linux/arch/ia64/kernel/perfmon.c
<<
>>
Prefs
   1/*
   2 * This file implements the perfmon-2 subsystem which is used
   3 * to program the IA-64 Performance Monitoring Unit (PMU).
   4 *
   5 * The initial version of perfmon.c was written by
   6 * Ganesh Venkitachalam, IBM Corp.
   7 *
   8 * Then it was modified for perfmon-1.x by Stephane Eranian and
   9 * David Mosberger, Hewlett Packard Co.
  10 *
  11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12 * by Stephane Eranian, Hewlett Packard Co.
  13 *
  14 * Copyright (C) 1999-2005  Hewlett Packard Co
  15 *               Stephane Eranian <eranian@hpl.hp.com>
  16 *               David Mosberger-Tang <davidm@hpl.hp.com>
  17 *
  18 * More information about perfmon available at:
  19 *      http://www.hpl.hp.com/research/linux/perfmon
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/sched.h>
  25#include <linux/interrupt.h>
  26#include <linux/proc_fs.h>
  27#include <linux/seq_file.h>
  28#include <linux/init.h>
  29#include <linux/vmalloc.h>
  30#include <linux/mm.h>
  31#include <linux/sysctl.h>
  32#include <linux/list.h>
  33#include <linux/file.h>
  34#include <linux/poll.h>
  35#include <linux/vfs.h>
  36#include <linux/smp.h>
  37#include <linux/pagemap.h>
  38#include <linux/mount.h>
  39#include <linux/bitops.h>
  40#include <linux/capability.h>
  41#include <linux/rcupdate.h>
  42#include <linux/completion.h>
  43#include <linux/tracehook.h>
  44#include <linux/slab.h>
  45#include <linux/cpu.h>
  46
  47#include <asm/errno.h>
  48#include <asm/intrinsics.h>
  49#include <asm/page.h>
  50#include <asm/perfmon.h>
  51#include <asm/processor.h>
  52#include <asm/signal.h>
  53#include <asm/uaccess.h>
  54#include <asm/delay.h>
  55
  56#ifdef CONFIG_PERFMON
  57/*
  58 * perfmon context state
  59 */
  60#define PFM_CTX_UNLOADED        1       /* context is not loaded onto any task */
  61#define PFM_CTX_LOADED          2       /* context is loaded onto a task */
  62#define PFM_CTX_MASKED          3       /* context is loaded but monitoring is masked due to overflow */
  63#define PFM_CTX_ZOMBIE          4       /* owner of the context is closing it */
  64
  65#define PFM_INVALID_ACTIVATION  (~0UL)
  66
  67#define PFM_NUM_PMC_REGS        64      /* PMC save area for ctxsw */
  68#define PFM_NUM_PMD_REGS        64      /* PMD save area for ctxsw */
  69
  70/*
  71 * depth of message queue
  72 */
  73#define PFM_MAX_MSGS            32
  74#define PFM_CTXQ_EMPTY(g)       ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  75
  76/*
  77 * type of a PMU register (bitmask).
  78 * bitmask structure:
  79 *      bit0   : register implemented
  80 *      bit1   : end marker
  81 *      bit2-3 : reserved
  82 *      bit4   : pmc has pmc.pm
  83 *      bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
  84 *      bit6-7 : register type
  85 *      bit8-31: reserved
  86 */
  87#define PFM_REG_NOTIMPL         0x0 /* not implemented at all */
  88#define PFM_REG_IMPL            0x1 /* register implemented */
  89#define PFM_REG_END             0x2 /* end marker */
  90#define PFM_REG_MONITOR         (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  91#define PFM_REG_COUNTING        (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  92#define PFM_REG_CONTROL         (0x4<<4|PFM_REG_IMPL) /* PMU control register */
  93#define PFM_REG_CONFIG          (0x8<<4|PFM_REG_IMPL) /* configuration register */
  94#define PFM_REG_BUFFER          (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  95
  96#define PMC_IS_LAST(i)  (pmu_conf->pmc_desc[i].type & PFM_REG_END)
  97#define PMD_IS_LAST(i)  (pmu_conf->pmd_desc[i].type & PFM_REG_END)
  98
  99#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
 100
 101/* i assumed unsigned */
 102#define PMC_IS_IMPL(i)    (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
 103#define PMD_IS_IMPL(i)    (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
 104
 105/* XXX: these assume that register i is implemented */
 106#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 107#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 108#define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
 109#define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
 110
 111#define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
 112#define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
 113#define PMD_PMD_DEP(i)     pmu_conf->pmd_desc[i].dep_pmd[0]
 114#define PMC_PMD_DEP(i)     pmu_conf->pmc_desc[i].dep_pmd[0]
 115
 116#define PFM_NUM_IBRS      IA64_NUM_DBG_REGS
 117#define PFM_NUM_DBRS      IA64_NUM_DBG_REGS
 118
 119#define CTX_OVFL_NOBLOCK(c)     ((c)->ctx_fl_block == 0)
 120#define CTX_HAS_SMPL(c)         ((c)->ctx_fl_is_sampling)
 121#define PFM_CTX_TASK(h)         (h)->ctx_task
 122
 123#define PMU_PMC_OI              5 /* position of pmc.oi bit */
 124
 125/* XXX: does not support more than 64 PMDs */
 126#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
 127#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
 128
 129#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
 130
 131#define CTX_USED_IBR(ctx,n)     (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
 132#define CTX_USED_DBR(ctx,n)     (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
 133#define CTX_USES_DBREGS(ctx)    (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
 134#define PFM_CODE_RR     0       /* requesting code range restriction */
 135#define PFM_DATA_RR     1       /* requestion data range restriction */
 136
 137#define PFM_CPUINFO_CLEAR(v)    pfm_get_cpu_var(pfm_syst_info) &= ~(v)
 138#define PFM_CPUINFO_SET(v)      pfm_get_cpu_var(pfm_syst_info) |= (v)
 139#define PFM_CPUINFO_GET()       pfm_get_cpu_var(pfm_syst_info)
 140
 141#define RDEP(x) (1UL<<(x))
 142
 143/*
 144 * context protection macros
 145 * in SMP:
 146 *      - we need to protect against CPU concurrency (spin_lock)
 147 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 148 * in UP:
 149 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 150 *
 151 * spin_lock_irqsave()/spin_unlock_irqrestore():
 152 *      in SMP: local_irq_disable + spin_lock
 153 *      in UP : local_irq_disable
 154 *
 155 * spin_lock()/spin_lock():
 156 *      in UP : removed automatically
 157 *      in SMP: protect against context accesses from other CPU. interrupts
 158 *              are not masked. This is useful for the PMU interrupt handler
 159 *              because we know we will not get PMU concurrency in that code.
 160 */
 161#define PROTECT_CTX(c, f) \
 162        do {  \
 163                DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
 164                spin_lock_irqsave(&(c)->ctx_lock, f); \
 165                DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
 166        } while(0)
 167
 168#define UNPROTECT_CTX(c, f) \
 169        do { \
 170                DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
 171                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 172        } while(0)
 173
 174#define PROTECT_CTX_NOPRINT(c, f) \
 175        do {  \
 176                spin_lock_irqsave(&(c)->ctx_lock, f); \
 177        } while(0)
 178
 179
 180#define UNPROTECT_CTX_NOPRINT(c, f) \
 181        do { \
 182                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 183        } while(0)
 184
 185
 186#define PROTECT_CTX_NOIRQ(c) \
 187        do {  \
 188                spin_lock(&(c)->ctx_lock); \
 189        } while(0)
 190
 191#define UNPROTECT_CTX_NOIRQ(c) \
 192        do { \
 193                spin_unlock(&(c)->ctx_lock); \
 194        } while(0)
 195
 196
 197#ifdef CONFIG_SMP
 198
 199#define GET_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)
 200#define INC_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)++
 201#define SET_ACTIVATION(c)       (c)->ctx_last_activation = GET_ACTIVATION()
 202
 203#else /* !CONFIG_SMP */
 204#define SET_ACTIVATION(t)       do {} while(0)
 205#define GET_ACTIVATION(t)       do {} while(0)
 206#define INC_ACTIVATION(t)       do {} while(0)
 207#endif /* CONFIG_SMP */
 208
 209#define SET_PMU_OWNER(t, c)     do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
 210#define GET_PMU_OWNER()         pfm_get_cpu_var(pmu_owner)
 211#define GET_PMU_CTX()           pfm_get_cpu_var(pmu_ctx)
 212
 213#define LOCK_PFS(g)             spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
 214#define UNLOCK_PFS(g)           spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
 215
 216#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
 217
 218/*
 219 * cmp0 must be the value of pmc0
 220 */
 221#define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
 222
 223#define PFMFS_MAGIC 0xa0b4d889
 224
 225/*
 226 * debugging
 227 */
 228#define PFM_DEBUGGING 1
 229#ifdef PFM_DEBUGGING
 230#define DPRINT(a) \
 231        do { \
 232                if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 233        } while (0)
 234
 235#define DPRINT_ovfl(a) \
 236        do { \
 237                if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 238        } while (0)
 239#endif
 240
 241/*
 242 * 64-bit software counter structure
 243 *
 244 * the next_reset_type is applied to the next call to pfm_reset_regs()
 245 */
 246typedef struct {
 247        unsigned long   val;            /* virtual 64bit counter value */
 248        unsigned long   lval;           /* last reset value */
 249        unsigned long   long_reset;     /* reset value on sampling overflow */
 250        unsigned long   short_reset;    /* reset value on overflow */
 251        unsigned long   reset_pmds[4];  /* which other pmds to reset when this counter overflows */
 252        unsigned long   smpl_pmds[4];   /* which pmds are accessed when counter overflow */
 253        unsigned long   seed;           /* seed for random-number generator */
 254        unsigned long   mask;           /* mask for random-number generator */
 255        unsigned int    flags;          /* notify/do not notify */
 256        unsigned long   eventid;        /* overflow event identifier */
 257} pfm_counter_t;
 258
 259/*
 260 * context flags
 261 */
 262typedef struct {
 263        unsigned int block:1;           /* when 1, task will blocked on user notifications */
 264        unsigned int system:1;          /* do system wide monitoring */
 265        unsigned int using_dbreg:1;     /* using range restrictions (debug registers) */
 266        unsigned int is_sampling:1;     /* true if using a custom format */
 267        unsigned int excl_idle:1;       /* exclude idle task in system wide session */
 268        unsigned int going_zombie:1;    /* context is zombie (MASKED+blocking) */
 269        unsigned int trap_reason:2;     /* reason for going into pfm_handle_work() */
 270        unsigned int no_msg:1;          /* no message sent on overflow */
 271        unsigned int can_restart:1;     /* allowed to issue a PFM_RESTART */
 272        unsigned int reserved:22;
 273} pfm_context_flags_t;
 274
 275#define PFM_TRAP_REASON_NONE            0x0     /* default value */
 276#define PFM_TRAP_REASON_BLOCK           0x1     /* we need to block on overflow */
 277#define PFM_TRAP_REASON_RESET           0x2     /* we need to reset PMDs */
 278
 279
 280/*
 281 * perfmon context: encapsulates all the state of a monitoring session
 282 */
 283
 284typedef struct pfm_context {
 285        spinlock_t              ctx_lock;               /* context protection */
 286
 287        pfm_context_flags_t     ctx_flags;              /* bitmask of flags  (block reason incl.) */
 288        unsigned int            ctx_state;              /* state: active/inactive (no bitfield) */
 289
 290        struct task_struct      *ctx_task;              /* task to which context is attached */
 291
 292        unsigned long           ctx_ovfl_regs[4];       /* which registers overflowed (notification) */
 293
 294        struct completion       ctx_restart_done;       /* use for blocking notification mode */
 295
 296        unsigned long           ctx_used_pmds[4];       /* bitmask of PMD used            */
 297        unsigned long           ctx_all_pmds[4];        /* bitmask of all accessible PMDs */
 298        unsigned long           ctx_reload_pmds[4];     /* bitmask of force reload PMD on ctxsw in */
 299
 300        unsigned long           ctx_all_pmcs[4];        /* bitmask of all accessible PMCs */
 301        unsigned long           ctx_reload_pmcs[4];     /* bitmask of force reload PMC on ctxsw in */
 302        unsigned long           ctx_used_monitors[4];   /* bitmask of monitor PMC being used */
 303
 304        unsigned long           ctx_pmcs[PFM_NUM_PMC_REGS];     /*  saved copies of PMC values */
 305
 306        unsigned int            ctx_used_ibrs[1];               /* bitmask of used IBR (speedup ctxsw in) */
 307        unsigned int            ctx_used_dbrs[1];               /* bitmask of used DBR (speedup ctxsw in) */
 308        unsigned long           ctx_dbrs[IA64_NUM_DBG_REGS];    /* DBR values (cache) when not loaded */
 309        unsigned long           ctx_ibrs[IA64_NUM_DBG_REGS];    /* IBR values (cache) when not loaded */
 310
 311        pfm_counter_t           ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
 312
 313        unsigned long           th_pmcs[PFM_NUM_PMC_REGS];      /* PMC thread save state */
 314        unsigned long           th_pmds[PFM_NUM_PMD_REGS];      /* PMD thread save state */
 315
 316        unsigned long           ctx_saved_psr_up;       /* only contains psr.up value */
 317
 318        unsigned long           ctx_last_activation;    /* context last activation number for last_cpu */
 319        unsigned int            ctx_last_cpu;           /* CPU id of current or last CPU used (SMP only) */
 320        unsigned int            ctx_cpu;                /* cpu to which perfmon is applied (system wide) */
 321
 322        int                     ctx_fd;                 /* file descriptor used my this context */
 323        pfm_ovfl_arg_t          ctx_ovfl_arg;           /* argument to custom buffer format handler */
 324
 325        pfm_buffer_fmt_t        *ctx_buf_fmt;           /* buffer format callbacks */
 326        void                    *ctx_smpl_hdr;          /* points to sampling buffer header kernel vaddr */
 327        unsigned long           ctx_smpl_size;          /* size of sampling buffer */
 328        void                    *ctx_smpl_vaddr;        /* user level virtual address of smpl buffer */
 329
 330        wait_queue_head_t       ctx_msgq_wait;
 331        pfm_msg_t               ctx_msgq[PFM_MAX_MSGS];
 332        int                     ctx_msgq_head;
 333        int                     ctx_msgq_tail;
 334        struct fasync_struct    *ctx_async_queue;
 335
 336        wait_queue_head_t       ctx_zombieq;            /* termination cleanup wait queue */
 337} pfm_context_t;
 338
 339/*
 340 * magic number used to verify that structure is really
 341 * a perfmon context
 342 */
 343#define PFM_IS_FILE(f)          ((f)->f_op == &pfm_file_ops)
 344
 345#define PFM_GET_CTX(t)          ((pfm_context_t *)(t)->thread.pfm_context)
 346
 347#ifdef CONFIG_SMP
 348#define SET_LAST_CPU(ctx, v)    (ctx)->ctx_last_cpu = (v)
 349#define GET_LAST_CPU(ctx)       (ctx)->ctx_last_cpu
 350#else
 351#define SET_LAST_CPU(ctx, v)    do {} while(0)
 352#define GET_LAST_CPU(ctx)       do {} while(0)
 353#endif
 354
 355
 356#define ctx_fl_block            ctx_flags.block
 357#define ctx_fl_system           ctx_flags.system
 358#define ctx_fl_using_dbreg      ctx_flags.using_dbreg
 359#define ctx_fl_is_sampling      ctx_flags.is_sampling
 360#define ctx_fl_excl_idle        ctx_flags.excl_idle
 361#define ctx_fl_going_zombie     ctx_flags.going_zombie
 362#define ctx_fl_trap_reason      ctx_flags.trap_reason
 363#define ctx_fl_no_msg           ctx_flags.no_msg
 364#define ctx_fl_can_restart      ctx_flags.can_restart
 365
 366#define PFM_SET_WORK_PENDING(t, v)      do { (t)->thread.pfm_needs_checking = v; } while(0);
 367#define PFM_GET_WORK_PENDING(t)         (t)->thread.pfm_needs_checking
 368
 369/*
 370 * global information about all sessions
 371 * mostly used to synchronize between system wide and per-process
 372 */
 373typedef struct {
 374        spinlock_t              pfs_lock;                  /* lock the structure */
 375
 376        unsigned int            pfs_task_sessions;         /* number of per task sessions */
 377        unsigned int            pfs_sys_sessions;          /* number of per system wide sessions */
 378        unsigned int            pfs_sys_use_dbregs;        /* incremented when a system wide session uses debug regs */
 379        unsigned int            pfs_ptrace_use_dbregs;     /* incremented when a process uses debug regs */
 380        struct task_struct      *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
 381} pfm_session_t;
 382
 383/*
 384 * information about a PMC or PMD.
 385 * dep_pmd[]: a bitmask of dependent PMD registers
 386 * dep_pmc[]: a bitmask of dependent PMC registers
 387 */
 388typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
 389typedef struct {
 390        unsigned int            type;
 391        int                     pm_pos;
 392        unsigned long           default_value;  /* power-on default value */
 393        unsigned long           reserved_mask;  /* bitmask of reserved bits */
 394        pfm_reg_check_t         read_check;
 395        pfm_reg_check_t         write_check;
 396        unsigned long           dep_pmd[4];
 397        unsigned long           dep_pmc[4];
 398} pfm_reg_desc_t;
 399
 400/* assume cnum is a valid monitor */
 401#define PMC_PM(cnum, val)       (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
 402
 403/*
 404 * This structure is initialized at boot time and contains
 405 * a description of the PMU main characteristics.
 406 *
 407 * If the probe function is defined, detection is based
 408 * on its return value: 
 409 *      - 0 means recognized PMU
 410 *      - anything else means not supported
 411 * When the probe function is not defined, then the pmu_family field
 412 * is used and it must match the host CPU family such that:
 413 *      - cpu->family & config->pmu_family != 0
 414 */
 415typedef struct {
 416        unsigned long  ovfl_val;        /* overflow value for counters */
 417
 418        pfm_reg_desc_t *pmc_desc;       /* detailed PMC register dependencies descriptions */
 419        pfm_reg_desc_t *pmd_desc;       /* detailed PMD register dependencies descriptions */
 420
 421        unsigned int   num_pmcs;        /* number of PMCS: computed at init time */
 422        unsigned int   num_pmds;        /* number of PMDS: computed at init time */
 423        unsigned long  impl_pmcs[4];    /* bitmask of implemented PMCS */
 424        unsigned long  impl_pmds[4];    /* bitmask of implemented PMDS */
 425
 426        char          *pmu_name;        /* PMU family name */
 427        unsigned int  pmu_family;       /* cpuid family pattern used to identify pmu */
 428        unsigned int  flags;            /* pmu specific flags */
 429        unsigned int  num_ibrs;         /* number of IBRS: computed at init time */
 430        unsigned int  num_dbrs;         /* number of DBRS: computed at init time */
 431        unsigned int  num_counters;     /* PMC/PMD counting pairs : computed at init time */
 432        int           (*probe)(void);   /* customized probe routine */
 433        unsigned int  use_rr_dbregs:1;  /* set if debug registers used for range restriction */
 434} pmu_config_t;
 435/*
 436 * PMU specific flags
 437 */
 438#define PFM_PMU_IRQ_RESEND      1       /* PMU needs explicit IRQ resend */
 439
 440/*
 441 * debug register related type definitions
 442 */
 443typedef struct {
 444        unsigned long ibr_mask:56;
 445        unsigned long ibr_plm:4;
 446        unsigned long ibr_ig:3;
 447        unsigned long ibr_x:1;
 448} ibr_mask_reg_t;
 449
 450typedef struct {
 451        unsigned long dbr_mask:56;
 452        unsigned long dbr_plm:4;
 453        unsigned long dbr_ig:2;
 454        unsigned long dbr_w:1;
 455        unsigned long dbr_r:1;
 456} dbr_mask_reg_t;
 457
 458typedef union {
 459        unsigned long  val;
 460        ibr_mask_reg_t ibr;
 461        dbr_mask_reg_t dbr;
 462} dbreg_t;
 463
 464
 465/*
 466 * perfmon command descriptions
 467 */
 468typedef struct {
 469        int             (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 470        char            *cmd_name;
 471        int             cmd_flags;
 472        unsigned int    cmd_narg;
 473        size_t          cmd_argsize;
 474        int             (*cmd_getsize)(void *arg, size_t *sz);
 475} pfm_cmd_desc_t;
 476
 477#define PFM_CMD_FD              0x01    /* command requires a file descriptor */
 478#define PFM_CMD_ARG_READ        0x02    /* command must read argument(s) */
 479#define PFM_CMD_ARG_RW          0x04    /* command must read/write argument(s) */
 480#define PFM_CMD_STOP            0x08    /* command does not work on zombie context */
 481
 482
 483#define PFM_CMD_NAME(cmd)       pfm_cmd_tab[(cmd)].cmd_name
 484#define PFM_CMD_READ_ARG(cmd)   (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
 485#define PFM_CMD_RW_ARG(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
 486#define PFM_CMD_USE_FD(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
 487#define PFM_CMD_STOPPED(cmd)    (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
 488
 489#define PFM_CMD_ARG_MANY        -1 /* cannot be zero */
 490
 491typedef struct {
 492        unsigned long pfm_spurious_ovfl_intr_count;     /* keep track of spurious ovfl interrupts */
 493        unsigned long pfm_replay_ovfl_intr_count;       /* keep track of replayed ovfl interrupts */
 494        unsigned long pfm_ovfl_intr_count;              /* keep track of ovfl interrupts */
 495        unsigned long pfm_ovfl_intr_cycles;             /* cycles spent processing ovfl interrupts */
 496        unsigned long pfm_ovfl_intr_cycles_min;         /* min cycles spent processing ovfl interrupts */
 497        unsigned long pfm_ovfl_intr_cycles_max;         /* max cycles spent processing ovfl interrupts */
 498        unsigned long pfm_smpl_handler_calls;
 499        unsigned long pfm_smpl_handler_cycles;
 500        char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
 501} pfm_stats_t;
 502
 503/*
 504 * perfmon internal variables
 505 */
 506static pfm_stats_t              pfm_stats[NR_CPUS];
 507static pfm_session_t            pfm_sessions;   /* global sessions information */
 508
 509static DEFINE_SPINLOCK(pfm_alt_install_check);
 510static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
 511
 512static struct proc_dir_entry    *perfmon_dir;
 513static pfm_uuid_t               pfm_null_uuid = {0,};
 514
 515static spinlock_t               pfm_buffer_fmt_lock;
 516static LIST_HEAD(pfm_buffer_fmt_list);
 517
 518static pmu_config_t             *pmu_conf;
 519
 520/* sysctl() controls */
 521pfm_sysctl_t pfm_sysctl;
 522EXPORT_SYMBOL(pfm_sysctl);
 523
 524static struct ctl_table pfm_ctl_table[] = {
 525        {
 526                .procname       = "debug",
 527                .data           = &pfm_sysctl.debug,
 528                .maxlen         = sizeof(int),
 529                .mode           = 0666,
 530                .proc_handler   = proc_dointvec,
 531        },
 532        {
 533                .procname       = "debug_ovfl",
 534                .data           = &pfm_sysctl.debug_ovfl,
 535                .maxlen         = sizeof(int),
 536                .mode           = 0666,
 537                .proc_handler   = proc_dointvec,
 538        },
 539        {
 540                .procname       = "fastctxsw",
 541                .data           = &pfm_sysctl.fastctxsw,
 542                .maxlen         = sizeof(int),
 543                .mode           = 0600,
 544                .proc_handler   = proc_dointvec,
 545        },
 546        {
 547                .procname       = "expert_mode",
 548                .data           = &pfm_sysctl.expert_mode,
 549                .maxlen         = sizeof(int),
 550                .mode           = 0600,
 551                .proc_handler   = proc_dointvec,
 552        },
 553        {}
 554};
 555static struct ctl_table pfm_sysctl_dir[] = {
 556        {
 557                .procname       = "perfmon",
 558                .mode           = 0555,
 559                .child          = pfm_ctl_table,
 560        },
 561        {}
 562};
 563static struct ctl_table pfm_sysctl_root[] = {
 564        {
 565                .procname       = "kernel",
 566                .mode           = 0555,
 567                .child          = pfm_sysctl_dir,
 568        },
 569        {}
 570};
 571static struct ctl_table_header *pfm_sysctl_header;
 572
 573static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 574
 575#define pfm_get_cpu_var(v)              __ia64_per_cpu_var(v)
 576#define pfm_get_cpu_data(a,b)           per_cpu(a, b)
 577
 578static inline void
 579pfm_put_task(struct task_struct *task)
 580{
 581        if (task != current) put_task_struct(task);
 582}
 583
 584static inline void
 585pfm_reserve_page(unsigned long a)
 586{
 587        SetPageReserved(vmalloc_to_page((void *)a));
 588}
 589static inline void
 590pfm_unreserve_page(unsigned long a)
 591{
 592        ClearPageReserved(vmalloc_to_page((void*)a));
 593}
 594
 595static inline unsigned long
 596pfm_protect_ctx_ctxsw(pfm_context_t *x)
 597{
 598        spin_lock(&(x)->ctx_lock);
 599        return 0UL;
 600}
 601
 602static inline void
 603pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
 604{
 605        spin_unlock(&(x)->ctx_lock);
 606}
 607
 608/* forward declaration */
 609static const struct dentry_operations pfmfs_dentry_operations;
 610
 611static struct dentry *
 612pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
 613{
 614        return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
 615                        PFMFS_MAGIC);
 616}
 617
 618static struct file_system_type pfm_fs_type = {
 619        .name     = "pfmfs",
 620        .mount    = pfmfs_mount,
 621        .kill_sb  = kill_anon_super,
 622};
 623MODULE_ALIAS_FS("pfmfs");
 624
 625DEFINE_PER_CPU(unsigned long, pfm_syst_info);
 626DEFINE_PER_CPU(struct task_struct *, pmu_owner);
 627DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
 628DEFINE_PER_CPU(unsigned long, pmu_activation_number);
 629EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
 630
 631
 632/* forward declaration */
 633static const struct file_operations pfm_file_ops;
 634
 635/*
 636 * forward declarations
 637 */
 638#ifndef CONFIG_SMP
 639static void pfm_lazy_save_regs (struct task_struct *ta);
 640#endif
 641
 642void dump_pmu_state(const char *);
 643static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 644
 645#include "perfmon_itanium.h"
 646#include "perfmon_mckinley.h"
 647#include "perfmon_montecito.h"
 648#include "perfmon_generic.h"
 649
 650static pmu_config_t *pmu_confs[]={
 651        &pmu_conf_mont,
 652        &pmu_conf_mck,
 653        &pmu_conf_ita,
 654        &pmu_conf_gen, /* must be last */
 655        NULL
 656};
 657
 658
 659static int pfm_end_notify_user(pfm_context_t *ctx);
 660
 661static inline void
 662pfm_clear_psr_pp(void)
 663{
 664        ia64_rsm(IA64_PSR_PP);
 665        ia64_srlz_i();
 666}
 667
 668static inline void
 669pfm_set_psr_pp(void)
 670{
 671        ia64_ssm(IA64_PSR_PP);
 672        ia64_srlz_i();
 673}
 674
 675static inline void
 676pfm_clear_psr_up(void)
 677{
 678        ia64_rsm(IA64_PSR_UP);
 679        ia64_srlz_i();
 680}
 681
 682static inline void
 683pfm_set_psr_up(void)
 684{
 685        ia64_ssm(IA64_PSR_UP);
 686        ia64_srlz_i();
 687}
 688
 689static inline unsigned long
 690pfm_get_psr(void)
 691{
 692        unsigned long tmp;
 693        tmp = ia64_getreg(_IA64_REG_PSR);
 694        ia64_srlz_i();
 695        return tmp;
 696}
 697
 698static inline void
 699pfm_set_psr_l(unsigned long val)
 700{
 701        ia64_setreg(_IA64_REG_PSR_L, val);
 702        ia64_srlz_i();
 703}
 704
 705static inline void
 706pfm_freeze_pmu(void)
 707{
 708        ia64_set_pmc(0,1UL);
 709        ia64_srlz_d();
 710}
 711
 712static inline void
 713pfm_unfreeze_pmu(void)
 714{
 715        ia64_set_pmc(0,0UL);
 716        ia64_srlz_d();
 717}
 718
 719static inline void
 720pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
 721{
 722        int i;
 723
 724        for (i=0; i < nibrs; i++) {
 725                ia64_set_ibr(i, ibrs[i]);
 726                ia64_dv_serialize_instruction();
 727        }
 728        ia64_srlz_i();
 729}
 730
 731static inline void
 732pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
 733{
 734        int i;
 735
 736        for (i=0; i < ndbrs; i++) {
 737                ia64_set_dbr(i, dbrs[i]);
 738                ia64_dv_serialize_data();
 739        }
 740        ia64_srlz_d();
 741}
 742
 743/*
 744 * PMD[i] must be a counter. no check is made
 745 */
 746static inline unsigned long
 747pfm_read_soft_counter(pfm_context_t *ctx, int i)
 748{
 749        return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
 750}
 751
 752/*
 753 * PMD[i] must be a counter. no check is made
 754 */
 755static inline void
 756pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
 757{
 758        unsigned long ovfl_val = pmu_conf->ovfl_val;
 759
 760        ctx->ctx_pmds[i].val = val  & ~ovfl_val;
 761        /*
 762         * writing to unimplemented part is ignore, so we do not need to
 763         * mask off top part
 764         */
 765        ia64_set_pmd(i, val & ovfl_val);
 766}
 767
 768static pfm_msg_t *
 769pfm_get_new_msg(pfm_context_t *ctx)
 770{
 771        int idx, next;
 772
 773        next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
 774
 775        DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 776        if (next == ctx->ctx_msgq_head) return NULL;
 777
 778        idx =   ctx->ctx_msgq_tail;
 779        ctx->ctx_msgq_tail = next;
 780
 781        DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
 782
 783        return ctx->ctx_msgq+idx;
 784}
 785
 786static pfm_msg_t *
 787pfm_get_next_msg(pfm_context_t *ctx)
 788{
 789        pfm_msg_t *msg;
 790
 791        DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 792
 793        if (PFM_CTXQ_EMPTY(ctx)) return NULL;
 794
 795        /*
 796         * get oldest message
 797         */
 798        msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
 799
 800        /*
 801         * and move forward
 802         */
 803        ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
 804
 805        DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
 806
 807        return msg;
 808}
 809
 810static void
 811pfm_reset_msgq(pfm_context_t *ctx)
 812{
 813        ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 814        DPRINT(("ctx=%p msgq reset\n", ctx));
 815}
 816
 817static void *
 818pfm_rvmalloc(unsigned long size)
 819{
 820        void *mem;
 821        unsigned long addr;
 822
 823        size = PAGE_ALIGN(size);
 824        mem  = vzalloc(size);
 825        if (mem) {
 826                //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
 827                addr = (unsigned long)mem;
 828                while (size > 0) {
 829                        pfm_reserve_page(addr);
 830                        addr+=PAGE_SIZE;
 831                        size-=PAGE_SIZE;
 832                }
 833        }
 834        return mem;
 835}
 836
 837static void
 838pfm_rvfree(void *mem, unsigned long size)
 839{
 840        unsigned long addr;
 841
 842        if (mem) {
 843                DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
 844                addr = (unsigned long) mem;
 845                while ((long) size > 0) {
 846                        pfm_unreserve_page(addr);
 847                        addr+=PAGE_SIZE;
 848                        size-=PAGE_SIZE;
 849                }
 850                vfree(mem);
 851        }
 852        return;
 853}
 854
 855static pfm_context_t *
 856pfm_context_alloc(int ctx_flags)
 857{
 858        pfm_context_t *ctx;
 859
 860        /* 
 861         * allocate context descriptor 
 862         * must be able to free with interrupts disabled
 863         */
 864        ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
 865        if (ctx) {
 866                DPRINT(("alloc ctx @%p\n", ctx));
 867
 868                /*
 869                 * init context protection lock
 870                 */
 871                spin_lock_init(&ctx->ctx_lock);
 872
 873                /*
 874                 * context is unloaded
 875                 */
 876                ctx->ctx_state = PFM_CTX_UNLOADED;
 877
 878                /*
 879                 * initialization of context's flags
 880                 */
 881                ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
 882                ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
 883                ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
 884                /*
 885                 * will move to set properties
 886                 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
 887                 */
 888
 889                /*
 890                 * init restart semaphore to locked
 891                 */
 892                init_completion(&ctx->ctx_restart_done);
 893
 894                /*
 895                 * activation is used in SMP only
 896                 */
 897                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
 898                SET_LAST_CPU(ctx, -1);
 899
 900                /*
 901                 * initialize notification message queue
 902                 */
 903                ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 904                init_waitqueue_head(&ctx->ctx_msgq_wait);
 905                init_waitqueue_head(&ctx->ctx_zombieq);
 906
 907        }
 908        return ctx;
 909}
 910
 911static void
 912pfm_context_free(pfm_context_t *ctx)
 913{
 914        if (ctx) {
 915                DPRINT(("free ctx @%p\n", ctx));
 916                kfree(ctx);
 917        }
 918}
 919
 920static void
 921pfm_mask_monitoring(struct task_struct *task)
 922{
 923        pfm_context_t *ctx = PFM_GET_CTX(task);
 924        unsigned long mask, val, ovfl_mask;
 925        int i;
 926
 927        DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
 928
 929        ovfl_mask = pmu_conf->ovfl_val;
 930        /*
 931         * monitoring can only be masked as a result of a valid
 932         * counter overflow. In UP, it means that the PMU still
 933         * has an owner. Note that the owner can be different
 934         * from the current task. However the PMU state belongs
 935         * to the owner.
 936         * In SMP, a valid overflow only happens when task is
 937         * current. Therefore if we come here, we know that
 938         * the PMU state belongs to the current task, therefore
 939         * we can access the live registers.
 940         *
 941         * So in both cases, the live register contains the owner's
 942         * state. We can ONLY touch the PMU registers and NOT the PSR.
 943         *
 944         * As a consequence to this call, the ctx->th_pmds[] array
 945         * contains stale information which must be ignored
 946         * when context is reloaded AND monitoring is active (see
 947         * pfm_restart).
 948         */
 949        mask = ctx->ctx_used_pmds[0];
 950        for (i = 0; mask; i++, mask>>=1) {
 951                /* skip non used pmds */
 952                if ((mask & 0x1) == 0) continue;
 953                val = ia64_get_pmd(i);
 954
 955                if (PMD_IS_COUNTING(i)) {
 956                        /*
 957                         * we rebuild the full 64 bit value of the counter
 958                         */
 959                        ctx->ctx_pmds[i].val += (val & ovfl_mask);
 960                } else {
 961                        ctx->ctx_pmds[i].val = val;
 962                }
 963                DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
 964                        i,
 965                        ctx->ctx_pmds[i].val,
 966                        val & ovfl_mask));
 967        }
 968        /*
 969         * mask monitoring by setting the privilege level to 0
 970         * we cannot use psr.pp/psr.up for this, it is controlled by
 971         * the user
 972         *
 973         * if task is current, modify actual registers, otherwise modify
 974         * thread save state, i.e., what will be restored in pfm_load_regs()
 975         */
 976        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
 977        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
 978                if ((mask & 0x1) == 0UL) continue;
 979                ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
 980                ctx->th_pmcs[i] &= ~0xfUL;
 981                DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
 982        }
 983        /*
 984         * make all of this visible
 985         */
 986        ia64_srlz_d();
 987}
 988
 989/*
 990 * must always be done with task == current
 991 *
 992 * context must be in MASKED state when calling
 993 */
 994static void
 995pfm_restore_monitoring(struct task_struct *task)
 996{
 997        pfm_context_t *ctx = PFM_GET_CTX(task);
 998        unsigned long mask, ovfl_mask;
 999        unsigned long psr, val;
1000        int i, is_system;
1001
1002        is_system = ctx->ctx_fl_system;
1003        ovfl_mask = pmu_conf->ovfl_val;
1004
1005        if (task != current) {
1006                printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1007                return;
1008        }
1009        if (ctx->ctx_state != PFM_CTX_MASKED) {
1010                printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1011                        task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1012                return;
1013        }
1014        psr = pfm_get_psr();
1015        /*
1016         * monitoring is masked via the PMC.
1017         * As we restore their value, we do not want each counter to
1018         * restart right away. We stop monitoring using the PSR,
1019         * restore the PMC (and PMD) and then re-establish the psr
1020         * as it was. Note that there can be no pending overflow at
1021         * this point, because monitoring was MASKED.
1022         *
1023         * system-wide session are pinned and self-monitoring
1024         */
1025        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1026                /* disable dcr pp */
1027                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1028                pfm_clear_psr_pp();
1029        } else {
1030                pfm_clear_psr_up();
1031        }
1032        /*
1033         * first, we restore the PMD
1034         */
1035        mask = ctx->ctx_used_pmds[0];
1036        for (i = 0; mask; i++, mask>>=1) {
1037                /* skip non used pmds */
1038                if ((mask & 0x1) == 0) continue;
1039
1040                if (PMD_IS_COUNTING(i)) {
1041                        /*
1042                         * we split the 64bit value according to
1043                         * counter width
1044                         */
1045                        val = ctx->ctx_pmds[i].val & ovfl_mask;
1046                        ctx->ctx_pmds[i].val &= ~ovfl_mask;
1047                } else {
1048                        val = ctx->ctx_pmds[i].val;
1049                }
1050                ia64_set_pmd(i, val);
1051
1052                DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1053                        i,
1054                        ctx->ctx_pmds[i].val,
1055                        val));
1056        }
1057        /*
1058         * restore the PMCs
1059         */
1060        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1061        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1062                if ((mask & 0x1) == 0UL) continue;
1063                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1064                ia64_set_pmc(i, ctx->th_pmcs[i]);
1065                DPRINT(("[%d] pmc[%d]=0x%lx\n",
1066                                        task_pid_nr(task), i, ctx->th_pmcs[i]));
1067        }
1068        ia64_srlz_d();
1069
1070        /*
1071         * must restore DBR/IBR because could be modified while masked
1072         * XXX: need to optimize 
1073         */
1074        if (ctx->ctx_fl_using_dbreg) {
1075                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1076                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1077        }
1078
1079        /*
1080         * now restore PSR
1081         */
1082        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1083                /* enable dcr pp */
1084                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1085                ia64_srlz_i();
1086        }
1087        pfm_set_psr_l(psr);
1088}
1089
1090static inline void
1091pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1092{
1093        int i;
1094
1095        ia64_srlz_d();
1096
1097        for (i=0; mask; i++, mask>>=1) {
1098                if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1099        }
1100}
1101
1102/*
1103 * reload from thread state (used for ctxw only)
1104 */
1105static inline void
1106pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1107{
1108        int i;
1109        unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1110
1111        for (i=0; mask; i++, mask>>=1) {
1112                if ((mask & 0x1) == 0) continue;
1113                val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1114                ia64_set_pmd(i, val);
1115        }
1116        ia64_srlz_d();
1117}
1118
1119/*
1120 * propagate PMD from context to thread-state
1121 */
1122static inline void
1123pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1124{
1125        unsigned long ovfl_val = pmu_conf->ovfl_val;
1126        unsigned long mask = ctx->ctx_all_pmds[0];
1127        unsigned long val;
1128        int i;
1129
1130        DPRINT(("mask=0x%lx\n", mask));
1131
1132        for (i=0; mask; i++, mask>>=1) {
1133
1134                val = ctx->ctx_pmds[i].val;
1135
1136                /*
1137                 * We break up the 64 bit value into 2 pieces
1138                 * the lower bits go to the machine state in the
1139                 * thread (will be reloaded on ctxsw in).
1140                 * The upper part stays in the soft-counter.
1141                 */
1142                if (PMD_IS_COUNTING(i)) {
1143                        ctx->ctx_pmds[i].val = val & ~ovfl_val;
1144                         val &= ovfl_val;
1145                }
1146                ctx->th_pmds[i] = val;
1147
1148                DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1149                        i,
1150                        ctx->th_pmds[i],
1151                        ctx->ctx_pmds[i].val));
1152        }
1153}
1154
1155/*
1156 * propagate PMC from context to thread-state
1157 */
1158static inline void
1159pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1160{
1161        unsigned long mask = ctx->ctx_all_pmcs[0];
1162        int i;
1163
1164        DPRINT(("mask=0x%lx\n", mask));
1165
1166        for (i=0; mask; i++, mask>>=1) {
1167                /* masking 0 with ovfl_val yields 0 */
1168                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1169                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1170        }
1171}
1172
1173
1174
1175static inline void
1176pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1177{
1178        int i;
1179
1180        for (i=0; mask; i++, mask>>=1) {
1181                if ((mask & 0x1) == 0) continue;
1182                ia64_set_pmc(i, pmcs[i]);
1183        }
1184        ia64_srlz_d();
1185}
1186
1187static inline int
1188pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1189{
1190        return memcmp(a, b, sizeof(pfm_uuid_t));
1191}
1192
1193static inline int
1194pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1195{
1196        int ret = 0;
1197        if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1198        return ret;
1199}
1200
1201static inline int
1202pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1203{
1204        int ret = 0;
1205        if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1206        return ret;
1207}
1208
1209
1210static inline int
1211pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1212                     int cpu, void *arg)
1213{
1214        int ret = 0;
1215        if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1216        return ret;
1217}
1218
1219static inline int
1220pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1221                     int cpu, void *arg)
1222{
1223        int ret = 0;
1224        if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1225        return ret;
1226}
1227
1228static inline int
1229pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1230{
1231        int ret = 0;
1232        if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1233        return ret;
1234}
1235
1236static inline int
1237pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1238{
1239        int ret = 0;
1240        if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1241        return ret;
1242}
1243
1244static pfm_buffer_fmt_t *
1245__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1246{
1247        struct list_head * pos;
1248        pfm_buffer_fmt_t * entry;
1249
1250        list_for_each(pos, &pfm_buffer_fmt_list) {
1251                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1252                if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1253                        return entry;
1254        }
1255        return NULL;
1256}
1257 
1258/*
1259 * find a buffer format based on its uuid
1260 */
1261static pfm_buffer_fmt_t *
1262pfm_find_buffer_fmt(pfm_uuid_t uuid)
1263{
1264        pfm_buffer_fmt_t * fmt;
1265        spin_lock(&pfm_buffer_fmt_lock);
1266        fmt = __pfm_find_buffer_fmt(uuid);
1267        spin_unlock(&pfm_buffer_fmt_lock);
1268        return fmt;
1269}
1270 
1271int
1272pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1273{
1274        int ret = 0;
1275
1276        /* some sanity checks */
1277        if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1278
1279        /* we need at least a handler */
1280        if (fmt->fmt_handler == NULL) return -EINVAL;
1281
1282        /*
1283         * XXX: need check validity of fmt_arg_size
1284         */
1285
1286        spin_lock(&pfm_buffer_fmt_lock);
1287
1288        if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1289                printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1290                ret = -EBUSY;
1291                goto out;
1292        } 
1293        list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1294        printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1295
1296out:
1297        spin_unlock(&pfm_buffer_fmt_lock);
1298        return ret;
1299}
1300EXPORT_SYMBOL(pfm_register_buffer_fmt);
1301
1302int
1303pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1304{
1305        pfm_buffer_fmt_t *fmt;
1306        int ret = 0;
1307
1308        spin_lock(&pfm_buffer_fmt_lock);
1309
1310        fmt = __pfm_find_buffer_fmt(uuid);
1311        if (!fmt) {
1312                printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1313                ret = -EINVAL;
1314                goto out;
1315        }
1316        list_del_init(&fmt->fmt_list);
1317        printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1318
1319out:
1320        spin_unlock(&pfm_buffer_fmt_lock);
1321        return ret;
1322
1323}
1324EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1325
1326static int
1327pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1328{
1329        unsigned long flags;
1330        /*
1331         * validity checks on cpu_mask have been done upstream
1332         */
1333        LOCK_PFS(flags);
1334
1335        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336                pfm_sessions.pfs_sys_sessions,
1337                pfm_sessions.pfs_task_sessions,
1338                pfm_sessions.pfs_sys_use_dbregs,
1339                is_syswide,
1340                cpu));
1341
1342        if (is_syswide) {
1343                /*
1344                 * cannot mix system wide and per-task sessions
1345                 */
1346                if (pfm_sessions.pfs_task_sessions > 0UL) {
1347                        DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348                                pfm_sessions.pfs_task_sessions));
1349                        goto abort;
1350                }
1351
1352                if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1353
1354                DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1355
1356                pfm_sessions.pfs_sys_session[cpu] = task;
1357
1358                pfm_sessions.pfs_sys_sessions++ ;
1359
1360        } else {
1361                if (pfm_sessions.pfs_sys_sessions) goto abort;
1362                pfm_sessions.pfs_task_sessions++;
1363        }
1364
1365        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366                pfm_sessions.pfs_sys_sessions,
1367                pfm_sessions.pfs_task_sessions,
1368                pfm_sessions.pfs_sys_use_dbregs,
1369                is_syswide,
1370                cpu));
1371
1372        /*
1373         * Force idle() into poll mode
1374         */
1375        cpu_idle_poll_ctrl(true);
1376
1377        UNLOCK_PFS(flags);
1378
1379        return 0;
1380
1381error_conflict:
1382        DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383                task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384                cpu));
1385abort:
1386        UNLOCK_PFS(flags);
1387
1388        return -EBUSY;
1389
1390}
1391
1392static int
1393pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1394{
1395        unsigned long flags;
1396        /*
1397         * validity checks on cpu_mask have been done upstream
1398         */
1399        LOCK_PFS(flags);
1400
1401        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402                pfm_sessions.pfs_sys_sessions,
1403                pfm_sessions.pfs_task_sessions,
1404                pfm_sessions.pfs_sys_use_dbregs,
1405                is_syswide,
1406                cpu));
1407
1408
1409        if (is_syswide) {
1410                pfm_sessions.pfs_sys_session[cpu] = NULL;
1411                /*
1412                 * would not work with perfmon+more than one bit in cpu_mask
1413                 */
1414                if (ctx && ctx->ctx_fl_using_dbreg) {
1415                        if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416                                printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417                        } else {
1418                                pfm_sessions.pfs_sys_use_dbregs--;
1419                        }
1420                }
1421                pfm_sessions.pfs_sys_sessions--;
1422        } else {
1423                pfm_sessions.pfs_task_sessions--;
1424        }
1425        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426                pfm_sessions.pfs_sys_sessions,
1427                pfm_sessions.pfs_task_sessions,
1428                pfm_sessions.pfs_sys_use_dbregs,
1429                is_syswide,
1430                cpu));
1431
1432        /* Undo forced polling. Last session reenables pal_halt */
1433        cpu_idle_poll_ctrl(false);
1434
1435        UNLOCK_PFS(flags);
1436
1437        return 0;
1438}
1439
1440/*
1441 * removes virtual mapping of the sampling buffer.
1442 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1443 * a PROTECT_CTX() section.
1444 */
1445static int
1446pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1447{
1448        struct task_struct *task = current;
1449        int r;
1450
1451        /* sanity checks */
1452        if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1453                printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1454                return -EINVAL;
1455        }
1456
1457        DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1458
1459        /*
1460         * does the actual unmapping
1461         */
1462        r = vm_munmap((unsigned long)vaddr, size);
1463
1464        if (r !=0) {
1465                printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1466        }
1467
1468        DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1469
1470        return 0;
1471}
1472
1473/*
1474 * free actual physical storage used by sampling buffer
1475 */
1476#if 0
1477static int
1478pfm_free_smpl_buffer(pfm_context_t *ctx)
1479{
1480        pfm_buffer_fmt_t *fmt;
1481
1482        if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1483
1484        /*
1485         * we won't use the buffer format anymore
1486         */
1487        fmt = ctx->ctx_buf_fmt;
1488
1489        DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490                ctx->ctx_smpl_hdr,
1491                ctx->ctx_smpl_size,
1492                ctx->ctx_smpl_vaddr));
1493
1494        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1495
1496        /*
1497         * free the buffer
1498         */
1499        pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1500
1501        ctx->ctx_smpl_hdr  = NULL;
1502        ctx->ctx_smpl_size = 0UL;
1503
1504        return 0;
1505
1506invalid_free:
1507        printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1508        return -EINVAL;
1509}
1510#endif
1511
1512static inline void
1513pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1514{
1515        if (fmt == NULL) return;
1516
1517        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1518
1519}
1520
1521/*
1522 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1523 * no real gain from having the whole whorehouse mounted. So we don't need
1524 * any operations on the root directory. However, we need a non-trivial
1525 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1526 */
1527static struct vfsmount *pfmfs_mnt __read_mostly;
1528
1529static int __init
1530init_pfm_fs(void)
1531{
1532        int err = register_filesystem(&pfm_fs_type);
1533        if (!err) {
1534                pfmfs_mnt = kern_mount(&pfm_fs_type);
1535                err = PTR_ERR(pfmfs_mnt);
1536                if (IS_ERR(pfmfs_mnt))
1537                        unregister_filesystem(&pfm_fs_type);
1538                else
1539                        err = 0;
1540        }
1541        return err;
1542}
1543
1544static ssize_t
1545pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1546{
1547        pfm_context_t *ctx;
1548        pfm_msg_t *msg;
1549        ssize_t ret;
1550        unsigned long flags;
1551        DECLARE_WAITQUEUE(wait, current);
1552        if (PFM_IS_FILE(filp) == 0) {
1553                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1554                return -EINVAL;
1555        }
1556
1557        ctx = filp->private_data;
1558        if (ctx == NULL) {
1559                printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1560                return -EINVAL;
1561        }
1562
1563        /*
1564         * check even when there is no message
1565         */
1566        if (size < sizeof(pfm_msg_t)) {
1567                DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1568                return -EINVAL;
1569        }
1570
1571        PROTECT_CTX(ctx, flags);
1572
1573        /*
1574         * put ourselves on the wait queue
1575         */
1576        add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1577
1578
1579        for(;;) {
1580                /*
1581                 * check wait queue
1582                 */
1583
1584                set_current_state(TASK_INTERRUPTIBLE);
1585
1586                DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1587
1588                ret = 0;
1589                if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1590
1591                UNPROTECT_CTX(ctx, flags);
1592
1593                /*
1594                 * check non-blocking read
1595                 */
1596                ret = -EAGAIN;
1597                if(filp->f_flags & O_NONBLOCK) break;
1598
1599                /*
1600                 * check pending signals
1601                 */
1602                if(signal_pending(current)) {
1603                        ret = -EINTR;
1604                        break;
1605                }
1606                /*
1607                 * no message, so wait
1608                 */
1609                schedule();
1610
1611                PROTECT_CTX(ctx, flags);
1612        }
1613        DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1614        set_current_state(TASK_RUNNING);
1615        remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1616
1617        if (ret < 0) goto abort;
1618
1619        ret = -EINVAL;
1620        msg = pfm_get_next_msg(ctx);
1621        if (msg == NULL) {
1622                printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1623                goto abort_locked;
1624        }
1625
1626        DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1627
1628        ret = -EFAULT;
1629        if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1630
1631abort_locked:
1632        UNPROTECT_CTX(ctx, flags);
1633abort:
1634        return ret;
1635}
1636
1637static ssize_t
1638pfm_write(struct file *file, const char __user *ubuf,
1639                          size_t size, loff_t *ppos)
1640{
1641        DPRINT(("pfm_write called\n"));
1642        return -EINVAL;
1643}
1644
1645static unsigned int
1646pfm_poll(struct file *filp, poll_table * wait)
1647{
1648        pfm_context_t *ctx;
1649        unsigned long flags;
1650        unsigned int mask = 0;
1651
1652        if (PFM_IS_FILE(filp) == 0) {
1653                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1654                return 0;
1655        }
1656
1657        ctx = filp->private_data;
1658        if (ctx == NULL) {
1659                printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1660                return 0;
1661        }
1662
1663
1664        DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1665
1666        poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1667
1668        PROTECT_CTX(ctx, flags);
1669
1670        if (PFM_CTXQ_EMPTY(ctx) == 0)
1671                mask =  POLLIN | POLLRDNORM;
1672
1673        UNPROTECT_CTX(ctx, flags);
1674
1675        DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1676
1677        return mask;
1678}
1679
1680static long
1681pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1682{
1683        DPRINT(("pfm_ioctl called\n"));
1684        return -EINVAL;
1685}
1686
1687/*
1688 * interrupt cannot be masked when coming here
1689 */
1690static inline int
1691pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1692{
1693        int ret;
1694
1695        ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1696
1697        DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698                task_pid_nr(current),
1699                fd,
1700                on,
1701                ctx->ctx_async_queue, ret));
1702
1703        return ret;
1704}
1705
1706static int
1707pfm_fasync(int fd, struct file *filp, int on)
1708{
1709        pfm_context_t *ctx;
1710        int ret;
1711
1712        if (PFM_IS_FILE(filp) == 0) {
1713                printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1714                return -EBADF;
1715        }
1716
1717        ctx = filp->private_data;
1718        if (ctx == NULL) {
1719                printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1720                return -EBADF;
1721        }
1722        /*
1723         * we cannot mask interrupts during this call because this may
1724         * may go to sleep if memory is not readily avalaible.
1725         *
1726         * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1727         * done in caller. Serialization of this function is ensured by caller.
1728         */
1729        ret = pfm_do_fasync(fd, filp, ctx, on);
1730
1731
1732        DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1733                fd,
1734                on,
1735                ctx->ctx_async_queue, ret));
1736
1737        return ret;
1738}
1739
1740#ifdef CONFIG_SMP
1741/*
1742 * this function is exclusively called from pfm_close().
1743 * The context is not protected at that time, nor are interrupts
1744 * on the remote CPU. That's necessary to avoid deadlocks.
1745 */
1746static void
1747pfm_syswide_force_stop(void *info)
1748{
1749        pfm_context_t   *ctx = (pfm_context_t *)info;
1750        struct pt_regs *regs = task_pt_regs(current);
1751        struct task_struct *owner;
1752        unsigned long flags;
1753        int ret;
1754
1755        if (ctx->ctx_cpu != smp_processor_id()) {
1756                printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1757                        ctx->ctx_cpu,
1758                        smp_processor_id());
1759                return;
1760        }
1761        owner = GET_PMU_OWNER();
1762        if (owner != ctx->ctx_task) {
1763                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1764                        smp_processor_id(),
1765                        task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1766                return;
1767        }
1768        if (GET_PMU_CTX() != ctx) {
1769                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1770                        smp_processor_id(),
1771                        GET_PMU_CTX(), ctx);
1772                return;
1773        }
1774
1775        DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1776        /*
1777         * the context is already protected in pfm_close(), we simply
1778         * need to mask interrupts to avoid a PMU interrupt race on
1779         * this CPU
1780         */
1781        local_irq_save(flags);
1782
1783        ret = pfm_context_unload(ctx, NULL, 0, regs);
1784        if (ret) {
1785                DPRINT(("context_unload returned %d\n", ret));
1786        }
1787
1788        /*
1789         * unmask interrupts, PMU interrupts are now spurious here
1790         */
1791        local_irq_restore(flags);
1792}
1793
1794static void
1795pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1796{
1797        int ret;
1798
1799        DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1800        ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1801        DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1802}
1803#endif /* CONFIG_SMP */
1804
1805/*
1806 * called for each close(). Partially free resources.
1807 * When caller is self-monitoring, the context is unloaded.
1808 */
1809static int
1810pfm_flush(struct file *filp, fl_owner_t id)
1811{
1812        pfm_context_t *ctx;
1813        struct task_struct *task;
1814        struct pt_regs *regs;
1815        unsigned long flags;
1816        unsigned long smpl_buf_size = 0UL;
1817        void *smpl_buf_vaddr = NULL;
1818        int state, is_system;
1819
1820        if (PFM_IS_FILE(filp) == 0) {
1821                DPRINT(("bad magic for\n"));
1822                return -EBADF;
1823        }
1824
1825        ctx = filp->private_data;
1826        if (ctx == NULL) {
1827                printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1828                return -EBADF;
1829        }
1830
1831        /*
1832         * remove our file from the async queue, if we use this mode.
1833         * This can be done without the context being protected. We come
1834         * here when the context has become unreachable by other tasks.
1835         *
1836         * We may still have active monitoring at this point and we may
1837         * end up in pfm_overflow_handler(). However, fasync_helper()
1838         * operates with interrupts disabled and it cleans up the
1839         * queue. If the PMU handler is called prior to entering
1840         * fasync_helper() then it will send a signal. If it is
1841         * invoked after, it will find an empty queue and no
1842         * signal will be sent. In both case, we are safe
1843         */
1844        PROTECT_CTX(ctx, flags);
1845
1846        state     = ctx->ctx_state;
1847        is_system = ctx->ctx_fl_system;
1848
1849        task = PFM_CTX_TASK(ctx);
1850        regs = task_pt_regs(task);
1851
1852        DPRINT(("ctx_state=%d is_current=%d\n",
1853                state,
1854                task == current ? 1 : 0));
1855
1856        /*
1857         * if state == UNLOADED, then task is NULL
1858         */
1859
1860        /*
1861         * we must stop and unload because we are losing access to the context.
1862         */
1863        if (task == current) {
1864#ifdef CONFIG_SMP
1865                /*
1866                 * the task IS the owner but it migrated to another CPU: that's bad
1867                 * but we must handle this cleanly. Unfortunately, the kernel does
1868                 * not provide a mechanism to block migration (while the context is loaded).
1869                 *
1870                 * We need to release the resource on the ORIGINAL cpu.
1871                 */
1872                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1873
1874                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1875                        /*
1876                         * keep context protected but unmask interrupt for IPI
1877                         */
1878                        local_irq_restore(flags);
1879
1880                        pfm_syswide_cleanup_other_cpu(ctx);
1881
1882                        /*
1883                         * restore interrupt masking
1884                         */
1885                        local_irq_save(flags);
1886
1887                        /*
1888                         * context is unloaded at this point
1889                         */
1890                } else
1891#endif /* CONFIG_SMP */
1892                {
1893
1894                        DPRINT(("forcing unload\n"));
1895                        /*
1896                        * stop and unload, returning with state UNLOADED
1897                        * and session unreserved.
1898                        */
1899                        pfm_context_unload(ctx, NULL, 0, regs);
1900
1901                        DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1902                }
1903        }
1904
1905        /*
1906         * remove virtual mapping, if any, for the calling task.
1907         * cannot reset ctx field until last user is calling close().
1908         *
1909         * ctx_smpl_vaddr must never be cleared because it is needed
1910         * by every task with access to the context
1911         *
1912         * When called from do_exit(), the mm context is gone already, therefore
1913         * mm is NULL, i.e., the VMA is already gone  and we do not have to
1914         * do anything here
1915         */
1916        if (ctx->ctx_smpl_vaddr && current->mm) {
1917                smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1918                smpl_buf_size  = ctx->ctx_smpl_size;
1919        }
1920
1921        UNPROTECT_CTX(ctx, flags);
1922
1923        /*
1924         * if there was a mapping, then we systematically remove it
1925         * at this point. Cannot be done inside critical section
1926         * because some VM function reenables interrupts.
1927         *
1928         */
1929        if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1930
1931        return 0;
1932}
1933/*
1934 * called either on explicit close() or from exit_files(). 
1935 * Only the LAST user of the file gets to this point, i.e., it is
1936 * called only ONCE.
1937 *
1938 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero 
1939 * (fput()),i.e, last task to access the file. Nobody else can access the 
1940 * file at this point.
1941 *
1942 * When called from exit_files(), the VMA has been freed because exit_mm()
1943 * is executed before exit_files().
1944 *
1945 * When called from exit_files(), the current task is not yet ZOMBIE but we
1946 * flush the PMU state to the context. 
1947 */
1948static int
1949pfm_close(struct inode *inode, struct file *filp)
1950{
1951        pfm_context_t *ctx;
1952        struct task_struct *task;
1953        struct pt_regs *regs;
1954        DECLARE_WAITQUEUE(wait, current);
1955        unsigned long flags;
1956        unsigned long smpl_buf_size = 0UL;
1957        void *smpl_buf_addr = NULL;
1958        int free_possible = 1;
1959        int state, is_system;
1960
1961        DPRINT(("pfm_close called private=%p\n", filp->private_data));
1962
1963        if (PFM_IS_FILE(filp) == 0) {
1964                DPRINT(("bad magic\n"));
1965                return -EBADF;
1966        }
1967        
1968        ctx = filp->private_data;
1969        if (ctx == NULL) {
1970                printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1971                return -EBADF;
1972        }
1973
1974        PROTECT_CTX(ctx, flags);
1975
1976        state     = ctx->ctx_state;
1977        is_system = ctx->ctx_fl_system;
1978
1979        task = PFM_CTX_TASK(ctx);
1980        regs = task_pt_regs(task);
1981
1982        DPRINT(("ctx_state=%d is_current=%d\n", 
1983                state,
1984                task == current ? 1 : 0));
1985
1986        /*
1987         * if task == current, then pfm_flush() unloaded the context
1988         */
1989        if (state == PFM_CTX_UNLOADED) goto doit;
1990
1991        /*
1992         * context is loaded/masked and task != current, we need to
1993         * either force an unload or go zombie
1994         */
1995
1996        /*
1997         * The task is currently blocked or will block after an overflow.
1998         * we must force it to wakeup to get out of the
1999         * MASKED state and transition to the unloaded state by itself.
2000         *
2001         * This situation is only possible for per-task mode
2002         */
2003        if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2004
2005                /*
2006                 * set a "partial" zombie state to be checked
2007                 * upon return from down() in pfm_handle_work().
2008                 *
2009                 * We cannot use the ZOMBIE state, because it is checked
2010                 * by pfm_load_regs() which is called upon wakeup from down().
2011                 * In such case, it would free the context and then we would
2012                 * return to pfm_handle_work() which would access the
2013                 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2014                 * but visible to pfm_handle_work().
2015                 *
2016                 * For some window of time, we have a zombie context with
2017                 * ctx_state = MASKED  and not ZOMBIE
2018                 */
2019                ctx->ctx_fl_going_zombie = 1;
2020
2021                /*
2022                 * force task to wake up from MASKED state
2023                 */
2024                complete(&ctx->ctx_restart_done);
2025
2026                DPRINT(("waking up ctx_state=%d\n", state));
2027
2028                /*
2029                 * put ourself to sleep waiting for the other
2030                 * task to report completion
2031                 *
2032                 * the context is protected by mutex, therefore there
2033                 * is no risk of being notified of completion before
2034                 * begin actually on the waitq.
2035                 */
2036                set_current_state(TASK_INTERRUPTIBLE);
2037                add_wait_queue(&ctx->ctx_zombieq, &wait);
2038
2039                UNPROTECT_CTX(ctx, flags);
2040
2041                /*
2042                 * XXX: check for signals :
2043                 *      - ok for explicit close
2044                 *      - not ok when coming from exit_files()
2045                 */
2046                schedule();
2047
2048
2049                PROTECT_CTX(ctx, flags);
2050
2051
2052                remove_wait_queue(&ctx->ctx_zombieq, &wait);
2053                set_current_state(TASK_RUNNING);
2054
2055                /*
2056                 * context is unloaded at this point
2057                 */
2058                DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2059        }
2060        else if (task != current) {
2061#ifdef CONFIG_SMP
2062                /*
2063                 * switch context to zombie state
2064                 */
2065                ctx->ctx_state = PFM_CTX_ZOMBIE;
2066
2067                DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2068                /*
2069                 * cannot free the context on the spot. deferred until
2070                 * the task notices the ZOMBIE state
2071                 */
2072                free_possible = 0;
2073#else
2074                pfm_context_unload(ctx, NULL, 0, regs);
2075#endif
2076        }
2077
2078doit:
2079        /* reload state, may have changed during  opening of critical section */
2080        state = ctx->ctx_state;
2081
2082        /*
2083         * the context is still attached to a task (possibly current)
2084         * we cannot destroy it right now
2085         */
2086
2087        /*
2088         * we must free the sampling buffer right here because
2089         * we cannot rely on it being cleaned up later by the
2090         * monitored task. It is not possible to free vmalloc'ed
2091         * memory in pfm_load_regs(). Instead, we remove the buffer
2092         * now. should there be subsequent PMU overflow originally
2093         * meant for sampling, the will be converted to spurious
2094         * and that's fine because the monitoring tools is gone anyway.
2095         */
2096        if (ctx->ctx_smpl_hdr) {
2097                smpl_buf_addr = ctx->ctx_smpl_hdr;
2098                smpl_buf_size = ctx->ctx_smpl_size;
2099                /* no more sampling */
2100                ctx->ctx_smpl_hdr = NULL;
2101                ctx->ctx_fl_is_sampling = 0;
2102        }
2103
2104        DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2105                state,
2106                free_possible,
2107                smpl_buf_addr,
2108                smpl_buf_size));
2109
2110        if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2111
2112        /*
2113         * UNLOADED that the session has already been unreserved.
2114         */
2115        if (state == PFM_CTX_ZOMBIE) {
2116                pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2117        }
2118
2119        /*
2120         * disconnect file descriptor from context must be done
2121         * before we unlock.
2122         */
2123        filp->private_data = NULL;
2124
2125        /*
2126         * if we free on the spot, the context is now completely unreachable
2127         * from the callers side. The monitored task side is also cut, so we
2128         * can freely cut.
2129         *
2130         * If we have a deferred free, only the caller side is disconnected.
2131         */
2132        UNPROTECT_CTX(ctx, flags);
2133
2134        /*
2135         * All memory free operations (especially for vmalloc'ed memory)
2136         * MUST be done with interrupts ENABLED.
2137         */
2138        if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2139
2140        /*
2141         * return the memory used by the context
2142         */
2143        if (free_possible) pfm_context_free(ctx);
2144
2145        return 0;
2146}
2147
2148static const struct file_operations pfm_file_ops = {
2149        .llseek         = no_llseek,
2150        .read           = pfm_read,
2151        .write          = pfm_write,
2152        .poll           = pfm_poll,
2153        .unlocked_ioctl = pfm_ioctl,
2154        .fasync         = pfm_fasync,
2155        .release        = pfm_close,
2156        .flush          = pfm_flush
2157};
2158
2159static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2160{
2161        return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2162                             d_inode(dentry)->i_ino);
2163}
2164
2165static const struct dentry_operations pfmfs_dentry_operations = {
2166        .d_delete = always_delete_dentry,
2167        .d_dname = pfmfs_dname,
2168};
2169
2170
2171static struct file *
2172pfm_alloc_file(pfm_context_t *ctx)
2173{
2174        struct file *file;
2175        struct inode *inode;
2176        struct path path;
2177        struct qstr this = { .name = "" };
2178
2179        /*
2180         * allocate a new inode
2181         */
2182        inode = new_inode(pfmfs_mnt->mnt_sb);
2183        if (!inode)
2184                return ERR_PTR(-ENOMEM);
2185
2186        DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2187
2188        inode->i_mode = S_IFCHR|S_IRUGO;
2189        inode->i_uid  = current_fsuid();
2190        inode->i_gid  = current_fsgid();
2191
2192        /*
2193         * allocate a new dcache entry
2194         */
2195        path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2196        if (!path.dentry) {
2197                iput(inode);
2198                return ERR_PTR(-ENOMEM);
2199        }
2200        path.mnt = mntget(pfmfs_mnt);
2201
2202        d_add(path.dentry, inode);
2203
2204        file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2205        if (IS_ERR(file)) {
2206                path_put(&path);
2207                return file;
2208        }
2209
2210        file->f_flags = O_RDONLY;
2211        file->private_data = ctx;
2212
2213        return file;
2214}
2215
2216static int
2217pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2218{
2219        DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2220
2221        while (size > 0) {
2222                unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2223
2224
2225                if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2226                        return -ENOMEM;
2227
2228                addr  += PAGE_SIZE;
2229                buf   += PAGE_SIZE;
2230                size  -= PAGE_SIZE;
2231        }
2232        return 0;
2233}
2234
2235/*
2236 * allocate a sampling buffer and remaps it into the user address space of the task
2237 */
2238static int
2239pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2240{
2241        struct mm_struct *mm = task->mm;
2242        struct vm_area_struct *vma = NULL;
2243        unsigned long size;
2244        void *smpl_buf;
2245
2246
2247        /*
2248         * the fixed header + requested size and align to page boundary
2249         */
2250        size = PAGE_ALIGN(rsize);
2251
2252        DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2253
2254        /*
2255         * check requested size to avoid Denial-of-service attacks
2256         * XXX: may have to refine this test
2257         * Check against address space limit.
2258         *
2259         * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2260         *      return -ENOMEM;
2261         */
2262        if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2263                return -ENOMEM;
2264
2265        /*
2266         * We do the easy to undo allocations first.
2267         *
2268         * pfm_rvmalloc(), clears the buffer, so there is no leak
2269         */
2270        smpl_buf = pfm_rvmalloc(size);
2271        if (smpl_buf == NULL) {
2272                DPRINT(("Can't allocate sampling buffer\n"));
2273                return -ENOMEM;
2274        }
2275
2276        DPRINT(("smpl_buf @%p\n", smpl_buf));
2277
2278        /* allocate vma */
2279        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2280        if (!vma) {
2281                DPRINT(("Cannot allocate vma\n"));
2282                goto error_kmem;
2283        }
2284        INIT_LIST_HEAD(&vma->anon_vma_chain);
2285
2286        /*
2287         * partially initialize the vma for the sampling buffer
2288         */
2289        vma->vm_mm           = mm;
2290        vma->vm_file         = get_file(filp);
2291        vma->vm_flags        = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2292        vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2293
2294        /*
2295         * Now we have everything we need and we can initialize
2296         * and connect all the data structures
2297         */
2298
2299        ctx->ctx_smpl_hdr   = smpl_buf;
2300        ctx->ctx_smpl_size  = size; /* aligned size */
2301
2302        /*
2303         * Let's do the difficult operations next.
2304         *
2305         * now we atomically find some area in the address space and
2306         * remap the buffer in it.
2307         */
2308        down_write(&task->mm->mmap_sem);
2309
2310        /* find some free area in address space, must have mmap sem held */
2311        vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2312        if (IS_ERR_VALUE(vma->vm_start)) {
2313                DPRINT(("Cannot find unmapped area for size %ld\n", size));
2314                up_write(&task->mm->mmap_sem);
2315                goto error;
2316        }
2317        vma->vm_end = vma->vm_start + size;
2318        vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2319
2320        DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2321
2322        /* can only be applied to current task, need to have the mm semaphore held when called */
2323        if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2324                DPRINT(("Can't remap buffer\n"));
2325                up_write(&task->mm->mmap_sem);
2326                goto error;
2327        }
2328
2329        /*
2330         * now insert the vma in the vm list for the process, must be
2331         * done with mmap lock held
2332         */
2333        insert_vm_struct(mm, vma);
2334
2335        vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2336                                                        vma_pages(vma));
2337        up_write(&task->mm->mmap_sem);
2338
2339        /*
2340         * keep track of user level virtual address
2341         */
2342        ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2343        *(unsigned long *)user_vaddr = vma->vm_start;
2344
2345        return 0;
2346
2347error:
2348        kmem_cache_free(vm_area_cachep, vma);
2349error_kmem:
2350        pfm_rvfree(smpl_buf, size);
2351
2352        return -ENOMEM;
2353}
2354
2355/*
2356 * XXX: do something better here
2357 */
2358static int
2359pfm_bad_permissions(struct task_struct *task)
2360{
2361        const struct cred *tcred;
2362        kuid_t uid = current_uid();
2363        kgid_t gid = current_gid();
2364        int ret;
2365
2366        rcu_read_lock();
2367        tcred = __task_cred(task);
2368
2369        /* inspired by ptrace_attach() */
2370        DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2371                from_kuid(&init_user_ns, uid),
2372                from_kgid(&init_user_ns, gid),
2373                from_kuid(&init_user_ns, tcred->euid),
2374                from_kuid(&init_user_ns, tcred->suid),
2375                from_kuid(&init_user_ns, tcred->uid),
2376                from_kgid(&init_user_ns, tcred->egid),
2377                from_kgid(&init_user_ns, tcred->sgid)));
2378
2379        ret = ((!uid_eq(uid, tcred->euid))
2380               || (!uid_eq(uid, tcred->suid))
2381               || (!uid_eq(uid, tcred->uid))
2382               || (!gid_eq(gid, tcred->egid))
2383               || (!gid_eq(gid, tcred->sgid))
2384               || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2385
2386        rcu_read_unlock();
2387        return ret;
2388}
2389
2390static int
2391pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2392{
2393        int ctx_flags;
2394
2395        /* valid signal */
2396
2397        ctx_flags = pfx->ctx_flags;
2398
2399        if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2400
2401                /*
2402                 * cannot block in this mode
2403                 */
2404                if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2405                        DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2406                        return -EINVAL;
2407                }
2408        } else {
2409        }
2410        /* probably more to add here */
2411
2412        return 0;
2413}
2414
2415static int
2416pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2417                     unsigned int cpu, pfarg_context_t *arg)
2418{
2419        pfm_buffer_fmt_t *fmt = NULL;
2420        unsigned long size = 0UL;
2421        void *uaddr = NULL;
2422        void *fmt_arg = NULL;
2423        int ret = 0;
2424#define PFM_CTXARG_BUF_ARG(a)   (pfm_buffer_fmt_t *)(a+1)
2425
2426        /* invoke and lock buffer format, if found */
2427        fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2428        if (fmt == NULL) {
2429                DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2430                return -EINVAL;
2431        }
2432
2433        /*
2434         * buffer argument MUST be contiguous to pfarg_context_t
2435         */
2436        if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2437
2438        ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2439
2440        DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2441
2442        if (ret) goto error;
2443
2444        /* link buffer format and context */
2445        ctx->ctx_buf_fmt = fmt;
2446        ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2447
2448        /*
2449         * check if buffer format wants to use perfmon buffer allocation/mapping service
2450         */
2451        ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2452        if (ret) goto error;
2453
2454        if (size) {
2455                /*
2456                 * buffer is always remapped into the caller's address space
2457                 */
2458                ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2459                if (ret) goto error;
2460
2461                /* keep track of user address of buffer */
2462                arg->ctx_smpl_vaddr = uaddr;
2463        }
2464        ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2465
2466error:
2467        return ret;
2468}
2469
2470static void
2471pfm_reset_pmu_state(pfm_context_t *ctx)
2472{
2473        int i;
2474
2475        /*
2476         * install reset values for PMC.
2477         */
2478        for (i=1; PMC_IS_LAST(i) == 0; i++) {
2479                if (PMC_IS_IMPL(i) == 0) continue;
2480                ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2481                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2482        }
2483        /*
2484         * PMD registers are set to 0UL when the context in memset()
2485         */
2486
2487        /*
2488         * On context switched restore, we must restore ALL pmc and ALL pmd even
2489         * when they are not actively used by the task. In UP, the incoming process
2490         * may otherwise pick up left over PMC, PMD state from the previous process.
2491         * As opposed to PMD, stale PMC can cause harm to the incoming
2492         * process because they may change what is being measured.
2493         * Therefore, we must systematically reinstall the entire
2494         * PMC state. In SMP, the same thing is possible on the
2495         * same CPU but also on between 2 CPUs.
2496         *
2497         * The problem with PMD is information leaking especially
2498         * to user level when psr.sp=0
2499         *
2500         * There is unfortunately no easy way to avoid this problem
2501         * on either UP or SMP. This definitively slows down the
2502         * pfm_load_regs() function.
2503         */
2504
2505         /*
2506          * bitmask of all PMCs accessible to this context
2507          *
2508          * PMC0 is treated differently.
2509          */
2510        ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2511
2512        /*
2513         * bitmask of all PMDs that are accessible to this context
2514         */
2515        ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2516
2517        DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2518
2519        /*
2520         * useful in case of re-enable after disable
2521         */
2522        ctx->ctx_used_ibrs[0] = 0UL;
2523        ctx->ctx_used_dbrs[0] = 0UL;
2524}
2525
2526static int
2527pfm_ctx_getsize(void *arg, size_t *sz)
2528{
2529        pfarg_context_t *req = (pfarg_context_t *)arg;
2530        pfm_buffer_fmt_t *fmt;
2531
2532        *sz = 0;
2533
2534        if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2535
2536        fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2537        if (fmt == NULL) {
2538                DPRINT(("cannot find buffer format\n"));
2539                return -EINVAL;
2540        }
2541        /* get just enough to copy in user parameters */
2542        *sz = fmt->fmt_arg_size;
2543        DPRINT(("arg_size=%lu\n", *sz));
2544
2545        return 0;
2546}
2547
2548
2549
2550/*
2551 * cannot attach if :
2552 *      - kernel task
2553 *      - task not owned by caller
2554 *      - task incompatible with context mode
2555 */
2556static int
2557pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2558{
2559        /*
2560         * no kernel task or task not owner by caller
2561         */
2562        if (task->mm == NULL) {
2563                DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2564                return -EPERM;
2565        }
2566        if (pfm_bad_permissions(task)) {
2567                DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2568                return -EPERM;
2569        }
2570        /*
2571         * cannot block in self-monitoring mode
2572         */
2573        if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2574                DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2575                return -EINVAL;
2576        }
2577
2578        if (task->exit_state == EXIT_ZOMBIE) {
2579                DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2580                return -EBUSY;
2581        }
2582
2583        /*
2584         * always ok for self
2585         */
2586        if (task == current) return 0;
2587
2588        if (!task_is_stopped_or_traced(task)) {
2589                DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2590                return -EBUSY;
2591        }
2592        /*
2593         * make sure the task is off any CPU
2594         */
2595        wait_task_inactive(task, 0);
2596
2597        /* more to come... */
2598
2599        return 0;
2600}
2601
2602static int
2603pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2604{
2605        struct task_struct *p = current;
2606        int ret;
2607
2608        /* XXX: need to add more checks here */
2609        if (pid < 2) return -EPERM;
2610
2611        if (pid != task_pid_vnr(current)) {
2612
2613                read_lock(&tasklist_lock);
2614
2615                p = find_task_by_vpid(pid);
2616
2617                /* make sure task cannot go away while we operate on it */
2618                if (p) get_task_struct(p);
2619
2620                read_unlock(&tasklist_lock);
2621
2622                if (p == NULL) return -ESRCH;
2623        }
2624
2625        ret = pfm_task_incompatible(ctx, p);
2626        if (ret == 0) {
2627                *task = p;
2628        } else if (p != current) {
2629                pfm_put_task(p);
2630        }
2631        return ret;
2632}
2633
2634
2635
2636static int
2637pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2638{
2639        pfarg_context_t *req = (pfarg_context_t *)arg;
2640        struct file *filp;
2641        struct path path;
2642        int ctx_flags;
2643        int fd;
2644        int ret;
2645
2646        /* let's check the arguments first */
2647        ret = pfarg_is_sane(current, req);
2648        if (ret < 0)
2649                return ret;
2650
2651        ctx_flags = req->ctx_flags;
2652
2653        ret = -ENOMEM;
2654
2655        fd = get_unused_fd_flags(0);
2656        if (fd < 0)
2657                return fd;
2658
2659        ctx = pfm_context_alloc(ctx_flags);
2660        if (!ctx)
2661                goto error;
2662
2663        filp = pfm_alloc_file(ctx);
2664        if (IS_ERR(filp)) {
2665                ret = PTR_ERR(filp);
2666                goto error_file;
2667        }
2668
2669        req->ctx_fd = ctx->ctx_fd = fd;
2670
2671        /*
2672         * does the user want to sample?
2673         */
2674        if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2675                ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2676                if (ret)
2677                        goto buffer_error;
2678        }
2679
2680        DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2681                ctx,
2682                ctx_flags,
2683                ctx->ctx_fl_system,
2684                ctx->ctx_fl_block,
2685                ctx->ctx_fl_excl_idle,
2686                ctx->ctx_fl_no_msg,
2687                ctx->ctx_fd));
2688
2689        /*
2690         * initialize soft PMU state
2691         */
2692        pfm_reset_pmu_state(ctx);
2693
2694        fd_install(fd, filp);
2695
2696        return 0;
2697
2698buffer_error:
2699        path = filp->f_path;
2700        put_filp(filp);
2701        path_put(&path);
2702
2703        if (ctx->ctx_buf_fmt) {
2704                pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2705        }
2706error_file:
2707        pfm_context_free(ctx);
2708
2709error:
2710        put_unused_fd(fd);
2711        return ret;
2712}
2713
2714static inline unsigned long
2715pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2716{
2717        unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2718        unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2719        extern unsigned long carta_random32 (unsigned long seed);
2720
2721        if (reg->flags & PFM_REGFL_RANDOM) {
2722                new_seed = carta_random32(old_seed);
2723                val -= (old_seed & mask);       /* counter values are negative numbers! */
2724                if ((mask >> 32) != 0)
2725                        /* construct a full 64-bit random value: */
2726                        new_seed |= carta_random32(old_seed >> 32) << 32;
2727                reg->seed = new_seed;
2728        }
2729        reg->lval = val;
2730        return val;
2731}
2732
2733static void
2734pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2735{
2736        unsigned long mask = ovfl_regs[0];
2737        unsigned long reset_others = 0UL;
2738        unsigned long val;
2739        int i;
2740
2741        /*
2742         * now restore reset value on sampling overflowed counters
2743         */
2744        mask >>= PMU_FIRST_COUNTER;
2745        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2746
2747                if ((mask & 0x1UL) == 0UL) continue;
2748
2749                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2750                reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2751
2752                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2753        }
2754
2755        /*
2756         * Now take care of resetting the other registers
2757         */
2758        for(i = 0; reset_others; i++, reset_others >>= 1) {
2759
2760                if ((reset_others & 0x1) == 0) continue;
2761
2762                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2763
2764                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2765                          is_long_reset ? "long" : "short", i, val));
2766        }
2767}
2768
2769static void
2770pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2771{
2772        unsigned long mask = ovfl_regs[0];
2773        unsigned long reset_others = 0UL;
2774        unsigned long val;
2775        int i;
2776
2777        DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2778
2779        if (ctx->ctx_state == PFM_CTX_MASKED) {
2780                pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2781                return;
2782        }
2783
2784        /*
2785         * now restore reset value on sampling overflowed counters
2786         */
2787        mask >>= PMU_FIRST_COUNTER;
2788        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2789
2790                if ((mask & 0x1UL) == 0UL) continue;
2791
2792                val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2793                reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2794
2795                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2796
2797                pfm_write_soft_counter(ctx, i, val);
2798        }
2799
2800        /*
2801         * Now take care of resetting the other registers
2802         */
2803        for(i = 0; reset_others; i++, reset_others >>= 1) {
2804
2805                if ((reset_others & 0x1) == 0) continue;
2806
2807                val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2808
2809                if (PMD_IS_COUNTING(i)) {
2810                        pfm_write_soft_counter(ctx, i, val);
2811                } else {
2812                        ia64_set_pmd(i, val);
2813                }
2814                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2815                          is_long_reset ? "long" : "short", i, val));
2816        }
2817        ia64_srlz_d();
2818}
2819
2820static int
2821pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2822{
2823        struct task_struct *task;
2824        pfarg_reg_t *req = (pfarg_reg_t *)arg;
2825        unsigned long value, pmc_pm;
2826        unsigned long smpl_pmds, reset_pmds, impl_pmds;
2827        unsigned int cnum, reg_flags, flags, pmc_type;
2828        int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2829        int is_monitor, is_counting, state;
2830        int ret = -EINVAL;
2831        pfm_reg_check_t wr_func;
2832#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2833
2834        state     = ctx->ctx_state;
2835        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2836        is_system = ctx->ctx_fl_system;
2837        task      = ctx->ctx_task;
2838        impl_pmds = pmu_conf->impl_pmds[0];
2839
2840        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2841
2842        if (is_loaded) {
2843                /*
2844                 * In system wide and when the context is loaded, access can only happen
2845                 * when the caller is running on the CPU being monitored by the session.
2846                 * It does not have to be the owner (ctx_task) of the context per se.
2847                 */
2848                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2849                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2850                        return -EBUSY;
2851                }
2852                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2853        }
2854        expert_mode = pfm_sysctl.expert_mode; 
2855
2856        for (i = 0; i < count; i++, req++) {
2857
2858                cnum       = req->reg_num;
2859                reg_flags  = req->reg_flags;
2860                value      = req->reg_value;
2861                smpl_pmds  = req->reg_smpl_pmds[0];
2862                reset_pmds = req->reg_reset_pmds[0];
2863                flags      = 0;
2864
2865
2866                if (cnum >= PMU_MAX_PMCS) {
2867                        DPRINT(("pmc%u is invalid\n", cnum));
2868                        goto error;
2869                }
2870
2871                pmc_type   = pmu_conf->pmc_desc[cnum].type;
2872                pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2873                is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2874                is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2875
2876                /*
2877                 * we reject all non implemented PMC as well
2878                 * as attempts to modify PMC[0-3] which are used
2879                 * as status registers by the PMU
2880                 */
2881                if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2882                        DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2883                        goto error;
2884                }
2885                wr_func = pmu_conf->pmc_desc[cnum].write_check;
2886                /*
2887                 * If the PMC is a monitor, then if the value is not the default:
2888                 *      - system-wide session: PMCx.pm=1 (privileged monitor)
2889                 *      - per-task           : PMCx.pm=0 (user monitor)
2890                 */
2891                if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2892                        DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2893                                cnum,
2894                                pmc_pm,
2895                                is_system));
2896                        goto error;
2897                }
2898
2899                if (is_counting) {
2900                        /*
2901                         * enforce generation of overflow interrupt. Necessary on all
2902                         * CPUs.
2903                         */
2904                        value |= 1 << PMU_PMC_OI;
2905
2906                        if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2907                                flags |= PFM_REGFL_OVFL_NOTIFY;
2908                        }
2909
2910                        if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2911
2912                        /* verify validity of smpl_pmds */
2913                        if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2914                                DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2915                                goto error;
2916                        }
2917
2918                        /* verify validity of reset_pmds */
2919                        if ((reset_pmds & impl_pmds) != reset_pmds) {
2920                                DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2921                                goto error;
2922                        }
2923                } else {
2924                        if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2925                                DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2926                                goto error;
2927                        }
2928                        /* eventid on non-counting monitors are ignored */
2929                }
2930
2931                /*
2932                 * execute write checker, if any
2933                 */
2934                if (likely(expert_mode == 0 && wr_func)) {
2935                        ret = (*wr_func)(task, ctx, cnum, &value, regs);
2936                        if (ret) goto error;
2937                        ret = -EINVAL;
2938                }
2939
2940                /*
2941                 * no error on this register
2942                 */
2943                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2944
2945                /*
2946                 * Now we commit the changes to the software state
2947                 */
2948
2949                /*
2950                 * update overflow information
2951                 */
2952                if (is_counting) {
2953                        /*
2954                         * full flag update each time a register is programmed
2955                         */
2956                        ctx->ctx_pmds[cnum].flags = flags;
2957
2958                        ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2959                        ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2960                        ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2961
2962                        /*
2963                         * Mark all PMDS to be accessed as used.
2964                         *
2965                         * We do not keep track of PMC because we have to
2966                         * systematically restore ALL of them.
2967                         *
2968                         * We do not update the used_monitors mask, because
2969                         * if we have not programmed them, then will be in
2970                         * a quiescent state, therefore we will not need to
2971                         * mask/restore then when context is MASKED.
2972                         */
2973                        CTX_USED_PMD(ctx, reset_pmds);
2974                        CTX_USED_PMD(ctx, smpl_pmds);
2975                        /*
2976                         * make sure we do not try to reset on
2977                         * restart because we have established new values
2978                         */
2979                        if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2980                }
2981                /*
2982                 * Needed in case the user does not initialize the equivalent
2983                 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2984                 * possible leak here.
2985                 */
2986                CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2987
2988                /*
2989                 * keep track of the monitor PMC that we are using.
2990                 * we save the value of the pmc in ctx_pmcs[] and if
2991                 * the monitoring is not stopped for the context we also
2992                 * place it in the saved state area so that it will be
2993                 * picked up later by the context switch code.
2994                 *
2995                 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2996                 *
2997                 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
2998                 * monitoring needs to be stopped.
2999                 */
3000                if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3001
3002                /*
3003                 * update context state
3004                 */
3005                ctx->ctx_pmcs[cnum] = value;
3006
3007                if (is_loaded) {
3008                        /*
3009                         * write thread state
3010                         */
3011                        if (is_system == 0) ctx->th_pmcs[cnum] = value;
3012
3013                        /*
3014                         * write hardware register if we can
3015                         */
3016                        if (can_access_pmu) {
3017                                ia64_set_pmc(cnum, value);
3018                        }
3019#ifdef CONFIG_SMP
3020                        else {
3021                                /*
3022                                 * per-task SMP only here
3023                                 *
3024                                 * we are guaranteed that the task is not running on the other CPU,
3025                                 * we indicate that this PMD will need to be reloaded if the task
3026                                 * is rescheduled on the CPU it ran last on.
3027                                 */
3028                                ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3029                        }
3030#endif
3031                }
3032
3033                DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3034                          cnum,
3035                          value,
3036                          is_loaded,
3037                          can_access_pmu,
3038                          flags,
3039                          ctx->ctx_all_pmcs[0],
3040                          ctx->ctx_used_pmds[0],
3041                          ctx->ctx_pmds[cnum].eventid,
3042                          smpl_pmds,
3043                          reset_pmds,
3044                          ctx->ctx_reload_pmcs[0],
3045                          ctx->ctx_used_monitors[0],
3046                          ctx->ctx_ovfl_regs[0]));
3047        }
3048
3049        /*
3050         * make sure the changes are visible
3051         */
3052        if (can_access_pmu) ia64_srlz_d();
3053
3054        return 0;
3055error:
3056        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3057        return ret;
3058}
3059
3060static int
3061pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3062{
3063        struct task_struct *task;
3064        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3065        unsigned long value, hw_value, ovfl_mask;
3066        unsigned int cnum;
3067        int i, can_access_pmu = 0, state;
3068        int is_counting, is_loaded, is_system, expert_mode;
3069        int ret = -EINVAL;
3070        pfm_reg_check_t wr_func;
3071
3072
3073        state     = ctx->ctx_state;
3074        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3075        is_system = ctx->ctx_fl_system;
3076        ovfl_mask = pmu_conf->ovfl_val;
3077        task      = ctx->ctx_task;
3078
3079        if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3080
3081        /*
3082         * on both UP and SMP, we can only write to the PMC when the task is
3083         * the owner of the local PMU.
3084         */
3085        if (likely(is_loaded)) {
3086                /*
3087                 * In system wide and when the context is loaded, access can only happen
3088                 * when the caller is running on the CPU being monitored by the session.
3089                 * It does not have to be the owner (ctx_task) of the context per se.
3090                 */
3091                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3092                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3093                        return -EBUSY;
3094                }
3095                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3096        }
3097        expert_mode = pfm_sysctl.expert_mode; 
3098
3099        for (i = 0; i < count; i++, req++) {
3100
3101                cnum  = req->reg_num;
3102                value = req->reg_value;
3103
3104                if (!PMD_IS_IMPL(cnum)) {
3105                        DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3106                        goto abort_mission;
3107                }
3108                is_counting = PMD_IS_COUNTING(cnum);
3109                wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3110
3111                /*
3112                 * execute write checker, if any
3113                 */
3114                if (unlikely(expert_mode == 0 && wr_func)) {
3115                        unsigned long v = value;
3116
3117                        ret = (*wr_func)(task, ctx, cnum, &v, regs);
3118                        if (ret) goto abort_mission;
3119
3120                        value = v;
3121                        ret   = -EINVAL;
3122                }
3123
3124                /*
3125                 * no error on this register
3126                 */
3127                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3128
3129                /*
3130                 * now commit changes to software state
3131                 */
3132                hw_value = value;
3133
3134                /*
3135                 * update virtualized (64bits) counter
3136                 */
3137                if (is_counting) {
3138                        /*
3139                         * write context state
3140                         */
3141                        ctx->ctx_pmds[cnum].lval = value;
3142
3143                        /*
3144                         * when context is load we use the split value
3145                         */
3146                        if (is_loaded) {
3147                                hw_value = value &  ovfl_mask;
3148                                value    = value & ~ovfl_mask;
3149                        }
3150                }
3151                /*
3152                 * update reset values (not just for counters)
3153                 */
3154                ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3155                ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3156
3157                /*
3158                 * update randomization parameters (not just for counters)
3159                 */
3160                ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3161                ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3162
3163                /*
3164                 * update context value
3165                 */
3166                ctx->ctx_pmds[cnum].val  = value;
3167
3168                /*
3169                 * Keep track of what we use
3170                 *
3171                 * We do not keep track of PMC because we have to
3172                 * systematically restore ALL of them.
3173                 */
3174                CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3175
3176                /*
3177                 * mark this PMD register used as well
3178                 */
3179                CTX_USED_PMD(ctx, RDEP(cnum));
3180
3181                /*
3182                 * make sure we do not try to reset on
3183                 * restart because we have established new values
3184                 */
3185                if (is_counting && state == PFM_CTX_MASKED) {
3186                        ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3187                }
3188
3189                if (is_loaded) {
3190                        /*
3191                         * write thread state
3192                         */
3193                        if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3194
3195                        /*
3196                         * write hardware register if we can
3197                         */
3198                        if (can_access_pmu) {
3199                                ia64_set_pmd(cnum, hw_value);
3200                        } else {
3201#ifdef CONFIG_SMP
3202                                /*
3203                                 * we are guaranteed that the task is not running on the other CPU,
3204                                 * we indicate that this PMD will need to be reloaded if the task
3205                                 * is rescheduled on the CPU it ran last on.
3206                                 */
3207                                ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3208#endif
3209                        }
3210                }
3211
3212                DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3213                          "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3214                        cnum,
3215                        value,
3216                        is_loaded,
3217                        can_access_pmu,
3218                        hw_value,
3219                        ctx->ctx_pmds[cnum].val,
3220                        ctx->ctx_pmds[cnum].short_reset,
3221                        ctx->ctx_pmds[cnum].long_reset,
3222                        PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3223                        ctx->ctx_pmds[cnum].seed,
3224                        ctx->ctx_pmds[cnum].mask,
3225                        ctx->ctx_used_pmds[0],
3226                        ctx->ctx_pmds[cnum].reset_pmds[0],
3227                        ctx->ctx_reload_pmds[0],
3228                        ctx->ctx_all_pmds[0],
3229                        ctx->ctx_ovfl_regs[0]));
3230        }
3231
3232        /*
3233         * make changes visible
3234         */
3235        if (can_access_pmu) ia64_srlz_d();
3236
3237        return 0;
3238
3239abort_mission:
3240        /*
3241         * for now, we have only one possibility for error
3242         */
3243        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3244        return ret;
3245}
3246
3247/*
3248 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3249 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3250 * interrupt is delivered during the call, it will be kept pending until we leave, making
3251 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3252 * guaranteed to return consistent data to the user, it may simply be old. It is not
3253 * trivial to treat the overflow while inside the call because you may end up in
3254 * some module sampling buffer code causing deadlocks.
3255 */
3256static int
3257pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3258{
3259        struct task_struct *task;
3260        unsigned long val = 0UL, lval, ovfl_mask, sval;
3261        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3262        unsigned int cnum, reg_flags = 0;
3263        int i, can_access_pmu = 0, state;
3264        int is_loaded, is_system, is_counting, expert_mode;
3265        int ret = -EINVAL;
3266        pfm_reg_check_t rd_func;
3267
3268        /*
3269         * access is possible when loaded only for
3270         * self-monitoring tasks or in UP mode
3271         */
3272
3273        state     = ctx->ctx_state;
3274        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3275        is_system = ctx->ctx_fl_system;
3276        ovfl_mask = pmu_conf->ovfl_val;
3277        task      = ctx->ctx_task;
3278
3279        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3280
3281        if (likely(is_loaded)) {
3282                /*
3283                 * In system wide and when the context is loaded, access can only happen
3284                 * when the caller is running on the CPU being monitored by the session.
3285                 * It does not have to be the owner (ctx_task) of the context per se.
3286                 */
3287                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3288                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3289                        return -EBUSY;
3290                }
3291                /*
3292                 * this can be true when not self-monitoring only in UP
3293                 */
3294                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3295
3296                if (can_access_pmu) ia64_srlz_d();
3297        }
3298        expert_mode = pfm_sysctl.expert_mode; 
3299
3300        DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3301                is_loaded,
3302                can_access_pmu,
3303                state));
3304
3305        /*
3306         * on both UP and SMP, we can only read the PMD from the hardware register when
3307         * the task is the owner of the local PMU.
3308         */
3309
3310        for (i = 0; i < count; i++, req++) {
3311
3312                cnum        = req->reg_num;
3313                reg_flags   = req->reg_flags;
3314
3315                if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3316                /*
3317                 * we can only read the register that we use. That includes
3318                 * the one we explicitly initialize AND the one we want included
3319                 * in the sampling buffer (smpl_regs).
3320                 *
3321                 * Having this restriction allows optimization in the ctxsw routine
3322                 * without compromising security (leaks)
3323                 */
3324                if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3325
3326                sval        = ctx->ctx_pmds[cnum].val;
3327                lval        = ctx->ctx_pmds[cnum].lval;
3328                is_counting = PMD_IS_COUNTING(cnum);
3329
3330                /*
3331                 * If the task is not the current one, then we check if the
3332                 * PMU state is still in the local live register due to lazy ctxsw.
3333                 * If true, then we read directly from the registers.
3334                 */
3335                if (can_access_pmu){
3336                        val = ia64_get_pmd(cnum);
3337                } else {
3338                        /*
3339                         * context has been saved
3340                         * if context is zombie, then task does not exist anymore.
3341                         * In this case, we use the full value saved in the context (pfm_flush_regs()).
3342                         */
3343                        val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3344                }
3345                rd_func = pmu_conf->pmd_desc[cnum].read_check;
3346
3347                if (is_counting) {
3348                        /*
3349                         * XXX: need to check for overflow when loaded
3350                         */
3351                        val &= ovfl_mask;
3352                        val += sval;
3353                }
3354
3355                /*
3356                 * execute read checker, if any
3357                 */
3358                if (unlikely(expert_mode == 0 && rd_func)) {
3359                        unsigned long v = val;
3360                        ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3361                        if (ret) goto error;
3362                        val = v;
3363                        ret = -EINVAL;
3364                }
3365
3366                PFM_REG_RETFLAG_SET(reg_flags, 0);
3367
3368                DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3369
3370                /*
3371                 * update register return value, abort all if problem during copy.
3372                 * we only modify the reg_flags field. no check mode is fine because
3373                 * access has been verified upfront in sys_perfmonctl().
3374                 */
3375                req->reg_value            = val;
3376                req->reg_flags            = reg_flags;
3377                req->reg_last_reset_val   = lval;
3378        }
3379
3380        return 0;
3381
3382error:
3383        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3384        return ret;
3385}
3386
3387int
3388pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3389{
3390        pfm_context_t *ctx;
3391
3392        if (req == NULL) return -EINVAL;
3393
3394        ctx = GET_PMU_CTX();
3395
3396        if (ctx == NULL) return -EINVAL;
3397
3398        /*
3399         * for now limit to current task, which is enough when calling
3400         * from overflow handler
3401         */
3402        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3403
3404        return pfm_write_pmcs(ctx, req, nreq, regs);
3405}
3406EXPORT_SYMBOL(pfm_mod_write_pmcs);
3407
3408int
3409pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3410{
3411        pfm_context_t *ctx;
3412
3413        if (req == NULL) return -EINVAL;
3414
3415        ctx = GET_PMU_CTX();
3416
3417        if (ctx == NULL) return -EINVAL;
3418
3419        /*
3420         * for now limit to current task, which is enough when calling
3421         * from overflow handler
3422         */
3423        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3424
3425        return pfm_read_pmds(ctx, req, nreq, regs);
3426}
3427EXPORT_SYMBOL(pfm_mod_read_pmds);
3428
3429/*
3430 * Only call this function when a process it trying to
3431 * write the debug registers (reading is always allowed)
3432 */
3433int
3434pfm_use_debug_registers(struct task_struct *task)
3435{
3436        pfm_context_t *ctx = task->thread.pfm_context;
3437        unsigned long flags;
3438        int ret = 0;
3439
3440        if (pmu_conf->use_rr_dbregs == 0) return 0;
3441
3442        DPRINT(("called for [%d]\n", task_pid_nr(task)));
3443
3444        /*
3445         * do it only once
3446         */
3447        if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3448
3449        /*
3450         * Even on SMP, we do not need to use an atomic here because
3451         * the only way in is via ptrace() and this is possible only when the
3452         * process is stopped. Even in the case where the ctxsw out is not totally
3453         * completed by the time we come here, there is no way the 'stopped' process
3454         * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3455         * So this is always safe.
3456         */
3457        if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3458
3459        LOCK_PFS(flags);
3460
3461        /*
3462         * We cannot allow setting breakpoints when system wide monitoring
3463         * sessions are using the debug registers.
3464         */
3465        if (pfm_sessions.pfs_sys_use_dbregs> 0)
3466                ret = -1;
3467        else
3468                pfm_sessions.pfs_ptrace_use_dbregs++;
3469
3470        DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3471                  pfm_sessions.pfs_ptrace_use_dbregs,
3472                  pfm_sessions.pfs_sys_use_dbregs,
3473                  task_pid_nr(task), ret));
3474
3475        UNLOCK_PFS(flags);
3476
3477        return ret;
3478}
3479
3480/*
3481 * This function is called for every task that exits with the
3482 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3483 * able to use the debug registers for debugging purposes via
3484 * ptrace(). Therefore we know it was not using them for
3485 * performance monitoring, so we only decrement the number
3486 * of "ptraced" debug register users to keep the count up to date
3487 */
3488int
3489pfm_release_debug_registers(struct task_struct *task)
3490{
3491        unsigned long flags;
3492        int ret;
3493
3494        if (pmu_conf->use_rr_dbregs == 0) return 0;
3495
3496        LOCK_PFS(flags);
3497        if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3498                printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3499                ret = -1;
3500        }  else {
3501                pfm_sessions.pfs_ptrace_use_dbregs--;
3502                ret = 0;
3503        }
3504        UNLOCK_PFS(flags);
3505
3506        return ret;
3507}
3508
3509static int
3510pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3511{
3512        struct task_struct *task;
3513        pfm_buffer_fmt_t *fmt;
3514        pfm_ovfl_ctrl_t rst_ctrl;
3515        int state, is_system;
3516        int ret = 0;
3517
3518        state     = ctx->ctx_state;
3519        fmt       = ctx->ctx_buf_fmt;
3520        is_system = ctx->ctx_fl_system;
3521        task      = PFM_CTX_TASK(ctx);
3522
3523        switch(state) {
3524                case PFM_CTX_MASKED:
3525                        break;
3526                case PFM_CTX_LOADED: 
3527                        if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3528                        /* fall through */
3529                case PFM_CTX_UNLOADED:
3530                case PFM_CTX_ZOMBIE:
3531                        DPRINT(("invalid state=%d\n", state));
3532                        return -EBUSY;
3533                default:
3534                        DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3535                        return -EINVAL;
3536        }
3537
3538        /*
3539         * In system wide and when the context is loaded, access can only happen
3540         * when the caller is running on the CPU being monitored by the session.
3541         * It does not have to be the owner (ctx_task) of the context per se.
3542         */
3543        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3544                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3545                return -EBUSY;
3546        }
3547
3548        /* sanity check */
3549        if (unlikely(task == NULL)) {
3550                printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3551                return -EINVAL;
3552        }
3553
3554        if (task == current || is_system) {
3555
3556                fmt = ctx->ctx_buf_fmt;
3557
3558                DPRINT(("restarting self %d ovfl=0x%lx\n",
3559                        task_pid_nr(task),
3560                        ctx->ctx_ovfl_regs[0]));
3561
3562                if (CTX_HAS_SMPL(ctx)) {
3563
3564                        prefetch(ctx->ctx_smpl_hdr);
3565
3566                        rst_ctrl.bits.mask_monitoring = 0;
3567                        rst_ctrl.bits.reset_ovfl_pmds = 0;
3568
3569                        if (state == PFM_CTX_LOADED)
3570                                ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3571                        else
3572                                ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3573                } else {
3574                        rst_ctrl.bits.mask_monitoring = 0;
3575                        rst_ctrl.bits.reset_ovfl_pmds = 1;
3576                }
3577
3578                if (ret == 0) {
3579                        if (rst_ctrl.bits.reset_ovfl_pmds)
3580                                pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3581
3582                        if (rst_ctrl.bits.mask_monitoring == 0) {
3583                                DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3584
3585                                if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3586                        } else {
3587                                DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3588
3589                                // cannot use pfm_stop_monitoring(task, regs);
3590                        }
3591                }
3592                /*
3593                 * clear overflowed PMD mask to remove any stale information
3594                 */
3595                ctx->ctx_ovfl_regs[0] = 0UL;
3596
3597                /*
3598                 * back to LOADED state
3599                 */
3600                ctx->ctx_state = PFM_CTX_LOADED;
3601
3602                /*
3603                 * XXX: not really useful for self monitoring
3604                 */
3605                ctx->ctx_fl_can_restart = 0;
3606
3607                return 0;
3608        }
3609
3610        /* 
3611         * restart another task
3612         */
3613
3614        /*
3615         * When PFM_CTX_MASKED, we cannot issue a restart before the previous 
3616         * one is seen by the task.
3617         */
3618        if (state == PFM_CTX_MASKED) {
3619                if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3620                /*
3621                 * will prevent subsequent restart before this one is
3622                 * seen by other task
3623                 */
3624                ctx->ctx_fl_can_restart = 0;
3625        }
3626
3627        /*
3628         * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3629         * the task is blocked or on its way to block. That's the normal
3630         * restart path. If the monitoring is not masked, then the task
3631         * can be actively monitoring and we cannot directly intervene.
3632         * Therefore we use the trap mechanism to catch the task and
3633         * force it to reset the buffer/reset PMDs.
3634         *
3635         * if non-blocking, then we ensure that the task will go into
3636         * pfm_handle_work() before returning to user mode.
3637         *
3638         * We cannot explicitly reset another task, it MUST always
3639         * be done by the task itself. This works for system wide because
3640         * the tool that is controlling the session is logically doing 
3641         * "self-monitoring".
3642         */
3643        if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3644                DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3645                complete(&ctx->ctx_restart_done);
3646        } else {
3647                DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3648
3649                ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3650
3651                PFM_SET_WORK_PENDING(task, 1);
3652
3653                set_notify_resume(task);
3654
3655                /*
3656                 * XXX: send reschedule if task runs on another CPU
3657                 */
3658        }
3659        return 0;
3660}
3661
3662static int
3663pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3664{
3665        unsigned int m = *(unsigned int *)arg;
3666
3667        pfm_sysctl.debug = m == 0 ? 0 : 1;
3668
3669        printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3670
3671        if (m == 0) {
3672                memset(pfm_stats, 0, sizeof(pfm_stats));
3673                for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3674        }
3675        return 0;
3676}
3677
3678/*
3679 * arg can be NULL and count can be zero for this function
3680 */
3681static int
3682pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3683{
3684        struct thread_struct *thread = NULL;
3685        struct task_struct *task;
3686        pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3687        unsigned long flags;
3688        dbreg_t dbreg;
3689        unsigned int rnum;
3690        int first_time;
3691        int ret = 0, state;
3692        int i, can_access_pmu = 0;
3693        int is_system, is_loaded;
3694
3695        if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3696
3697        state     = ctx->ctx_state;
3698        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3699        is_system = ctx->ctx_fl_system;
3700        task      = ctx->ctx_task;
3701
3702        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3703
3704        /*
3705         * on both UP and SMP, we can only write to the PMC when the task is
3706         * the owner of the local PMU.
3707         */
3708        if (is_loaded) {
3709                thread = &task->thread;
3710                /*
3711                 * In system wide and when the context is loaded, access can only happen
3712                 * when the caller is running on the CPU being monitored by the session.
3713                 * It does not have to be the owner (ctx_task) of the context per se.
3714                 */
3715                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3716                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3717                        return -EBUSY;
3718                }
3719                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3720        }
3721
3722        /*
3723         * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3724         * ensuring that no real breakpoint can be installed via this call.
3725         *
3726         * IMPORTANT: regs can be NULL in this function
3727         */
3728
3729        first_time = ctx->ctx_fl_using_dbreg == 0;
3730
3731        /*
3732         * don't bother if we are loaded and task is being debugged
3733         */
3734        if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3735                DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3736                return -EBUSY;
3737        }
3738
3739        /*
3740         * check for debug registers in system wide mode
3741         *
3742         * If though a check is done in pfm_context_load(),
3743         * we must repeat it here, in case the registers are
3744         * written after the context is loaded
3745         */
3746        if (is_loaded) {
3747                LOCK_PFS(flags);
3748
3749                if (first_time && is_system) {
3750                        if (pfm_sessions.pfs_ptrace_use_dbregs)
3751                                ret = -EBUSY;
3752                        else
3753                                pfm_sessions.pfs_sys_use_dbregs++;
3754                }
3755                UNLOCK_PFS(flags);
3756        }
3757
3758        if (ret != 0) return ret;
3759
3760        /*
3761         * mark ourself as user of the debug registers for
3762         * perfmon purposes.
3763         */
3764        ctx->ctx_fl_using_dbreg = 1;
3765
3766        /*
3767         * clear hardware registers to make sure we don't
3768         * pick up stale state.
3769         *
3770         * for a system wide session, we do not use
3771         * thread.dbr, thread.ibr because this process
3772         * never leaves the current CPU and the state
3773         * is shared by all processes running on it
3774         */
3775        if (first_time && can_access_pmu) {
3776                DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3777                for (i=0; i < pmu_conf->num_ibrs; i++) {
3778                        ia64_set_ibr(i, 0UL);
3779                        ia64_dv_serialize_instruction();
3780                }
3781                ia64_srlz_i();
3782                for (i=0; i < pmu_conf->num_dbrs; i++) {
3783                        ia64_set_dbr(i, 0UL);
3784                        ia64_dv_serialize_data();
3785                }
3786                ia64_srlz_d();
3787        }
3788
3789        /*
3790         * Now install the values into the registers
3791         */
3792        for (i = 0; i < count; i++, req++) {
3793
3794                rnum      = req->dbreg_num;
3795                dbreg.val = req->dbreg_value;
3796
3797                ret = -EINVAL;
3798
3799                if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3800                        DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3801                                  rnum, dbreg.val, mode, i, count));
3802
3803                        goto abort_mission;
3804                }
3805
3806                /*
3807                 * make sure we do not install enabled breakpoint
3808                 */
3809                if (rnum & 0x1) {
3810                        if (mode == PFM_CODE_RR)
3811                                dbreg.ibr.ibr_x = 0;
3812                        else
3813                                dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3814                }
3815
3816                PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3817
3818                /*
3819                 * Debug registers, just like PMC, can only be modified
3820                 * by a kernel call. Moreover, perfmon() access to those
3821                 * registers are centralized in this routine. The hardware
3822                 * does not modify the value of these registers, therefore,
3823                 * if we save them as they are written, we can avoid having
3824                 * to save them on context switch out. This is made possible
3825                 * by the fact that when perfmon uses debug registers, ptrace()
3826                 * won't be able to modify them concurrently.
3827                 */
3828                if (mode == PFM_CODE_RR) {
3829                        CTX_USED_IBR(ctx, rnum);
3830
3831                        if (can_access_pmu) {
3832                                ia64_set_ibr(rnum, dbreg.val);
3833                                ia64_dv_serialize_instruction();
3834                        }
3835
3836                        ctx->ctx_ibrs[rnum] = dbreg.val;
3837
3838                        DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3839                                rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3840                } else {
3841                        CTX_USED_DBR(ctx, rnum);
3842
3843                        if (can_access_pmu) {
3844                                ia64_set_dbr(rnum, dbreg.val);
3845                                ia64_dv_serialize_data();
3846                        }
3847                        ctx->ctx_dbrs[rnum] = dbreg.val;
3848
3849                        DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3850                                rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3851                }
3852        }
3853
3854        return 0;
3855
3856abort_mission:
3857        /*
3858         * in case it was our first attempt, we undo the global modifications
3859         */
3860        if (first_time) {
3861                LOCK_PFS(flags);
3862                if (ctx->ctx_fl_system) {
3863                        pfm_sessions.pfs_sys_use_dbregs--;
3864                }
3865                UNLOCK_PFS(flags);
3866                ctx->ctx_fl_using_dbreg = 0;
3867        }
3868        /*
3869         * install error return flag
3870         */
3871        PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3872
3873        return ret;
3874}
3875
3876static int
3877pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3878{
3879        return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3880}
3881
3882static int
3883pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3884{
3885        return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3886}
3887
3888int
3889pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3890{
3891        pfm_context_t *ctx;
3892
3893        if (req == NULL) return -EINVAL;
3894
3895        ctx = GET_PMU_CTX();
3896
3897        if (ctx == NULL) return -EINVAL;
3898
3899        /*
3900         * for now limit to current task, which is enough when calling
3901         * from overflow handler
3902         */
3903        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3904
3905        return pfm_write_ibrs(ctx, req, nreq, regs);
3906}
3907EXPORT_SYMBOL(pfm_mod_write_ibrs);
3908
3909int
3910pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3911{
3912        pfm_context_t *ctx;
3913
3914        if (req == NULL) return -EINVAL;
3915
3916        ctx = GET_PMU_CTX();
3917
3918        if (ctx == NULL) return -EINVAL;
3919
3920        /*
3921         * for now limit to current task, which is enough when calling
3922         * from overflow handler
3923         */
3924        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3925
3926        return pfm_write_dbrs(ctx, req, nreq, regs);
3927}
3928EXPORT_SYMBOL(pfm_mod_write_dbrs);
3929
3930
3931static int
3932pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3933{
3934        pfarg_features_t *req = (pfarg_features_t *)arg;
3935
3936        req->ft_version = PFM_VERSION;
3937        return 0;
3938}
3939
3940static int
3941pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3942{
3943        struct pt_regs *tregs;
3944        struct task_struct *task = PFM_CTX_TASK(ctx);
3945        int state, is_system;
3946
3947        state     = ctx->ctx_state;
3948        is_system = ctx->ctx_fl_system;
3949
3950        /*
3951         * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3952         */
3953        if (state == PFM_CTX_UNLOADED) return -EINVAL;
3954
3955        /*
3956         * In system wide and when the context is loaded, access can only happen
3957         * when the caller is running on the CPU being monitored by the session.
3958         * It does not have to be the owner (ctx_task) of the context per se.
3959         */
3960        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3961                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3962                return -EBUSY;
3963        }
3964        DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3965                task_pid_nr(PFM_CTX_TASK(ctx)),
3966                state,
3967                is_system));
3968        /*
3969         * in system mode, we need to update the PMU directly
3970         * and the user level state of the caller, which may not
3971         * necessarily be the creator of the context.
3972         */
3973        if (is_system) {
3974                /*
3975                 * Update local PMU first
3976                 *
3977                 * disable dcr pp
3978                 */
3979                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3980                ia64_srlz_i();
3981
3982                /*
3983                 * update local cpuinfo
3984                 */
3985                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3986
3987                /*
3988                 * stop monitoring, does srlz.i
3989                 */
3990                pfm_clear_psr_pp();
3991
3992                /*
3993                 * stop monitoring in the caller
3994                 */
3995                ia64_psr(regs)->pp = 0;
3996
3997                return 0;
3998        }
3999        /*
4000         * per-task mode
4001         */
4002
4003        if (task == current) {
4004                /* stop monitoring  at kernel level */
4005                pfm_clear_psr_up();
4006
4007                /*
4008                 * stop monitoring at the user level
4009                 */
4010                ia64_psr(regs)->up = 0;
4011        } else {
4012                tregs = task_pt_regs(task);
4013
4014                /*
4015                 * stop monitoring at the user level
4016                 */
4017                ia64_psr(tregs)->up = 0;
4018
4019                /*
4020                 * monitoring disabled in kernel at next reschedule
4021                 */
4022                ctx->ctx_saved_psr_up = 0;
4023                DPRINT(("task=[%d]\n", task_pid_nr(task)));
4024        }
4025        return 0;
4026}
4027
4028
4029static int
4030pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4031{
4032        struct pt_regs *tregs;
4033        int state, is_system;
4034
4035        state     = ctx->ctx_state;
4036        is_system = ctx->ctx_fl_system;
4037
4038        if (state != PFM_CTX_LOADED) return -EINVAL;
4039
4040        /*
4041         * In system wide and when the context is loaded, access can only happen
4042         * when the caller is running on the CPU being monitored by the session.
4043         * It does not have to be the owner (ctx_task) of the context per se.
4044         */
4045        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4046                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4047                return -EBUSY;
4048        }
4049
4050        /*
4051         * in system mode, we need to update the PMU directly
4052         * and the user level state of the caller, which may not
4053         * necessarily be the creator of the context.
4054         */
4055        if (is_system) {
4056
4057                /*
4058                 * set user level psr.pp for the caller
4059                 */
4060                ia64_psr(regs)->pp = 1;
4061
4062                /*
4063                 * now update the local PMU and cpuinfo
4064                 */
4065                PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4066
4067                /*
4068                 * start monitoring at kernel level
4069                 */
4070                pfm_set_psr_pp();
4071
4072                /* enable dcr pp */
4073                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4074                ia64_srlz_i();
4075
4076                return 0;
4077        }
4078
4079        /*
4080         * per-process mode
4081         */
4082
4083        if (ctx->ctx_task == current) {
4084
4085                /* start monitoring at kernel level */
4086                pfm_set_psr_up();
4087
4088                /*
4089                 * activate monitoring at user level
4090                 */
4091                ia64_psr(regs)->up = 1;
4092
4093        } else {
4094                tregs = task_pt_regs(ctx->ctx_task);
4095
4096                /*
4097                 * start monitoring at the kernel level the next
4098                 * time the task is scheduled
4099                 */
4100                ctx->ctx_saved_psr_up = IA64_PSR_UP;
4101
4102                /*
4103                 * activate monitoring at user level
4104                 */
4105                ia64_psr(tregs)->up = 1;
4106        }
4107        return 0;
4108}
4109
4110static int
4111pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4112{
4113        pfarg_reg_t *req = (pfarg_reg_t *)arg;
4114        unsigned int cnum;
4115        int i;
4116        int ret = -EINVAL;
4117
4118        for (i = 0; i < count; i++, req++) {
4119
4120                cnum = req->reg_num;
4121
4122                if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4123
4124                req->reg_value = PMC_DFL_VAL(cnum);
4125
4126                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4127
4128                DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4129        }
4130        return 0;
4131
4132abort_mission:
4133        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4134        return ret;
4135}
4136
4137static int
4138pfm_check_task_exist(pfm_context_t *ctx)
4139{
4140        struct task_struct *g, *t;
4141        int ret = -ESRCH;
4142
4143        read_lock(&tasklist_lock);
4144
4145        do_each_thread (g, t) {
4146                if (t->thread.pfm_context == ctx) {
4147                        ret = 0;
4148                        goto out;
4149                }
4150        } while_each_thread (g, t);
4151out:
4152        read_unlock(&tasklist_lock);
4153
4154        DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4155
4156        return ret;
4157}
4158
4159static int
4160pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4161{
4162        struct task_struct *task;
4163        struct thread_struct *thread;
4164        struct pfm_context_t *old;
4165        unsigned long flags;
4166#ifndef CONFIG_SMP
4167        struct task_struct *owner_task = NULL;
4168#endif
4169        pfarg_load_t *req = (pfarg_load_t *)arg;
4170        unsigned long *pmcs_source, *pmds_source;
4171        int the_cpu;
4172        int ret = 0;
4173        int state, is_system, set_dbregs = 0;
4174
4175        state     = ctx->ctx_state;
4176        is_system = ctx->ctx_fl_system;
4177        /*
4178         * can only load from unloaded or terminated state
4179         */
4180        if (state != PFM_CTX_UNLOADED) {
4181                DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4182                        req->load_pid,
4183                        ctx->ctx_state));
4184                return -EBUSY;
4185        }
4186
4187        DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4188
4189        if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4190                DPRINT(("cannot use blocking mode on self\n"));
4191                return -EINVAL;
4192        }
4193
4194        ret = pfm_get_task(ctx, req->load_pid, &task);
4195        if (ret) {
4196                DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4197                return ret;
4198        }
4199
4200        ret = -EINVAL;
4201
4202        /*
4203         * system wide is self monitoring only
4204         */
4205        if (is_system && task != current) {
4206                DPRINT(("system wide is self monitoring only load_pid=%d\n",
4207                        req->load_pid));
4208                goto error;
4209        }
4210
4211        thread = &task->thread;
4212
4213        ret = 0;
4214        /*
4215         * cannot load a context which is using range restrictions,
4216         * into a task that is being debugged.
4217         */
4218        if (ctx->ctx_fl_using_dbreg) {
4219                if (thread->flags & IA64_THREAD_DBG_VALID) {
4220                        ret = -EBUSY;
4221                        DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4222                        goto error;
4223                }
4224                LOCK_PFS(flags);
4225
4226                if (is_system) {
4227                        if (pfm_sessions.pfs_ptrace_use_dbregs) {
4228                                DPRINT(("cannot load [%d] dbregs in use\n",
4229                                                        task_pid_nr(task)));
4230                                ret = -EBUSY;
4231                        } else {
4232                                pfm_sessions.pfs_sys_use_dbregs++;
4233                                DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4234                                set_dbregs = 1;
4235                        }
4236                }
4237
4238                UNLOCK_PFS(flags);
4239
4240                if (ret) goto error;
4241        }
4242
4243        /*
4244         * SMP system-wide monitoring implies self-monitoring.
4245         *
4246         * The programming model expects the task to
4247         * be pinned on a CPU throughout the session.
4248         * Here we take note of the current CPU at the
4249         * time the context is loaded. No call from
4250         * another CPU will be allowed.
4251         *
4252         * The pinning via shed_setaffinity()
4253         * must be done by the calling task prior
4254         * to this call.
4255         *
4256         * systemwide: keep track of CPU this session is supposed to run on
4257         */
4258        the_cpu = ctx->ctx_cpu = smp_processor_id();
4259
4260        ret = -EBUSY;
4261        /*
4262         * now reserve the session
4263         */
4264        ret = pfm_reserve_session(current, is_system, the_cpu);
4265        if (ret) goto error;
4266
4267        /*
4268         * task is necessarily stopped at this point.
4269         *
4270         * If the previous context was zombie, then it got removed in
4271         * pfm_save_regs(). Therefore we should not see it here.
4272         * If we see a context, then this is an active context
4273         *
4274         * XXX: needs to be atomic
4275         */
4276        DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4277                thread->pfm_context, ctx));
4278
4279        ret = -EBUSY;
4280        old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4281        if (old != NULL) {
4282                DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4283                goto error_unres;
4284        }
4285
4286        pfm_reset_msgq(ctx);
4287
4288        ctx->ctx_state = PFM_CTX_LOADED;
4289
4290        /*
4291         * link context to task
4292         */
4293        ctx->ctx_task = task;
4294
4295        if (is_system) {
4296                /*
4297                 * we load as stopped
4298                 */
4299                PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4300                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4301
4302                if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4303        } else {
4304                thread->flags |= IA64_THREAD_PM_VALID;
4305        }
4306
4307        /*
4308         * propagate into thread-state
4309         */
4310        pfm_copy_pmds(task, ctx);
4311        pfm_copy_pmcs(task, ctx);
4312
4313        pmcs_source = ctx->th_pmcs;
4314        pmds_source = ctx->th_pmds;
4315
4316        /*
4317         * always the case for system-wide
4318         */
4319        if (task == current) {
4320
4321                if (is_system == 0) {
4322
4323                        /* allow user level control */
4324                        ia64_psr(regs)->sp = 0;
4325                        DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4326
4327                        SET_LAST_CPU(ctx, smp_processor_id());
4328                        INC_ACTIVATION();
4329                        SET_ACTIVATION(ctx);
4330#ifndef CONFIG_SMP
4331                        /*
4332                         * push the other task out, if any
4333                         */
4334                        owner_task = GET_PMU_OWNER();
4335                        if (owner_task) pfm_lazy_save_regs(owner_task);
4336#endif
4337                }
4338                /*
4339                 * load all PMD from ctx to PMU (as opposed to thread state)
4340                 * restore all PMC from ctx to PMU
4341                 */
4342                pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4343                pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4344
4345                ctx->ctx_reload_pmcs[0] = 0UL;
4346                ctx->ctx_reload_pmds[0] = 0UL;
4347
4348                /*
4349                 * guaranteed safe by earlier check against DBG_VALID
4350                 */
4351                if (ctx->ctx_fl_using_dbreg) {
4352                        pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4353                        pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4354                }
4355                /*
4356                 * set new ownership
4357                 */
4358                SET_PMU_OWNER(task, ctx);
4359
4360                DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4361        } else {
4362                /*
4363                 * when not current, task MUST be stopped, so this is safe
4364                 */
4365                regs = task_pt_regs(task);
4366
4367                /* force a full reload */
4368                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4369                SET_LAST_CPU(ctx, -1);
4370
4371                /* initial saved psr (stopped) */
4372                ctx->ctx_saved_psr_up = 0UL;
4373                ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4374        }
4375
4376        ret = 0;
4377
4378error_unres:
4379        if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4380error:
4381        /*
4382         * we must undo the dbregs setting (for system-wide)
4383         */
4384        if (ret && set_dbregs) {
4385                LOCK_PFS(flags);
4386                pfm_sessions.pfs_sys_use_dbregs--;
4387                UNLOCK_PFS(flags);
4388        }
4389        /*
4390         * release task, there is now a link with the context
4391         */
4392        if (is_system == 0 && task != current) {
4393                pfm_put_task(task);
4394
4395                if (ret == 0) {
4396                        ret = pfm_check_task_exist(ctx);
4397                        if (ret) {
4398                                ctx->ctx_state = PFM_CTX_UNLOADED;
4399                                ctx->ctx_task  = NULL;
4400                        }
4401                }
4402        }
4403        return ret;
4404}
4405
4406/*
4407 * in this function, we do not need to increase the use count
4408 * for the task via get_task_struct(), because we hold the
4409 * context lock. If the task were to disappear while having
4410 * a context attached, it would go through pfm_exit_thread()
4411 * which also grabs the context lock  and would therefore be blocked
4412 * until we are here.
4413 */
4414static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4415
4416static int
4417pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4418{
4419        struct task_struct *task = PFM_CTX_TASK(ctx);
4420        struct pt_regs *tregs;
4421        int prev_state, is_system;
4422        int ret;
4423
4424        DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4425
4426        prev_state = ctx->ctx_state;
4427        is_system  = ctx->ctx_fl_system;
4428
4429        /*
4430         * unload only when necessary
4431         */
4432        if (prev_state == PFM_CTX_UNLOADED) {
4433                DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4434                return 0;
4435        }
4436
4437        /*
4438         * clear psr and dcr bits
4439         */
4440        ret = pfm_stop(ctx, NULL, 0, regs);
4441        if (ret) return ret;
4442
4443        ctx->ctx_state = PFM_CTX_UNLOADED;
4444
4445        /*
4446         * in system mode, we need to update the PMU directly
4447         * and the user level state of the caller, which may not
4448         * necessarily be the creator of the context.
4449         */
4450        if (is_system) {
4451
4452                /*
4453                 * Update cpuinfo
4454                 *
4455                 * local PMU is taken care of in pfm_stop()
4456                 */
4457                PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4458                PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4459
4460                /*
4461                 * save PMDs in context
4462                 * release ownership
4463                 */
4464                pfm_flush_pmds(current, ctx);
4465
4466                /*
4467                 * at this point we are done with the PMU
4468                 * so we can unreserve the resource.
4469                 */
4470                if (prev_state != PFM_CTX_ZOMBIE) 
4471                        pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4472
4473                /*
4474                 * disconnect context from task
4475                 */
4476                task->thread.pfm_context = NULL;
4477                /*
4478                 * disconnect task from context
4479                 */
4480                ctx->ctx_task = NULL;
4481
4482                /*
4483                 * There is nothing more to cleanup here.
4484                 */
4485                return 0;
4486        }
4487
4488        /*
4489         * per-task mode
4490         */
4491        tregs = task == current ? regs : task_pt_regs(task);
4492
4493        if (task == current) {
4494                /*
4495                 * cancel user level control
4496                 */
4497                ia64_psr(regs)->sp = 1;
4498
4499                DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4500        }
4501        /*
4502         * save PMDs to context
4503         * release ownership
4504         */
4505        pfm_flush_pmds(task, ctx);
4506
4507        /*
4508         * at this point we are done with the PMU
4509         * so we can unreserve the resource.
4510         *
4511         * when state was ZOMBIE, we have already unreserved.
4512         */
4513        if (prev_state != PFM_CTX_ZOMBIE) 
4514                pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4515
4516        /*
4517         * reset activation counter and psr
4518         */
4519        ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4520        SET_LAST_CPU(ctx, -1);
4521
4522        /*
4523         * PMU state will not be restored
4524         */
4525        task->thread.flags &= ~IA64_THREAD_PM_VALID;
4526
4527        /*
4528         * break links between context and task
4529         */
4530        task->thread.pfm_context  = NULL;
4531        ctx->ctx_task             = NULL;
4532
4533        PFM_SET_WORK_PENDING(task, 0);
4534
4535        ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4536        ctx->ctx_fl_can_restart  = 0;
4537        ctx->ctx_fl_going_zombie = 0;
4538
4539        DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4540
4541        return 0;
4542}
4543
4544
4545/*
4546 * called only from exit_thread(): task == current
4547 * we come here only if current has a context attached (loaded or masked)
4548 */
4549void
4550pfm_exit_thread(struct task_struct *task)
4551{
4552        pfm_context_t *ctx;
4553        unsigned long flags;
4554        struct pt_regs *regs = task_pt_regs(task);
4555        int ret, state;
4556        int free_ok = 0;
4557
4558        ctx = PFM_GET_CTX(task);
4559
4560        PROTECT_CTX(ctx, flags);
4561
4562        DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4563
4564        state = ctx->ctx_state;
4565        switch(state) {
4566                case PFM_CTX_UNLOADED:
4567                        /*
4568                         * only comes to this function if pfm_context is not NULL, i.e., cannot
4569                         * be in unloaded state
4570                         */
4571                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4572                        break;
4573                case PFM_CTX_LOADED:
4574                case PFM_CTX_MASKED:
4575                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4576                        if (ret) {
4577                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4578                        }
4579                        DPRINT(("ctx unloaded for current state was %d\n", state));
4580
4581                        pfm_end_notify_user(ctx);
4582                        break;
4583                case PFM_CTX_ZOMBIE:
4584                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4585                        if (ret) {
4586                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4587                        }
4588                        free_ok = 1;
4589                        break;
4590                default:
4591                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4592                        break;
4593        }
4594        UNPROTECT_CTX(ctx, flags);
4595
4596        { u64 psr = pfm_get_psr();
4597          BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4598          BUG_ON(GET_PMU_OWNER());
4599          BUG_ON(ia64_psr(regs)->up);
4600          BUG_ON(ia64_psr(regs)->pp);
4601        }
4602
4603        /*
4604         * All memory free operations (especially for vmalloc'ed memory)
4605         * MUST be done with interrupts ENABLED.
4606         */
4607        if (free_ok) pfm_context_free(ctx);
4608}
4609
4610/*
4611 * functions MUST be listed in the increasing order of their index (see permfon.h)
4612 */
4613#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4614#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4615#define PFM_CMD_PCLRWS  (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4616#define PFM_CMD_PCLRW   (PFM_CMD_FD|PFM_CMD_ARG_RW)
4617#define PFM_CMD_NONE    { NULL, "no-cmd", 0, 0, 0, NULL}
4618
4619static pfm_cmd_desc_t pfm_cmd_tab[]={
4620/* 0  */PFM_CMD_NONE,
4621/* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4622/* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4623/* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4624/* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4625/* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4626/* 6  */PFM_CMD_NONE,
4627/* 7  */PFM_CMD_NONE,
4628/* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4629/* 9  */PFM_CMD_NONE,
4630/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4631/* 11 */PFM_CMD_NONE,
4632/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4633/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4634/* 14 */PFM_CMD_NONE,
4635/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4636/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4637/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4638/* 18 */PFM_CMD_NONE,
4639/* 19 */PFM_CMD_NONE,
4640/* 20 */PFM_CMD_NONE,
4641/* 21 */PFM_CMD_NONE,
4642/* 22 */PFM_CMD_NONE,
4643/* 23 */PFM_CMD_NONE,
4644/* 24 */PFM_CMD_NONE,
4645/* 25 */PFM_CMD_NONE,
4646/* 26 */PFM_CMD_NONE,
4647/* 27 */PFM_CMD_NONE,
4648/* 28 */PFM_CMD_NONE,
4649/* 29 */PFM_CMD_NONE,
4650/* 30 */PFM_CMD_NONE,
4651/* 31 */PFM_CMD_NONE,
4652/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4653/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4654};
4655#define PFM_CMD_COUNT   (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4656
4657static int
4658pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4659{
4660        struct task_struct *task;
4661        int state, old_state;
4662
4663recheck:
4664        state = ctx->ctx_state;
4665        task  = ctx->ctx_task;
4666
4667        if (task == NULL) {
4668                DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4669                return 0;
4670        }
4671
4672        DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4673                ctx->ctx_fd,
4674                state,
4675                task_pid_nr(task),
4676                task->state, PFM_CMD_STOPPED(cmd)));
4677
4678        /*
4679         * self-monitoring always ok.
4680         *
4681         * for system-wide the caller can either be the creator of the
4682         * context (to one to which the context is attached to) OR
4683         * a task running on the same CPU as the session.
4684         */
4685        if (task == current || ctx->ctx_fl_system) return 0;
4686
4687        /*
4688         * we are monitoring another thread
4689         */
4690        switch(state) {
4691                case PFM_CTX_UNLOADED:
4692                        /*
4693                         * if context is UNLOADED we are safe to go
4694                         */
4695                        return 0;
4696                case PFM_CTX_ZOMBIE:
4697                        /*
4698                         * no command can operate on a zombie context
4699                         */
4700                        DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4701                        return -EINVAL;
4702                case PFM_CTX_MASKED:
4703                        /*
4704                         * PMU state has been saved to software even though
4705                         * the thread may still be running.
4706                         */
4707                        if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4708        }
4709
4710        /*
4711         * context is LOADED or MASKED. Some commands may need to have 
4712         * the task stopped.
4713         *
4714         * We could lift this restriction for UP but it would mean that
4715         * the user has no guarantee the task would not run between
4716         * two successive calls to perfmonctl(). That's probably OK.
4717         * If this user wants to ensure the task does not run, then
4718         * the task must be stopped.
4719         */
4720        if (PFM_CMD_STOPPED(cmd)) {
4721                if (!task_is_stopped_or_traced(task)) {
4722                        DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4723                        return -EBUSY;
4724                }
4725                /*
4726                 * task is now stopped, wait for ctxsw out
4727                 *
4728                 * This is an interesting point in the code.
4729                 * We need to unprotect the context because
4730                 * the pfm_save_regs() routines needs to grab
4731                 * the same lock. There are danger in doing
4732                 * this because it leaves a window open for
4733                 * another task to get access to the context
4734                 * and possibly change its state. The one thing
4735                 * that is not possible is for the context to disappear
4736                 * because we are protected by the VFS layer, i.e.,
4737                 * get_fd()/put_fd().
4738                 */
4739                old_state = state;
4740
4741                UNPROTECT_CTX(ctx, flags);
4742
4743                wait_task_inactive(task, 0);
4744
4745                PROTECT_CTX(ctx, flags);
4746
4747                /*
4748                 * we must recheck to verify if state has changed
4749                 */
4750                if (ctx->ctx_state != old_state) {
4751                        DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4752                        goto recheck;
4753                }
4754        }
4755        return 0;
4756}
4757
4758/*
4759 * system-call entry point (must return long)
4760 */
4761asmlinkage long
4762sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4763{
4764        struct fd f = {NULL, 0};
4765        pfm_context_t *ctx = NULL;
4766        unsigned long flags = 0UL;
4767        void *args_k = NULL;
4768        long ret; /* will expand int return types */
4769        size_t base_sz, sz, xtra_sz = 0;
4770        int narg, completed_args = 0, call_made = 0, cmd_flags;
4771        int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4772        int (*getsize)(void *arg, size_t *sz);
4773#define PFM_MAX_ARGSIZE 4096
4774
4775        /*
4776         * reject any call if perfmon was disabled at initialization
4777         */
4778        if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4779
4780        if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4781                DPRINT(("invalid cmd=%d\n", cmd));
4782                return -EINVAL;
4783        }
4784
4785        func      = pfm_cmd_tab[cmd].cmd_func;
4786        narg      = pfm_cmd_tab[cmd].cmd_narg;
4787        base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4788        getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4789        cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4790
4791        if (unlikely(func == NULL)) {
4792                DPRINT(("invalid cmd=%d\n", cmd));
4793                return -EINVAL;
4794        }
4795
4796        DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4797                PFM_CMD_NAME(cmd),
4798                cmd,
4799                narg,
4800                base_sz,
4801                count));
4802
4803        /*
4804         * check if number of arguments matches what the command expects
4805         */
4806        if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4807                return -EINVAL;
4808
4809restart_args:
4810        sz = xtra_sz + base_sz*count;
4811        /*
4812         * limit abuse to min page size
4813         */
4814        if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4815                printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4816                return -E2BIG;
4817        }
4818
4819        /*
4820         * allocate default-sized argument buffer
4821         */
4822        if (likely(count && args_k == NULL)) {
4823                args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4824                if (args_k == NULL) return -ENOMEM;
4825        }
4826
4827        ret = -EFAULT;
4828
4829        /*
4830         * copy arguments
4831         *
4832         * assume sz = 0 for command without parameters
4833         */
4834        if (sz && copy_from_user(args_k, arg, sz)) {
4835                DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4836                goto error_args;
4837        }
4838
4839        /*
4840         * check if command supports extra parameters
4841         */
4842        if (completed_args == 0 && getsize) {
4843                /*
4844                 * get extra parameters size (based on main argument)
4845                 */
4846                ret = (*getsize)(args_k, &xtra_sz);
4847                if (ret) goto error_args;
4848
4849                completed_args = 1;
4850
4851                DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4852
4853                /* retry if necessary */
4854                if (likely(xtra_sz)) goto restart_args;
4855        }
4856
4857        if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4858
4859        ret = -EBADF;
4860
4861        f = fdget(fd);
4862        if (unlikely(f.file == NULL)) {
4863                DPRINT(("invalid fd %d\n", fd));
4864                goto error_args;
4865        }
4866        if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4867                DPRINT(("fd %d not related to perfmon\n", fd));
4868                goto error_args;
4869        }
4870
4871        ctx = f.file->private_data;
4872        if (unlikely(ctx == NULL)) {
4873                DPRINT(("no context for fd %d\n", fd));
4874                goto error_args;
4875        }
4876        prefetch(&ctx->ctx_state);
4877
4878        PROTECT_CTX(ctx, flags);
4879
4880        /*
4881         * check task is stopped
4882         */
4883        ret = pfm_check_task_state(ctx, cmd, flags);
4884        if (unlikely(ret)) goto abort_locked;
4885
4886skip_fd:
4887        ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4888
4889        call_made = 1;
4890
4891abort_locked:
4892        if (likely(ctx)) {
4893                DPRINT(("context unlocked\n"));
4894                UNPROTECT_CTX(ctx, flags);
4895        }
4896
4897        /* copy argument back to user, if needed */
4898        if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4899
4900error_args:
4901        if (f.file)
4902                fdput(f);
4903
4904        kfree(args_k);
4905
4906        DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4907
4908        return ret;
4909}
4910
4911static void
4912pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4913{
4914        pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4915        pfm_ovfl_ctrl_t rst_ctrl;
4916        int state;
4917        int ret = 0;
4918
4919        state = ctx->ctx_state;
4920        /*
4921         * Unlock sampling buffer and reset index atomically
4922         * XXX: not really needed when blocking
4923         */
4924        if (CTX_HAS_SMPL(ctx)) {
4925
4926                rst_ctrl.bits.mask_monitoring = 0;
4927                rst_ctrl.bits.reset_ovfl_pmds = 0;
4928
4929                if (state == PFM_CTX_LOADED)
4930                        ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4931                else
4932                        ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4933        } else {
4934                rst_ctrl.bits.mask_monitoring = 0;
4935                rst_ctrl.bits.reset_ovfl_pmds = 1;
4936        }
4937
4938        if (ret == 0) {
4939                if (rst_ctrl.bits.reset_ovfl_pmds) {
4940                        pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4941                }
4942                if (rst_ctrl.bits.mask_monitoring == 0) {
4943                        DPRINT(("resuming monitoring\n"));
4944                        if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4945                } else {
4946                        DPRINT(("stopping monitoring\n"));
4947                        //pfm_stop_monitoring(current, regs);
4948                }
4949                ctx->ctx_state = PFM_CTX_LOADED;
4950        }
4951}
4952
4953/*
4954 * context MUST BE LOCKED when calling
4955 * can only be called for current
4956 */
4957static void
4958pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4959{
4960        int ret;
4961
4962        DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4963
4964        ret = pfm_context_unload(ctx, NULL, 0, regs);
4965        if (ret) {
4966                printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4967        }
4968
4969        /*
4970         * and wakeup controlling task, indicating we are now disconnected
4971         */
4972        wake_up_interruptible(&ctx->ctx_zombieq);
4973
4974        /*
4975         * given that context is still locked, the controlling
4976         * task will only get access when we return from
4977         * pfm_handle_work().
4978         */
4979}
4980
4981static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4982
4983 /*
4984  * pfm_handle_work() can be called with interrupts enabled
4985  * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4986  * call may sleep, therefore we must re-enable interrupts
4987  * to avoid deadlocks. It is safe to do so because this function
4988  * is called ONLY when returning to user level (pUStk=1), in which case
4989  * there is no risk of kernel stack overflow due to deep
4990  * interrupt nesting.
4991  */
4992void
4993pfm_handle_work(void)
4994{
4995        pfm_context_t *ctx;
4996        struct pt_regs *regs;
4997        unsigned long flags, dummy_flags;
4998        unsigned long ovfl_regs;
4999        unsigned int reason;
5000        int ret;
5001
5002        ctx = PFM_GET_CTX(current);
5003        if (ctx == NULL) {
5004                printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5005                        task_pid_nr(current));
5006                return;
5007        }
5008
5009        PROTECT_CTX(ctx, flags);
5010
5011        PFM_SET_WORK_PENDING(current, 0);
5012
5013        regs = task_pt_regs(current);
5014
5015        /*
5016         * extract reason for being here and clear
5017         */
5018        reason = ctx->ctx_fl_trap_reason;
5019        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5020        ovfl_regs = ctx->ctx_ovfl_regs[0];
5021
5022        DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5023
5024        /*
5025         * must be done before we check for simple-reset mode
5026         */
5027        if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5028                goto do_zombie;
5029
5030        //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5031        if (reason == PFM_TRAP_REASON_RESET)
5032                goto skip_blocking;
5033
5034        /*
5035         * restore interrupt mask to what it was on entry.
5036         * Could be enabled/diasbled.
5037         */
5038        UNPROTECT_CTX(ctx, flags);
5039
5040        /*
5041         * force interrupt enable because of down_interruptible()
5042         */
5043        local_irq_enable();
5044
5045        DPRINT(("before block sleeping\n"));
5046
5047        /*
5048         * may go through without blocking on SMP systems
5049         * if restart has been received already by the time we call down()
5050         */
5051        ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5052
5053        DPRINT(("after block sleeping ret=%d\n", ret));
5054
5055        /*
5056         * lock context and mask interrupts again
5057         * We save flags into a dummy because we may have
5058         * altered interrupts mask compared to entry in this
5059         * function.
5060         */
5061        PROTECT_CTX(ctx, dummy_flags);
5062
5063        /*
5064         * we need to read the ovfl_regs only after wake-up
5065         * because we may have had pfm_write_pmds() in between
5066         * and that can changed PMD values and therefore 
5067         * ovfl_regs is reset for these new PMD values.
5068         */
5069        ovfl_regs = ctx->ctx_ovfl_regs[0];
5070
5071        if (ctx->ctx_fl_going_zombie) {
5072do_zombie:
5073                DPRINT(("context is zombie, bailing out\n"));
5074                pfm_context_force_terminate(ctx, regs);
5075                goto nothing_to_do;
5076        }
5077        /*
5078         * in case of interruption of down() we don't restart anything
5079         */
5080        if (ret < 0)
5081                goto nothing_to_do;
5082
5083skip_blocking:
5084        pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5085        ctx->ctx_ovfl_regs[0] = 0UL;
5086
5087nothing_to_do:
5088        /*
5089         * restore flags as they were upon entry
5090         */
5091        UNPROTECT_CTX(ctx, flags);
5092}
5093
5094static int
5095pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5096{
5097        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5098                DPRINT(("ignoring overflow notification, owner is zombie\n"));
5099                return 0;
5100        }
5101
5102        DPRINT(("waking up somebody\n"));
5103
5104        if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5105
5106        /*
5107         * safe, we are not in intr handler, nor in ctxsw when
5108         * we come here
5109         */
5110        kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5111
5112        return 0;
5113}
5114
5115static int
5116pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5117{
5118        pfm_msg_t *msg = NULL;
5119
5120        if (ctx->ctx_fl_no_msg == 0) {
5121                msg = pfm_get_new_msg(ctx);
5122                if (msg == NULL) {
5123                        printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5124                        return -1;
5125                }
5126
5127                msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5128                msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5129                msg->pfm_ovfl_msg.msg_active_set   = 0;
5130                msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5131                msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5132                msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5133                msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5134                msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5135        }
5136
5137        DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5138                msg,
5139                ctx->ctx_fl_no_msg,
5140                ctx->ctx_fd,
5141                ovfl_pmds));
5142
5143        return pfm_notify_user(ctx, msg);
5144}
5145
5146static int
5147pfm_end_notify_user(pfm_context_t *ctx)
5148{
5149        pfm_msg_t *msg;
5150
5151        msg = pfm_get_new_msg(ctx);
5152        if (msg == NULL) {
5153                printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5154                return -1;
5155        }
5156        /* no leak */
5157        memset(msg, 0, sizeof(*msg));
5158
5159        msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5160        msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5161        msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5162
5163        DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5164                msg,
5165                ctx->ctx_fl_no_msg,
5166                ctx->ctx_fd));
5167
5168        return pfm_notify_user(ctx, msg);
5169}
5170
5171/*
5172 * main overflow processing routine.
5173 * it can be called from the interrupt path or explicitly during the context switch code
5174 */
5175static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5176                                unsigned long pmc0, struct pt_regs *regs)
5177{
5178        pfm_ovfl_arg_t *ovfl_arg;
5179        unsigned long mask;
5180        unsigned long old_val, ovfl_val, new_val;
5181        unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5182        unsigned long tstamp;
5183        pfm_ovfl_ctrl_t ovfl_ctrl;
5184        unsigned int i, has_smpl;
5185        int must_notify = 0;
5186
5187        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5188
5189        /*
5190         * sanity test. Should never happen
5191         */
5192        if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5193
5194        tstamp   = ia64_get_itc();
5195        mask     = pmc0 >> PMU_FIRST_COUNTER;
5196        ovfl_val = pmu_conf->ovfl_val;
5197        has_smpl = CTX_HAS_SMPL(ctx);
5198
5199        DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5200                     "used_pmds=0x%lx\n",
5201                        pmc0,
5202                        task ? task_pid_nr(task): -1,
5203                        (regs ? regs->cr_iip : 0),
5204                        CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5205                        ctx->ctx_used_pmds[0]));
5206
5207
5208        /*
5209         * first we update the virtual counters
5210         * assume there was a prior ia64_srlz_d() issued
5211         */
5212        for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5213
5214                /* skip pmd which did not overflow */
5215                if ((mask & 0x1) == 0) continue;
5216
5217                /*
5218                 * Note that the pmd is not necessarily 0 at this point as qualified events
5219                 * may have happened before the PMU was frozen. The residual count is not
5220                 * taken into consideration here but will be with any read of the pmd via
5221                 * pfm_read_pmds().
5222                 */
5223                old_val              = new_val = ctx->ctx_pmds[i].val;
5224                new_val             += 1 + ovfl_val;
5225                ctx->ctx_pmds[i].val = new_val;
5226
5227                /*
5228                 * check for overflow condition
5229                 */
5230                if (likely(old_val > new_val)) {
5231                        ovfl_pmds |= 1UL << i;
5232                        if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5233                }
5234
5235                DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5236                        i,
5237                        new_val,
5238                        old_val,
5239                        ia64_get_pmd(i) & ovfl_val,
5240                        ovfl_pmds,
5241                        ovfl_notify));
5242        }
5243
5244        /*
5245         * there was no 64-bit overflow, nothing else to do
5246         */
5247        if (ovfl_pmds == 0UL) return;
5248
5249        /* 
5250         * reset all control bits
5251         */
5252        ovfl_ctrl.val = 0;
5253        reset_pmds    = 0UL;
5254
5255        /*
5256         * if a sampling format module exists, then we "cache" the overflow by 
5257         * calling the module's handler() routine.
5258         */
5259        if (has_smpl) {
5260                unsigned long start_cycles, end_cycles;
5261                unsigned long pmd_mask;
5262                int j, k, ret = 0;
5263                int this_cpu = smp_processor_id();
5264
5265                pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5266                ovfl_arg = &ctx->ctx_ovfl_arg;
5267
5268                prefetch(ctx->ctx_smpl_hdr);
5269
5270                for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5271
5272                        mask = 1UL << i;
5273
5274                        if ((pmd_mask & 0x1) == 0) continue;
5275
5276                        ovfl_arg->ovfl_pmd      = (unsigned char )i;
5277                        ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5278                        ovfl_arg->active_set    = 0;
5279                        ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5280                        ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5281
5282                        ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5283                        ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5284                        ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5285
5286                        /*
5287                         * copy values of pmds of interest. Sampling format may copy them
5288                         * into sampling buffer.
5289                         */
5290                        if (smpl_pmds) {
5291                                for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5292                                        if ((smpl_pmds & 0x1) == 0) continue;
5293                                        ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5294                                        DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5295                                }
5296                        }
5297
5298                        pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5299
5300                        start_cycles = ia64_get_itc();
5301
5302                        /*
5303                         * call custom buffer format record (handler) routine
5304                         */
5305                        ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5306
5307                        end_cycles = ia64_get_itc();
5308
5309                        /*
5310                         * For those controls, we take the union because they have
5311                         * an all or nothing behavior.
5312                         */
5313                        ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5314                        ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5315                        ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5316                        /*
5317                         * build the bitmask of pmds to reset now
5318                         */
5319                        if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5320
5321                        pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5322                }
5323                /*
5324                 * when the module cannot handle the rest of the overflows, we abort right here
5325                 */
5326                if (ret && pmd_mask) {
5327                        DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5328                                pmd_mask<<PMU_FIRST_COUNTER));
5329                }
5330                /*
5331                 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5332                 */
5333                ovfl_pmds &= ~reset_pmds;
5334        } else {
5335                /*
5336                 * when no sampling module is used, then the default
5337                 * is to notify on overflow if requested by user
5338                 */
5339                ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5340                ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5341                ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5342                ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5343                /*
5344                 * if needed, we reset all overflowed pmds
5345                 */
5346                if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5347        }
5348
5349        DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5350
5351        /*
5352         * reset the requested PMD registers using the short reset values
5353         */
5354        if (reset_pmds) {
5355                unsigned long bm = reset_pmds;
5356                pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5357        }
5358
5359        if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5360                /*
5361                 * keep track of what to reset when unblocking
5362                 */
5363                ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5364
5365                /*
5366                 * check for blocking context 
5367                 */
5368                if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5369
5370                        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5371
5372                        /*
5373                         * set the perfmon specific checking pending work for the task
5374                         */
5375                        PFM_SET_WORK_PENDING(task, 1);
5376
5377                        /*
5378                         * when coming from ctxsw, current still points to the
5379                         * previous task, therefore we must work with task and not current.
5380                         */
5381                        set_notify_resume(task);
5382                }
5383                /*
5384                 * defer until state is changed (shorten spin window). the context is locked
5385                 * anyway, so the signal receiver would come spin for nothing.
5386                 */
5387                must_notify = 1;
5388        }
5389
5390        DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5391                        GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5392                        PFM_GET_WORK_PENDING(task),
5393                        ctx->ctx_fl_trap_reason,
5394                        ovfl_pmds,
5395                        ovfl_notify,
5396                        ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5397        /*
5398         * in case monitoring must be stopped, we toggle the psr bits
5399         */
5400        if (ovfl_ctrl.bits.mask_monitoring) {
5401                pfm_mask_monitoring(task);
5402                ctx->ctx_state = PFM_CTX_MASKED;
5403                ctx->ctx_fl_can_restart = 1;
5404        }
5405
5406        /*
5407         * send notification now
5408         */
5409        if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5410
5411        return;
5412
5413sanity_check:
5414        printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5415                        smp_processor_id(),
5416                        task ? task_pid_nr(task) : -1,
5417                        pmc0);
5418        return;
5419
5420stop_monitoring:
5421        /*
5422         * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5423         * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5424         * come here as zombie only if the task is the current task. In which case, we
5425         * can access the PMU  hardware directly.
5426         *
5427         * Note that zombies do have PM_VALID set. So here we do the minimal.
5428         *
5429         * In case the context was zombified it could not be reclaimed at the time
5430         * the monitoring program exited. At this point, the PMU reservation has been
5431         * returned, the sampiing buffer has been freed. We must convert this call
5432         * into a spurious interrupt. However, we must also avoid infinite overflows
5433         * by stopping monitoring for this task. We can only come here for a per-task
5434         * context. All we need to do is to stop monitoring using the psr bits which
5435         * are always task private. By re-enabling secure montioring, we ensure that
5436         * the monitored task will not be able to re-activate monitoring.
5437         * The task will eventually be context switched out, at which point the context
5438         * will be reclaimed (that includes releasing ownership of the PMU).
5439         *
5440         * So there might be a window of time where the number of per-task session is zero
5441         * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5442         * context. This is safe because if a per-task session comes in, it will push this one
5443         * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5444         * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5445         * also push our zombie context out.
5446         *
5447         * Overall pretty hairy stuff....
5448         */
5449        DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5450        pfm_clear_psr_up();
5451        ia64_psr(regs)->up = 0;
5452        ia64_psr(regs)->sp = 1;
5453        return;
5454}
5455
5456static int
5457pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5458{
5459        struct task_struct *task;
5460        pfm_context_t *ctx;
5461        unsigned long flags;
5462        u64 pmc0;
5463        int this_cpu = smp_processor_id();
5464        int retval = 0;
5465
5466        pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5467
5468        /*
5469         * srlz.d done before arriving here
5470         */
5471        pmc0 = ia64_get_pmc(0);
5472
5473        task = GET_PMU_OWNER();
5474        ctx  = GET_PMU_CTX();
5475
5476        /*
5477         * if we have some pending bits set
5478         * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5479         */
5480        if (PMC0_HAS_OVFL(pmc0) && task) {
5481                /*
5482                 * we assume that pmc0.fr is always set here
5483                 */
5484
5485                /* sanity check */
5486                if (!ctx) goto report_spurious1;
5487
5488                if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) 
5489                        goto report_spurious2;
5490
5491                PROTECT_CTX_NOPRINT(ctx, flags);
5492
5493                pfm_overflow_handler(task, ctx, pmc0, regs);
5494
5495                UNPROTECT_CTX_NOPRINT(ctx, flags);
5496
5497        } else {
5498                pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5499                retval = -1;
5500        }
5501        /*
5502         * keep it unfrozen at all times
5503         */
5504        pfm_unfreeze_pmu();
5505
5506        return retval;
5507
5508report_spurious1:
5509        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5510                this_cpu, task_pid_nr(task));
5511        pfm_unfreeze_pmu();
5512        return -1;
5513report_spurious2:
5514        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", 
5515                this_cpu, 
5516                task_pid_nr(task));
5517        pfm_unfreeze_pmu();
5518        return -1;
5519}
5520
5521static irqreturn_t
5522pfm_interrupt_handler(int irq, void *arg)
5523{
5524        unsigned long start_cycles, total_cycles;
5525        unsigned long min, max;
5526        int this_cpu;
5527        int ret;
5528        struct pt_regs *regs = get_irq_regs();
5529
5530        this_cpu = get_cpu();
5531        if (likely(!pfm_alt_intr_handler)) {
5532                min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5533                max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5534
5535                start_cycles = ia64_get_itc();
5536
5537                ret = pfm_do_interrupt_handler(arg, regs);
5538
5539                total_cycles = ia64_get_itc();
5540
5541                /*
5542                 * don't measure spurious interrupts
5543                 */
5544                if (likely(ret == 0)) {
5545                        total_cycles -= start_cycles;
5546
5547                        if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5548                        if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5549
5550                        pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5551                }
5552        }
5553        else {
5554                (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5555        }
5556
5557        put_cpu();
5558        return IRQ_HANDLED;
5559}
5560
5561/*
5562 * /proc/perfmon interface, for debug only
5563 */
5564
5565#define PFM_PROC_SHOW_HEADER    ((void *)(long)nr_cpu_ids+1)
5566
5567static void *
5568pfm_proc_start(struct seq_file *m, loff_t *pos)
5569{
5570        if (*pos == 0) {
5571                return PFM_PROC_SHOW_HEADER;
5572        }
5573
5574        while (*pos <= nr_cpu_ids) {
5575                if (cpu_online(*pos - 1)) {
5576                        return (void *)*pos;
5577                }
5578                ++*pos;
5579        }
5580        return NULL;
5581}
5582
5583static void *
5584pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5585{
5586        ++*pos;
5587        return pfm_proc_start(m, pos);
5588}
5589
5590static void
5591pfm_proc_stop(struct seq_file *m, void *v)
5592{
5593}
5594
5595static void
5596pfm_proc_show_header(struct seq_file *m)
5597{
5598        struct list_head * pos;
5599        pfm_buffer_fmt_t * entry;
5600        unsigned long flags;
5601
5602        seq_printf(m,
5603                "perfmon version           : %u.%u\n"
5604                "model                     : %s\n"
5605                "fastctxsw                 : %s\n"
5606                "expert mode               : %s\n"
5607                "ovfl_mask                 : 0x%lx\n"
5608                "PMU flags                 : 0x%x\n",
5609                PFM_VERSION_MAJ, PFM_VERSION_MIN,
5610                pmu_conf->pmu_name,
5611                pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5612                pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5613                pmu_conf->ovfl_val,
5614                pmu_conf->flags);
5615
5616        LOCK_PFS(flags);
5617
5618        seq_printf(m,
5619                "proc_sessions             : %u\n"
5620                "sys_sessions              : %u\n"
5621                "sys_use_dbregs            : %u\n"
5622                "ptrace_use_dbregs         : %u\n",
5623                pfm_sessions.pfs_task_sessions,
5624                pfm_sessions.pfs_sys_sessions,
5625                pfm_sessions.pfs_sys_use_dbregs,
5626                pfm_sessions.pfs_ptrace_use_dbregs);
5627
5628        UNLOCK_PFS(flags);
5629
5630        spin_lock(&pfm_buffer_fmt_lock);
5631
5632        list_for_each(pos, &pfm_buffer_fmt_list) {
5633                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5634                seq_printf(m, "format                    : %16phD %s\n",
5635                           entry->fmt_uuid, entry->fmt_name);
5636        }
5637        spin_unlock(&pfm_buffer_fmt_lock);
5638
5639}
5640
5641static int
5642pfm_proc_show(struct seq_file *m, void *v)
5643{
5644        unsigned long psr;
5645        unsigned int i;
5646        int cpu;
5647
5648        if (v == PFM_PROC_SHOW_HEADER) {
5649                pfm_proc_show_header(m);
5650                return 0;
5651        }
5652
5653        /* show info for CPU (v - 1) */
5654
5655        cpu = (long)v - 1;
5656        seq_printf(m,
5657                "CPU%-2d overflow intrs      : %lu\n"
5658                "CPU%-2d overflow cycles     : %lu\n"
5659                "CPU%-2d overflow min        : %lu\n"
5660                "CPU%-2d overflow max        : %lu\n"
5661                "CPU%-2d smpl handler calls  : %lu\n"
5662                "CPU%-2d smpl handler cycles : %lu\n"
5663                "CPU%-2d spurious intrs      : %lu\n"
5664                "CPU%-2d replay   intrs      : %lu\n"
5665                "CPU%-2d syst_wide           : %d\n"
5666                "CPU%-2d dcr_pp              : %d\n"
5667                "CPU%-2d exclude idle        : %d\n"
5668                "CPU%-2d owner               : %d\n"
5669                "CPU%-2d context             : %p\n"
5670                "CPU%-2d activations         : %lu\n",
5671                cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5672                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5673                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5674                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5675                cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5676                cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5677                cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5678                cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5679                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5680                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5681                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5682                cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5683                cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5684                cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5685
5686        if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5687
5688                psr = pfm_get_psr();
5689
5690                ia64_srlz_d();
5691
5692                seq_printf(m, 
5693                        "CPU%-2d psr                 : 0x%lx\n"
5694                        "CPU%-2d pmc0                : 0x%lx\n", 
5695                        cpu, psr,
5696                        cpu, ia64_get_pmc(0));
5697
5698                for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5699                        if (PMC_IS_COUNTING(i) == 0) continue;
5700                        seq_printf(m, 
5701                                "CPU%-2d pmc%u                : 0x%lx\n"
5702                                "CPU%-2d pmd%u                : 0x%lx\n", 
5703                                cpu, i, ia64_get_pmc(i),
5704                                cpu, i, ia64_get_pmd(i));
5705                }
5706        }
5707        return 0;
5708}
5709
5710const struct seq_operations pfm_seq_ops = {
5711        .start =        pfm_proc_start,
5712        .next =         pfm_proc_next,
5713        .stop =         pfm_proc_stop,
5714        .show =         pfm_proc_show
5715};
5716
5717static int
5718pfm_proc_open(struct inode *inode, struct file *file)
5719{
5720        return seq_open(file, &pfm_seq_ops);
5721}
5722
5723
5724/*
5725 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5726 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5727 * is active or inactive based on mode. We must rely on the value in
5728 * local_cpu_data->pfm_syst_info
5729 */
5730void
5731pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5732{
5733        struct pt_regs *regs;
5734        unsigned long dcr;
5735        unsigned long dcr_pp;
5736
5737        dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5738
5739        /*
5740         * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5741         * on every CPU, so we can rely on the pid to identify the idle task.
5742         */
5743        if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5744                regs = task_pt_regs(task);
5745                ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5746                return;
5747        }
5748        /*
5749         * if monitoring has started
5750         */
5751        if (dcr_pp) {
5752                dcr = ia64_getreg(_IA64_REG_CR_DCR);
5753                /*
5754                 * context switching in?
5755                 */
5756                if (is_ctxswin) {
5757                        /* mask monitoring for the idle task */
5758                        ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5759                        pfm_clear_psr_pp();
5760                        ia64_srlz_i();
5761                        return;
5762                }
5763                /*
5764                 * context switching out
5765                 * restore monitoring for next task
5766                 *
5767                 * Due to inlining this odd if-then-else construction generates
5768                 * better code.
5769                 */
5770                ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5771                pfm_set_psr_pp();
5772                ia64_srlz_i();
5773        }
5774}
5775
5776#ifdef CONFIG_SMP
5777
5778static void
5779pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5780{
5781        struct task_struct *task = ctx->ctx_task;
5782
5783        ia64_psr(regs)->up = 0;
5784        ia64_psr(regs)->sp = 1;
5785
5786        if (GET_PMU_OWNER() == task) {
5787                DPRINT(("cleared ownership for [%d]\n",
5788                                        task_pid_nr(ctx->ctx_task)));
5789                SET_PMU_OWNER(NULL, NULL);
5790        }
5791
5792        /*
5793         * disconnect the task from the context and vice-versa
5794         */
5795        PFM_SET_WORK_PENDING(task, 0);
5796
5797        task->thread.pfm_context  = NULL;
5798        task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5799
5800        DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5801}
5802
5803
5804/*
5805 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5806 */
5807void
5808pfm_save_regs(struct task_struct *task)
5809{
5810        pfm_context_t *ctx;
5811        unsigned long flags;
5812        u64 psr;
5813
5814
5815        ctx = PFM_GET_CTX(task);
5816        if (ctx == NULL) return;
5817
5818        /*
5819         * we always come here with interrupts ALREADY disabled by
5820         * the scheduler. So we simply need to protect against concurrent
5821         * access, not CPU concurrency.
5822         */
5823        flags = pfm_protect_ctx_ctxsw(ctx);
5824
5825        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5826                struct pt_regs *regs = task_pt_regs(task);
5827
5828                pfm_clear_psr_up();
5829
5830                pfm_force_cleanup(ctx, regs);
5831
5832                BUG_ON(ctx->ctx_smpl_hdr);
5833
5834                pfm_unprotect_ctx_ctxsw(ctx, flags);
5835
5836                pfm_context_free(ctx);
5837                return;
5838        }
5839
5840        /*
5841         * save current PSR: needed because we modify it
5842         */
5843        ia64_srlz_d();
5844        psr = pfm_get_psr();
5845
5846        BUG_ON(psr & (IA64_PSR_I));
5847
5848        /*
5849         * stop monitoring:
5850         * This is the last instruction which may generate an overflow
5851         *
5852         * We do not need to set psr.sp because, it is irrelevant in kernel.
5853         * It will be restored from ipsr when going back to user level
5854         */
5855        pfm_clear_psr_up();
5856
5857        /*
5858         * keep a copy of psr.up (for reload)
5859         */
5860        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5861
5862        /*
5863         * release ownership of this PMU.
5864         * PM interrupts are masked, so nothing
5865         * can happen.
5866         */
5867        SET_PMU_OWNER(NULL, NULL);
5868
5869        /*
5870         * we systematically save the PMD as we have no
5871         * guarantee we will be schedule at that same
5872         * CPU again.
5873         */
5874        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5875
5876        /*
5877         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5878         * we will need it on the restore path to check
5879         * for pending overflow.
5880         */
5881        ctx->th_pmcs[0] = ia64_get_pmc(0);
5882
5883        /*
5884         * unfreeze PMU if had pending overflows
5885         */
5886        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5887
5888        /*
5889         * finally, allow context access.
5890         * interrupts will still be masked after this call.
5891         */
5892        pfm_unprotect_ctx_ctxsw(ctx, flags);
5893}
5894
5895#else /* !CONFIG_SMP */
5896void
5897pfm_save_regs(struct task_struct *task)
5898{
5899        pfm_context_t *ctx;
5900        u64 psr;
5901
5902        ctx = PFM_GET_CTX(task);
5903        if (ctx == NULL) return;
5904
5905        /*
5906         * save current PSR: needed because we modify it
5907         */
5908        psr = pfm_get_psr();
5909
5910        BUG_ON(psr & (IA64_PSR_I));
5911
5912        /*
5913         * stop monitoring:
5914         * This is the last instruction which may generate an overflow
5915         *
5916         * We do not need to set psr.sp because, it is irrelevant in kernel.
5917         * It will be restored from ipsr when going back to user level
5918         */
5919        pfm_clear_psr_up();
5920
5921        /*
5922         * keep a copy of psr.up (for reload)
5923         */
5924        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5925}
5926
5927static void
5928pfm_lazy_save_regs (struct task_struct *task)
5929{
5930        pfm_context_t *ctx;
5931        unsigned long flags;
5932
5933        { u64 psr  = pfm_get_psr();
5934          BUG_ON(psr & IA64_PSR_UP);
5935        }
5936
5937        ctx = PFM_GET_CTX(task);
5938
5939        /*
5940         * we need to mask PMU overflow here to
5941         * make sure that we maintain pmc0 until
5942         * we save it. overflow interrupts are
5943         * treated as spurious if there is no
5944         * owner.
5945         *
5946         * XXX: I don't think this is necessary
5947         */
5948        PROTECT_CTX(ctx,flags);
5949
5950        /*
5951         * release ownership of this PMU.
5952         * must be done before we save the registers.
5953         *
5954         * after this call any PMU interrupt is treated
5955         * as spurious.
5956         */
5957        SET_PMU_OWNER(NULL, NULL);
5958
5959        /*
5960         * save all the pmds we use
5961         */
5962        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5963
5964        /*
5965         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5966         * it is needed to check for pended overflow
5967         * on the restore path
5968         */
5969        ctx->th_pmcs[0] = ia64_get_pmc(0);
5970
5971        /*
5972         * unfreeze PMU if had pending overflows
5973         */
5974        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5975
5976        /*
5977         * now get can unmask PMU interrupts, they will
5978         * be treated as purely spurious and we will not
5979         * lose any information
5980         */
5981        UNPROTECT_CTX(ctx,flags);
5982}
5983#endif /* CONFIG_SMP */
5984
5985#ifdef CONFIG_SMP
5986/*
5987 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5988 */
5989void
5990pfm_load_regs (struct task_struct *task)
5991{
5992        pfm_context_t *ctx;
5993        unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
5994        unsigned long flags;
5995        u64 psr, psr_up;
5996        int need_irq_resend;
5997
5998        ctx = PFM_GET_CTX(task);
5999        if (unlikely(ctx == NULL)) return;
6000
6001        BUG_ON(GET_PMU_OWNER());
6002
6003        /*
6004         * possible on unload
6005         */
6006        if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6007
6008        /*
6009         * we always come here with interrupts ALREADY disabled by
6010         * the scheduler. So we simply need to protect against concurrent
6011         * access, not CPU concurrency.
6012         */
6013        flags = pfm_protect_ctx_ctxsw(ctx);
6014        psr   = pfm_get_psr();
6015
6016        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6017
6018        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6019        BUG_ON(psr & IA64_PSR_I);
6020
6021        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6022                struct pt_regs *regs = task_pt_regs(task);
6023
6024                BUG_ON(ctx->ctx_smpl_hdr);
6025
6026                pfm_force_cleanup(ctx, regs);
6027
6028                pfm_unprotect_ctx_ctxsw(ctx, flags);
6029
6030                /*
6031                 * this one (kmalloc'ed) is fine with interrupts disabled
6032                 */
6033                pfm_context_free(ctx);
6034
6035                return;
6036        }
6037
6038        /*
6039         * we restore ALL the debug registers to avoid picking up
6040         * stale state.
6041         */
6042        if (ctx->ctx_fl_using_dbreg) {
6043                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6044                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6045        }
6046        /*
6047         * retrieve saved psr.up
6048         */
6049        psr_up = ctx->ctx_saved_psr_up;
6050
6051        /*
6052         * if we were the last user of the PMU on that CPU,
6053         * then nothing to do except restore psr
6054         */
6055        if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6056
6057                /*
6058                 * retrieve partial reload masks (due to user modifications)
6059                 */
6060                pmc_mask = ctx->ctx_reload_pmcs[0];
6061                pmd_mask = ctx->ctx_reload_pmds[0];
6062
6063        } else {
6064                /*
6065                 * To avoid leaking information to the user level when psr.sp=0,
6066                 * we must reload ALL implemented pmds (even the ones we don't use).
6067                 * In the kernel we only allow PFM_READ_PMDS on registers which
6068                 * we initialized or requested (sampling) so there is no risk there.
6069                 */
6070                pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6071
6072                /*
6073                 * ALL accessible PMCs are systematically reloaded, unused registers
6074                 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6075                 * up stale configuration.
6076                 *
6077                 * PMC0 is never in the mask. It is always restored separately.
6078                 */
6079                pmc_mask = ctx->ctx_all_pmcs[0];
6080        }
6081        /*
6082         * when context is MASKED, we will restore PMC with plm=0
6083         * and PMD with stale information, but that's ok, nothing
6084         * will be captured.
6085         *
6086         * XXX: optimize here
6087         */
6088        if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6089        if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6090
6091        /*
6092         * check for pending overflow at the time the state
6093         * was saved.
6094         */
6095        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6096                /*
6097                 * reload pmc0 with the overflow information
6098                 * On McKinley PMU, this will trigger a PMU interrupt
6099                 */
6100                ia64_set_pmc(0, ctx->th_pmcs[0]);
6101                ia64_srlz_d();
6102                ctx->th_pmcs[0] = 0UL;
6103
6104                /*
6105                 * will replay the PMU interrupt
6106                 */
6107                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6108
6109                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6110        }
6111
6112        /*
6113         * we just did a reload, so we reset the partial reload fields
6114         */
6115        ctx->ctx_reload_pmcs[0] = 0UL;
6116        ctx->ctx_reload_pmds[0] = 0UL;
6117
6118        SET_LAST_CPU(ctx, smp_processor_id());
6119
6120        /*
6121         * dump activation value for this PMU
6122         */
6123        INC_ACTIVATION();
6124        /*
6125         * record current activation for this context
6126         */
6127        SET_ACTIVATION(ctx);
6128
6129        /*
6130         * establish new ownership. 
6131         */
6132        SET_PMU_OWNER(task, ctx);
6133
6134        /*
6135         * restore the psr.up bit. measurement
6136         * is active again.
6137         * no PMU interrupt can happen at this point
6138         * because we still have interrupts disabled.
6139         */
6140        if (likely(psr_up)) pfm_set_psr_up();
6141
6142        /*
6143         * allow concurrent access to context
6144         */
6145        pfm_unprotect_ctx_ctxsw(ctx, flags);
6146}
6147#else /*  !CONFIG_SMP */
6148/*
6149 * reload PMU state for UP kernels
6150 * in 2.5 we come here with interrupts disabled
6151 */
6152void
6153pfm_load_regs (struct task_struct *task)
6154{
6155        pfm_context_t *ctx;
6156        struct task_struct *owner;
6157        unsigned long pmd_mask, pmc_mask;
6158        u64 psr, psr_up;
6159        int need_irq_resend;
6160
6161        owner = GET_PMU_OWNER();
6162        ctx   = PFM_GET_CTX(task);
6163        psr   = pfm_get_psr();
6164
6165        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6166        BUG_ON(psr & IA64_PSR_I);
6167
6168        /*
6169         * we restore ALL the debug registers to avoid picking up
6170         * stale state.
6171         *
6172         * This must be done even when the task is still the owner
6173         * as the registers may have been modified via ptrace()
6174         * (not perfmon) by the previous task.
6175         */
6176        if (ctx->ctx_fl_using_dbreg) {
6177                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6178                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6179        }
6180
6181        /*
6182         * retrieved saved psr.up
6183         */
6184        psr_up = ctx->ctx_saved_psr_up;
6185        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6186
6187        /*
6188         * short path, our state is still there, just
6189         * need to restore psr and we go
6190         *
6191         * we do not touch either PMC nor PMD. the psr is not touched
6192         * by the overflow_handler. So we are safe w.r.t. to interrupt
6193         * concurrency even without interrupt masking.
6194         */
6195        if (likely(owner == task)) {
6196                if (likely(psr_up)) pfm_set_psr_up();
6197                return;
6198        }
6199
6200        /*
6201         * someone else is still using the PMU, first push it out and
6202         * then we'll be able to install our stuff !
6203         *
6204         * Upon return, there will be no owner for the current PMU
6205         */
6206        if (owner) pfm_lazy_save_regs(owner);
6207
6208        /*
6209         * To avoid leaking information to the user level when psr.sp=0,
6210         * we must reload ALL implemented pmds (even the ones we don't use).
6211         * In the kernel we only allow PFM_READ_PMDS on registers which
6212         * we initialized or requested (sampling) so there is no risk there.
6213         */
6214        pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6215
6216        /*
6217         * ALL accessible PMCs are systematically reloaded, unused registers
6218         * get their default (from pfm_reset_pmu_state()) values to avoid picking
6219         * up stale configuration.
6220         *
6221         * PMC0 is never in the mask. It is always restored separately
6222         */
6223        pmc_mask = ctx->ctx_all_pmcs[0];
6224
6225        pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6226        pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6227
6228        /*
6229         * check for pending overflow at the time the state
6230         * was saved.
6231         */
6232        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6233                /*
6234                 * reload pmc0 with the overflow information
6235                 * On McKinley PMU, this will trigger a PMU interrupt
6236                 */
6237                ia64_set_pmc(0, ctx->th_pmcs[0]);
6238                ia64_srlz_d();
6239
6240                ctx->th_pmcs[0] = 0UL;
6241
6242                /*
6243                 * will replay the PMU interrupt
6244                 */
6245                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6246
6247                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6248        }
6249
6250        /*
6251         * establish new ownership. 
6252         */
6253        SET_PMU_OWNER(task, ctx);
6254
6255        /*
6256         * restore the psr.up bit. measurement
6257         * is active again.
6258         * no PMU interrupt can happen at this point
6259         * because we still have interrupts disabled.
6260         */
6261        if (likely(psr_up)) pfm_set_psr_up();
6262}
6263#endif /* CONFIG_SMP */
6264
6265/*
6266 * this function assumes monitoring is stopped
6267 */
6268static void
6269pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6270{
6271        u64 pmc0;
6272        unsigned long mask2, val, pmd_val, ovfl_val;
6273        int i, can_access_pmu = 0;
6274        int is_self;
6275
6276        /*
6277         * is the caller the task being monitored (or which initiated the
6278         * session for system wide measurements)
6279         */
6280        is_self = ctx->ctx_task == task ? 1 : 0;
6281
6282        /*
6283         * can access PMU is task is the owner of the PMU state on the current CPU
6284         * or if we are running on the CPU bound to the context in system-wide mode
6285         * (that is not necessarily the task the context is attached to in this mode).
6286         * In system-wide we always have can_access_pmu true because a task running on an
6287         * invalid processor is flagged earlier in the call stack (see pfm_stop).
6288         */
6289        can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6290        if (can_access_pmu) {
6291                /*
6292                 * Mark the PMU as not owned
6293                 * This will cause the interrupt handler to do nothing in case an overflow
6294                 * interrupt was in-flight
6295                 * This also guarantees that pmc0 will contain the final state
6296                 * It virtually gives us full control on overflow processing from that point
6297                 * on.
6298                 */
6299                SET_PMU_OWNER(NULL, NULL);
6300                DPRINT(("releasing ownership\n"));
6301
6302                /*
6303                 * read current overflow status:
6304                 *
6305                 * we are guaranteed to read the final stable state
6306                 */
6307                ia64_srlz_d();
6308                pmc0 = ia64_get_pmc(0); /* slow */
6309
6310                /*
6311                 * reset freeze bit, overflow status information destroyed
6312                 */
6313                pfm_unfreeze_pmu();
6314        } else {
6315                pmc0 = ctx->th_pmcs[0];
6316                /*
6317                 * clear whatever overflow status bits there were
6318                 */
6319                ctx->th_pmcs[0] = 0;
6320        }
6321        ovfl_val = pmu_conf->ovfl_val;
6322        /*
6323         * we save all the used pmds
6324         * we take care of overflows for counting PMDs
6325         *
6326         * XXX: sampling situation is not taken into account here
6327         */
6328        mask2 = ctx->ctx_used_pmds[0];
6329
6330        DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6331
6332        for (i = 0; mask2; i++, mask2>>=1) {
6333
6334                /* skip non used pmds */
6335                if ((mask2 & 0x1) == 0) continue;
6336
6337                /*
6338                 * can access PMU always true in system wide mode
6339                 */
6340                val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6341
6342                if (PMD_IS_COUNTING(i)) {
6343                        DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6344                                task_pid_nr(task),
6345                                i,
6346                                ctx->ctx_pmds[i].val,
6347                                val & ovfl_val));
6348
6349                        /*
6350                         * we rebuild the full 64 bit value of the counter
6351                         */
6352                        val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6353
6354                        /*
6355                         * now everything is in ctx_pmds[] and we need
6356                         * to clear the saved context from save_regs() such that
6357                         * pfm_read_pmds() gets the correct value
6358                         */
6359                        pmd_val = 0UL;
6360
6361                        /*
6362                         * take care of overflow inline
6363                         */
6364                        if (pmc0 & (1UL << i)) {
6365                                val += 1 + ovfl_val;
6366                                DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6367                        }
6368                }
6369
6370                DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6371
6372                if (is_self) ctx->th_pmds[i] = pmd_val;
6373
6374                ctx->ctx_pmds[i].val = val;
6375        }
6376}
6377
6378static struct irqaction perfmon_irqaction = {
6379        .handler = pfm_interrupt_handler,
6380        .name    = "perfmon"
6381};
6382
6383static void
6384pfm_alt_save_pmu_state(void *data)
6385{
6386        struct pt_regs *regs;
6387
6388        regs = task_pt_regs(current);
6389
6390        DPRINT(("called\n"));
6391
6392        /*
6393         * should not be necessary but
6394         * let's take not risk
6395         */
6396        pfm_clear_psr_up();
6397        pfm_clear_psr_pp();
6398        ia64_psr(regs)->pp = 0;
6399
6400        /*
6401         * This call is required
6402         * May cause a spurious interrupt on some processors
6403         */
6404        pfm_freeze_pmu();
6405
6406        ia64_srlz_d();
6407}
6408
6409void
6410pfm_alt_restore_pmu_state(void *data)
6411{
6412        struct pt_regs *regs;
6413
6414        regs = task_pt_regs(current);
6415
6416        DPRINT(("called\n"));
6417
6418        /*
6419         * put PMU back in state expected
6420         * by perfmon
6421         */
6422        pfm_clear_psr_up();
6423        pfm_clear_psr_pp();
6424        ia64_psr(regs)->pp = 0;
6425
6426        /*
6427         * perfmon runs with PMU unfrozen at all times
6428         */
6429        pfm_unfreeze_pmu();
6430
6431        ia64_srlz_d();
6432}
6433
6434int
6435pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6436{
6437        int ret, i;
6438        int reserve_cpu;
6439
6440        /* some sanity checks */
6441        if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6442
6443        /* do the easy test first */
6444        if (pfm_alt_intr_handler) return -EBUSY;
6445
6446        /* one at a time in the install or remove, just fail the others */
6447        if (!spin_trylock(&pfm_alt_install_check)) {
6448                return -EBUSY;
6449        }
6450
6451        /* reserve our session */
6452        for_each_online_cpu(reserve_cpu) {
6453                ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6454                if (ret) goto cleanup_reserve;
6455        }
6456
6457        /* save the current system wide pmu states */
6458        ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6459        if (ret) {
6460                DPRINT(("on_each_cpu() failed: %d\n", ret));
6461                goto cleanup_reserve;
6462        }
6463
6464        /* officially change to the alternate interrupt handler */
6465        pfm_alt_intr_handler = hdl;
6466
6467        spin_unlock(&pfm_alt_install_check);
6468
6469        return 0;
6470
6471cleanup_reserve:
6472        for_each_online_cpu(i) {
6473                /* don't unreserve more than we reserved */
6474                if (i >= reserve_cpu) break;
6475
6476                pfm_unreserve_session(NULL, 1, i);
6477        }
6478
6479        spin_unlock(&pfm_alt_install_check);
6480
6481        return ret;
6482}
6483EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6484
6485int
6486pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6487{
6488        int i;
6489        int ret;
6490
6491        if (hdl == NULL) return -EINVAL;
6492
6493        /* cannot remove someone else's handler! */
6494        if (pfm_alt_intr_handler != hdl) return -EINVAL;
6495
6496        /* one at a time in the install or remove, just fail the others */
6497        if (!spin_trylock(&pfm_alt_install_check)) {
6498                return -EBUSY;
6499        }
6500
6501        pfm_alt_intr_handler = NULL;
6502
6503        ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6504        if (ret) {
6505                DPRINT(("on_each_cpu() failed: %d\n", ret));
6506        }
6507
6508        for_each_online_cpu(i) {
6509                pfm_unreserve_session(NULL, 1, i);
6510        }
6511
6512        spin_unlock(&pfm_alt_install_check);
6513
6514        return 0;
6515}
6516EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6517
6518/*
6519 * perfmon initialization routine, called from the initcall() table
6520 */
6521static int init_pfm_fs(void);
6522
6523static int __init
6524pfm_probe_pmu(void)
6525{
6526        pmu_config_t **p;
6527        int family;
6528
6529        family = local_cpu_data->family;
6530        p      = pmu_confs;
6531
6532        while(*p) {
6533                if ((*p)->probe) {
6534                        if ((*p)->probe() == 0) goto found;
6535                } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6536                        goto found;
6537                }
6538                p++;
6539        }
6540        return -1;
6541found:
6542        pmu_conf = *p;
6543        return 0;
6544}
6545
6546static const struct file_operations pfm_proc_fops = {
6547        .open           = pfm_proc_open,
6548        .read           = seq_read,
6549        .llseek         = seq_lseek,
6550        .release        = seq_release,
6551};
6552
6553int __init
6554pfm_init(void)
6555{
6556        unsigned int n, n_counters, i;
6557
6558        printk("perfmon: version %u.%u IRQ %u\n",
6559                PFM_VERSION_MAJ,
6560                PFM_VERSION_MIN,
6561                IA64_PERFMON_VECTOR);
6562
6563        if (pfm_probe_pmu()) {
6564                printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", 
6565                                local_cpu_data->family);
6566                return -ENODEV;
6567        }
6568
6569        /*
6570         * compute the number of implemented PMD/PMC from the
6571         * description tables
6572         */
6573        n = 0;
6574        for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6575                if (PMC_IS_IMPL(i) == 0) continue;
6576                pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6577                n++;
6578        }
6579        pmu_conf->num_pmcs = n;
6580
6581        n = 0; n_counters = 0;
6582        for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6583                if (PMD_IS_IMPL(i) == 0) continue;
6584                pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6585                n++;
6586                if (PMD_IS_COUNTING(i)) n_counters++;
6587        }
6588        pmu_conf->num_pmds      = n;
6589        pmu_conf->num_counters  = n_counters;
6590
6591        /*
6592         * sanity checks on the number of debug registers
6593         */
6594        if (pmu_conf->use_rr_dbregs) {
6595                if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6596                        printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6597                        pmu_conf = NULL;
6598                        return -1;
6599                }
6600                if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6601                        printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6602                        pmu_conf = NULL;
6603                        return -1;
6604                }
6605        }
6606
6607        printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6608               pmu_conf->pmu_name,
6609               pmu_conf->num_pmcs,
6610               pmu_conf->num_pmds,
6611               pmu_conf->num_counters,
6612               ffz(pmu_conf->ovfl_val));
6613
6614        /* sanity check */
6615        if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6616                printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6617                pmu_conf = NULL;
6618                return -1;
6619        }
6620
6621        /*
6622         * create /proc/perfmon (mostly for debugging purposes)
6623         */
6624        perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6625        if (perfmon_dir == NULL) {
6626                printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6627                pmu_conf = NULL;
6628                return -1;
6629        }
6630
6631        /*
6632         * create /proc/sys/kernel/perfmon (for debugging purposes)
6633         */
6634        pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6635
6636        /*
6637         * initialize all our spinlocks
6638         */
6639        spin_lock_init(&pfm_sessions.pfs_lock);
6640        spin_lock_init(&pfm_buffer_fmt_lock);
6641
6642        init_pfm_fs();
6643
6644        for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6645
6646        return 0;
6647}
6648
6649__initcall(pfm_init);
6650
6651/*
6652 * this function is called before pfm_init()
6653 */
6654void
6655pfm_init_percpu (void)
6656{
6657        static int first_time=1;
6658        /*
6659         * make sure no measurement is active
6660         * (may inherit programmed PMCs from EFI).
6661         */
6662        pfm_clear_psr_pp();
6663        pfm_clear_psr_up();
6664
6665        /*
6666         * we run with the PMU not frozen at all times
6667         */
6668        pfm_unfreeze_pmu();
6669
6670        if (first_time) {
6671                register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6672                first_time=0;
6673        }
6674
6675        ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6676        ia64_srlz_d();
6677}
6678
6679/*
6680 * used for debug purposes only
6681 */
6682void
6683dump_pmu_state(const char *from)
6684{
6685        struct task_struct *task;
6686        struct pt_regs *regs;
6687        pfm_context_t *ctx;
6688        unsigned long psr, dcr, info, flags;
6689        int i, this_cpu;
6690
6691        local_irq_save(flags);
6692
6693        this_cpu = smp_processor_id();
6694        regs     = task_pt_regs(current);
6695        info     = PFM_CPUINFO_GET();
6696        dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6697
6698        if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6699                local_irq_restore(flags);
6700                return;
6701        }
6702
6703        printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", 
6704                this_cpu, 
6705                from, 
6706                task_pid_nr(current),
6707                regs->cr_iip,
6708                current->comm);
6709
6710        task = GET_PMU_OWNER();
6711        ctx  = GET_PMU_CTX();
6712
6713        printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6714
6715        psr = pfm_get_psr();
6716
6717        printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", 
6718                this_cpu,
6719                ia64_get_pmc(0),
6720                psr & IA64_PSR_PP ? 1 : 0,
6721                psr & IA64_PSR_UP ? 1 : 0,
6722                dcr & IA64_DCR_PP ? 1 : 0,
6723                info,
6724                ia64_psr(regs)->up,
6725                ia64_psr(regs)->pp);
6726
6727        ia64_psr(regs)->up = 0;
6728        ia64_psr(regs)->pp = 0;
6729
6730        for (i=1; PMC_IS_LAST(i) == 0; i++) {
6731                if (PMC_IS_IMPL(i) == 0) continue;
6732                printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6733        }
6734
6735        for (i=1; PMD_IS_LAST(i) == 0; i++) {
6736                if (PMD_IS_IMPL(i) == 0) continue;
6737                printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6738        }
6739
6740        if (ctx) {
6741                printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6742                                this_cpu,
6743                                ctx->ctx_state,
6744                                ctx->ctx_smpl_vaddr,
6745                                ctx->ctx_smpl_hdr,
6746                                ctx->ctx_msgq_head,
6747                                ctx->ctx_msgq_tail,
6748                                ctx->ctx_saved_psr_up);
6749        }
6750        local_irq_restore(flags);
6751}
6752
6753/*
6754 * called from process.c:copy_thread(). task is new child.
6755 */
6756void
6757pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6758{
6759        struct thread_struct *thread;
6760
6761        DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6762
6763        thread = &task->thread;
6764
6765        /*
6766         * cut links inherited from parent (current)
6767         */
6768        thread->pfm_context = NULL;
6769
6770        PFM_SET_WORK_PENDING(task, 0);
6771
6772        /*
6773         * the psr bits are already set properly in copy_threads()
6774         */
6775}
6776#else  /* !CONFIG_PERFMON */
6777asmlinkage long
6778sys_perfmonctl (int fd, int cmd, void *arg, int count)
6779{
6780        return -ENOSYS;
6781}
6782#endif /* CONFIG_PERFMON */
6783