linux/arch/powerpc/kernel/kprobes.c
<<
>>
Prefs
   1/*
   2 *  Kernel Probes (KProbes)
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2002, 2004
  19 *
  20 * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  21 *              Probes initial implementation ( includes contributions from
  22 *              Rusty Russell).
  23 * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  24 *              interface to access function arguments.
  25 * 2004-Nov     Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
  26 *              for PPC64
  27 */
  28
  29#include <linux/kprobes.h>
  30#include <linux/ptrace.h>
  31#include <linux/preempt.h>
  32#include <linux/module.h>
  33#include <linux/kdebug.h>
  34#include <linux/slab.h>
  35#include <asm/code-patching.h>
  36#include <asm/cacheflush.h>
  37#include <asm/sstep.h>
  38#include <asm/uaccess.h>
  39
  40DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  41DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  42
  43struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
  44
  45int __kprobes arch_prepare_kprobe(struct kprobe *p)
  46{
  47        int ret = 0;
  48        kprobe_opcode_t insn = *p->addr;
  49
  50        if ((unsigned long)p->addr & 0x03) {
  51                printk("Attempt to register kprobe at an unaligned address\n");
  52                ret = -EINVAL;
  53        } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
  54                printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
  55                ret = -EINVAL;
  56        }
  57
  58        /* insn must be on a special executable page on ppc64.  This is
  59         * not explicitly required on ppc32 (right now), but it doesn't hurt */
  60        if (!ret) {
  61                p->ainsn.insn = get_insn_slot();
  62                if (!p->ainsn.insn)
  63                        ret = -ENOMEM;
  64        }
  65
  66        if (!ret) {
  67                memcpy(p->ainsn.insn, p->addr,
  68                                MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
  69                p->opcode = *p->addr;
  70                flush_icache_range((unsigned long)p->ainsn.insn,
  71                        (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
  72        }
  73
  74        p->ainsn.boostable = 0;
  75        return ret;
  76}
  77
  78void __kprobes arch_arm_kprobe(struct kprobe *p)
  79{
  80        *p->addr = BREAKPOINT_INSTRUCTION;
  81        flush_icache_range((unsigned long) p->addr,
  82                           (unsigned long) p->addr + sizeof(kprobe_opcode_t));
  83}
  84
  85void __kprobes arch_disarm_kprobe(struct kprobe *p)
  86{
  87        *p->addr = p->opcode;
  88        flush_icache_range((unsigned long) p->addr,
  89                           (unsigned long) p->addr + sizeof(kprobe_opcode_t));
  90}
  91
  92void __kprobes arch_remove_kprobe(struct kprobe *p)
  93{
  94        if (p->ainsn.insn) {
  95                free_insn_slot(p->ainsn.insn, 0);
  96                p->ainsn.insn = NULL;
  97        }
  98}
  99
 100static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
 101{
 102        enable_single_step(regs);
 103
 104        /*
 105         * On powerpc we should single step on the original
 106         * instruction even if the probed insn is a trap
 107         * variant as values in regs could play a part in
 108         * if the trap is taken or not
 109         */
 110        regs->nip = (unsigned long)p->ainsn.insn;
 111}
 112
 113static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 114{
 115        kcb->prev_kprobe.kp = kprobe_running();
 116        kcb->prev_kprobe.status = kcb->kprobe_status;
 117        kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
 118}
 119
 120static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 121{
 122        __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 123        kcb->kprobe_status = kcb->prev_kprobe.status;
 124        kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
 125}
 126
 127static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 128                                struct kprobe_ctlblk *kcb)
 129{
 130        __this_cpu_write(current_kprobe, p);
 131        kcb->kprobe_saved_msr = regs->msr;
 132}
 133
 134void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 135                                      struct pt_regs *regs)
 136{
 137        ri->ret_addr = (kprobe_opcode_t *)regs->link;
 138
 139        /* Replace the return addr with trampoline addr */
 140        regs->link = (unsigned long)kretprobe_trampoline;
 141}
 142
 143static int __kprobes kprobe_handler(struct pt_regs *regs)
 144{
 145        struct kprobe *p;
 146        int ret = 0;
 147        unsigned int *addr = (unsigned int *)regs->nip;
 148        struct kprobe_ctlblk *kcb;
 149
 150        /*
 151         * We don't want to be preempted for the entire
 152         * duration of kprobe processing
 153         */
 154        preempt_disable();
 155        kcb = get_kprobe_ctlblk();
 156
 157        /* Check we're not actually recursing */
 158        if (kprobe_running()) {
 159                p = get_kprobe(addr);
 160                if (p) {
 161                        kprobe_opcode_t insn = *p->ainsn.insn;
 162                        if (kcb->kprobe_status == KPROBE_HIT_SS &&
 163                                        is_trap(insn)) {
 164                                /* Turn off 'trace' bits */
 165                                regs->msr &= ~MSR_SINGLESTEP;
 166                                regs->msr |= kcb->kprobe_saved_msr;
 167                                goto no_kprobe;
 168                        }
 169                        /* We have reentered the kprobe_handler(), since
 170                         * another probe was hit while within the handler.
 171                         * We here save the original kprobes variables and
 172                         * just single step on the instruction of the new probe
 173                         * without calling any user handlers.
 174                         */
 175                        save_previous_kprobe(kcb);
 176                        set_current_kprobe(p, regs, kcb);
 177                        kcb->kprobe_saved_msr = regs->msr;
 178                        kprobes_inc_nmissed_count(p);
 179                        prepare_singlestep(p, regs);
 180                        kcb->kprobe_status = KPROBE_REENTER;
 181                        return 1;
 182                } else {
 183                        if (*addr != BREAKPOINT_INSTRUCTION) {
 184                                /* If trap variant, then it belongs not to us */
 185                                kprobe_opcode_t cur_insn = *addr;
 186                                if (is_trap(cur_insn))
 187                                        goto no_kprobe;
 188                                /* The breakpoint instruction was removed by
 189                                 * another cpu right after we hit, no further
 190                                 * handling of this interrupt is appropriate
 191                                 */
 192                                ret = 1;
 193                                goto no_kprobe;
 194                        }
 195                        p = __this_cpu_read(current_kprobe);
 196                        if (p->break_handler && p->break_handler(p, regs)) {
 197                                goto ss_probe;
 198                        }
 199                }
 200                goto no_kprobe;
 201        }
 202
 203        p = get_kprobe(addr);
 204        if (!p) {
 205                if (*addr != BREAKPOINT_INSTRUCTION) {
 206                        /*
 207                         * PowerPC has multiple variants of the "trap"
 208                         * instruction. If the current instruction is a
 209                         * trap variant, it could belong to someone else
 210                         */
 211                        kprobe_opcode_t cur_insn = *addr;
 212                        if (is_trap(cur_insn))
 213                                goto no_kprobe;
 214                        /*
 215                         * The breakpoint instruction was removed right
 216                         * after we hit it.  Another cpu has removed
 217                         * either a probepoint or a debugger breakpoint
 218                         * at this address.  In either case, no further
 219                         * handling of this interrupt is appropriate.
 220                         */
 221                        ret = 1;
 222                }
 223                /* Not one of ours: let kernel handle it */
 224                goto no_kprobe;
 225        }
 226
 227        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 228        set_current_kprobe(p, regs, kcb);
 229        if (p->pre_handler && p->pre_handler(p, regs))
 230                /* handler has already set things up, so skip ss setup */
 231                return 1;
 232
 233ss_probe:
 234        if (p->ainsn.boostable >= 0) {
 235                unsigned int insn = *p->ainsn.insn;
 236
 237                /* regs->nip is also adjusted if emulate_step returns 1 */
 238                ret = emulate_step(regs, insn);
 239                if (ret > 0) {
 240                        /*
 241                         * Once this instruction has been boosted
 242                         * successfully, set the boostable flag
 243                         */
 244                        if (unlikely(p->ainsn.boostable == 0))
 245                                p->ainsn.boostable = 1;
 246
 247                        if (p->post_handler)
 248                                p->post_handler(p, regs, 0);
 249
 250                        kcb->kprobe_status = KPROBE_HIT_SSDONE;
 251                        reset_current_kprobe();
 252                        preempt_enable_no_resched();
 253                        return 1;
 254                } else if (ret < 0) {
 255                        /*
 256                         * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
 257                         * So, we should never get here... but, its still
 258                         * good to catch them, just in case...
 259                         */
 260                        printk("Can't step on instruction %x\n", insn);
 261                        BUG();
 262                } else if (ret == 0)
 263                        /* This instruction can't be boosted */
 264                        p->ainsn.boostable = -1;
 265        }
 266        prepare_singlestep(p, regs);
 267        kcb->kprobe_status = KPROBE_HIT_SS;
 268        return 1;
 269
 270no_kprobe:
 271        preempt_enable_no_resched();
 272        return ret;
 273}
 274
 275/*
 276 * Function return probe trampoline:
 277 *      - init_kprobes() establishes a probepoint here
 278 *      - When the probed function returns, this probe
 279 *              causes the handlers to fire
 280 */
 281static void __used kretprobe_trampoline_holder(void)
 282{
 283        asm volatile(".global kretprobe_trampoline\n"
 284                        "kretprobe_trampoline:\n"
 285                        "nop\n");
 286}
 287
 288/*
 289 * Called when the probe at kretprobe trampoline is hit
 290 */
 291static int __kprobes trampoline_probe_handler(struct kprobe *p,
 292                                                struct pt_regs *regs)
 293{
 294        struct kretprobe_instance *ri = NULL;
 295        struct hlist_head *head, empty_rp;
 296        struct hlist_node *tmp;
 297        unsigned long flags, orig_ret_address = 0;
 298        unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
 299
 300        INIT_HLIST_HEAD(&empty_rp);
 301        kretprobe_hash_lock(current, &head, &flags);
 302
 303        /*
 304         * It is possible to have multiple instances associated with a given
 305         * task either because an multiple functions in the call path
 306         * have a return probe installed on them, and/or more than one return
 307         * return probe was registered for a target function.
 308         *
 309         * We can handle this because:
 310         *     - instances are always inserted at the head of the list
 311         *     - when multiple return probes are registered for the same
 312         *       function, the first instance's ret_addr will point to the
 313         *       real return address, and all the rest will point to
 314         *       kretprobe_trampoline
 315         */
 316        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 317                if (ri->task != current)
 318                        /* another task is sharing our hash bucket */
 319                        continue;
 320
 321                if (ri->rp && ri->rp->handler)
 322                        ri->rp->handler(ri, regs);
 323
 324                orig_ret_address = (unsigned long)ri->ret_addr;
 325                recycle_rp_inst(ri, &empty_rp);
 326
 327                if (orig_ret_address != trampoline_address)
 328                        /*
 329                         * This is the real return address. Any other
 330                         * instances associated with this task are for
 331                         * other calls deeper on the call stack
 332                         */
 333                        break;
 334        }
 335
 336        kretprobe_assert(ri, orig_ret_address, trampoline_address);
 337        regs->nip = orig_ret_address;
 338
 339        reset_current_kprobe();
 340        kretprobe_hash_unlock(current, &flags);
 341        preempt_enable_no_resched();
 342
 343        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 344                hlist_del(&ri->hlist);
 345                kfree(ri);
 346        }
 347        /*
 348         * By returning a non-zero value, we are telling
 349         * kprobe_handler() that we don't want the post_handler
 350         * to run (and have re-enabled preemption)
 351         */
 352        return 1;
 353}
 354
 355/*
 356 * Called after single-stepping.  p->addr is the address of the
 357 * instruction whose first byte has been replaced by the "breakpoint"
 358 * instruction.  To avoid the SMP problems that can occur when we
 359 * temporarily put back the original opcode to single-step, we
 360 * single-stepped a copy of the instruction.  The address of this
 361 * copy is p->ainsn.insn.
 362 */
 363static int __kprobes post_kprobe_handler(struct pt_regs *regs)
 364{
 365        struct kprobe *cur = kprobe_running();
 366        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 367
 368        if (!cur)
 369                return 0;
 370
 371        /* make sure we got here for instruction we have a kprobe on */
 372        if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
 373                return 0;
 374
 375        if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 376                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 377                cur->post_handler(cur, regs, 0);
 378        }
 379
 380        /* Adjust nip to after the single-stepped instruction */
 381        regs->nip = (unsigned long)cur->addr + 4;
 382        regs->msr |= kcb->kprobe_saved_msr;
 383
 384        /*Restore back the original saved kprobes variables and continue. */
 385        if (kcb->kprobe_status == KPROBE_REENTER) {
 386                restore_previous_kprobe(kcb);
 387                goto out;
 388        }
 389        reset_current_kprobe();
 390out:
 391        preempt_enable_no_resched();
 392
 393        /*
 394         * if somebody else is singlestepping across a probe point, msr
 395         * will have DE/SE set, in which case, continue the remaining processing
 396         * of do_debug, as if this is not a probe hit.
 397         */
 398        if (regs->msr & MSR_SINGLESTEP)
 399                return 0;
 400
 401        return 1;
 402}
 403
 404int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 405{
 406        struct kprobe *cur = kprobe_running();
 407        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 408        const struct exception_table_entry *entry;
 409
 410        switch(kcb->kprobe_status) {
 411        case KPROBE_HIT_SS:
 412        case KPROBE_REENTER:
 413                /*
 414                 * We are here because the instruction being single
 415                 * stepped caused a page fault. We reset the current
 416                 * kprobe and the nip points back to the probe address
 417                 * and allow the page fault handler to continue as a
 418                 * normal page fault.
 419                 */
 420                regs->nip = (unsigned long)cur->addr;
 421                regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
 422                regs->msr |= kcb->kprobe_saved_msr;
 423                if (kcb->kprobe_status == KPROBE_REENTER)
 424                        restore_previous_kprobe(kcb);
 425                else
 426                        reset_current_kprobe();
 427                preempt_enable_no_resched();
 428                break;
 429        case KPROBE_HIT_ACTIVE:
 430        case KPROBE_HIT_SSDONE:
 431                /*
 432                 * We increment the nmissed count for accounting,
 433                 * we can also use npre/npostfault count for accounting
 434                 * these specific fault cases.
 435                 */
 436                kprobes_inc_nmissed_count(cur);
 437
 438                /*
 439                 * We come here because instructions in the pre/post
 440                 * handler caused the page_fault, this could happen
 441                 * if handler tries to access user space by
 442                 * copy_from_user(), get_user() etc. Let the
 443                 * user-specified handler try to fix it first.
 444                 */
 445                if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 446                        return 1;
 447
 448                /*
 449                 * In case the user-specified fault handler returned
 450                 * zero, try to fix up.
 451                 */
 452                if ((entry = search_exception_tables(regs->nip)) != NULL) {
 453                        regs->nip = entry->fixup;
 454                        return 1;
 455                }
 456
 457                /*
 458                 * fixup_exception() could not handle it,
 459                 * Let do_page_fault() fix it.
 460                 */
 461                break;
 462        default:
 463                break;
 464        }
 465        return 0;
 466}
 467
 468/*
 469 * Wrapper routine to for handling exceptions.
 470 */
 471int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 472                                       unsigned long val, void *data)
 473{
 474        struct die_args *args = (struct die_args *)data;
 475        int ret = NOTIFY_DONE;
 476
 477        if (args->regs && user_mode(args->regs))
 478                return ret;
 479
 480        switch (val) {
 481        case DIE_BPT:
 482                if (kprobe_handler(args->regs))
 483                        ret = NOTIFY_STOP;
 484                break;
 485        case DIE_SSTEP:
 486                if (post_kprobe_handler(args->regs))
 487                        ret = NOTIFY_STOP;
 488                break;
 489        default:
 490                break;
 491        }
 492        return ret;
 493}
 494
 495unsigned long arch_deref_entry_point(void *entry)
 496{
 497        return ppc_global_function_entry(entry);
 498}
 499
 500int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 501{
 502        struct jprobe *jp = container_of(p, struct jprobe, kp);
 503        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 504
 505        memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
 506
 507        /* setup return addr to the jprobe handler routine */
 508        regs->nip = arch_deref_entry_point(jp->entry);
 509#ifdef CONFIG_PPC64
 510#if defined(_CALL_ELF) && _CALL_ELF == 2
 511        regs->gpr[12] = (unsigned long)jp->entry;
 512#else
 513        regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
 514#endif
 515#endif
 516
 517        return 1;
 518}
 519
 520void __used __kprobes jprobe_return(void)
 521{
 522        asm volatile("trap" ::: "memory");
 523}
 524
 525static void __used __kprobes jprobe_return_end(void)
 526{
 527};
 528
 529int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 530{
 531        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 532
 533        /*
 534         * FIXME - we should ideally be validating that we got here 'cos
 535         * of the "trap" in jprobe_return() above, before restoring the
 536         * saved regs...
 537         */
 538        memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
 539        preempt_enable_no_resched();
 540        return 1;
 541}
 542
 543static struct kprobe trampoline_p = {
 544        .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
 545        .pre_handler = trampoline_probe_handler
 546};
 547
 548int __init arch_init_kprobes(void)
 549{
 550        return register_kprobe(&trampoline_p);
 551}
 552
 553int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 554{
 555        if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
 556                return 1;
 557
 558        return 0;
 559}
 560