1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19#include <linux/cpu.h>
20#include <linux/cpu_pm.h>
21#include <linux/errno.h>
22#include <linux/err.h>
23#include <linux/kvm_host.h>
24#include <linux/module.h>
25#include <linux/vmalloc.h>
26#include <linux/fs.h>
27#include <linux/mman.h>
28#include <linux/sched.h>
29#include <linux/kvm.h>
30#include <trace/events/kvm.h>
31
32#define CREATE_TRACE_POINTS
33#include "trace.h"
34
35#include <asm/uaccess.h>
36#include <asm/ptrace.h>
37#include <asm/mman.h>
38#include <asm/tlbflush.h>
39#include <asm/cacheflush.h>
40#include <asm/virt.h>
41#include <asm/kvm_arm.h>
42#include <asm/kvm_asm.h>
43#include <asm/kvm_mmu.h>
44#include <asm/kvm_emulate.h>
45#include <asm/kvm_coproc.h>
46#include <asm/kvm_psci.h>
47
48#ifdef REQUIRES_VIRT
49__asm__(".arch_extension virt");
50#endif
51
52static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54static unsigned long hyp_default_vectors;
55
56
57static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59
60static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61static u8 kvm_next_vmid;
62static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
65{
66 BUG_ON(preemptible());
67 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
68}
69
70
71
72
73
74struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75{
76 BUG_ON(preemptible());
77 return __this_cpu_read(kvm_arm_running_vcpu);
78}
79
80
81
82
83struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84{
85 return &kvm_arm_running_vcpu;
86}
87
88int kvm_arch_hardware_enable(void)
89{
90 return 0;
91}
92
93int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94{
95 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96}
97
98int kvm_arch_hardware_setup(void)
99{
100 return 0;
101}
102
103void kvm_arch_check_processor_compat(void *rtn)
104{
105 *(int *)rtn = 0;
106}
107
108
109
110
111
112
113int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114{
115 int ret = 0;
116
117 if (type)
118 return -EINVAL;
119
120 ret = kvm_alloc_stage2_pgd(kvm);
121 if (ret)
122 goto out_fail_alloc;
123
124 ret = create_hyp_mappings(kvm, kvm + 1);
125 if (ret)
126 goto out_free_stage2_pgd;
127
128 kvm_timer_init(kvm);
129
130
131 kvm->arch.vmid_gen = 0;
132
133
134 kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
135
136 return ret;
137out_free_stage2_pgd:
138 kvm_free_stage2_pgd(kvm);
139out_fail_alloc:
140 return ret;
141}
142
143int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
144{
145 return VM_FAULT_SIGBUS;
146}
147
148
149
150
151
152
153void kvm_arch_destroy_vm(struct kvm *kvm)
154{
155 int i;
156
157 kvm_free_stage2_pgd(kvm);
158
159 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
160 if (kvm->vcpus[i]) {
161 kvm_arch_vcpu_free(kvm->vcpus[i]);
162 kvm->vcpus[i] = NULL;
163 }
164 }
165
166 kvm_vgic_destroy(kvm);
167}
168
169int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
170{
171 int r;
172 switch (ext) {
173 case KVM_CAP_IRQCHIP:
174 case KVM_CAP_IRQFD:
175 case KVM_CAP_IOEVENTFD:
176 case KVM_CAP_DEVICE_CTRL:
177 case KVM_CAP_USER_MEMORY:
178 case KVM_CAP_SYNC_MMU:
179 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
180 case KVM_CAP_ONE_REG:
181 case KVM_CAP_ARM_PSCI:
182 case KVM_CAP_ARM_PSCI_0_2:
183 case KVM_CAP_READONLY_MEM:
184 case KVM_CAP_MP_STATE:
185 r = 1;
186 break;
187 case KVM_CAP_COALESCED_MMIO:
188 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
189 break;
190 case KVM_CAP_ARM_SET_DEVICE_ADDR:
191 r = 1;
192 break;
193 case KVM_CAP_NR_VCPUS:
194 r = num_online_cpus();
195 break;
196 case KVM_CAP_MAX_VCPUS:
197 r = KVM_MAX_VCPUS;
198 break;
199 default:
200 r = kvm_arch_dev_ioctl_check_extension(ext);
201 break;
202 }
203 return r;
204}
205
206long kvm_arch_dev_ioctl(struct file *filp,
207 unsigned int ioctl, unsigned long arg)
208{
209 return -EINVAL;
210}
211
212
213struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
214{
215 int err;
216 struct kvm_vcpu *vcpu;
217
218 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
219 err = -EBUSY;
220 goto out;
221 }
222
223 if (id >= kvm->arch.max_vcpus) {
224 err = -EINVAL;
225 goto out;
226 }
227
228 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
229 if (!vcpu) {
230 err = -ENOMEM;
231 goto out;
232 }
233
234 err = kvm_vcpu_init(vcpu, kvm, id);
235 if (err)
236 goto free_vcpu;
237
238 err = create_hyp_mappings(vcpu, vcpu + 1);
239 if (err)
240 goto vcpu_uninit;
241
242 return vcpu;
243vcpu_uninit:
244 kvm_vcpu_uninit(vcpu);
245free_vcpu:
246 kmem_cache_free(kvm_vcpu_cache, vcpu);
247out:
248 return ERR_PTR(err);
249}
250
251void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
252{
253}
254
255void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
256{
257 kvm_mmu_free_memory_caches(vcpu);
258 kvm_timer_vcpu_terminate(vcpu);
259 kvm_vgic_vcpu_destroy(vcpu);
260 kmem_cache_free(kvm_vcpu_cache, vcpu);
261}
262
263void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
264{
265 kvm_arch_vcpu_free(vcpu);
266}
267
268int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
269{
270 return kvm_timer_should_fire(vcpu);
271}
272
273int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
274{
275
276 vcpu->arch.target = -1;
277 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
278
279
280 kvm_timer_vcpu_init(vcpu);
281
282 return 0;
283}
284
285void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
286{
287 vcpu->cpu = cpu;
288 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
289
290 kvm_arm_set_running_vcpu(vcpu);
291}
292
293void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
294{
295
296
297
298
299
300 vcpu->cpu = -1;
301
302 kvm_arm_set_running_vcpu(NULL);
303}
304
305int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
306 struct kvm_guest_debug *dbg)
307{
308 return -EINVAL;
309}
310
311
312int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
313 struct kvm_mp_state *mp_state)
314{
315 if (vcpu->arch.pause)
316 mp_state->mp_state = KVM_MP_STATE_STOPPED;
317 else
318 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
319
320 return 0;
321}
322
323int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
324 struct kvm_mp_state *mp_state)
325{
326 switch (mp_state->mp_state) {
327 case KVM_MP_STATE_RUNNABLE:
328 vcpu->arch.pause = false;
329 break;
330 case KVM_MP_STATE_STOPPED:
331 vcpu->arch.pause = true;
332 break;
333 default:
334 return -EINVAL;
335 }
336
337 return 0;
338}
339
340
341
342
343
344
345
346
347int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
348{
349 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
350}
351
352
353static void exit_vm_noop(void *info)
354{
355}
356
357void force_vm_exit(const cpumask_t *mask)
358{
359 smp_call_function_many(mask, exit_vm_noop, NULL, true);
360}
361
362
363
364
365
366
367
368
369
370
371
372
373
374static bool need_new_vmid_gen(struct kvm *kvm)
375{
376 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
377}
378
379
380
381
382
383
384
385
386
387static void update_vttbr(struct kvm *kvm)
388{
389 phys_addr_t pgd_phys;
390 u64 vmid;
391
392 if (!need_new_vmid_gen(kvm))
393 return;
394
395 spin_lock(&kvm_vmid_lock);
396
397
398
399
400
401
402 if (!need_new_vmid_gen(kvm)) {
403 spin_unlock(&kvm_vmid_lock);
404 return;
405 }
406
407
408 if (unlikely(kvm_next_vmid == 0)) {
409 atomic64_inc(&kvm_vmid_gen);
410 kvm_next_vmid = 1;
411
412
413
414
415
416
417 force_vm_exit(cpu_all_mask);
418
419
420
421
422
423 kvm_call_hyp(__kvm_flush_vm_context);
424 }
425
426 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
427 kvm->arch.vmid = kvm_next_vmid;
428 kvm_next_vmid++;
429
430
431 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
432 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
433 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
434 kvm->arch.vttbr = pgd_phys | vmid;
435
436 spin_unlock(&kvm_vmid_lock);
437}
438
439static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
440{
441 struct kvm *kvm = vcpu->kvm;
442 int ret;
443
444 if (likely(vcpu->arch.has_run_once))
445 return 0;
446
447 vcpu->arch.has_run_once = true;
448
449
450
451
452
453 if (unlikely(!vgic_ready(kvm))) {
454 ret = kvm_vgic_map_resources(kvm);
455 if (ret)
456 return ret;
457 }
458
459
460
461
462
463
464 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
465 kvm_timer_enable(kvm);
466
467 return 0;
468}
469
470bool kvm_arch_intc_initialized(struct kvm *kvm)
471{
472 return vgic_initialized(kvm);
473}
474
475static void vcpu_pause(struct kvm_vcpu *vcpu)
476{
477 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
478
479 wait_event_interruptible(*wq, !vcpu->arch.pause);
480}
481
482static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
483{
484 return vcpu->arch.target >= 0;
485}
486
487
488
489
490
491
492
493
494
495
496
497
498int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
499{
500 int ret;
501 sigset_t sigsaved;
502
503 if (unlikely(!kvm_vcpu_initialized(vcpu)))
504 return -ENOEXEC;
505
506 ret = kvm_vcpu_first_run_init(vcpu);
507 if (ret)
508 return ret;
509
510 if (run->exit_reason == KVM_EXIT_MMIO) {
511 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
512 if (ret)
513 return ret;
514 }
515
516 if (vcpu->sigset_active)
517 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
518
519 ret = 1;
520 run->exit_reason = KVM_EXIT_UNKNOWN;
521 while (ret > 0) {
522
523
524
525 cond_resched();
526
527 update_vttbr(vcpu->kvm);
528
529 if (vcpu->arch.pause)
530 vcpu_pause(vcpu);
531
532 kvm_vgic_flush_hwstate(vcpu);
533 kvm_timer_flush_hwstate(vcpu);
534
535 local_irq_disable();
536
537
538
539
540 if (signal_pending(current)) {
541 ret = -EINTR;
542 run->exit_reason = KVM_EXIT_INTR;
543 }
544
545 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
546 local_irq_enable();
547 kvm_timer_sync_hwstate(vcpu);
548 kvm_vgic_sync_hwstate(vcpu);
549 continue;
550 }
551
552
553
554
555 trace_kvm_entry(*vcpu_pc(vcpu));
556 kvm_guest_enter();
557 vcpu->mode = IN_GUEST_MODE;
558
559 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
560
561 vcpu->mode = OUTSIDE_GUEST_MODE;
562 kvm_guest_exit();
563 trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
564
565
566
567
568
569
570
571
572
573
574 local_irq_enable();
575
576
577
578
579
580 kvm_timer_sync_hwstate(vcpu);
581 kvm_vgic_sync_hwstate(vcpu);
582
583 ret = handle_exit(vcpu, run, ret);
584 }
585
586 if (vcpu->sigset_active)
587 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
588 return ret;
589}
590
591static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
592{
593 int bit_index;
594 bool set;
595 unsigned long *ptr;
596
597 if (number == KVM_ARM_IRQ_CPU_IRQ)
598 bit_index = __ffs(HCR_VI);
599 else
600 bit_index = __ffs(HCR_VF);
601
602 ptr = (unsigned long *)&vcpu->arch.irq_lines;
603 if (level)
604 set = test_and_set_bit(bit_index, ptr);
605 else
606 set = test_and_clear_bit(bit_index, ptr);
607
608
609
610
611 if (set == level)
612 return 0;
613
614
615
616
617
618
619 kvm_vcpu_kick(vcpu);
620
621 return 0;
622}
623
624int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
625 bool line_status)
626{
627 u32 irq = irq_level->irq;
628 unsigned int irq_type, vcpu_idx, irq_num;
629 int nrcpus = atomic_read(&kvm->online_vcpus);
630 struct kvm_vcpu *vcpu = NULL;
631 bool level = irq_level->level;
632
633 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
634 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
635 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
636
637 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
638
639 switch (irq_type) {
640 case KVM_ARM_IRQ_TYPE_CPU:
641 if (irqchip_in_kernel(kvm))
642 return -ENXIO;
643
644 if (vcpu_idx >= nrcpus)
645 return -EINVAL;
646
647 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
648 if (!vcpu)
649 return -EINVAL;
650
651 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
652 return -EINVAL;
653
654 return vcpu_interrupt_line(vcpu, irq_num, level);
655 case KVM_ARM_IRQ_TYPE_PPI:
656 if (!irqchip_in_kernel(kvm))
657 return -ENXIO;
658
659 if (vcpu_idx >= nrcpus)
660 return -EINVAL;
661
662 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
663 if (!vcpu)
664 return -EINVAL;
665
666 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
667 return -EINVAL;
668
669 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
670 case KVM_ARM_IRQ_TYPE_SPI:
671 if (!irqchip_in_kernel(kvm))
672 return -ENXIO;
673
674 if (irq_num < VGIC_NR_PRIVATE_IRQS)
675 return -EINVAL;
676
677 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
678 }
679
680 return -EINVAL;
681}
682
683static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
684 const struct kvm_vcpu_init *init)
685{
686 unsigned int i;
687 int phys_target = kvm_target_cpu();
688
689 if (init->target != phys_target)
690 return -EINVAL;
691
692
693
694
695
696 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
697 return -EINVAL;
698
699
700 for (i = 0; i < sizeof(init->features) * 8; i++) {
701 bool set = (init->features[i / 32] & (1 << (i % 32)));
702
703 if (set && i >= KVM_VCPU_MAX_FEATURES)
704 return -ENOENT;
705
706
707
708
709
710 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
711 test_bit(i, vcpu->arch.features) != set)
712 return -EINVAL;
713
714 if (set)
715 set_bit(i, vcpu->arch.features);
716 }
717
718 vcpu->arch.target = phys_target;
719
720
721 return kvm_reset_vcpu(vcpu);
722}
723
724
725static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
726 struct kvm_vcpu_init *init)
727{
728 int ret;
729
730 ret = kvm_vcpu_set_target(vcpu, init);
731 if (ret)
732 return ret;
733
734
735
736
737
738 if (vcpu->arch.has_run_once)
739 stage2_unmap_vm(vcpu->kvm);
740
741 vcpu_reset_hcr(vcpu);
742
743
744
745
746 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
747 vcpu->arch.pause = true;
748 else
749 vcpu->arch.pause = false;
750
751 return 0;
752}
753
754long kvm_arch_vcpu_ioctl(struct file *filp,
755 unsigned int ioctl, unsigned long arg)
756{
757 struct kvm_vcpu *vcpu = filp->private_data;
758 void __user *argp = (void __user *)arg;
759
760 switch (ioctl) {
761 case KVM_ARM_VCPU_INIT: {
762 struct kvm_vcpu_init init;
763
764 if (copy_from_user(&init, argp, sizeof(init)))
765 return -EFAULT;
766
767 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
768 }
769 case KVM_SET_ONE_REG:
770 case KVM_GET_ONE_REG: {
771 struct kvm_one_reg reg;
772
773 if (unlikely(!kvm_vcpu_initialized(vcpu)))
774 return -ENOEXEC;
775
776 if (copy_from_user(®, argp, sizeof(reg)))
777 return -EFAULT;
778 if (ioctl == KVM_SET_ONE_REG)
779 return kvm_arm_set_reg(vcpu, ®);
780 else
781 return kvm_arm_get_reg(vcpu, ®);
782 }
783 case KVM_GET_REG_LIST: {
784 struct kvm_reg_list __user *user_list = argp;
785 struct kvm_reg_list reg_list;
786 unsigned n;
787
788 if (unlikely(!kvm_vcpu_initialized(vcpu)))
789 return -ENOEXEC;
790
791 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
792 return -EFAULT;
793 n = reg_list.n;
794 reg_list.n = kvm_arm_num_regs(vcpu);
795 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
796 return -EFAULT;
797 if (n < reg_list.n)
798 return -E2BIG;
799 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
800 }
801 default:
802 return -EINVAL;
803 }
804}
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
826{
827 bool is_dirty = false;
828 int r;
829
830 mutex_lock(&kvm->slots_lock);
831
832 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
833
834 if (is_dirty)
835 kvm_flush_remote_tlbs(kvm);
836
837 mutex_unlock(&kvm->slots_lock);
838 return r;
839}
840
841static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
842 struct kvm_arm_device_addr *dev_addr)
843{
844 unsigned long dev_id, type;
845
846 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
847 KVM_ARM_DEVICE_ID_SHIFT;
848 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
849 KVM_ARM_DEVICE_TYPE_SHIFT;
850
851 switch (dev_id) {
852 case KVM_ARM_DEVICE_VGIC_V2:
853 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
854 default:
855 return -ENODEV;
856 }
857}
858
859long kvm_arch_vm_ioctl(struct file *filp,
860 unsigned int ioctl, unsigned long arg)
861{
862 struct kvm *kvm = filp->private_data;
863 void __user *argp = (void __user *)arg;
864
865 switch (ioctl) {
866 case KVM_CREATE_IRQCHIP: {
867 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
868 }
869 case KVM_ARM_SET_DEVICE_ADDR: {
870 struct kvm_arm_device_addr dev_addr;
871
872 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
873 return -EFAULT;
874 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
875 }
876 case KVM_ARM_PREFERRED_TARGET: {
877 int err;
878 struct kvm_vcpu_init init;
879
880 err = kvm_vcpu_preferred_target(&init);
881 if (err)
882 return err;
883
884 if (copy_to_user(argp, &init, sizeof(init)))
885 return -EFAULT;
886
887 return 0;
888 }
889 default:
890 return -EINVAL;
891 }
892}
893
894static void cpu_init_hyp_mode(void *dummy)
895{
896 phys_addr_t boot_pgd_ptr;
897 phys_addr_t pgd_ptr;
898 unsigned long hyp_stack_ptr;
899 unsigned long stack_page;
900 unsigned long vector_ptr;
901
902
903 __hyp_set_vectors(kvm_get_idmap_vector());
904
905 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
906 pgd_ptr = kvm_mmu_get_httbr();
907 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
908 hyp_stack_ptr = stack_page + PAGE_SIZE;
909 vector_ptr = (unsigned long)__kvm_hyp_vector;
910
911 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
912}
913
914static int hyp_init_cpu_notify(struct notifier_block *self,
915 unsigned long action, void *cpu)
916{
917 switch (action) {
918 case CPU_STARTING:
919 case CPU_STARTING_FROZEN:
920 if (__hyp_get_vectors() == hyp_default_vectors)
921 cpu_init_hyp_mode(NULL);
922 break;
923 }
924
925 return NOTIFY_OK;
926}
927
928static struct notifier_block hyp_init_cpu_nb = {
929 .notifier_call = hyp_init_cpu_notify,
930};
931
932#ifdef CONFIG_CPU_PM
933static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
934 unsigned long cmd,
935 void *v)
936{
937 if (cmd == CPU_PM_EXIT &&
938 __hyp_get_vectors() == hyp_default_vectors) {
939 cpu_init_hyp_mode(NULL);
940 return NOTIFY_OK;
941 }
942
943 return NOTIFY_DONE;
944}
945
946static struct notifier_block hyp_init_cpu_pm_nb = {
947 .notifier_call = hyp_init_cpu_pm_notifier,
948};
949
950static void __init hyp_cpu_pm_init(void)
951{
952 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
953}
954#else
955static inline void hyp_cpu_pm_init(void)
956{
957}
958#endif
959
960
961
962
963static int init_hyp_mode(void)
964{
965 int cpu;
966 int err = 0;
967
968
969
970
971 err = kvm_mmu_init();
972 if (err)
973 goto out_err;
974
975
976
977
978
979 hyp_default_vectors = __hyp_get_vectors();
980
981
982
983
984 for_each_possible_cpu(cpu) {
985 unsigned long stack_page;
986
987 stack_page = __get_free_page(GFP_KERNEL);
988 if (!stack_page) {
989 err = -ENOMEM;
990 goto out_free_stack_pages;
991 }
992
993 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
994 }
995
996
997
998
999 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1000 if (err) {
1001 kvm_err("Cannot map world-switch code\n");
1002 goto out_free_mappings;
1003 }
1004
1005
1006
1007
1008 for_each_possible_cpu(cpu) {
1009 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1010 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1011
1012 if (err) {
1013 kvm_err("Cannot map hyp stack\n");
1014 goto out_free_mappings;
1015 }
1016 }
1017
1018
1019
1020
1021 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1022 if (!kvm_host_cpu_state) {
1023 err = -ENOMEM;
1024 kvm_err("Cannot allocate host CPU state\n");
1025 goto out_free_mappings;
1026 }
1027
1028 for_each_possible_cpu(cpu) {
1029 kvm_cpu_context_t *cpu_ctxt;
1030
1031 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1032 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1033
1034 if (err) {
1035 kvm_err("Cannot map host CPU state: %d\n", err);
1036 goto out_free_context;
1037 }
1038 }
1039
1040
1041
1042
1043 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1044
1045
1046
1047
1048 err = kvm_vgic_hyp_init();
1049 if (err)
1050 goto out_free_context;
1051
1052
1053
1054
1055 err = kvm_timer_hyp_init();
1056 if (err)
1057 goto out_free_mappings;
1058
1059#ifndef CONFIG_HOTPLUG_CPU
1060 free_boot_hyp_pgd();
1061#endif
1062
1063 kvm_perf_init();
1064
1065 kvm_info("Hyp mode initialized successfully\n");
1066
1067 return 0;
1068out_free_context:
1069 free_percpu(kvm_host_cpu_state);
1070out_free_mappings:
1071 free_hyp_pgds();
1072out_free_stack_pages:
1073 for_each_possible_cpu(cpu)
1074 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1075out_err:
1076 kvm_err("error initializing Hyp mode: %d\n", err);
1077 return err;
1078}
1079
1080static void check_kvm_target_cpu(void *ret)
1081{
1082 *(int *)ret = kvm_target_cpu();
1083}
1084
1085struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1086{
1087 struct kvm_vcpu *vcpu;
1088 int i;
1089
1090 mpidr &= MPIDR_HWID_BITMASK;
1091 kvm_for_each_vcpu(i, vcpu, kvm) {
1092 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1093 return vcpu;
1094 }
1095 return NULL;
1096}
1097
1098
1099
1100
1101int kvm_arch_init(void *opaque)
1102{
1103 int err;
1104 int ret, cpu;
1105
1106 if (!is_hyp_mode_available()) {
1107 kvm_err("HYP mode not available\n");
1108 return -ENODEV;
1109 }
1110
1111 for_each_online_cpu(cpu) {
1112 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1113 if (ret < 0) {
1114 kvm_err("Error, CPU %d not supported!\n", cpu);
1115 return -ENODEV;
1116 }
1117 }
1118
1119 cpu_notifier_register_begin();
1120
1121 err = init_hyp_mode();
1122 if (err)
1123 goto out_err;
1124
1125 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1126 if (err) {
1127 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1128 goto out_err;
1129 }
1130
1131 cpu_notifier_register_done();
1132
1133 hyp_cpu_pm_init();
1134
1135 kvm_coproc_table_init();
1136 return 0;
1137out_err:
1138 cpu_notifier_register_done();
1139 return err;
1140}
1141
1142
1143void kvm_arch_exit(void)
1144{
1145 kvm_perf_teardown();
1146}
1147
1148static int arm_init(void)
1149{
1150 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1151 return rc;
1152}
1153
1154module_init(arm_init);
1155