linux/arch/powerpc/platforms/pseries/ras.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/interrupt.h>
  21#include <linux/irq.h>
  22#include <linux/of.h>
  23#include <linux/fs.h>
  24#include <linux/reboot.h>
  25
  26#include <asm/machdep.h>
  27#include <asm/rtas.h>
  28#include <asm/firmware.h>
  29
  30#include "pseries.h"
  31
  32static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
  33static DEFINE_SPINLOCK(ras_log_buf_lock);
  34
  35static char global_mce_data_buf[RTAS_ERROR_LOG_MAX];
  36static DEFINE_PER_CPU(__u64, mce_data_buf);
  37
  38static int ras_check_exception_token;
  39
  40#define EPOW_SENSOR_TOKEN       9
  41#define EPOW_SENSOR_INDEX       0
  42
  43static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
  44static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
  45
  46
  47/*
  48 * Initialize handlers for the set of interrupts caused by hardware errors
  49 * and power system events.
  50 */
  51static int __init init_ras_IRQ(void)
  52{
  53        struct device_node *np;
  54
  55        ras_check_exception_token = rtas_token("check-exception");
  56
  57        /* Internal Errors */
  58        np = of_find_node_by_path("/event-sources/internal-errors");
  59        if (np != NULL) {
  60                request_event_sources_irqs(np, ras_error_interrupt,
  61                                           "RAS_ERROR");
  62                of_node_put(np);
  63        }
  64
  65        /* EPOW Events */
  66        np = of_find_node_by_path("/event-sources/epow-events");
  67        if (np != NULL) {
  68                request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
  69                of_node_put(np);
  70        }
  71
  72        return 0;
  73}
  74machine_subsys_initcall(pseries, init_ras_IRQ);
  75
  76#define EPOW_SHUTDOWN_NORMAL                            1
  77#define EPOW_SHUTDOWN_ON_UPS                            2
  78#define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS        3
  79#define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH      4
  80
  81static void handle_system_shutdown(char event_modifier)
  82{
  83        switch (event_modifier) {
  84        case EPOW_SHUTDOWN_NORMAL:
  85                pr_emerg("Firmware initiated power off");
  86                orderly_poweroff(true);
  87                break;
  88
  89        case EPOW_SHUTDOWN_ON_UPS:
  90                pr_emerg("Loss of power reported by firmware, system is "
  91                        "running on UPS/battery");
  92                pr_emerg("Check RTAS error log for details");
  93                orderly_poweroff(true);
  94                break;
  95
  96        case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
  97                pr_emerg("Loss of system critical functions reported by "
  98                        "firmware");
  99                pr_emerg("Check RTAS error log for details");
 100                orderly_poweroff(true);
 101                break;
 102
 103        case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
 104                pr_emerg("Ambient temperature too high reported by firmware");
 105                pr_emerg("Check RTAS error log for details");
 106                orderly_poweroff(true);
 107                break;
 108
 109        default:
 110                pr_err("Unknown power/cooling shutdown event (modifier %d)",
 111                        event_modifier);
 112        }
 113}
 114
 115struct epow_errorlog {
 116        unsigned char sensor_value;
 117        unsigned char event_modifier;
 118        unsigned char extended_modifier;
 119        unsigned char reserved;
 120        unsigned char platform_reason;
 121};
 122
 123#define EPOW_RESET                      0
 124#define EPOW_WARN_COOLING               1
 125#define EPOW_WARN_POWER                 2
 126#define EPOW_SYSTEM_SHUTDOWN            3
 127#define EPOW_SYSTEM_HALT                4
 128#define EPOW_MAIN_ENCLOSURE             5
 129#define EPOW_POWER_OFF                  7
 130
 131static void rtas_parse_epow_errlog(struct rtas_error_log *log)
 132{
 133        struct pseries_errorlog *pseries_log;
 134        struct epow_errorlog *epow_log;
 135        char action_code;
 136        char modifier;
 137
 138        pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
 139        if (pseries_log == NULL)
 140                return;
 141
 142        epow_log = (struct epow_errorlog *)pseries_log->data;
 143        action_code = epow_log->sensor_value & 0xF;     /* bottom 4 bits */
 144        modifier = epow_log->event_modifier & 0xF;      /* bottom 4 bits */
 145
 146        switch (action_code) {
 147        case EPOW_RESET:
 148                pr_err("Non critical power or cooling issue cleared");
 149                break;
 150
 151        case EPOW_WARN_COOLING:
 152                pr_err("Non critical cooling issue reported by firmware");
 153                pr_err("Check RTAS error log for details");
 154                break;
 155
 156        case EPOW_WARN_POWER:
 157                pr_err("Non critical power issue reported by firmware");
 158                pr_err("Check RTAS error log for details");
 159                break;
 160
 161        case EPOW_SYSTEM_SHUTDOWN:
 162                handle_system_shutdown(epow_log->event_modifier);
 163                break;
 164
 165        case EPOW_SYSTEM_HALT:
 166                pr_emerg("Firmware initiated power off");
 167                orderly_poweroff(true);
 168                break;
 169
 170        case EPOW_MAIN_ENCLOSURE:
 171        case EPOW_POWER_OFF:
 172                pr_emerg("Critical power/cooling issue reported by firmware");
 173                pr_emerg("Check RTAS error log for details");
 174                pr_emerg("Immediate power off");
 175                emergency_sync();
 176                kernel_power_off();
 177                break;
 178
 179        default:
 180                pr_err("Unknown power/cooling event (action code %d)",
 181                        action_code);
 182        }
 183}
 184
 185/* Handle environmental and power warning (EPOW) interrupts. */
 186static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
 187{
 188        int status;
 189        int state;
 190        int critical;
 191
 192        status = rtas_get_sensor(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX, &state);
 193
 194        if (state > 3)
 195                critical = 1;           /* Time Critical */
 196        else
 197                critical = 0;
 198
 199        spin_lock(&ras_log_buf_lock);
 200
 201        status = rtas_call(ras_check_exception_token, 6, 1, NULL,
 202                           RTAS_VECTOR_EXTERNAL_INTERRUPT,
 203                           virq_to_hw(irq),
 204                           RTAS_EPOW_WARNING,
 205                           critical, __pa(&ras_log_buf),
 206                                rtas_get_error_log_max());
 207
 208        log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
 209
 210        rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
 211
 212        spin_unlock(&ras_log_buf_lock);
 213        return IRQ_HANDLED;
 214}
 215
 216/*
 217 * Handle hardware error interrupts.
 218 *
 219 * RTAS check-exception is called to collect data on the exception.  If
 220 * the error is deemed recoverable, we log a warning and return.
 221 * For nonrecoverable errors, an error is logged and we stop all processing
 222 * as quickly as possible in order to prevent propagation of the failure.
 223 */
 224static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
 225{
 226        struct rtas_error_log *rtas_elog;
 227        int status;
 228        int fatal;
 229
 230        spin_lock(&ras_log_buf_lock);
 231
 232        status = rtas_call(ras_check_exception_token, 6, 1, NULL,
 233                           RTAS_VECTOR_EXTERNAL_INTERRUPT,
 234                           virq_to_hw(irq),
 235                           RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
 236                           __pa(&ras_log_buf),
 237                                rtas_get_error_log_max());
 238
 239        rtas_elog = (struct rtas_error_log *)ras_log_buf;
 240
 241        if (status == 0 &&
 242            rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
 243                fatal = 1;
 244        else
 245                fatal = 0;
 246
 247        /* format and print the extended information */
 248        log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
 249
 250        if (fatal) {
 251                pr_emerg("Fatal hardware error reported by firmware");
 252                pr_emerg("Check RTAS error log for details");
 253                pr_emerg("Immediate power off");
 254                emergency_sync();
 255                kernel_power_off();
 256        } else {
 257                pr_err("Recoverable hardware error reported by firmware");
 258        }
 259
 260        spin_unlock(&ras_log_buf_lock);
 261        return IRQ_HANDLED;
 262}
 263
 264/*
 265 * Some versions of FWNMI place the buffer inside the 4kB page starting at
 266 * 0x7000. Other versions place it inside the rtas buffer. We check both.
 267 */
 268#define VALID_FWNMI_BUFFER(A) \
 269        ((((A) >= 0x7000) && ((A) < 0x7ff0)) || \
 270        (((A) >= rtas.base) && ((A) < (rtas.base + rtas.size - 16))))
 271
 272/*
 273 * Get the error information for errors coming through the
 274 * FWNMI vectors.  The pt_regs' r3 will be updated to reflect
 275 * the actual r3 if possible, and a ptr to the error log entry
 276 * will be returned if found.
 277 *
 278 * If the RTAS error is not of the extended type, then we put it in a per
 279 * cpu 64bit buffer. If it is the extended type we use global_mce_data_buf.
 280 *
 281 * The global_mce_data_buf does not have any locks or protection around it,
 282 * if a second machine check comes in, or a system reset is done
 283 * before we have logged the error, then we will get corruption in the
 284 * error log.  This is preferable over holding off on calling
 285 * ibm,nmi-interlock which would result in us checkstopping if a
 286 * second machine check did come in.
 287 */
 288static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
 289{
 290        unsigned long *savep;
 291        struct rtas_error_log *h, *errhdr = NULL;
 292
 293        /* Mask top two bits */
 294        regs->gpr[3] &= ~(0x3UL << 62);
 295
 296        if (!VALID_FWNMI_BUFFER(regs->gpr[3])) {
 297                printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
 298                return NULL;
 299        }
 300
 301        savep = __va(regs->gpr[3]);
 302        regs->gpr[3] = savep[0];        /* restore original r3 */
 303
 304        /* If it isn't an extended log we can use the per cpu 64bit buffer */
 305        h = (struct rtas_error_log *)&savep[1];
 306        if (!rtas_error_extended(h)) {
 307                memcpy(this_cpu_ptr(&mce_data_buf), h, sizeof(__u64));
 308                errhdr = (struct rtas_error_log *)this_cpu_ptr(&mce_data_buf);
 309        } else {
 310                int len, error_log_length;
 311
 312                error_log_length = 8 + rtas_error_extended_log_length(h);
 313                len = max_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
 314                memset(global_mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
 315                memcpy(global_mce_data_buf, h, len);
 316                errhdr = (struct rtas_error_log *)global_mce_data_buf;
 317        }
 318
 319        return errhdr;
 320}
 321
 322/* Call this when done with the data returned by FWNMI_get_errinfo.
 323 * It will release the saved data area for other CPUs in the
 324 * partition to receive FWNMI errors.
 325 */
 326static void fwnmi_release_errinfo(void)
 327{
 328        int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
 329        if (ret != 0)
 330                printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
 331}
 332
 333int pSeries_system_reset_exception(struct pt_regs *regs)
 334{
 335        if (fwnmi_active) {
 336                struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
 337                if (errhdr) {
 338                        /* XXX Should look at FWNMI information */
 339                }
 340                fwnmi_release_errinfo();
 341        }
 342        return 0; /* need to perform reset */
 343}
 344
 345/*
 346 * See if we can recover from a machine check exception.
 347 * This is only called on power4 (or above) and only via
 348 * the Firmware Non-Maskable Interrupts (fwnmi) handler
 349 * which provides the error analysis for us.
 350 *
 351 * Return 1 if corrected (or delivered a signal).
 352 * Return 0 if there is nothing we can do.
 353 */
 354static int recover_mce(struct pt_regs *regs, struct rtas_error_log *err)
 355{
 356        int recovered = 0;
 357        int disposition = rtas_error_disposition(err);
 358
 359        if (!(regs->msr & MSR_RI)) {
 360                /* If MSR_RI isn't set, we cannot recover */
 361                recovered = 0;
 362
 363        } else if (disposition == RTAS_DISP_FULLY_RECOVERED) {
 364                /* Platform corrected itself */
 365                recovered = 1;
 366
 367        } else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
 368                /* Platform corrected itself but could be degraded */
 369                printk(KERN_ERR "MCE: limited recovery, system may "
 370                       "be degraded\n");
 371                recovered = 1;
 372
 373        } else if (user_mode(regs) && !is_global_init(current) &&
 374                   rtas_error_severity(err) == RTAS_SEVERITY_ERROR_SYNC) {
 375
 376                /*
 377                 * If we received a synchronous error when in userspace
 378                 * kill the task. Firmware may report details of the fail
 379                 * asynchronously, so we can't rely on the target and type
 380                 * fields being valid here.
 381                 */
 382                printk(KERN_ERR "MCE: uncorrectable error, killing task "
 383                       "%s:%d\n", current->comm, current->pid);
 384
 385                _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
 386                recovered = 1;
 387        }
 388
 389        log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
 390
 391        return recovered;
 392}
 393
 394/*
 395 * Handle a machine check.
 396 *
 397 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
 398 * should be present.  If so the handler which called us tells us if the
 399 * error was recovered (never true if RI=0).
 400 *
 401 * On hardware prior to Power 4 these exceptions were asynchronous which
 402 * means we can't tell exactly where it occurred and so we can't recover.
 403 */
 404int pSeries_machine_check_exception(struct pt_regs *regs)
 405{
 406        struct rtas_error_log *errp;
 407
 408        if (fwnmi_active) {
 409                errp = fwnmi_get_errinfo(regs);
 410                fwnmi_release_errinfo();
 411                if (errp && recover_mce(regs, errp))
 412                        return 1;
 413        }
 414
 415        return 0;
 416}
 417