linux/arch/tile/kernel/kprobes.c
<<
>>
Prefs
   1/*
   2 * arch/tile/kernel/kprobes.c
   3 * Kprobes on TILE-Gx
   4 *
   5 * Some portions copied from the MIPS version.
   6 *
   7 * Copyright (C) IBM Corporation, 2002, 2004
   8 * Copyright 2006 Sony Corp.
   9 * Copyright 2010 Cavium Networks
  10 *
  11 * Copyright 2012 Tilera Corporation. All Rights Reserved.
  12 *
  13 *   This program is free software; you can redistribute it and/or
  14 *   modify it under the terms of the GNU General Public License
  15 *   as published by the Free Software Foundation, version 2.
  16 *
  17 *   This program is distributed in the hope that it will be useful, but
  18 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  20 *   NON INFRINGEMENT.  See the GNU General Public License for
  21 *   more details.
  22 */
  23
  24#include <linux/kprobes.h>
  25#include <linux/kdebug.h>
  26#include <linux/module.h>
  27#include <linux/slab.h>
  28#include <linux/uaccess.h>
  29#include <asm/cacheflush.h>
  30
  31#include <arch/opcode.h>
  32
  33DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  34DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  35
  36tile_bundle_bits breakpoint_insn = TILEGX_BPT_BUNDLE;
  37tile_bundle_bits breakpoint2_insn = TILEGX_BPT_BUNDLE | DIE_SSTEPBP;
  38
  39/*
  40 * Check whether instruction is branch or jump, or if executing it
  41 * has different results depending on where it is executed (e.g. lnk).
  42 */
  43static int __kprobes insn_has_control(kprobe_opcode_t insn)
  44{
  45        if (get_Mode(insn) != 0) {   /* Y-format bundle */
  46                if (get_Opcode_Y1(insn) != RRR_1_OPCODE_Y1 ||
  47                    get_RRROpcodeExtension_Y1(insn) != UNARY_RRR_1_OPCODE_Y1)
  48                        return 0;
  49
  50                switch (get_UnaryOpcodeExtension_Y1(insn)) {
  51                case JALRP_UNARY_OPCODE_Y1:
  52                case JALR_UNARY_OPCODE_Y1:
  53                case JRP_UNARY_OPCODE_Y1:
  54                case JR_UNARY_OPCODE_Y1:
  55                case LNK_UNARY_OPCODE_Y1:
  56                        return 1;
  57                default:
  58                        return 0;
  59                }
  60        }
  61
  62        switch (get_Opcode_X1(insn)) {
  63        case BRANCH_OPCODE_X1:  /* branch instructions */
  64        case JUMP_OPCODE_X1:    /* jump instructions: j and jal */
  65                return 1;
  66
  67        case RRR_0_OPCODE_X1:   /* other jump instructions */
  68                if (get_RRROpcodeExtension_X1(insn) != UNARY_RRR_0_OPCODE_X1)
  69                        return 0;
  70                switch (get_UnaryOpcodeExtension_X1(insn)) {
  71                case JALRP_UNARY_OPCODE_X1:
  72                case JALR_UNARY_OPCODE_X1:
  73                case JRP_UNARY_OPCODE_X1:
  74                case JR_UNARY_OPCODE_X1:
  75                case LNK_UNARY_OPCODE_X1:
  76                        return 1;
  77                default:
  78                        return 0;
  79                }
  80        default:
  81                return 0;
  82        }
  83}
  84
  85int __kprobes arch_prepare_kprobe(struct kprobe *p)
  86{
  87        unsigned long addr = (unsigned long)p->addr;
  88
  89        if (addr & (sizeof(kprobe_opcode_t) - 1))
  90                return -EINVAL;
  91
  92        if (insn_has_control(*p->addr)) {
  93                pr_notice("Kprobes for control instructions are not supported\n");
  94                return -EINVAL;
  95        }
  96
  97        /* insn: must be on special executable page on tile. */
  98        p->ainsn.insn = get_insn_slot();
  99        if (!p->ainsn.insn)
 100                return -ENOMEM;
 101
 102        /*
 103         * In the kprobe->ainsn.insn[] array we store the original
 104         * instruction at index zero and a break trap instruction at
 105         * index one.
 106         */
 107        memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
 108        p->ainsn.insn[1] = breakpoint2_insn;
 109        p->opcode = *p->addr;
 110
 111        return 0;
 112}
 113
 114void __kprobes arch_arm_kprobe(struct kprobe *p)
 115{
 116        unsigned long addr_wr;
 117
 118        /* Operate on writable kernel text mapping. */
 119        addr_wr = (unsigned long)p->addr - MEM_SV_START + PAGE_OFFSET;
 120
 121        if (probe_kernel_write((void *)addr_wr, &breakpoint_insn,
 122                sizeof(breakpoint_insn)))
 123                pr_err("%s: failed to enable kprobe\n", __func__);
 124
 125        smp_wmb();
 126        flush_insn_slot(p);
 127}
 128
 129void __kprobes arch_disarm_kprobe(struct kprobe *kp)
 130{
 131        unsigned long addr_wr;
 132
 133        /* Operate on writable kernel text mapping. */
 134        addr_wr = (unsigned long)kp->addr - MEM_SV_START + PAGE_OFFSET;
 135
 136        if (probe_kernel_write((void *)addr_wr, &kp->opcode,
 137                sizeof(kp->opcode)))
 138                pr_err("%s: failed to enable kprobe\n", __func__);
 139
 140        smp_wmb();
 141        flush_insn_slot(kp);
 142}
 143
 144void __kprobes arch_remove_kprobe(struct kprobe *p)
 145{
 146        if (p->ainsn.insn) {
 147                free_insn_slot(p->ainsn.insn, 0);
 148                p->ainsn.insn = NULL;
 149        }
 150}
 151
 152static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 153{
 154        kcb->prev_kprobe.kp = kprobe_running();
 155        kcb->prev_kprobe.status = kcb->kprobe_status;
 156        kcb->prev_kprobe.saved_pc = kcb->kprobe_saved_pc;
 157}
 158
 159static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 160{
 161        __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 162        kcb->kprobe_status = kcb->prev_kprobe.status;
 163        kcb->kprobe_saved_pc = kcb->prev_kprobe.saved_pc;
 164}
 165
 166static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 167                        struct kprobe_ctlblk *kcb)
 168{
 169        __this_cpu_write(current_kprobe, p);
 170        kcb->kprobe_saved_pc = regs->pc;
 171}
 172
 173static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
 174{
 175        /* Single step inline if the instruction is a break. */
 176        if (p->opcode == breakpoint_insn ||
 177            p->opcode == breakpoint2_insn)
 178                regs->pc = (unsigned long)p->addr;
 179        else
 180                regs->pc = (unsigned long)&p->ainsn.insn[0];
 181}
 182
 183static int __kprobes kprobe_handler(struct pt_regs *regs)
 184{
 185        struct kprobe *p;
 186        int ret = 0;
 187        kprobe_opcode_t *addr;
 188        struct kprobe_ctlblk *kcb;
 189
 190        addr = (kprobe_opcode_t *)regs->pc;
 191
 192        /*
 193         * We don't want to be preempted for the entire
 194         * duration of kprobe processing.
 195         */
 196        preempt_disable();
 197        kcb = get_kprobe_ctlblk();
 198
 199        /* Check we're not actually recursing. */
 200        if (kprobe_running()) {
 201                p = get_kprobe(addr);
 202                if (p) {
 203                        if (kcb->kprobe_status == KPROBE_HIT_SS &&
 204                            p->ainsn.insn[0] == breakpoint_insn) {
 205                                goto no_kprobe;
 206                        }
 207                        /*
 208                         * We have reentered the kprobe_handler(), since
 209                         * another probe was hit while within the handler.
 210                         * We here save the original kprobes variables and
 211                         * just single step on the instruction of the new probe
 212                         * without calling any user handlers.
 213                         */
 214                        save_previous_kprobe(kcb);
 215                        set_current_kprobe(p, regs, kcb);
 216                        kprobes_inc_nmissed_count(p);
 217                        prepare_singlestep(p, regs);
 218                        kcb->kprobe_status = KPROBE_REENTER;
 219                        return 1;
 220                } else {
 221                        if (*addr != breakpoint_insn) {
 222                                /*
 223                                 * The breakpoint instruction was removed by
 224                                 * another cpu right after we hit, no further
 225                                 * handling of this interrupt is appropriate.
 226                                 */
 227                                ret = 1;
 228                                goto no_kprobe;
 229                        }
 230                        p = __this_cpu_read(current_kprobe);
 231                        if (p->break_handler && p->break_handler(p, regs))
 232                                goto ss_probe;
 233                }
 234                goto no_kprobe;
 235        }
 236
 237        p = get_kprobe(addr);
 238        if (!p) {
 239                if (*addr != breakpoint_insn) {
 240                        /*
 241                         * The breakpoint instruction was removed right
 242                         * after we hit it.  Another cpu has removed
 243                         * either a probepoint or a debugger breakpoint
 244                         * at this address.  In either case, no further
 245                         * handling of this interrupt is appropriate.
 246                         */
 247                        ret = 1;
 248                }
 249                /* Not one of ours: let kernel handle it. */
 250                goto no_kprobe;
 251        }
 252
 253        set_current_kprobe(p, regs, kcb);
 254        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 255
 256        if (p->pre_handler && p->pre_handler(p, regs)) {
 257                /* Handler has already set things up, so skip ss setup. */
 258                return 1;
 259        }
 260
 261ss_probe:
 262        prepare_singlestep(p, regs);
 263        kcb->kprobe_status = KPROBE_HIT_SS;
 264        return 1;
 265
 266no_kprobe:
 267        preempt_enable_no_resched();
 268        return ret;
 269}
 270
 271/*
 272 * Called after single-stepping.  p->addr is the address of the
 273 * instruction that has been replaced by the breakpoint. To avoid the
 274 * SMP problems that can occur when we temporarily put back the
 275 * original opcode to single-step, we single-stepped a copy of the
 276 * instruction.  The address of this copy is p->ainsn.insn.
 277 *
 278 * This function prepares to return from the post-single-step
 279 * breakpoint trap.
 280 */
 281static void __kprobes resume_execution(struct kprobe *p,
 282                                       struct pt_regs *regs,
 283                                       struct kprobe_ctlblk *kcb)
 284{
 285        unsigned long orig_pc = kcb->kprobe_saved_pc;
 286        regs->pc = orig_pc + 8;
 287}
 288
 289static inline int post_kprobe_handler(struct pt_regs *regs)
 290{
 291        struct kprobe *cur = kprobe_running();
 292        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 293
 294        if (!cur)
 295                return 0;
 296
 297        if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 298                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 299                cur->post_handler(cur, regs, 0);
 300        }
 301
 302        resume_execution(cur, regs, kcb);
 303
 304        /* Restore back the original saved kprobes variables and continue. */
 305        if (kcb->kprobe_status == KPROBE_REENTER) {
 306                restore_previous_kprobe(kcb);
 307                goto out;
 308        }
 309        reset_current_kprobe();
 310out:
 311        preempt_enable_no_resched();
 312
 313        return 1;
 314}
 315
 316static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 317{
 318        struct kprobe *cur = kprobe_running();
 319        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 320
 321        if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 322                return 1;
 323
 324        if (kcb->kprobe_status & KPROBE_HIT_SS) {
 325                /*
 326                 * We are here because the instruction being single
 327                 * stepped caused a page fault. We reset the current
 328                 * kprobe and the ip points back to the probe address
 329                 * and allow the page fault handler to continue as a
 330                 * normal page fault.
 331                 */
 332                resume_execution(cur, regs, kcb);
 333                reset_current_kprobe();
 334                preempt_enable_no_resched();
 335        }
 336        return 0;
 337}
 338
 339/*
 340 * Wrapper routine for handling exceptions.
 341 */
 342int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 343                                       unsigned long val, void *data)
 344{
 345        struct die_args *args = (struct die_args *)data;
 346        int ret = NOTIFY_DONE;
 347
 348        switch (val) {
 349        case DIE_BREAK:
 350                if (kprobe_handler(args->regs))
 351                        ret = NOTIFY_STOP;
 352                break;
 353        case DIE_SSTEPBP:
 354                if (post_kprobe_handler(args->regs))
 355                        ret = NOTIFY_STOP;
 356                break;
 357        case DIE_PAGE_FAULT:
 358                /* kprobe_running() needs smp_processor_id(). */
 359                preempt_disable();
 360
 361                if (kprobe_running()
 362                    && kprobe_fault_handler(args->regs, args->trapnr))
 363                        ret = NOTIFY_STOP;
 364                preempt_enable();
 365                break;
 366        default:
 367                break;
 368        }
 369        return ret;
 370}
 371
 372int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 373{
 374        struct jprobe *jp = container_of(p, struct jprobe, kp);
 375        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 376
 377        kcb->jprobe_saved_regs = *regs;
 378        kcb->jprobe_saved_sp = regs->sp;
 379
 380        memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
 381               MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
 382
 383        regs->pc = (unsigned long)(jp->entry);
 384
 385        return 1;
 386}
 387
 388/* Defined in the inline asm below. */
 389void jprobe_return_end(void);
 390
 391void __kprobes jprobe_return(void)
 392{
 393        asm volatile(
 394                "bpt\n\t"
 395                ".globl jprobe_return_end\n"
 396                "jprobe_return_end:\n");
 397}
 398
 399int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 400{
 401        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 402
 403        if (regs->pc >= (unsigned long)jprobe_return &&
 404            regs->pc <= (unsigned long)jprobe_return_end) {
 405                *regs = kcb->jprobe_saved_regs;
 406                memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
 407                       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
 408                preempt_enable_no_resched();
 409
 410                return 1;
 411        }
 412        return 0;
 413}
 414
 415/*
 416 * Function return probe trampoline:
 417 * - init_kprobes() establishes a probepoint here
 418 * - When the probed function returns, this probe causes the
 419 *   handlers to fire
 420 */
 421static void __used kretprobe_trampoline_holder(void)
 422{
 423        asm volatile(
 424                "nop\n\t"
 425                ".global kretprobe_trampoline\n"
 426                "kretprobe_trampoline:\n\t"
 427                "nop\n\t"
 428                : : : "memory");
 429}
 430
 431void kretprobe_trampoline(void);
 432
 433void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 434                                      struct pt_regs *regs)
 435{
 436        ri->ret_addr = (kprobe_opcode_t *) regs->lr;
 437
 438        /* Replace the return addr with trampoline addr */
 439        regs->lr = (unsigned long)kretprobe_trampoline;
 440}
 441
 442/*
 443 * Called when the probe at kretprobe trampoline is hit.
 444 */
 445static int __kprobes trampoline_probe_handler(struct kprobe *p,
 446                                                struct pt_regs *regs)
 447{
 448        struct kretprobe_instance *ri = NULL;
 449        struct hlist_head *head, empty_rp;
 450        struct hlist_node *tmp;
 451        unsigned long flags, orig_ret_address = 0;
 452        unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
 453
 454        INIT_HLIST_HEAD(&empty_rp);
 455        kretprobe_hash_lock(current, &head, &flags);
 456
 457        /*
 458         * It is possible to have multiple instances associated with a given
 459         * task either because multiple functions in the call path have
 460         * a return probe installed on them, and/or more than one return
 461         * return probe was registered for a target function.
 462         *
 463         * We can handle this because:
 464         *     - instances are always inserted at the head of the list
 465         *     - when multiple return probes are registered for the same
 466         *       function, the first instance's ret_addr will point to the
 467         *       real return address, and all the rest will point to
 468         *       kretprobe_trampoline
 469         */
 470        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 471                if (ri->task != current)
 472                        /* another task is sharing our hash bucket */
 473                        continue;
 474
 475                if (ri->rp && ri->rp->handler)
 476                        ri->rp->handler(ri, regs);
 477
 478                orig_ret_address = (unsigned long)ri->ret_addr;
 479                recycle_rp_inst(ri, &empty_rp);
 480
 481                if (orig_ret_address != trampoline_address) {
 482                        /*
 483                         * This is the real return address. Any other
 484                         * instances associated with this task are for
 485                         * other calls deeper on the call stack
 486                         */
 487                        break;
 488                }
 489        }
 490
 491        kretprobe_assert(ri, orig_ret_address, trampoline_address);
 492        instruction_pointer(regs) = orig_ret_address;
 493
 494        reset_current_kprobe();
 495        kretprobe_hash_unlock(current, &flags);
 496        preempt_enable_no_resched();
 497
 498        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 499                hlist_del(&ri->hlist);
 500                kfree(ri);
 501        }
 502        /*
 503         * By returning a non-zero value, we are telling
 504         * kprobe_handler() that we don't want the post_handler
 505         * to run (and have re-enabled preemption)
 506         */
 507        return 1;
 508}
 509
 510int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 511{
 512        if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
 513                return 1;
 514
 515        return 0;
 516}
 517
 518static struct kprobe trampoline_p = {
 519        .addr = (kprobe_opcode_t *)kretprobe_trampoline,
 520        .pre_handler = trampoline_probe_handler
 521};
 522
 523int __init arch_init_kprobes(void)
 524{
 525        register_kprobe(&trampoline_p);
 526        return 0;
 527}
 528