linux/arch/powerpc/kernel/machine_kexec_64.c
<<
>>
Prefs
   1/*
   2 * PPC64 code to handle Linux booting another kernel.
   3 *
   4 * Copyright (C) 2004-2005, IBM Corp.
   5 *
   6 * Created by: Milton D Miller II
   7 *
   8 * This source code is licensed under the GNU General Public License,
   9 * Version 2.  See the file COPYING for more details.
  10 */
  11
  12
  13#include <linux/kexec.h>
  14#include <linux/smp.h>
  15#include <linux/thread_info.h>
  16#include <linux/init_task.h>
  17#include <linux/errno.h>
  18#include <linux/kernel.h>
  19#include <linux/cpu.h>
  20#include <linux/hardirq.h>
  21
  22#include <asm/page.h>
  23#include <asm/current.h>
  24#include <asm/machdep.h>
  25#include <asm/cacheflush.h>
  26#include <asm/paca.h>
  27#include <asm/mmu.h>
  28#include <asm/sections.h>       /* _end */
  29#include <asm/prom.h>
  30#include <asm/smp.h>
  31#include <asm/hw_breakpoint.h>
  32
  33int default_machine_kexec_prepare(struct kimage *image)
  34{
  35        int i;
  36        unsigned long begin, end;       /* limits of segment */
  37        unsigned long low, high;        /* limits of blocked memory range */
  38        struct device_node *node;
  39        const unsigned long *basep;
  40        const unsigned int *sizep;
  41
  42        if (!ppc_md.hpte_clear_all)
  43                return -ENOENT;
  44
  45        /*
  46         * Since we use the kernel fault handlers and paging code to
  47         * handle the virtual mode, we must make sure no destination
  48         * overlaps kernel static data or bss.
  49         */
  50        for (i = 0; i < image->nr_segments; i++)
  51                if (image->segment[i].mem < __pa(_end))
  52                        return -ETXTBSY;
  53
  54        /*
  55         * For non-LPAR, we absolutely can not overwrite the mmu hash
  56         * table, since we are still using the bolted entries in it to
  57         * do the copy.  Check that here.
  58         *
  59         * It is safe if the end is below the start of the blocked
  60         * region (end <= low), or if the beginning is after the
  61         * end of the blocked region (begin >= high).  Use the
  62         * boolean identity !(a || b)  === (!a && !b).
  63         */
  64        if (htab_address) {
  65                low = __pa(htab_address);
  66                high = low + htab_size_bytes;
  67
  68                for (i = 0; i < image->nr_segments; i++) {
  69                        begin = image->segment[i].mem;
  70                        end = begin + image->segment[i].memsz;
  71
  72                        if ((begin < high) && (end > low))
  73                                return -ETXTBSY;
  74                }
  75        }
  76
  77        /* We also should not overwrite the tce tables */
  78        for_each_node_by_type(node, "pci") {
  79                basep = of_get_property(node, "linux,tce-base", NULL);
  80                sizep = of_get_property(node, "linux,tce-size", NULL);
  81                if (basep == NULL || sizep == NULL)
  82                        continue;
  83
  84                low = *basep;
  85                high = low + (*sizep);
  86
  87                for (i = 0; i < image->nr_segments; i++) {
  88                        begin = image->segment[i].mem;
  89                        end = begin + image->segment[i].memsz;
  90
  91                        if ((begin < high) && (end > low))
  92                                return -ETXTBSY;
  93                }
  94        }
  95
  96        return 0;
  97}
  98
  99static void copy_segments(unsigned long ind)
 100{
 101        unsigned long entry;
 102        unsigned long *ptr;
 103        void *dest;
 104        void *addr;
 105
 106        /*
 107         * We rely on kexec_load to create a lists that properly
 108         * initializes these pointers before they are used.
 109         * We will still crash if the list is wrong, but at least
 110         * the compiler will be quiet.
 111         */
 112        ptr = NULL;
 113        dest = NULL;
 114
 115        for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
 116                addr = __va(entry & PAGE_MASK);
 117
 118                switch (entry & IND_FLAGS) {
 119                case IND_DESTINATION:
 120                        dest = addr;
 121                        break;
 122                case IND_INDIRECTION:
 123                        ptr = addr;
 124                        break;
 125                case IND_SOURCE:
 126                        copy_page(dest, addr);
 127                        dest += PAGE_SIZE;
 128                }
 129        }
 130}
 131
 132void kexec_copy_flush(struct kimage *image)
 133{
 134        long i, nr_segments = image->nr_segments;
 135        struct  kexec_segment ranges[KEXEC_SEGMENT_MAX];
 136
 137        /* save the ranges on the stack to efficiently flush the icache */
 138        memcpy(ranges, image->segment, sizeof(ranges));
 139
 140        /*
 141         * After this call we may not use anything allocated in dynamic
 142         * memory, including *image.
 143         *
 144         * Only globals and the stack are allowed.
 145         */
 146        copy_segments(image->head);
 147
 148        /*
 149         * we need to clear the icache for all dest pages sometime,
 150         * including ones that were in place on the original copy
 151         */
 152        for (i = 0; i < nr_segments; i++)
 153                flush_icache_range((unsigned long)__va(ranges[i].mem),
 154                        (unsigned long)__va(ranges[i].mem + ranges[i].memsz));
 155}
 156
 157#ifdef CONFIG_SMP
 158
 159static int kexec_all_irq_disabled = 0;
 160
 161static void kexec_smp_down(void *arg)
 162{
 163        local_irq_disable();
 164        hard_irq_disable();
 165
 166        mb(); /* make sure our irqs are disabled before we say they are */
 167        get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
 168        while(kexec_all_irq_disabled == 0)
 169                cpu_relax();
 170        mb(); /* make sure all irqs are disabled before this */
 171        hw_breakpoint_disable();
 172        /*
 173         * Now every CPU has IRQs off, we can clear out any pending
 174         * IPIs and be sure that no more will come in after this.
 175         */
 176        if (ppc_md.kexec_cpu_down)
 177                ppc_md.kexec_cpu_down(0, 1);
 178
 179        kexec_smp_wait();
 180        /* NOTREACHED */
 181}
 182
 183static void kexec_prepare_cpus_wait(int wait_state)
 184{
 185        int my_cpu, i, notified=-1;
 186
 187        hw_breakpoint_disable();
 188        my_cpu = get_cpu();
 189        /* Make sure each CPU has at least made it to the state we need.
 190         *
 191         * FIXME: There is a (slim) chance of a problem if not all of the CPUs
 192         * are correctly onlined.  If somehow we start a CPU on boot with RTAS
 193         * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
 194         * time, the boot CPU will timeout.  If it does eventually execute
 195         * stuff, the secondary will start up (paca[].cpu_start was written) and
 196         * get into a peculiar state.  If the platform supports
 197         * smp_ops->take_timebase(), the secondary CPU will probably be spinning
 198         * in there.  If not (i.e. pseries), the secondary will continue on and
 199         * try to online itself/idle/etc. If it survives that, we need to find
 200         * these possible-but-not-online-but-should-be CPUs and chaperone them
 201         * into kexec_smp_wait().
 202         */
 203        for_each_online_cpu(i) {
 204                if (i == my_cpu)
 205                        continue;
 206
 207                while (paca[i].kexec_state < wait_state) {
 208                        barrier();
 209                        if (i != notified) {
 210                                printk(KERN_INFO "kexec: waiting for cpu %d "
 211                                       "(physical %d) to enter %i state\n",
 212                                       i, paca[i].hw_cpu_id, wait_state);
 213                                notified = i;
 214                        }
 215                }
 216        }
 217        mb();
 218}
 219
 220/*
 221 * We need to make sure each present CPU is online.  The next kernel will scan
 222 * the device tree and assume primary threads are online and query secondary
 223 * threads via RTAS to online them if required.  If we don't online primary
 224 * threads, they will be stuck.  However, we also online secondary threads as we
 225 * may be using 'cede offline'.  In this case RTAS doesn't see the secondary
 226 * threads as offline -- and again, these CPUs will be stuck.
 227 *
 228 * So, we online all CPUs that should be running, including secondary threads.
 229 */
 230static void wake_offline_cpus(void)
 231{
 232        int cpu = 0;
 233
 234        for_each_present_cpu(cpu) {
 235                if (!cpu_online(cpu)) {
 236                        printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
 237                               cpu);
 238                        WARN_ON(cpu_up(cpu));
 239                }
 240        }
 241}
 242
 243static void kexec_prepare_cpus(void)
 244{
 245        wake_offline_cpus();
 246        smp_call_function(kexec_smp_down, NULL, /* wait */0);
 247        local_irq_disable();
 248        hard_irq_disable();
 249
 250        mb(); /* make sure IRQs are disabled before we say they are */
 251        get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
 252
 253        kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
 254        /* we are sure every CPU has IRQs off at this point */
 255        kexec_all_irq_disabled = 1;
 256
 257        /* after we tell the others to go down */
 258        if (ppc_md.kexec_cpu_down)
 259                ppc_md.kexec_cpu_down(0, 0);
 260
 261        /*
 262         * Before removing MMU mappings make sure all CPUs have entered real
 263         * mode:
 264         */
 265        kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
 266
 267        put_cpu();
 268}
 269
 270#else /* ! SMP */
 271
 272static void kexec_prepare_cpus(void)
 273{
 274        /*
 275         * move the secondarys to us so that we can copy
 276         * the new kernel 0-0x100 safely
 277         *
 278         * do this if kexec in setup.c ?
 279         *
 280         * We need to release the cpus if we are ever going from an
 281         * UP to an SMP kernel.
 282         */
 283        smp_release_cpus();
 284        if (ppc_md.kexec_cpu_down)
 285                ppc_md.kexec_cpu_down(0, 0);
 286        local_irq_disable();
 287        hard_irq_disable();
 288}
 289
 290#endif /* SMP */
 291
 292/*
 293 * kexec thread structure and stack.
 294 *
 295 * We need to make sure that this is 16384-byte aligned due to the
 296 * way process stacks are handled.  It also must be statically allocated
 297 * or allocated as part of the kimage, because everything else may be
 298 * overwritten when we copy the kexec image.  We piggyback on the
 299 * "init_task" linker section here to statically allocate a stack.
 300 *
 301 * We could use a smaller stack if we don't care about anything using
 302 * current, but that audit has not been performed.
 303 */
 304static union thread_union kexec_stack __init_task_data =
 305        { };
 306
 307/*
 308 * For similar reasons to the stack above, the kexecing CPU needs to be on a
 309 * static PACA; we switch to kexec_paca.
 310 */
 311struct paca_struct kexec_paca;
 312
 313/* Our assembly helper, in misc_64.S */
 314extern void kexec_sequence(void *newstack, unsigned long start,
 315                           void *image, void *control,
 316                           void (*clear_all)(void)) __noreturn;
 317
 318/* too late to fail here */
 319void default_machine_kexec(struct kimage *image)
 320{
 321        /* prepare control code if any */
 322
 323        /*
 324        * If the kexec boot is the normal one, need to shutdown other cpus
 325        * into our wait loop and quiesce interrupts.
 326        * Otherwise, in the case of crashed mode (crashing_cpu >= 0),
 327        * stopping other CPUs and collecting their pt_regs is done before
 328        * using debugger IPI.
 329        */
 330
 331        if (!kdump_in_progress())
 332                kexec_prepare_cpus();
 333
 334        pr_debug("kexec: Starting switchover sequence.\n");
 335
 336        /* switch to a staticly allocated stack.  Based on irq stack code.
 337         * We setup preempt_count to avoid using VMX in memcpy.
 338         * XXX: the task struct will likely be invalid once we do the copy!
 339         */
 340        kexec_stack.thread_info.task = current_thread_info()->task;
 341        kexec_stack.thread_info.flags = 0;
 342        kexec_stack.thread_info.preempt_count = HARDIRQ_OFFSET;
 343        kexec_stack.thread_info.cpu = current_thread_info()->cpu;
 344
 345        /* We need a static PACA, too; copy this CPU's PACA over and switch to
 346         * it.  Also poison per_cpu_offset to catch anyone using non-static
 347         * data.
 348         */
 349        memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
 350        kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
 351        paca = (struct paca_struct *)RELOC_HIDE(&kexec_paca, 0) -
 352                kexec_paca.paca_index;
 353        setup_paca(&kexec_paca);
 354
 355        /* XXX: If anyone does 'dynamic lppacas' this will also need to be
 356         * switched to a static version!
 357         */
 358
 359        /* Some things are best done in assembly.  Finding globals with
 360         * a toc is easier in C, so pass in what we can.
 361         */
 362        kexec_sequence(&kexec_stack, image->start, image,
 363                        page_address(image->control_code_page),
 364                        ppc_md.hpte_clear_all);
 365        /* NOTREACHED */
 366}
 367
 368/* Values we need to export to the second kernel via the device tree. */
 369static unsigned long htab_base;
 370static unsigned long htab_size;
 371
 372static struct property htab_base_prop = {
 373        .name = "linux,htab-base",
 374        .length = sizeof(unsigned long),
 375        .value = &htab_base,
 376};
 377
 378static struct property htab_size_prop = {
 379        .name = "linux,htab-size",
 380        .length = sizeof(unsigned long),
 381        .value = &htab_size,
 382};
 383
 384static int __init export_htab_values(void)
 385{
 386        struct device_node *node;
 387        struct property *prop;
 388
 389        /* On machines with no htab htab_address is NULL */
 390        if (!htab_address)
 391                return -ENODEV;
 392
 393        node = of_find_node_by_path("/chosen");
 394        if (!node)
 395                return -ENODEV;
 396
 397        /* remove any stale propertys so ours can be found */
 398        prop = of_find_property(node, htab_base_prop.name, NULL);
 399        if (prop)
 400                of_remove_property(node, prop);
 401        prop = of_find_property(node, htab_size_prop.name, NULL);
 402        if (prop)
 403                of_remove_property(node, prop);
 404
 405        htab_base = cpu_to_be64(__pa(htab_address));
 406        of_add_property(node, &htab_base_prop);
 407        htab_size = cpu_to_be64(htab_size_bytes);
 408        of_add_property(node, &htab_size_prop);
 409
 410        of_node_put(node);
 411        return 0;
 412}
 413late_initcall(export_htab_values);
 414