linux/arch/arm/kvm/arm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License, version 2, as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  17 */
  18
  19#include <linux/cpu.h>
  20#include <linux/cpu_pm.h>
  21#include <linux/errno.h>
  22#include <linux/err.h>
  23#include <linux/kvm_host.h>
  24#include <linux/module.h>
  25#include <linux/vmalloc.h>
  26#include <linux/fs.h>
  27#include <linux/mman.h>
  28#include <linux/sched.h>
  29#include <linux/kvm.h>
  30#include <trace/events/kvm.h>
  31
  32#define CREATE_TRACE_POINTS
  33#include "trace.h"
  34
  35#include <asm/uaccess.h>
  36#include <asm/ptrace.h>
  37#include <asm/mman.h>
  38#include <asm/tlbflush.h>
  39#include <asm/cacheflush.h>
  40#include <asm/virt.h>
  41#include <asm/kvm_arm.h>
  42#include <asm/kvm_asm.h>
  43#include <asm/kvm_mmu.h>
  44#include <asm/kvm_emulate.h>
  45#include <asm/kvm_coproc.h>
  46#include <asm/kvm_psci.h>
  47
  48#ifdef REQUIRES_VIRT
  49__asm__(".arch_extension        virt");
  50#endif
  51
  52static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
  53static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
  54static unsigned long hyp_default_vectors;
  55
  56/* Per-CPU variable containing the currently running vcpu. */
  57static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
  58
  59/* The VMID used in the VTTBR */
  60static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
  61static u8 kvm_next_vmid;
  62static DEFINE_SPINLOCK(kvm_vmid_lock);
  63
  64static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
  65{
  66        BUG_ON(preemptible());
  67        __this_cpu_write(kvm_arm_running_vcpu, vcpu);
  68}
  69
  70/**
  71 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
  72 * Must be called from non-preemptible context
  73 */
  74struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
  75{
  76        BUG_ON(preemptible());
  77        return __this_cpu_read(kvm_arm_running_vcpu);
  78}
  79
  80/**
  81 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
  82 */
  83struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
  84{
  85        return &kvm_arm_running_vcpu;
  86}
  87
  88int kvm_arch_hardware_enable(void)
  89{
  90        return 0;
  91}
  92
  93int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  94{
  95        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  96}
  97
  98int kvm_arch_hardware_setup(void)
  99{
 100        return 0;
 101}
 102
 103void kvm_arch_check_processor_compat(void *rtn)
 104{
 105        *(int *)rtn = 0;
 106}
 107
 108
 109/**
 110 * kvm_arch_init_vm - initializes a VM data structure
 111 * @kvm:        pointer to the KVM struct
 112 */
 113int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 114{
 115        int ret = 0;
 116
 117        if (type)
 118                return -EINVAL;
 119
 120        ret = kvm_alloc_stage2_pgd(kvm);
 121        if (ret)
 122                goto out_fail_alloc;
 123
 124        ret = create_hyp_mappings(kvm, kvm + 1);
 125        if (ret)
 126                goto out_free_stage2_pgd;
 127
 128        kvm_timer_init(kvm);
 129
 130        /* Mark the initial VMID generation invalid */
 131        kvm->arch.vmid_gen = 0;
 132
 133        /* The maximum number of VCPUs is limited by the host's GIC model */
 134        kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
 135
 136        return ret;
 137out_free_stage2_pgd:
 138        kvm_free_stage2_pgd(kvm);
 139out_fail_alloc:
 140        return ret;
 141}
 142
 143int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
 144{
 145        return VM_FAULT_SIGBUS;
 146}
 147
 148
 149/**
 150 * kvm_arch_destroy_vm - destroy the VM data structure
 151 * @kvm:        pointer to the KVM struct
 152 */
 153void kvm_arch_destroy_vm(struct kvm *kvm)
 154{
 155        int i;
 156
 157        kvm_free_stage2_pgd(kvm);
 158
 159        for (i = 0; i < KVM_MAX_VCPUS; ++i) {
 160                if (kvm->vcpus[i]) {
 161                        kvm_arch_vcpu_free(kvm->vcpus[i]);
 162                        kvm->vcpus[i] = NULL;
 163                }
 164        }
 165
 166        kvm_vgic_destroy(kvm);
 167}
 168
 169int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 170{
 171        int r;
 172        switch (ext) {
 173        case KVM_CAP_IRQCHIP:
 174        case KVM_CAP_IRQFD:
 175        case KVM_CAP_IOEVENTFD:
 176        case KVM_CAP_DEVICE_CTRL:
 177        case KVM_CAP_USER_MEMORY:
 178        case KVM_CAP_SYNC_MMU:
 179        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
 180        case KVM_CAP_ONE_REG:
 181        case KVM_CAP_ARM_PSCI:
 182        case KVM_CAP_ARM_PSCI_0_2:
 183        case KVM_CAP_READONLY_MEM:
 184        case KVM_CAP_MP_STATE:
 185                r = 1;
 186                break;
 187        case KVM_CAP_COALESCED_MMIO:
 188                r = KVM_COALESCED_MMIO_PAGE_OFFSET;
 189                break;
 190        case KVM_CAP_ARM_SET_DEVICE_ADDR:
 191                r = 1;
 192                break;
 193        case KVM_CAP_NR_VCPUS:
 194                r = num_online_cpus();
 195                break;
 196        case KVM_CAP_MAX_VCPUS:
 197                r = KVM_MAX_VCPUS;
 198                break;
 199        default:
 200                r = kvm_arch_dev_ioctl_check_extension(ext);
 201                break;
 202        }
 203        return r;
 204}
 205
 206long kvm_arch_dev_ioctl(struct file *filp,
 207                        unsigned int ioctl, unsigned long arg)
 208{
 209        return -EINVAL;
 210}
 211
 212
 213struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 214{
 215        int err;
 216        struct kvm_vcpu *vcpu;
 217
 218        if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
 219                err = -EBUSY;
 220                goto out;
 221        }
 222
 223        if (id >= kvm->arch.max_vcpus) {
 224                err = -EINVAL;
 225                goto out;
 226        }
 227
 228        vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
 229        if (!vcpu) {
 230                err = -ENOMEM;
 231                goto out;
 232        }
 233
 234        err = kvm_vcpu_init(vcpu, kvm, id);
 235        if (err)
 236                goto free_vcpu;
 237
 238        err = create_hyp_mappings(vcpu, vcpu + 1);
 239        if (err)
 240                goto vcpu_uninit;
 241
 242        return vcpu;
 243vcpu_uninit:
 244        kvm_vcpu_uninit(vcpu);
 245free_vcpu:
 246        kmem_cache_free(kvm_vcpu_cache, vcpu);
 247out:
 248        return ERR_PTR(err);
 249}
 250
 251void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 252{
 253}
 254
 255void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 256{
 257        kvm_mmu_free_memory_caches(vcpu);
 258        kvm_timer_vcpu_terminate(vcpu);
 259        kvm_vgic_vcpu_destroy(vcpu);
 260        kmem_cache_free(kvm_vcpu_cache, vcpu);
 261}
 262
 263void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 264{
 265        kvm_arch_vcpu_free(vcpu);
 266}
 267
 268int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
 269{
 270        return kvm_timer_should_fire(vcpu);
 271}
 272
 273int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
 274{
 275        /* Force users to call KVM_ARM_VCPU_INIT */
 276        vcpu->arch.target = -1;
 277        bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
 278
 279        /* Set up the timer */
 280        kvm_timer_vcpu_init(vcpu);
 281
 282        return 0;
 283}
 284
 285void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 286{
 287        vcpu->cpu = cpu;
 288        vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
 289
 290        kvm_arm_set_running_vcpu(vcpu);
 291}
 292
 293void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 294{
 295        /*
 296         * The arch-generic KVM code expects the cpu field of a vcpu to be -1
 297         * if the vcpu is no longer assigned to a cpu.  This is used for the
 298         * optimized make_all_cpus_request path.
 299         */
 300        vcpu->cpu = -1;
 301
 302        kvm_arm_set_running_vcpu(NULL);
 303}
 304
 305int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 306                                        struct kvm_guest_debug *dbg)
 307{
 308        return -EINVAL;
 309}
 310
 311
 312int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 313                                    struct kvm_mp_state *mp_state)
 314{
 315        if (vcpu->arch.pause)
 316                mp_state->mp_state = KVM_MP_STATE_STOPPED;
 317        else
 318                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
 319
 320        return 0;
 321}
 322
 323int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 324                                    struct kvm_mp_state *mp_state)
 325{
 326        switch (mp_state->mp_state) {
 327        case KVM_MP_STATE_RUNNABLE:
 328                vcpu->arch.pause = false;
 329                break;
 330        case KVM_MP_STATE_STOPPED:
 331                vcpu->arch.pause = true;
 332                break;
 333        default:
 334                return -EINVAL;
 335        }
 336
 337        return 0;
 338}
 339
 340/**
 341 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 342 * @v:          The VCPU pointer
 343 *
 344 * If the guest CPU is not waiting for interrupts or an interrupt line is
 345 * asserted, the CPU is by definition runnable.
 346 */
 347int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
 348{
 349        return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
 350}
 351
 352/* Just ensure a guest exit from a particular CPU */
 353static void exit_vm_noop(void *info)
 354{
 355}
 356
 357void force_vm_exit(const cpumask_t *mask)
 358{
 359        smp_call_function_many(mask, exit_vm_noop, NULL, true);
 360}
 361
 362/**
 363 * need_new_vmid_gen - check that the VMID is still valid
 364 * @kvm: The VM's VMID to checkt
 365 *
 366 * return true if there is a new generation of VMIDs being used
 367 *
 368 * The hardware supports only 256 values with the value zero reserved for the
 369 * host, so we check if an assigned value belongs to a previous generation,
 370 * which which requires us to assign a new value. If we're the first to use a
 371 * VMID for the new generation, we must flush necessary caches and TLBs on all
 372 * CPUs.
 373 */
 374static bool need_new_vmid_gen(struct kvm *kvm)
 375{
 376        return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
 377}
 378
 379/**
 380 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 381 * @kvm The guest that we are about to run
 382 *
 383 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 384 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 385 * caches and TLBs.
 386 */
 387static void update_vttbr(struct kvm *kvm)
 388{
 389        phys_addr_t pgd_phys;
 390        u64 vmid;
 391
 392        if (!need_new_vmid_gen(kvm))
 393                return;
 394
 395        spin_lock(&kvm_vmid_lock);
 396
 397        /*
 398         * We need to re-check the vmid_gen here to ensure that if another vcpu
 399         * already allocated a valid vmid for this vm, then this vcpu should
 400         * use the same vmid.
 401         */
 402        if (!need_new_vmid_gen(kvm)) {
 403                spin_unlock(&kvm_vmid_lock);
 404                return;
 405        }
 406
 407        /* First user of a new VMID generation? */
 408        if (unlikely(kvm_next_vmid == 0)) {
 409                atomic64_inc(&kvm_vmid_gen);
 410                kvm_next_vmid = 1;
 411
 412                /*
 413                 * On SMP we know no other CPUs can use this CPU's or each
 414                 * other's VMID after force_vm_exit returns since the
 415                 * kvm_vmid_lock blocks them from reentry to the guest.
 416                 */
 417                force_vm_exit(cpu_all_mask);
 418                /*
 419                 * Now broadcast TLB + ICACHE invalidation over the inner
 420                 * shareable domain to make sure all data structures are
 421                 * clean.
 422                 */
 423                kvm_call_hyp(__kvm_flush_vm_context);
 424        }
 425
 426        kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
 427        kvm->arch.vmid = kvm_next_vmid;
 428        kvm_next_vmid++;
 429
 430        /* update vttbr to be used with the new vmid */
 431        pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
 432        BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
 433        vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
 434        kvm->arch.vttbr = pgd_phys | vmid;
 435
 436        spin_unlock(&kvm_vmid_lock);
 437}
 438
 439static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
 440{
 441        struct kvm *kvm = vcpu->kvm;
 442        int ret;
 443
 444        if (likely(vcpu->arch.has_run_once))
 445                return 0;
 446
 447        vcpu->arch.has_run_once = true;
 448
 449        /*
 450         * Map the VGIC hardware resources before running a vcpu the first
 451         * time on this VM.
 452         */
 453        if (unlikely(!vgic_ready(kvm))) {
 454                ret = kvm_vgic_map_resources(kvm);
 455                if (ret)
 456                        return ret;
 457        }
 458
 459        /*
 460         * Enable the arch timers only if we have an in-kernel VGIC
 461         * and it has been properly initialized, since we cannot handle
 462         * interrupts from the virtual timer with a userspace gic.
 463         */
 464        if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
 465                kvm_timer_enable(kvm);
 466
 467        return 0;
 468}
 469
 470bool kvm_arch_intc_initialized(struct kvm *kvm)
 471{
 472        return vgic_initialized(kvm);
 473}
 474
 475static void vcpu_pause(struct kvm_vcpu *vcpu)
 476{
 477        wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
 478
 479        wait_event_interruptible(*wq, !vcpu->arch.pause);
 480}
 481
 482static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
 483{
 484        return vcpu->arch.target >= 0;
 485}
 486
 487/**
 488 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 489 * @vcpu:       The VCPU pointer
 490 * @run:        The kvm_run structure pointer used for userspace state exchange
 491 *
 492 * This function is called through the VCPU_RUN ioctl called from user space. It
 493 * will execute VM code in a loop until the time slice for the process is used
 494 * or some emulation is needed from user space in which case the function will
 495 * return with return value 0 and with the kvm_run structure filled in with the
 496 * required data for the requested emulation.
 497 */
 498int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 499{
 500        int ret;
 501        sigset_t sigsaved;
 502
 503        if (unlikely(!kvm_vcpu_initialized(vcpu)))
 504                return -ENOEXEC;
 505
 506        ret = kvm_vcpu_first_run_init(vcpu);
 507        if (ret)
 508                return ret;
 509
 510        if (run->exit_reason == KVM_EXIT_MMIO) {
 511                ret = kvm_handle_mmio_return(vcpu, vcpu->run);
 512                if (ret)
 513                        return ret;
 514        }
 515
 516        if (vcpu->sigset_active)
 517                sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
 518
 519        ret = 1;
 520        run->exit_reason = KVM_EXIT_UNKNOWN;
 521        while (ret > 0) {
 522                /*
 523                 * Check conditions before entering the guest
 524                 */
 525                cond_resched();
 526
 527                update_vttbr(vcpu->kvm);
 528
 529                if (vcpu->arch.pause)
 530                        vcpu_pause(vcpu);
 531
 532                kvm_vgic_flush_hwstate(vcpu);
 533                kvm_timer_flush_hwstate(vcpu);
 534
 535                local_irq_disable();
 536
 537                /*
 538                 * Re-check atomic conditions
 539                 */
 540                if (signal_pending(current)) {
 541                        ret = -EINTR;
 542                        run->exit_reason = KVM_EXIT_INTR;
 543                }
 544
 545                if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
 546                        local_irq_enable();
 547                        kvm_timer_sync_hwstate(vcpu);
 548                        kvm_vgic_sync_hwstate(vcpu);
 549                        continue;
 550                }
 551
 552                /**************************************************************
 553                 * Enter the guest
 554                 */
 555                trace_kvm_entry(*vcpu_pc(vcpu));
 556                kvm_guest_enter();
 557                vcpu->mode = IN_GUEST_MODE;
 558
 559                ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
 560
 561                vcpu->mode = OUTSIDE_GUEST_MODE;
 562                kvm_guest_exit();
 563                trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
 564                /*
 565                 * We may have taken a host interrupt in HYP mode (ie
 566                 * while executing the guest). This interrupt is still
 567                 * pending, as we haven't serviced it yet!
 568                 *
 569                 * We're now back in SVC mode, with interrupts
 570                 * disabled.  Enabling the interrupts now will have
 571                 * the effect of taking the interrupt again, in SVC
 572                 * mode this time.
 573                 */
 574                local_irq_enable();
 575
 576                /*
 577                 * Back from guest
 578                 *************************************************************/
 579
 580                kvm_timer_sync_hwstate(vcpu);
 581                kvm_vgic_sync_hwstate(vcpu);
 582
 583                ret = handle_exit(vcpu, run, ret);
 584        }
 585
 586        if (vcpu->sigset_active)
 587                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
 588        return ret;
 589}
 590
 591static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
 592{
 593        int bit_index;
 594        bool set;
 595        unsigned long *ptr;
 596
 597        if (number == KVM_ARM_IRQ_CPU_IRQ)
 598                bit_index = __ffs(HCR_VI);
 599        else /* KVM_ARM_IRQ_CPU_FIQ */
 600                bit_index = __ffs(HCR_VF);
 601
 602        ptr = (unsigned long *)&vcpu->arch.irq_lines;
 603        if (level)
 604                set = test_and_set_bit(bit_index, ptr);
 605        else
 606                set = test_and_clear_bit(bit_index, ptr);
 607
 608        /*
 609         * If we didn't change anything, no need to wake up or kick other CPUs
 610         */
 611        if (set == level)
 612                return 0;
 613
 614        /*
 615         * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
 616         * trigger a world-switch round on the running physical CPU to set the
 617         * virtual IRQ/FIQ fields in the HCR appropriately.
 618         */
 619        kvm_vcpu_kick(vcpu);
 620
 621        return 0;
 622}
 623
 624int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
 625                          bool line_status)
 626{
 627        u32 irq = irq_level->irq;
 628        unsigned int irq_type, vcpu_idx, irq_num;
 629        int nrcpus = atomic_read(&kvm->online_vcpus);
 630        struct kvm_vcpu *vcpu = NULL;
 631        bool level = irq_level->level;
 632
 633        irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
 634        vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
 635        irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
 636
 637        trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
 638
 639        switch (irq_type) {
 640        case KVM_ARM_IRQ_TYPE_CPU:
 641                if (irqchip_in_kernel(kvm))
 642                        return -ENXIO;
 643
 644                if (vcpu_idx >= nrcpus)
 645                        return -EINVAL;
 646
 647                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 648                if (!vcpu)
 649                        return -EINVAL;
 650
 651                if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
 652                        return -EINVAL;
 653
 654                return vcpu_interrupt_line(vcpu, irq_num, level);
 655        case KVM_ARM_IRQ_TYPE_PPI:
 656                if (!irqchip_in_kernel(kvm))
 657                        return -ENXIO;
 658
 659                if (vcpu_idx >= nrcpus)
 660                        return -EINVAL;
 661
 662                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 663                if (!vcpu)
 664                        return -EINVAL;
 665
 666                if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
 667                        return -EINVAL;
 668
 669                return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
 670        case KVM_ARM_IRQ_TYPE_SPI:
 671                if (!irqchip_in_kernel(kvm))
 672                        return -ENXIO;
 673
 674                if (irq_num < VGIC_NR_PRIVATE_IRQS)
 675                        return -EINVAL;
 676
 677                return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
 678        }
 679
 680        return -EINVAL;
 681}
 682
 683static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
 684                               const struct kvm_vcpu_init *init)
 685{
 686        unsigned int i;
 687        int phys_target = kvm_target_cpu();
 688
 689        if (init->target != phys_target)
 690                return -EINVAL;
 691
 692        /*
 693         * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
 694         * use the same target.
 695         */
 696        if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
 697                return -EINVAL;
 698
 699        /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
 700        for (i = 0; i < sizeof(init->features) * 8; i++) {
 701                bool set = (init->features[i / 32] & (1 << (i % 32)));
 702
 703                if (set && i >= KVM_VCPU_MAX_FEATURES)
 704                        return -ENOENT;
 705
 706                /*
 707                 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
 708                 * use the same feature set.
 709                 */
 710                if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
 711                    test_bit(i, vcpu->arch.features) != set)
 712                        return -EINVAL;
 713
 714                if (set)
 715                        set_bit(i, vcpu->arch.features);
 716        }
 717
 718        vcpu->arch.target = phys_target;
 719
 720        /* Now we know what it is, we can reset it. */
 721        return kvm_reset_vcpu(vcpu);
 722}
 723
 724
 725static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
 726                                         struct kvm_vcpu_init *init)
 727{
 728        int ret;
 729
 730        ret = kvm_vcpu_set_target(vcpu, init);
 731        if (ret)
 732                return ret;
 733
 734        /*
 735         * Ensure a rebooted VM will fault in RAM pages and detect if the
 736         * guest MMU is turned off and flush the caches as needed.
 737         */
 738        if (vcpu->arch.has_run_once)
 739                stage2_unmap_vm(vcpu->kvm);
 740
 741        vcpu_reset_hcr(vcpu);
 742
 743        /*
 744         * Handle the "start in power-off" case by marking the VCPU as paused.
 745         */
 746        if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
 747                vcpu->arch.pause = true;
 748        else
 749                vcpu->arch.pause = false;
 750
 751        return 0;
 752}
 753
 754long kvm_arch_vcpu_ioctl(struct file *filp,
 755                         unsigned int ioctl, unsigned long arg)
 756{
 757        struct kvm_vcpu *vcpu = filp->private_data;
 758        void __user *argp = (void __user *)arg;
 759
 760        switch (ioctl) {
 761        case KVM_ARM_VCPU_INIT: {
 762                struct kvm_vcpu_init init;
 763
 764                if (copy_from_user(&init, argp, sizeof(init)))
 765                        return -EFAULT;
 766
 767                return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
 768        }
 769        case KVM_SET_ONE_REG:
 770        case KVM_GET_ONE_REG: {
 771                struct kvm_one_reg reg;
 772
 773                if (unlikely(!kvm_vcpu_initialized(vcpu)))
 774                        return -ENOEXEC;
 775
 776                if (copy_from_user(&reg, argp, sizeof(reg)))
 777                        return -EFAULT;
 778                if (ioctl == KVM_SET_ONE_REG)
 779                        return kvm_arm_set_reg(vcpu, &reg);
 780                else
 781                        return kvm_arm_get_reg(vcpu, &reg);
 782        }
 783        case KVM_GET_REG_LIST: {
 784                struct kvm_reg_list __user *user_list = argp;
 785                struct kvm_reg_list reg_list;
 786                unsigned n;
 787
 788                if (unlikely(!kvm_vcpu_initialized(vcpu)))
 789                        return -ENOEXEC;
 790
 791                if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
 792                        return -EFAULT;
 793                n = reg_list.n;
 794                reg_list.n = kvm_arm_num_regs(vcpu);
 795                if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
 796                        return -EFAULT;
 797                if (n < reg_list.n)
 798                        return -E2BIG;
 799                return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
 800        }
 801        default:
 802                return -EINVAL;
 803        }
 804}
 805
 806/**
 807 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 808 * @kvm: kvm instance
 809 * @log: slot id and address to which we copy the log
 810 *
 811 * Steps 1-4 below provide general overview of dirty page logging. See
 812 * kvm_get_dirty_log_protect() function description for additional details.
 813 *
 814 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 815 * always flush the TLB (step 4) even if previous step failed  and the dirty
 816 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 817 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 818 * writes will be marked dirty for next log read.
 819 *
 820 *   1. Take a snapshot of the bit and clear it if needed.
 821 *   2. Write protect the corresponding page.
 822 *   3. Copy the snapshot to the userspace.
 823 *   4. Flush TLB's if needed.
 824 */
 825int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
 826{
 827        bool is_dirty = false;
 828        int r;
 829
 830        mutex_lock(&kvm->slots_lock);
 831
 832        r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
 833
 834        if (is_dirty)
 835                kvm_flush_remote_tlbs(kvm);
 836
 837        mutex_unlock(&kvm->slots_lock);
 838        return r;
 839}
 840
 841static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
 842                                        struct kvm_arm_device_addr *dev_addr)
 843{
 844        unsigned long dev_id, type;
 845
 846        dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
 847                KVM_ARM_DEVICE_ID_SHIFT;
 848        type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
 849                KVM_ARM_DEVICE_TYPE_SHIFT;
 850
 851        switch (dev_id) {
 852        case KVM_ARM_DEVICE_VGIC_V2:
 853                return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
 854        default:
 855                return -ENODEV;
 856        }
 857}
 858
 859long kvm_arch_vm_ioctl(struct file *filp,
 860                       unsigned int ioctl, unsigned long arg)
 861{
 862        struct kvm *kvm = filp->private_data;
 863        void __user *argp = (void __user *)arg;
 864
 865        switch (ioctl) {
 866        case KVM_CREATE_IRQCHIP: {
 867                return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
 868        }
 869        case KVM_ARM_SET_DEVICE_ADDR: {
 870                struct kvm_arm_device_addr dev_addr;
 871
 872                if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
 873                        return -EFAULT;
 874                return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
 875        }
 876        case KVM_ARM_PREFERRED_TARGET: {
 877                int err;
 878                struct kvm_vcpu_init init;
 879
 880                err = kvm_vcpu_preferred_target(&init);
 881                if (err)
 882                        return err;
 883
 884                if (copy_to_user(argp, &init, sizeof(init)))
 885                        return -EFAULT;
 886
 887                return 0;
 888        }
 889        default:
 890                return -EINVAL;
 891        }
 892}
 893
 894static void cpu_init_hyp_mode(void *dummy)
 895{
 896        phys_addr_t boot_pgd_ptr;
 897        phys_addr_t pgd_ptr;
 898        unsigned long hyp_stack_ptr;
 899        unsigned long stack_page;
 900        unsigned long vector_ptr;
 901
 902        /* Switch from the HYP stub to our own HYP init vector */
 903        __hyp_set_vectors(kvm_get_idmap_vector());
 904
 905        boot_pgd_ptr = kvm_mmu_get_boot_httbr();
 906        pgd_ptr = kvm_mmu_get_httbr();
 907        stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
 908        hyp_stack_ptr = stack_page + PAGE_SIZE;
 909        vector_ptr = (unsigned long)__kvm_hyp_vector;
 910
 911        __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
 912}
 913
 914static int hyp_init_cpu_notify(struct notifier_block *self,
 915                               unsigned long action, void *cpu)
 916{
 917        switch (action) {
 918        case CPU_STARTING:
 919        case CPU_STARTING_FROZEN:
 920                if (__hyp_get_vectors() == hyp_default_vectors)
 921                        cpu_init_hyp_mode(NULL);
 922                break;
 923        }
 924
 925        return NOTIFY_OK;
 926}
 927
 928static struct notifier_block hyp_init_cpu_nb = {
 929        .notifier_call = hyp_init_cpu_notify,
 930};
 931
 932#ifdef CONFIG_CPU_PM
 933static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
 934                                    unsigned long cmd,
 935                                    void *v)
 936{
 937        if (cmd == CPU_PM_EXIT &&
 938            __hyp_get_vectors() == hyp_default_vectors) {
 939                cpu_init_hyp_mode(NULL);
 940                return NOTIFY_OK;
 941        }
 942
 943        return NOTIFY_DONE;
 944}
 945
 946static struct notifier_block hyp_init_cpu_pm_nb = {
 947        .notifier_call = hyp_init_cpu_pm_notifier,
 948};
 949
 950static void __init hyp_cpu_pm_init(void)
 951{
 952        cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
 953}
 954#else
 955static inline void hyp_cpu_pm_init(void)
 956{
 957}
 958#endif
 959
 960/**
 961 * Inits Hyp-mode on all online CPUs
 962 */
 963static int init_hyp_mode(void)
 964{
 965        int cpu;
 966        int err = 0;
 967
 968        /*
 969         * Allocate Hyp PGD and setup Hyp identity mapping
 970         */
 971        err = kvm_mmu_init();
 972        if (err)
 973                goto out_err;
 974
 975        /*
 976         * It is probably enough to obtain the default on one
 977         * CPU. It's unlikely to be different on the others.
 978         */
 979        hyp_default_vectors = __hyp_get_vectors();
 980
 981        /*
 982         * Allocate stack pages for Hypervisor-mode
 983         */
 984        for_each_possible_cpu(cpu) {
 985                unsigned long stack_page;
 986
 987                stack_page = __get_free_page(GFP_KERNEL);
 988                if (!stack_page) {
 989                        err = -ENOMEM;
 990                        goto out_free_stack_pages;
 991                }
 992
 993                per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
 994        }
 995
 996        /*
 997         * Map the Hyp-code called directly from the host
 998         */
 999        err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1000        if (err) {
1001                kvm_err("Cannot map world-switch code\n");
1002                goto out_free_mappings;
1003        }
1004
1005        /*
1006         * Map the Hyp stack pages
1007         */
1008        for_each_possible_cpu(cpu) {
1009                char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1010                err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1011
1012                if (err) {
1013                        kvm_err("Cannot map hyp stack\n");
1014                        goto out_free_mappings;
1015                }
1016        }
1017
1018        /*
1019         * Map the host CPU structures
1020         */
1021        kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1022        if (!kvm_host_cpu_state) {
1023                err = -ENOMEM;
1024                kvm_err("Cannot allocate host CPU state\n");
1025                goto out_free_mappings;
1026        }
1027
1028        for_each_possible_cpu(cpu) {
1029                kvm_cpu_context_t *cpu_ctxt;
1030
1031                cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1032                err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1033
1034                if (err) {
1035                        kvm_err("Cannot map host CPU state: %d\n", err);
1036                        goto out_free_context;
1037                }
1038        }
1039
1040        /*
1041         * Execute the init code on each CPU.
1042         */
1043        on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1044
1045        /*
1046         * Init HYP view of VGIC
1047         */
1048        err = kvm_vgic_hyp_init();
1049        if (err)
1050                goto out_free_context;
1051
1052        /*
1053         * Init HYP architected timer support
1054         */
1055        err = kvm_timer_hyp_init();
1056        if (err)
1057                goto out_free_mappings;
1058
1059#ifndef CONFIG_HOTPLUG_CPU
1060        free_boot_hyp_pgd();
1061#endif
1062
1063        kvm_perf_init();
1064
1065        kvm_info("Hyp mode initialized successfully\n");
1066
1067        return 0;
1068out_free_context:
1069        free_percpu(kvm_host_cpu_state);
1070out_free_mappings:
1071        free_hyp_pgds();
1072out_free_stack_pages:
1073        for_each_possible_cpu(cpu)
1074                free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1075out_err:
1076        kvm_err("error initializing Hyp mode: %d\n", err);
1077        return err;
1078}
1079
1080static void check_kvm_target_cpu(void *ret)
1081{
1082        *(int *)ret = kvm_target_cpu();
1083}
1084
1085struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1086{
1087        struct kvm_vcpu *vcpu;
1088        int i;
1089
1090        mpidr &= MPIDR_HWID_BITMASK;
1091        kvm_for_each_vcpu(i, vcpu, kvm) {
1092                if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1093                        return vcpu;
1094        }
1095        return NULL;
1096}
1097
1098/**
1099 * Initialize Hyp-mode and memory mappings on all CPUs.
1100 */
1101int kvm_arch_init(void *opaque)
1102{
1103        int err;
1104        int ret, cpu;
1105
1106        if (!is_hyp_mode_available()) {
1107                kvm_err("HYP mode not available\n");
1108                return -ENODEV;
1109        }
1110
1111        for_each_online_cpu(cpu) {
1112                smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1113                if (ret < 0) {
1114                        kvm_err("Error, CPU %d not supported!\n", cpu);
1115                        return -ENODEV;
1116                }
1117        }
1118
1119        cpu_notifier_register_begin();
1120
1121        err = init_hyp_mode();
1122        if (err)
1123                goto out_err;
1124
1125        err = __register_cpu_notifier(&hyp_init_cpu_nb);
1126        if (err) {
1127                kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1128                goto out_err;
1129        }
1130
1131        cpu_notifier_register_done();
1132
1133        hyp_cpu_pm_init();
1134
1135        kvm_coproc_table_init();
1136        return 0;
1137out_err:
1138        cpu_notifier_register_done();
1139        return err;
1140}
1141
1142/* NOP: Compiling as a module not supported */
1143void kvm_arch_exit(void)
1144{
1145        kvm_perf_teardown();
1146}
1147
1148static int arm_init(void)
1149{
1150        int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1151        return rc;
1152}
1153
1154module_init(arm_init);
1155