704        memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
 705                        &dummy_paramset, PARM_SIZE);
 706
 707        if (callback)
 708                setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
 709                                        callback, data);
 710
 711        map_dmach_queue(ctlr, channel, eventq_no);
 712
 713        return EDMA_CTLR_CHAN(ctlr, channel);
 714}
 715EXPORT_SYMBOL(edma_alloc_channel);
 716
 717
 718/**
 719 * edma_free_channel - deallocate DMA channel
 720 * @channel: dma channel returned from edma_alloc_channel()
 721 *
 722 * This deallocates the DMA channel and associated parameter RAM slot
 723 * allocated by edma_alloc_channel().
 724 *
 725 * Callers are responsible for ensuring the channel is inactive, and
 726 * will not be reactivated by linking, chaining, or software calls to
 727 * edma_start().
 728 */
 729void edma_free_channel(unsigned channel)
 730{
 731        unsigned ctlr;
 732
 733        ctlr = EDMA_CTLR(channel);
 734        channel = EDMA_CHAN_SLOT(channel);
 735
 736        if (channel >= edma_cc[ctlr]->num_channels)
 737                return;
 738
 739        setup_dma_interrupt(channel, NULL, NULL);
 740        /* REVISIT should probably take out of shadow region 0 */
 741
 742        memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
 743                        &dummy_paramset, PARM_SIZE);
 744        clear_bit(channel, edma_cc[ctlr]->edma_inuse);
 745}
 746EXPORT_SYMBOL(edma_free_channel);
 747
 748/**
 749 * edma_alloc_slot - allocate DMA parameter RAM
 750 * @slot: specific slot to allocate; negative for "any unused slot"
 751 *
 752 * This allocates a parameter RAM slot, initializing it to hold a
 753 * dummy transfer.  Slots allocated using this routine have not been
 754 * mapped to a hardware DMA channel, and will normally be used by
 755 * linking to them from a slot associated with a DMA channel.
 756 *
 757 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 758 * slots may be allocated on behalf of DSP firmware.
 759 *
 760 * Returns the number of the slot, else negative errno.
 761 */
 762int edma_alloc_slot(unsigned ctlr, int slot)
 763{
 764        if (!edma_cc[ctlr])
 765                return -EINVAL;
 766
 767        if (slot >= 0)
 768                slot = EDMA_CHAN_SLOT(slot);
 769
 770        if (slot < 0) {
 771                slot = edma_cc[ctlr]->num_channels;
 772                for (;;) {
 773                        slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
 774                                        edma_cc[ctlr]->num_slots, slot);
 775                        if (slot == edma_cc[ctlr]->num_slots)
 776                                return -ENOMEM;
 777                        if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
 778                                break;
 779                }
 780        } else if (slot < edma_cc[ctlr]->num_channels ||
 781                        slot >= edma_cc[ctlr]->num_slots) {
 782                return -EINVAL;
 783        } else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
 784                return -EBUSY;
 785        }
 786
 787        memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
 788                        &dummy_paramset, PARM_SIZE);
 789
 790        return EDMA_CTLR_CHAN(ctlr, slot);
 791}
 792EXPORT_SYMBOL(edma_alloc_slot);
 793
 794/**
 795 * edma_free_slot - deallocate DMA parameter RAM
 796 * @slot: parameter RAM slot returned from edma_alloc_slot()
 797 *
 798 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
 799 * Callers are responsible for ensuring the slot is inactive, and will
 800 * not be activated.
 801 */
 802void edma_free_slot(unsigned slot)
 803{
 804        unsigned ctlr;
 805
 806        ctlr = EDMA_CTLR(slot);
 807        slot = EDMA_CHAN_SLOT(slot);
 808
 809        if (slot < edma_cc[ctlr]->num_channels ||
 810                slot >= edma_cc[ctlr]->num_slots)
 811                return;
 812
 813        memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
 814                        &dummy_paramset, PARM_SIZE);
 815        clear_bit(slot, edma_cc[ctlr]->edma_inuse);
 816}
 817EXPORT_SYMBOL(edma_free_slot);
 818
 819
 820/**
 821 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
 822 * The API will return the starting point of a set of
 823 * contiguous parameter RAM slots that have been requested
 824 *
 825 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
 826 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
 827 * @count: number of contiguous Paramter RAM slots
 828 * @slot  - the start value of Parameter RAM slot that should be passed if id
 829 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
 830 *
 831 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
 832 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
 833 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
 834 *
 835 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
 836 * set of contiguous parameter RAM slots from the "slot" that is passed as an
 837 * argument to the API.
 838 *
 839 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
 840 * starts looking for a set of contiguous parameter RAMs from the "slot"
 841 * that is passed as an argument to the API. On failure the API will try to
 842 * find a set of contiguous Parameter RAM slots from the remaining Parameter
 843 * RAM slots
 844 */
 845int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
 846{
 847        /*
 848         * The start slot requested should be greater than
 849         * the number of channels and lesser than the total number
 850         * of slots
 851         */
 852        if ((id != EDMA_CONT_PARAMS_ANY) &&
 853                (slot < edma_cc[ctlr]->num_channels ||
 854                slot >= edma_cc[ctlr]->num_slots))
 855                return -EINVAL;
 856
 857        /*
 858         * The number of parameter RAM slots requested cannot be less than 1
 859         * and cannot be more than the number of slots minus the number of
 860         * channels
 861         */
 862        if (count < 1 || count >
 863                (edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
 864                return -EINVAL;
 865
 866        switch (id) {
 867        case EDMA_CONT_PARAMS_ANY:
 868                return reserve_contiguous_slots(ctlr, id, count,
 869                                                 edma_cc[ctlr]->num_channels);
 870        case EDMA_CONT_PARAMS_FIXED_EXACT:
 871        case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
 872                return reserve_contiguous_slots(ctlr, id, count, slot);
 873        default:
 874                return -EINVAL;
 875        }
 876
 877}
 878EXPORT_SYMBOL(edma_alloc_cont_slots);
 879
 880/**
 881 * edma_free_cont_slots - deallocate DMA parameter RAM slots
 882 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
 883 * @count: the number of contiguous parameter RAM slots to be freed
 884 *
 885 * This deallocates the parameter RAM slots allocated by
 886 * edma_alloc_cont_slots.
 887 * Callers/applications need to keep track of sets of contiguous
 888 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
 889 * API.
 890 * Callers are responsible for ensuring the slots are inactive, and will
 891 * not be activated.
 892 */
 893int edma_free_cont_slots(unsigned slot, int count)
 894{
 895        unsigned ctlr, slot_to_free;
 896        int i;
 897
 898        ctlr = EDMA_CTLR(slot);
 899        slot = EDMA_CHAN_SLOT(slot);
 900
 901        if (slot < edma_cc[ctlr]->num_channels ||
 902                slot >= edma_cc[ctlr]->num_slots ||
 903                count < 1)
 904                return -EINVAL;
 905
 906        for (i = slot; i < slot + count; ++i) {
 907                ctlr = EDMA_CTLR(i);
 908                slot_to_free = EDMA_CHAN_SLOT(i);
 909
 910                memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
 911                        &dummy_paramset, PARM_SIZE);
 912                clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
 913        }
 914
 915        return 0;
 916}
 917EXPORT_SYMBOL(edma_free_cont_slots);
 918
 919/*-----------------------------------------------------------------------*/
 920
 921/* Parameter RAM operations (i) -- read/write partial slots */
 922
 923/**
 924 * edma_set_src - set initial DMA source address in parameter RAM slot
 925 * @slot: parameter RAM slot being configured
 926 * @src_port: physical address of source (memory, controller FIFO, etc)
 927 * @addressMode: INCR, except in very rare cases
 928 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
 929 *      width to use when addressing the fifo (e.g. W8BIT, W32BIT)
 930 *
 931 * Note that the source address is modified during the DMA transfer
 932 * according to edma_set_src_index().
 933 */
 934void edma_set_src(unsigned slot, dma_addr_t src_port,
 935                                enum address_mode mode, enum fifo_width width)
 936{
 937        unsigned ctlr;
 938
 939        ctlr = EDMA_CTLR(slot);
 940        slot = EDMA_CHAN_SLOT(slot);
 941
 942        if (slot < edma_cc[ctlr]->num_slots) {
 943                unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
 944
 945                if (mode) {
 946                        /* set SAM and program FWID */
 947                        i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
 948                } else {
 949                        /* clear SAM */
 950                        i &= ~SAM;
 951                }
 952                edma_parm_write(ctlr, PARM_OPT, slot, i);
 953
 954                /* set the source port address
 955                   in source register of param structure */
 956                edma_parm_write(ctlr, PARM_SRC, slot, src_port);
 957        }
 958}
 959EXPORT_SYMBOL(edma_set_src);
 960
 961/**
 962 * edma_set_dest - set initial DMA destination address in parameter RAM slot
 963 * @slot: parameter RAM slot being configured
 964 * @dest_port: physical address of destination (memory, controller FIFO, etc)
 965 * @addressMode: INCR, except in very rare cases
 966 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
 967 *      width to use when addressing the fifo (e.g. W8BIT, W32BIT)
 968 *
 969 * Note that the destination address is modified during the DMA transfer
 970 * according to edma_set_dest_index().
 971 */
 972void edma_set_dest(unsigned slot, dma_addr_t dest_port,
 973                                 enum address_mode mode, enum fifo_width width)
 974{
 975        unsigned ctlr;
 976
 977        ctlr = EDMA_CTLR(slot);
 978        slot = EDMA_CHAN_SLOT(slot);
 979
 980        if (slot < edma_cc[ctlr]->num_slots) {
 981                unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
 982
 983                if (mode) {
 984                        /* set DAM and program FWID */
 985                        i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
 986                } else {
 987                        /* clear DAM */
 988                        i &= ~DAM;
 989                }
 990                edma_parm_write(ctlr, PARM_OPT, slot, i);
 991                /* set the destination port address
 992                   in dest register of param structure */
 993                edma_parm_write(ctlr, PARM_DST, slot, dest_port);
 994        }
 995}
 996EXPORT_SYMBOL(edma_set_dest);
 997
 998/**
 999 * edma_get_position - returns the current transfer point
1000 * @slot: parameter RAM slot being examined
1001 * @dst:  true selects the dest position, false the source
1002 *
1003 * Returns the position of the current active slot
1004 */
1005dma_addr_t edma_get_position(unsigned slot, bool dst)
1006{
1007        u32 offs, ctlr = EDMA_CTLR(slot);
1008
1009        slot = EDMA_CHAN_SLOT(slot);
1010
1011        offs = PARM_OFFSET(slot);
1012        offs += dst ? PARM_DST : PARM_SRC;
1013
1014        return edma_read(ctlr, offs);
1015}
1016
1017/**
1018 * edma_set_src_index - configure DMA source address indexing
1019 * @slot: parameter RAM slot being configured
1020 * @src_bidx: byte offset between source arrays in a frame
1021 * @src_cidx: byte offset between source frames in a block
1022 *
1023 * Offsets are specified to support either contiguous or discontiguous
1024 * memory transfers, or repeated access to a hardware register, as needed.
1025 * When accessing hardware registers, both offsets are normally zero.
1026 */
1027void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
1028{
1029        unsigned ctlr;
1030
1031        ctlr = EDMA_CTLR(slot);
1032        slot = EDMA_CHAN_SLOT(slot);
1033
1034        if (slot < edma_cc[ctlr]->num_slots) {
1035                edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1036                                0xffff0000, src_bidx);
1037                edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1038                                0xffff0000, src_cidx);
1039        }
1040}
1041EXPORT_SYMBOL(edma_set_src_index);
1042
1043/**
1044 * edma_set_dest_index - configure DMA destination address indexing
1045 * @slot: parameter RAM slot being configured
1046 * @dest_bidx: byte offset between destination arrays in a frame
1047 * @dest_cidx: byte offset between destination frames in a block
1048 *
1049 * Offsets are specified to support either contiguous or discontiguous
1050 * memory transfers, or repeated access to a hardware register, as needed.
1051 * When accessing hardware registers, both offsets are normally zero.
1052 */
1053void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
1054{
1055        unsigned ctlr;
1056
1057        ctlr = EDMA_CTLR(slot);
1058        slot = EDMA_CHAN_SLOT(slot);
1059
1060        if (slot < edma_cc[ctlr]->num_slots) {
1061                edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1062                                0x0000ffff, dest_bidx << 16);
1063                edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1064                                0x0000ffff, dest_cidx << 16);
1065        }
1066}
1067EXPORT_SYMBOL(edma_set_dest_index);
1068
1069/**
1070 * edma_set_transfer_params - configure DMA transfer parameters
1071 * @slot: parameter RAM slot being configured
1072 * @acnt: how many bytes per array (at least one)
1073 * @bcnt: how many arrays per frame (at least one)
1074 * @ccnt: how many frames per block (at least one)
1075 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1076 *      the value to reload into bcnt when it decrements to zero
1077 * @sync_mode: ASYNC or ABSYNC
1078 *
1079 * See the EDMA3 documentation to understand how to configure and link
1080 * transfers using the fields in PaRAM slots.  If you are not doing it
1081 * all at once with edma_write_slot(), you will use this routine
1082 * plus two calls each for source and destination, setting the initial
1083 * address and saying how to index that address.
1084 *
1085 * An example of an A-Synchronized transfer is a serial link using a
1086 * single word shift register.  In that case, @acnt would be equal to
1087 * that word size; the serial controller issues a DMA synchronization
1088 * event to transfer each word, and memory access by the DMA transfer
1089 * controller will be word-at-a-time.
1090 *
1091 * An example of an AB-Synchronized transfer is a device using a FIFO.
1092 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1093 * The controller with the FIFO issues DMA synchronization events when
1094 * the FIFO threshold is reached, and the DMA transfer controller will
1095 * transfer one frame to (or from) the FIFO.  It will probably use
1096 * efficient burst modes to access memory.
1097 */
1098void edma_set_transfer_params(unsigned slot,
1099                u16 acnt, u16 bcnt, u16 ccnt,
1100                u16 bcnt_rld, enum sync_dimension sync_mode)
1101{
1102        unsigned ctlr;
1103
1104        ctlr = EDMA_CTLR(slot);
1105        slot = EDMA_CHAN_SLOT(slot);
1106
1107        if (slot < edma_cc[ctlr]->num_slots) {
1108                edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
1109                                0x0000ffff, bcnt_rld << 16);
1110                if (sync_mode == ASYNC)
1111                        edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
1112                else
1113                        edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
1114                /* Set the acount, bcount, ccount registers */
1115                edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1116                edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
1117        }
1118}
1119EXPORT_SYMBOL(edma_set_transfer_params);
1120
1121/**
1122 * edma_link - link one parameter RAM slot to another
1123 * @from: parameter RAM slot originating the link
1124 * @to: parameter RAM slot which is the link target
1125 *
1126 * The originating slot should not be part of any active DMA transfer.
1127 */
1128void edma_link(unsigned from, unsigned to)
1129{
1130        unsigned ctlr_from, ctlr_to;
1131
1132        ctlr_from = EDMA_CTLR(from);
1133        from = EDMA_CHAN_SLOT(from);
1134        ctlr_to = EDMA_CTLR(to);
1135        to = EDMA_CHAN_SLOT(to);
1136
1137        if (from >= edma_cc[ctlr_from]->num_slots)
1138                return;
1139        if (to >= edma_cc[ctlr_to]->num_slots)
1140                return;
1141        edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1142                                PARM_OFFSET(to));
1143}
1144EXPORT_SYMBOL(edma_link);
1145
1146/**
1147 * edma_unlink - cut link from one parameter RAM slot
1148 * @from: parameter RAM slot originating the link
1149 *
1150 * The originating slot should not be part of any active DMA transfer.
1151 * Its link is set to 0xffff.
1152 */
1153void edma_unlink(unsigned from)
1154{
1155        unsigned ctlr;
1156
1157        ctlr = EDMA_CTLR(from);
1158        from = EDMA_CHAN_SLOT(from);
1159
1160        if (from >= edma_cc[ctlr]->num_slots)
1161                return;
1162        edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
1163}
1164EXPORT_SYMBOL(edma_unlink);
1165
1166/*-----------------------------------------------------------------------*/
1167
1168/* Parameter RAM operations (ii) -- read/write whole parameter sets */
1169
1170/**
1171 * edma_write_slot - write parameter RAM data for slot
1172 * @slot: number of parameter RAM slot being modified
1173 * @param: data to be written into parameter RAM slot
1174 *
1175 * Use this to assign all parameters of a transfer at once.  This
1176 * allows more efficient setup of transfers than issuing multiple
1177 * calls to set up those parameters in small pieces, and provides
1178 * complete control over all transfer options.
1179 */
1180void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1181{
1182        unsigned ctlr;
1183
1184        ctlr = EDMA_CTLR(slot);
1185        slot = EDMA_CHAN_SLOT(slot);
1186
1187        if (slot >= edma_cc[ctlr]->num_slots)
1188                return;
1189        memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1190                        PARM_SIZE);
1191}
1192EXPORT_SYMBOL(edma_write_slot);
1193
1194/**
1195 * edma_read_slot - read parameter RAM data from slot
1196 * @slot: number of parameter RAM slot being copied
1197 * @param: where to store copy of parameter RAM data
1198 *
1199 * Use this to read data from a parameter RAM slot, perhaps to
1200 * save them as a template for later reuse.
1201 */
1202void edma_read_slot(unsigned slot, struct edmacc_param *param)
1203{
1204        unsigned ctlr;
1205
1206        ctlr = EDMA_CTLR(slot);
1207        slot = EDMA_CHAN_SLOT(slot);
1208
1209        if (slot >= edma_cc[ctlr]->num_slots)
1210                return;
1211        memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1212                        PARM_SIZE);
1213}
1214EXPORT_SYMBOL(edma_read_slot);
1215
1216/*-----------------------------------------------------------------------*/
1217
1218/* Various EDMA channel control operations */
1219
1220/**
1221 * edma_pause - pause dma on a channel
1222 * @channel: on which edma_start() has been called
1223 *
1224 * This temporarily disables EDMA hardware events on the specified channel,
1225 * preventing them from triggering new transfers on its behalf
1226 */
1227void edma_pause(unsigned channel)
1228{
1229        unsigned ctlr;
1230
1231        ctlr = EDMA_CTLR(channel);
1232        channel = EDMA_CHAN_SLOT(channel);
1233
1234        if (channel < edma_cc[ctlr]->num_channels) {
1235                unsigned int mask = BIT(channel & 0x1f);
1236
1237                edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
1238        }
1239}
1240EXPORT_SYMBOL(edma_pause);
1241
1242/**
1243 * edma_resume - resumes dma on a paused channel
1244 * @channel: on which edma_pause() has been called
1245 *
1246 * This re-enables EDMA hardware events on the specified channel.
1247 */
1248void edma_resume(unsigned channel)
1249{
1250        unsigned ctlr;
1251
1252        ctlr = EDMA_CTLR(channel);
1253        channel = EDMA_CHAN_SLOT(channel);
1254
1255        if (channel < edma_cc[ctlr]->num_channels) {
1256                unsigned int mask = BIT(channel & 0x1f);
1257
1258                edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
1259        }
1260}
1261EXPORT_SYMBOL(edma_resume);
1262
1263int edma_trigger_channel(unsigned channel)
1264{
1265        unsigned ctlr;
1266        unsigned int mask;
1267
1268        ctlr = EDMA_CTLR(channel);
1269        channel = EDMA_CHAN_SLOT(channel);
1270        mask = BIT(channel & 0x1f);
1271
1272        edma_shadow0_write_array(ctlr, SH_ESR, (channel >> 5), mask);
1273
1274        pr_debug("EDMA: ESR%d %08x\n", (channel >> 5),
1275                 edma_shadow0_read_array(ctlr, SH_ESR, (channel >> 5)));
1276        return 0;
1277}
1278EXPORT_SYMBOL(edma_trigger_channel);
1279
1280/**
1281 * edma_start - start dma on a channel
1282 * @channel: channel being activated
1283 *
1284 * Channels with event associations will be triggered by their hardware
1285 * events, and channels without such associations will be triggered by
1286 * software.  (At this writing there is no interface for using software
1287 * triggers except with channels that don't support hardware triggers.)
1288 *
1289 * Returns zero on success, else negative errno.
1290 */
1291int edma_start(unsigned channel)
1292{
1293        unsigned ctlr;
1294
1295        ctlr = EDMA_CTLR(channel);
1296        channel = EDMA_CHAN_SLOT(channel);
1297
1298        if (channel < edma_cc[ctlr]->num_channels) {
1299                int j = channel >> 5;
1300                unsigned int mask = BIT(channel & 0x1f);
1301
1302                /* EDMA channels without event association */
1303                if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
1304                        pr_debug("EDMA: ESR%d %08x\n", j,
1305                                edma_shadow0_read_array(ctlr, SH_ESR, j));
1306                        edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
1307                        return 0;
1308                }
1309
1310                /* EDMA channel with event association */
1311                pr_debug("EDMA: ER%d %08x\n", j,
1312                        edma_shadow0_read_array(ctlr, SH_ER, j));
1313                /* Clear any pending event or error */
1314                edma_write_array(ctlr, EDMA_ECR, j, mask);
1315                edma_write_array(ctlr, EDMA_EMCR, j, mask);
1316                /* Clear any SER */
1317                edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1318                edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
1319                pr_debug("EDMA: EER%d %08x\n", j,
1320                        edma_shadow0_read_array(ctlr, SH_EER, j));
1321                return 0;
1322        }
1323
1324        return -EINVAL;
1325}
1326EXPORT_SYMBOL(edma_start);
1327
1328/**
1329 * edma_stop - stops dma on the channel passed
1330 * @channel: channel being deactivated
1331 *
1332 * When @lch is a channel, any active transfer is paused and
1333 * all pending hardware events are cleared.  The current transfer
1334 * may not be resumed, and the channel's Parameter RAM should be
1335 * reinitialized before being reused.
1336 */
1337void edma_stop(unsigned channel)
1338{
1339        unsigned ctlr;
1340
1341        ctlr = EDMA_CTLR(channel);
1342        channel = EDMA_CHAN_SLOT(channel);
1343
1344        if (channel < edma_cc[ctlr]->num_channels) {
1345                int j = channel >> 5;
1346                unsigned int mask = BIT(channel & 0x1f);
1347
1348                edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1349                edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1350                edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1351                edma_write_array(ctlr, EDMA_EMCR, j, mask);
1352
1353                pr_debug("EDMA: EER%d %08x\n", j,
1354                                edma_shadow0_read_array(ctlr, SH_EER, j));
1355
1356                /* REVISIT:  consider guarding against inappropriate event
1357                 * chaining by overwriting with dummy_paramset.
1358                 */
1359        }
1360}
1361EXPORT_SYMBOL(edma_stop);
1362
1363/******************************************************************************
1364 *
1365 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1366 * been removed before EDMA has finished.It is usedful for removable media.
1367 * Arguments:
1368 *      ch_no     - channel no
1369 *
1370 * Return: zero on success, or corresponding error no on failure
1371 *
1372 * FIXME this should not be needed ... edma_stop() should suffice.
1373 *
1374 *****************************************************************************/
1375
1376void edma_clean_channel(unsigned channel)
1377{
1378        unsigned ctlr;
1379
1380        ctlr = EDMA_CTLR(channel);
1381        channel = EDMA_CHAN_SLOT(channel);
1382
1383        if (channel < edma_cc[ctlr]->num_channels) {
1384                int j = (channel >> 5);
1385                unsigned int mask = BIT(channel & 0x1f);
1386
1387                pr_debug("EDMA: EMR%d %08x\n", j,
1388                                edma_read_array(ctlr, EDMA_EMR, j));
1389                edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1390                /* Clear the corresponding EMR bits */
1391                edma_write_array(ctlr, EDMA_EMCR, j, mask);
1392                /* Clear any SER */
1393                edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1394                edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
1395        }
1396}
1397EXPORT_SYMBOL(edma_clean_channel);
1398
1399/*
1400 * edma_clear_event - clear an outstanding event on the DMA channel
1401 * Arguments:
1402 *      channel - channel number
1403 */
1404void edma_clear_event(unsigned channel)
1405{
1406        unsigned ctlr;
1407
1408        ctlr = EDMA_CTLR(channel);
1409        channel = EDMA_CHAN_SLOT(channel);
1410
1411        if (channel >= edma_cc[ctlr]->num_channels)
1412                return;
1413        if (channel < 32)
1414                edma_write(ctlr, EDMA_ECR, BIT(channel));
1415        else
1416                edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
1417}
1418EXPORT_SYMBOL(edma_clear_event);
1419
1420/*
1421 * edma_assign_channel_eventq - move given channel to desired eventq
1422 * Arguments:
1423 *      channel - channel number
1424 *      eventq_no - queue to move the channel
1425 *
1426 * Can be used to move a channel to a selected event queue.
1427 */
1428void edma_assign_channel_eventq(unsigned channel, enum dma_event_q eventq_no)
1429{
1430        unsigned ctlr;
1431
1432        ctlr = EDMA_CTLR(channel);
1433        channel = EDMA_CHAN_SLOT(channel);
1434
1435        if (channel >= edma_cc[ctlr]->num_channels)
1436                return;
1437
1438        /* default to low priority queue */
1439        if (eventq_no == EVENTQ_DEFAULT)
1440                eventq_no = edma_cc[ctlr]->default_queue;
1441        if (eventq_no >= edma_cc[ctlr]->num_tc)
1442                return;
1443
1444        map_dmach_queue(ctlr, channel, eventq_no);
1445}
1446EXPORT_SYMBOL(edma_assign_channel_eventq);
1447
1448static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1449                              struct edma *edma_cc, int cc_id)
1450{
1451        int i;
1452        u32 value, cccfg;
1453        s8 (*queue_priority_map)[2];
1454
1455        /* Decode the eDMA3 configuration from CCCFG register */
1456        cccfg = edma_read(cc_id, EDMA_CCCFG);
1457
1458        value = GET_NUM_REGN(cccfg);
1459        edma_cc->num_region = BIT(value);
1460
1461        value = GET_NUM_DMACH(cccfg);
1462        edma_cc->num_channels = BIT(value + 1);
1463
1464        value = GET_NUM_PAENTRY(cccfg);
1465        edma_cc->num_slots = BIT(value + 4);
1466
1467        value = GET_NUM_EVQUE(cccfg);
1468        edma_cc->num_tc = value + 1;
1469
1470        dev_dbg(dev, "eDMA3 CC%d HW configuration (cccfg: 0x%08x):\n", cc_id,
1471                cccfg);
1472        dev_dbg(dev, "num_region: %u\n", edma_cc->num_region);
1473        dev_dbg(dev, "num_channel: %u\n", edma_cc->num_channels);
1474        dev_dbg(dev, "num_slot: %u\n", edma_cc->num_slots);
1475        dev_dbg(dev, "num_tc: %u\n", edma_cc->num_tc);
1476
1477        /* Nothing need to be done if queue priority is provided */
1478        if (pdata->queue_priority_mapping)
1479                return 0;
1480
1481        /*
1482         * Configure TC/queue priority as follows:
1483         * Q0 - priority 0
1484         * Q1 - priority 1
1485         * Q2 - priority 2
1486         * ...
1487         * The meaning of priority numbers: 0 highest priority, 7 lowest
1488         * priority. So Q0 is the highest priority queue and the last queue has
1489         * the lowest priority.
1490         */
1491        queue_priority_map = devm_kzalloc(dev,
1492                                          (edma_cc->num_tc + 1) * sizeof(s8),
1493                                          GFP_KERNEL);
1494        if (!queue_priority_map)
1495                return -ENOMEM;
1496
1497        for (i = 0; i < edma_cc->num_tc; i++) {
1498                queue_priority_map[i][0] = i;
1499                queue_priority_map[i][1] = i;
1500        }
1501        queue_priority_map[i][0] = -1;
1502        queue_priority_map[i][1] = -1;
1503
1504        pdata->queue_priority_mapping = queue_priority_map;
1505        /* Default queue has the lowest priority */
1506        pdata->default_queue = i - 1;
1507
1508        return 0;
1509}
1510
1511#if IS_ENABLED(CONFIG_OF) && IS_ENABLED(CONFIG_DMADEVICES)
1512
1513static int edma_xbar_event_map(struct device *dev, struct device_node *node,
1514                               struct edma_soc_info *pdata, size_t sz)
1515{
1516        const char pname[] = "ti,edma-xbar-event-map";
1517        struct resource res;
1518        void __iomem *xbar;
1519        s16 (*xbar_chans)[2];
1520        size_t nelm = sz / sizeof(s16);
1521        u32 shift, offset, mux;
1522        int ret, i;
1523
1524        xbar_chans = devm_kzalloc(dev, (nelm + 2) * sizeof(s16), GFP_KERNEL);
1525        if (!xbar_chans)
1526                return -ENOMEM;
1527
1528        ret = of_address_to_resource(node, 1, &res);
1529        if (ret)
1530                return -ENOMEM;
1531
1532        xbar = devm_ioremap(dev, res.start, resource_size(&res));
1533        if (!xbar)
1534                return -ENOMEM;
1535
1536        ret = of_property_read_u16_array(node, pname, (u16 *)xbar_chans, nelm);
1537        if (ret)
1538                return -EIO;
1539
1540        /* Invalidate last entry for the other user of this mess */
1541        nelm >>= 1;
1542        xbar_chans[nelm][0] = xbar_chans[nelm][1] = -1;
1543
1544        for (i = 0; i < nelm; i++) {
1545                shift = (xbar_chans[i][1] & 0x03) << 3;
1546                offset = xbar_chans[i][1] & 0xfffffffc;
1547                mux = readl(xbar + offset);
1548                mux &= ~(0xff << shift);
1549                mux |= xbar_chans[i][0] << shift;
1550                writel(mux, (xbar + offset));
1551        }
1552
1553        pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
1554        return 0;
1555}
1556
1557static int edma_of_parse_dt(struct device *dev,
1558                            struct device_node *node,
1559                            struct edma_soc_info *pdata)
1560{
1561        int ret = 0;
1562        struct property *prop;
1563        size_t sz;
1564        struct edma_rsv_info *rsv_info;
1565
1566        rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL);
1567        if (!rsv_info)
1568                return -ENOMEM;
1569        pdata->rsv = rsv_info;
1570
1571        prop = of_find_property(node, "ti,edma-xbar-event-map", &sz);
1572        if (prop)
1573                ret = edma_xbar_event_map(dev, node, pdata, sz);
1574
1575        return ret;
1576}
1577
1578static struct of_dma_filter_info edma_filter_info = {
1579        .filter_fn = edma_filter_fn,
1580};
1581
1582static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1583                                                      struct device_node *node)
1584{
1585        struct edma_soc_info *info;
1586        int ret;
1587
1588        info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
1589        if (!info)
1590                return ERR_PTR(-ENOMEM);
1591
1592        ret = edma_of_parse_dt(dev, node, info);
1593        if (ret)
1594                return ERR_PTR(ret);
1595
1596        dma_cap_set(DMA_SLAVE, edma_filter_info.dma_cap);
1597        dma_cap_set(DMA_CYCLIC, edma_filter_info.dma_cap);
1598        of_dma_controller_register(dev->of_node, of_dma_simple_xlate,
1599                                   &edma_filter_info);
1600
1601        return info;
1602}
1603#else
1604static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1605                                                      struct device_node *node)
1606{
1607        return ERR_PTR(-ENOSYS);
1608}
1609#endif
1610
1611static int edma_probe(struct platform_device *pdev)
1612{
1613        struct edma_soc_info    **info = pdev->dev.platform_data;
1614        struct edma_soc_info    *ninfo[EDMA_MAX_CC] = {NULL};
1615        s8              (*queue_priority_mapping)[2];
1616        int                     i, j, off, ln, found = 0;
1617        int                     status = -1;
1618        const s16               (*rsv_chans)[2];
1619        const s16               (*rsv_slots)[2];
1620        const s16               (*xbar_chans)[2];
1621        int                     irq[EDMA_MAX_CC] = {0, 0};
1622        int                     err_irq[EDMA_MAX_CC] = {0, 0};
1623        struct resource         *r[EDMA_MAX_CC] = {NULL};
1624        struct resource         res[EDMA_MAX_CC];
1625        char                    res_name[10];
1626        struct device_node      *node = pdev->dev.of_node;
1627        struct device           *dev = &pdev->dev;
1628        int                     ret;
1629        struct platform_device_info edma_dev_info = {
1630                .name = "edma-dma-engine",
1631                .dma_mask = DMA_BIT_MASK(32),
1632                .parent = &pdev->dev,
1633        };
1634
1635        if (node) {
1636                /* Check if this is a second instance registered */
1637                if (arch_num_cc) {
1638                        dev_err(dev, "only one EDMA instance is supported via DT\n");
1639                        return -ENODEV;
1640                }
1641
1642                ninfo[0] = edma_setup_info_from_dt(dev, node);
1643                if (IS_ERR(ninfo[0])) {
1644                        dev_err(dev, "failed to get DT data\n");
1645                        return PTR_ERR(ninfo[0]);
1646                }
1647
1648                info = ninfo;
1649        }
1650
1651        if (!info)
1652                return -ENODEV;
1653
1654        pm_runtime_enable(dev);
1655        ret = pm_runtime_get_sync(dev);
1656        if (ret < 0) {
1657                dev_err(dev, "pm_runtime_get_sync() failed\n");
1658                return ret;
1659        }
1660
1661        for (j = 0; j < EDMA_MAX_CC; j++) {
1662                if (!info[j]) {
1663                        if (!found)
1664                                return -ENODEV;
1665                        break;
1666                }
1667                if (node) {
1668                        ret = of_address_to_resource(node, j, &res[j]);
1669                        if (!ret)
1670                                r[j] = &res[j];
1671                } else {
1672                        sprintf(res_name, "edma_cc%d", j);
1673                        r[j] = platform_get_resource_byname(pdev,
1674                                                IORESOURCE_MEM,
1675                                                res_name);
1676                }
1677                if (!r[j]) {
1678                        if (found)
1679                                break;
1680                        else
1681                                return -ENODEV;
1682                } else {
1683                        found = 1;
1684                }
1685
1686                edmacc_regs_base[j] = devm_ioremap_resource(&pdev->dev, r[j]);
1687                if (IS_ERR(edmacc_regs_base[j]))
1688                        return PTR_ERR(edmacc_regs_base[j]);
1689
1690                edma_cc[j] = devm_kzalloc(&pdev->dev, sizeof(struct edma),
1691                                          GFP_KERNEL);
1692                if (!edma_cc[j])
1693                        return -ENOMEM;
1694
1695                /* Get eDMA3 configuration from IP */
1696                ret = edma_setup_from_hw(dev, info[j], edma_cc[j], j);
1697                if (ret)
1698                        return ret;
1699
1700                edma_cc[j]->default_queue = info[j]->default_queue;
1701
1702                dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1703                        edmacc_regs_base[j]);
1704
1705                for (i = 0; i < edma_cc[j]->num_slots; i++)
1706                        memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1707                                        &dummy_paramset, PARM_SIZE);
1708
1709                /* Mark all channels as unused */
1710                memset(edma_cc[j]->edma_unused, 0xff,
1711                        sizeof(edma_cc[j]->edma_unused));
1712
1713                if (info[j]->rsv) {
1714
1715                        /* Clear the reserved channels in unused list */
1716                        rsv_chans = info[j]->rsv->rsv_chans;
1717                        if (rsv_chans) {
1718                                for (i = 0; rsv_chans[i][0] != -1; i++) {
1719                                        off = rsv_chans[i][0];
1720                                        ln = rsv_chans[i][1];
1721                                        clear_bits(off, ln,
1722                                                  edma_cc[j]->edma_unused);
1723                                }
1724                        }
1725
1726                        /* Set the reserved slots in inuse list */
1727                        rsv_slots = info[j]->rsv->rsv_slots;
1728                        if (rsv_slots) {
1729                                for (i = 0; rsv_slots[i][0] != -1; i++) {
1730                                        off = rsv_slots[i][0];
1731                                        ln = rsv_slots[i][1];
1732                                        set_bits(off, ln,
1733                                                edma_cc[j]->edma_inuse);
1734                                }
1735                        }
1736                }
1737
1738                /* Clear the xbar mapped channels in unused list */
1739                xbar_chans = info[j]->xbar_chans;
1740                if (xbar_chans) {
1741                        for (i = 0; xbar_chans[i][1] != -1; i++) {
1742                                off = xbar_chans[i][1];
1743                                clear_bits(off, 1,
1744                                           edma_cc[j]->edma_unused);
1745                        }
1746                }
1747
1748                if (node) {
1749                        irq[j] = irq_of_parse_and_map(node, 0);
1750                        err_irq[j] = irq_of_parse_and_map(node, 2);
1751                } else {
1752                        char irq_name[10];
1753
1754                        sprintf(irq_name, "edma%d", j);
1755                        irq[j] = platform_get_irq_byname(pdev, irq_name);
1756
1757                        sprintf(irq_name, "edma%d_err", j);
1758                        err_irq[j] = platform_get_irq_byname(pdev, irq_name);
1759                }
1760                edma_cc[j]->irq_res_start = irq[j];
1761                edma_cc[j]->irq_res_end = err_irq[j];
1762
1763                status = devm_request_irq(dev, irq[j], dma_irq_handler, 0,
1764                                          "edma", dev);
1765                if (status < 0) {
1766                        dev_dbg(&pdev->dev,
1767                                "devm_request_irq %d failed --> %d\n",
1768                                irq[j], status);
1769                        return status;
1770                }
1771
1772                status = devm_request_irq(dev, err_irq[j], dma_ccerr_handler, 0,
1773                                          "edma_error", dev);
1774                if (status < 0) {
1775                        dev_dbg(&pdev->dev,
1776                                "devm_request_irq %d failed --> %d\n",
1777                                err_irq[j], status);
1778                        return status;
1779                }
1780
1781                for (i = 0; i < edma_cc[j]->num_channels; i++)
1782                        map_dmach_queue(j, i, info[j]->default_queue);
1783
1784                queue_priority_mapping = info[j]->queue_priority_mapping;
1785
1786                /* Event queue priority mapping */
1787                for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1788                        assign_priority_to_queue(j,
1789                                                queue_priority_mapping[i][0],
1790                                                queue_priority_mapping[i][1]);
1791
1792                /* Map the channel to param entry if channel mapping logic
1793                 * exist
1794                 */
1795                if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1796                        map_dmach_param(j);
1797
1798                for (i = 0; i < edma_cc[j]->num_region; i++) {
1799                        edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1800                        edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1801                        edma_write_array(j, EDMA_QRAE, i, 0x0);
1802                }
1803                edma_cc[j]->info = info[j];
1804                arch_num_cc++;
1805
1806                edma_dev_info.id = j;
1807                platform_device_register_full(&edma_dev_info);
1808        }
1809
1810        return 0;
1811}
1812
1813#ifdef CONFIG_PM_SLEEP
1814static int edma_pm_resume(struct device *dev)
1815{
1816        int i, j;
1817
1818        for (j = 0; j < arch_num_cc; j++) {
1819                struct edma *cc = edma_cc[j];
1820
1821                s8 (*queue_priority_mapping)[2];
1822
1823                queue_priority_mapping = cc->info->queue_priority_mapping;
1824
1825                /* Event queue priority mapping */
1826                for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1827                        assign_priority_to_queue(j,
1828                                                 queue_priority_mapping[i][0],
1829                                                 queue_priority_mapping[i][1]);
1830
1831                /*
1832                 * Map the channel to param entry if channel mapping logic
1833                 * exist
1834                 */
1835                if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1836                        map_dmach_param(j);
1837
1838                for (i = 0; i < cc->num_channels; i++) {
1839                        if (test_bit(i, cc->edma_inuse)) {
1840                                /* ensure access through shadow region 0 */
1841                                edma_or_array2(j, EDMA_DRAE, 0, i >> 5,
1842                                               BIT(i & 0x1f));
1843
1844                                setup_dma_interrupt(i,
1845                                                    cc->intr_data[i].callback,
1846                                                    cc->intr_data[i].data);
1847                        }
1848                }
1849        }
1850
1851        return 0;
1852}
1853#endif
1854
1855static const struct dev_pm_ops edma_pm_ops = {
1856        SET_LATE_SYSTEM_SLEEP_PM_OPS(NULL, edma_pm_resume)
1857};
1858
1859static struct platform_driver edma_driver = {
1860        .driver = {
1861                .name   = "edma",
1862                .pm     = &edma_pm_ops,
1863                .of_match_table = edma_of_ids,
1864        },
1865        .probe = edma_probe,
1866};
1867
1868static int __init edma_init(void)
1869{
1870        return platform_driver_probe(&edma_driver, edma_probe);
1871}
1872arch_initcall(edma_init);
1873
1874