linux/arch/arm/probes/kprobes/core.c
<<
>>
Prefs
   1/*
   2 * arch/arm/kernel/kprobes.c
   3 *
   4 * Kprobes on ARM
   5 *
   6 * Abhishek Sagar <sagar.abhishek@gmail.com>
   7 * Copyright (C) 2006, 2007 Motorola Inc.
   8 *
   9 * Nicolas Pitre <nico@marvell.com>
  10 * Copyright (C) 2007 Marvell Ltd.
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  19 * General Public License for more details.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/kprobes.h>
  24#include <linux/module.h>
  25#include <linux/slab.h>
  26#include <linux/stop_machine.h>
  27#include <linux/stringify.h>
  28#include <asm/traps.h>
  29#include <asm/opcodes.h>
  30#include <asm/cacheflush.h>
  31#include <linux/percpu.h>
  32#include <linux/bug.h>
  33#include <asm/patch.h>
  34
  35#include "../decode-arm.h"
  36#include "../decode-thumb.h"
  37#include "core.h"
  38
  39#define MIN_STACK_SIZE(addr)                            \
  40        min((unsigned long)MAX_STACK_SIZE,              \
  41            (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
  42
  43#define flush_insns(addr, size)                         \
  44        flush_icache_range((unsigned long)(addr),       \
  45                           (unsigned long)(addr) +      \
  46                           (size))
  47
  48/* Used as a marker in ARM_pc to note when we're in a jprobe. */
  49#define JPROBE_MAGIC_ADDR               0xffffffff
  50
  51DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  52DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  53
  54
  55int __kprobes arch_prepare_kprobe(struct kprobe *p)
  56{
  57        kprobe_opcode_t insn;
  58        kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
  59        unsigned long addr = (unsigned long)p->addr;
  60        bool thumb;
  61        kprobe_decode_insn_t *decode_insn;
  62        const union decode_action *actions;
  63        int is;
  64        const struct decode_checker **checkers;
  65
  66        if (in_exception_text(addr))
  67                return -EINVAL;
  68
  69#ifdef CONFIG_THUMB2_KERNEL
  70        thumb = true;
  71        addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
  72        insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]);
  73        if (is_wide_instruction(insn)) {
  74                u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]);
  75                insn = __opcode_thumb32_compose(insn, inst2);
  76                decode_insn = thumb32_probes_decode_insn;
  77                actions = kprobes_t32_actions;
  78                checkers = kprobes_t32_checkers;
  79        } else {
  80                decode_insn = thumb16_probes_decode_insn;
  81                actions = kprobes_t16_actions;
  82                checkers = kprobes_t16_checkers;
  83        }
  84#else /* !CONFIG_THUMB2_KERNEL */
  85        thumb = false;
  86        if (addr & 0x3)
  87                return -EINVAL;
  88        insn = __mem_to_opcode_arm(*p->addr);
  89        decode_insn = arm_probes_decode_insn;
  90        actions = kprobes_arm_actions;
  91        checkers = kprobes_arm_checkers;
  92#endif
  93
  94        p->opcode = insn;
  95        p->ainsn.insn = tmp_insn;
  96
  97        switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) {
  98        case INSN_REJECTED:     /* not supported */
  99                return -EINVAL;
 100
 101        case INSN_GOOD:         /* instruction uses slot */
 102                p->ainsn.insn = get_insn_slot();
 103                if (!p->ainsn.insn)
 104                        return -ENOMEM;
 105                for (is = 0; is < MAX_INSN_SIZE; ++is)
 106                        p->ainsn.insn[is] = tmp_insn[is];
 107                flush_insns(p->ainsn.insn,
 108                                sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
 109                p->ainsn.insn_fn = (probes_insn_fn_t *)
 110                                        ((uintptr_t)p->ainsn.insn | thumb);
 111                break;
 112
 113        case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
 114                p->ainsn.insn = NULL;
 115                break;
 116        }
 117
 118        /*
 119         * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes
 120         * 'str r0, [sp, #-68]' should also be prohibited.
 121         * See __und_svc.
 122         */
 123        if ((p->ainsn.stack_space < 0) ||
 124                        (p->ainsn.stack_space > MAX_STACK_SIZE))
 125                return -EINVAL;
 126
 127        return 0;
 128}
 129
 130void __kprobes arch_arm_kprobe(struct kprobe *p)
 131{
 132        unsigned int brkp;
 133        void *addr;
 134
 135        if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 136                /* Remove any Thumb flag */
 137                addr = (void *)((uintptr_t)p->addr & ~1);
 138
 139                if (is_wide_instruction(p->opcode))
 140                        brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
 141                else
 142                        brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
 143        } else {
 144                kprobe_opcode_t insn = p->opcode;
 145
 146                addr = p->addr;
 147                brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
 148
 149                if (insn >= 0xe0000000)
 150                        brkp |= 0xe0000000;  /* Unconditional instruction */
 151                else
 152                        brkp |= insn & 0xf0000000;  /* Copy condition from insn */
 153        }
 154
 155        patch_text(addr, brkp);
 156}
 157
 158/*
 159 * The actual disarming is done here on each CPU and synchronized using
 160 * stop_machine. This synchronization is necessary on SMP to avoid removing
 161 * a probe between the moment the 'Undefined Instruction' exception is raised
 162 * and the moment the exception handler reads the faulting instruction from
 163 * memory. It is also needed to atomically set the two half-words of a 32-bit
 164 * Thumb breakpoint.
 165 */
 166struct patch {
 167        void *addr;
 168        unsigned int insn;
 169};
 170
 171static int __kprobes_remove_breakpoint(void *data)
 172{
 173        struct patch *p = data;
 174        __patch_text(p->addr, p->insn);
 175        return 0;
 176}
 177
 178void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn)
 179{
 180        struct patch p = {
 181                .addr = addr,
 182                .insn = insn,
 183        };
 184        stop_machine(__kprobes_remove_breakpoint, &p, cpu_online_mask);
 185}
 186
 187void __kprobes arch_disarm_kprobe(struct kprobe *p)
 188{
 189        kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1),
 190                        p->opcode);
 191}
 192
 193void __kprobes arch_remove_kprobe(struct kprobe *p)
 194{
 195        if (p->ainsn.insn) {
 196                free_insn_slot(p->ainsn.insn, 0);
 197                p->ainsn.insn = NULL;
 198        }
 199}
 200
 201static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 202{
 203        kcb->prev_kprobe.kp = kprobe_running();
 204        kcb->prev_kprobe.status = kcb->kprobe_status;
 205}
 206
 207static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 208{
 209        __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 210        kcb->kprobe_status = kcb->prev_kprobe.status;
 211}
 212
 213static void __kprobes set_current_kprobe(struct kprobe *p)
 214{
 215        __this_cpu_write(current_kprobe, p);
 216}
 217
 218static void __kprobes
 219singlestep_skip(struct kprobe *p, struct pt_regs *regs)
 220{
 221#ifdef CONFIG_THUMB2_KERNEL
 222        regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
 223        if (is_wide_instruction(p->opcode))
 224                regs->ARM_pc += 4;
 225        else
 226                regs->ARM_pc += 2;
 227#else
 228        regs->ARM_pc += 4;
 229#endif
 230}
 231
 232static inline void __kprobes
 233singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
 234{
 235        p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs);
 236}
 237
 238/*
 239 * Called with IRQs disabled. IRQs must remain disabled from that point
 240 * all the way until processing this kprobe is complete.  The current
 241 * kprobes implementation cannot process more than one nested level of
 242 * kprobe, and that level is reserved for user kprobe handlers, so we can't
 243 * risk encountering a new kprobe in an interrupt handler.
 244 */
 245void __kprobes kprobe_handler(struct pt_regs *regs)
 246{
 247        struct kprobe *p, *cur;
 248        struct kprobe_ctlblk *kcb;
 249
 250        kcb = get_kprobe_ctlblk();
 251        cur = kprobe_running();
 252
 253#ifdef CONFIG_THUMB2_KERNEL
 254        /*
 255         * First look for a probe which was registered using an address with
 256         * bit 0 set, this is the usual situation for pointers to Thumb code.
 257         * If not found, fallback to looking for one with bit 0 clear.
 258         */
 259        p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
 260        if (!p)
 261                p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
 262
 263#else /* ! CONFIG_THUMB2_KERNEL */
 264        p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
 265#endif
 266
 267        if (p) {
 268                if (cur) {
 269                        /* Kprobe is pending, so we're recursing. */
 270                        switch (kcb->kprobe_status) {
 271                        case KPROBE_HIT_ACTIVE:
 272                        case KPROBE_HIT_SSDONE:
 273                                /* A pre- or post-handler probe got us here. */
 274                                kprobes_inc_nmissed_count(p);
 275                                save_previous_kprobe(kcb);
 276                                set_current_kprobe(p);
 277                                kcb->kprobe_status = KPROBE_REENTER;
 278                                singlestep(p, regs, kcb);
 279                                restore_previous_kprobe(kcb);
 280                                break;
 281                        default:
 282                                /* impossible cases */
 283                                BUG();
 284                        }
 285                } else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
 286                        /* Probe hit and conditional execution check ok. */
 287                        set_current_kprobe(p);
 288                        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 289
 290                        /*
 291                         * If we have no pre-handler or it returned 0, we
 292                         * continue with normal processing.  If we have a
 293                         * pre-handler and it returned non-zero, it prepped
 294                         * for calling the break_handler below on re-entry,
 295                         * so get out doing nothing more here.
 296                         */
 297                        if (!p->pre_handler || !p->pre_handler(p, regs)) {
 298                                kcb->kprobe_status = KPROBE_HIT_SS;
 299                                singlestep(p, regs, kcb);
 300                                if (p->post_handler) {
 301                                        kcb->kprobe_status = KPROBE_HIT_SSDONE;
 302                                        p->post_handler(p, regs, 0);
 303                                }
 304                                reset_current_kprobe();
 305                        }
 306                } else {
 307                        /*
 308                         * Probe hit but conditional execution check failed,
 309                         * so just skip the instruction and continue as if
 310                         * nothing had happened.
 311                         */
 312                        singlestep_skip(p, regs);
 313                }
 314        } else if (cur) {
 315                /* We probably hit a jprobe.  Call its break handler. */
 316                if (cur->break_handler && cur->break_handler(cur, regs)) {
 317                        kcb->kprobe_status = KPROBE_HIT_SS;
 318                        singlestep(cur, regs, kcb);
 319                        if (cur->post_handler) {
 320                                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 321                                cur->post_handler(cur, regs, 0);
 322                        }
 323                }
 324                reset_current_kprobe();
 325        } else {
 326                /*
 327                 * The probe was removed and a race is in progress.
 328                 * There is nothing we can do about it.  Let's restart
 329                 * the instruction.  By the time we can restart, the
 330                 * real instruction will be there.
 331                 */
 332        }
 333}
 334
 335static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
 336{
 337        unsigned long flags;
 338        local_irq_save(flags);
 339        kprobe_handler(regs);
 340        local_irq_restore(flags);
 341        return 0;
 342}
 343
 344int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
 345{
 346        struct kprobe *cur = kprobe_running();
 347        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 348
 349        switch (kcb->kprobe_status) {
 350        case KPROBE_HIT_SS:
 351        case KPROBE_REENTER:
 352                /*
 353                 * We are here because the instruction being single
 354                 * stepped caused a page fault. We reset the current
 355                 * kprobe and the PC to point back to the probe address
 356                 * and allow the page fault handler to continue as a
 357                 * normal page fault.
 358                 */
 359                regs->ARM_pc = (long)cur->addr;
 360                if (kcb->kprobe_status == KPROBE_REENTER) {
 361                        restore_previous_kprobe(kcb);
 362                } else {
 363                        reset_current_kprobe();
 364                }
 365                break;
 366
 367        case KPROBE_HIT_ACTIVE:
 368        case KPROBE_HIT_SSDONE:
 369                /*
 370                 * We increment the nmissed count for accounting,
 371                 * we can also use npre/npostfault count for accounting
 372                 * these specific fault cases.
 373                 */
 374                kprobes_inc_nmissed_count(cur);
 375
 376                /*
 377                 * We come here because instructions in the pre/post
 378                 * handler caused the page_fault, this could happen
 379                 * if handler tries to access user space by
 380                 * copy_from_user(), get_user() etc. Let the
 381                 * user-specified handler try to fix it.
 382                 */
 383                if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
 384                        return 1;
 385                break;
 386
 387        default:
 388                break;
 389        }
 390
 391        return 0;
 392}
 393
 394int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 395                                       unsigned long val, void *data)
 396{
 397        /*
 398         * notify_die() is currently never called on ARM,
 399         * so this callback is currently empty.
 400         */
 401        return NOTIFY_DONE;
 402}
 403
 404/*
 405 * When a retprobed function returns, trampoline_handler() is called,
 406 * calling the kretprobe's handler. We construct a struct pt_regs to
 407 * give a view of registers r0-r11 to the user return-handler.  This is
 408 * not a complete pt_regs structure, but that should be plenty sufficient
 409 * for kretprobe handlers which should normally be interested in r0 only
 410 * anyway.
 411 */
 412void __naked __kprobes kretprobe_trampoline(void)
 413{
 414        __asm__ __volatile__ (
 415                "stmdb  sp!, {r0 - r11}         \n\t"
 416                "mov    r0, sp                  \n\t"
 417                "bl     trampoline_handler      \n\t"
 418                "mov    lr, r0                  \n\t"
 419                "ldmia  sp!, {r0 - r11}         \n\t"
 420#ifdef CONFIG_THUMB2_KERNEL
 421                "bx     lr                      \n\t"
 422#else
 423                "mov    pc, lr                  \n\t"
 424#endif
 425                : : : "memory");
 426}
 427
 428/* Called from kretprobe_trampoline */
 429static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
 430{
 431        struct kretprobe_instance *ri = NULL;
 432        struct hlist_head *head, empty_rp;
 433        struct hlist_node *tmp;
 434        unsigned long flags, orig_ret_address = 0;
 435        unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 436
 437        INIT_HLIST_HEAD(&empty_rp);
 438        kretprobe_hash_lock(current, &head, &flags);
 439
 440        /*
 441         * It is possible to have multiple instances associated with a given
 442         * task either because multiple functions in the call path have
 443         * a return probe installed on them, and/or more than one return
 444         * probe was registered for a target function.
 445         *
 446         * We can handle this because:
 447         *     - instances are always inserted at the head of the list
 448         *     - when multiple return probes are registered for the same
 449         *       function, the first instance's ret_addr will point to the
 450         *       real return address, and all the rest will point to
 451         *       kretprobe_trampoline
 452         */
 453        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 454                if (ri->task != current)
 455                        /* another task is sharing our hash bucket */
 456                        continue;
 457
 458                if (ri->rp && ri->rp->handler) {
 459                        __this_cpu_write(current_kprobe, &ri->rp->kp);
 460                        get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
 461                        ri->rp->handler(ri, regs);
 462                        __this_cpu_write(current_kprobe, NULL);
 463                }
 464
 465                orig_ret_address = (unsigned long)ri->ret_addr;
 466                recycle_rp_inst(ri, &empty_rp);
 467
 468                if (orig_ret_address != trampoline_address)
 469                        /*
 470                         * This is the real return address. Any other
 471                         * instances associated with this task are for
 472                         * other calls deeper on the call stack
 473                         */
 474                        break;
 475        }
 476
 477        kretprobe_assert(ri, orig_ret_address, trampoline_address);
 478        kretprobe_hash_unlock(current, &flags);
 479
 480        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 481                hlist_del(&ri->hlist);
 482                kfree(ri);
 483        }
 484
 485        return (void *)orig_ret_address;
 486}
 487
 488void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 489                                      struct pt_regs *regs)
 490{
 491        ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
 492
 493        /* Replace the return addr with trampoline addr. */
 494        regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
 495}
 496
 497int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 498{
 499        struct jprobe *jp = container_of(p, struct jprobe, kp);
 500        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 501        long sp_addr = regs->ARM_sp;
 502        long cpsr;
 503
 504        kcb->jprobe_saved_regs = *regs;
 505        memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
 506        regs->ARM_pc = (long)jp->entry;
 507
 508        cpsr = regs->ARM_cpsr | PSR_I_BIT;
 509#ifdef CONFIG_THUMB2_KERNEL
 510        /* Set correct Thumb state in cpsr */
 511        if (regs->ARM_pc & 1)
 512                cpsr |= PSR_T_BIT;
 513        else
 514                cpsr &= ~PSR_T_BIT;
 515#endif
 516        regs->ARM_cpsr = cpsr;
 517
 518        preempt_disable();
 519        return 1;
 520}
 521
 522void __kprobes jprobe_return(void)
 523{
 524        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 525
 526        __asm__ __volatile__ (
 527                /*
 528                 * Setup an empty pt_regs. Fill SP and PC fields as
 529                 * they're needed by longjmp_break_handler.
 530                 *
 531                 * We allocate some slack between the original SP and start of
 532                 * our fabricated regs. To be precise we want to have worst case
 533                 * covered which is STMFD with all 16 regs so we allocate 2 *
 534                 * sizeof(struct_pt_regs)).
 535                 *
 536                 * This is to prevent any simulated instruction from writing
 537                 * over the regs when they are accessing the stack.
 538                 */
 539#ifdef CONFIG_THUMB2_KERNEL
 540                "sub    r0, %0, %1              \n\t"
 541                "mov    sp, r0                  \n\t"
 542#else
 543                "sub    sp, %0, %1              \n\t"
 544#endif
 545                "ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
 546                "str    %0, [sp, %2]            \n\t"
 547                "str    r0, [sp, %3]            \n\t"
 548                "mov    r0, sp                  \n\t"
 549                "bl     kprobe_handler          \n\t"
 550
 551                /*
 552                 * Return to the context saved by setjmp_pre_handler
 553                 * and restored by longjmp_break_handler.
 554                 */
 555#ifdef CONFIG_THUMB2_KERNEL
 556                "ldr    lr, [sp, %2]            \n\t" /* lr = saved sp */
 557                "ldrd   r0, r1, [sp, %5]        \n\t" /* r0,r1 = saved lr,pc */
 558                "ldr    r2, [sp, %4]            \n\t" /* r2 = saved psr */
 559                "stmdb  lr!, {r0, r1, r2}       \n\t" /* push saved lr and */
 560                                                      /* rfe context */
 561                "ldmia  sp, {r0 - r12}          \n\t"
 562                "mov    sp, lr                  \n\t"
 563                "ldr    lr, [sp], #4            \n\t"
 564                "rfeia  sp!                     \n\t"
 565#else
 566                "ldr    r0, [sp, %4]            \n\t"
 567                "msr    cpsr_cxsf, r0           \n\t"
 568                "ldmia  sp, {r0 - pc}           \n\t"
 569#endif
 570                :
 571                : "r" (kcb->jprobe_saved_regs.ARM_sp),
 572                  "I" (sizeof(struct pt_regs) * 2),
 573                  "J" (offsetof(struct pt_regs, ARM_sp)),
 574                  "J" (offsetof(struct pt_regs, ARM_pc)),
 575                  "J" (offsetof(struct pt_regs, ARM_cpsr)),
 576                  "J" (offsetof(struct pt_regs, ARM_lr))
 577                : "memory", "cc");
 578}
 579
 580int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 581{
 582        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 583        long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
 584        long orig_sp = regs->ARM_sp;
 585        struct jprobe *jp = container_of(p, struct jprobe, kp);
 586
 587        if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
 588                if (orig_sp != stack_addr) {
 589                        struct pt_regs *saved_regs =
 590                                (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
 591                        printk("current sp %lx does not match saved sp %lx\n",
 592                               orig_sp, stack_addr);
 593                        printk("Saved registers for jprobe %p\n", jp);
 594                        show_regs(saved_regs);
 595                        printk("Current registers\n");
 596                        show_regs(regs);
 597                        BUG();
 598                }
 599                *regs = kcb->jprobe_saved_regs;
 600                memcpy((void *)stack_addr, kcb->jprobes_stack,
 601                       MIN_STACK_SIZE(stack_addr));
 602                preempt_enable_no_resched();
 603                return 1;
 604        }
 605        return 0;
 606}
 607
 608int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 609{
 610        return 0;
 611}
 612
 613#ifdef CONFIG_THUMB2_KERNEL
 614
 615static struct undef_hook kprobes_thumb16_break_hook = {
 616        .instr_mask     = 0xffff,
 617        .instr_val      = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
 618        .cpsr_mask      = MODE_MASK,
 619        .cpsr_val       = SVC_MODE,
 620        .fn             = kprobe_trap_handler,
 621};
 622
 623static struct undef_hook kprobes_thumb32_break_hook = {
 624        .instr_mask     = 0xffffffff,
 625        .instr_val      = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
 626        .cpsr_mask      = MODE_MASK,
 627        .cpsr_val       = SVC_MODE,
 628        .fn             = kprobe_trap_handler,
 629};
 630
 631#else  /* !CONFIG_THUMB2_KERNEL */
 632
 633static struct undef_hook kprobes_arm_break_hook = {
 634        .instr_mask     = 0x0fffffff,
 635        .instr_val      = KPROBE_ARM_BREAKPOINT_INSTRUCTION,
 636        .cpsr_mask      = MODE_MASK,
 637        .cpsr_val       = SVC_MODE,
 638        .fn             = kprobe_trap_handler,
 639};
 640
 641#endif /* !CONFIG_THUMB2_KERNEL */
 642
 643int __init arch_init_kprobes()
 644{
 645        arm_probes_decode_init();
 646#ifdef CONFIG_THUMB2_KERNEL
 647        register_undef_hook(&kprobes_thumb16_break_hook);
 648        register_undef_hook(&kprobes_thumb32_break_hook);
 649#else
 650        register_undef_hook(&kprobes_arm_break_hook);
 651#endif
 652        return 0;
 653}
 654