linux/arch/x86/kernel/machine_kexec_64.c
<<
>>
Prefs
   1/*
   2 * handle transition of Linux booting another kernel
   3 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8
   9#define pr_fmt(fmt)     "kexec: " fmt
  10
  11#include <linux/mm.h>
  12#include <linux/kexec.h>
  13#include <linux/string.h>
  14#include <linux/gfp.h>
  15#include <linux/reboot.h>
  16#include <linux/numa.h>
  17#include <linux/ftrace.h>
  18#include <linux/io.h>
  19#include <linux/suspend.h>
  20
  21#include <asm/init.h>
  22#include <asm/pgtable.h>
  23#include <asm/tlbflush.h>
  24#include <asm/mmu_context.h>
  25#include <asm/io_apic.h>
  26#include <asm/debugreg.h>
  27#include <asm/kexec-bzimage64.h>
  28
  29#ifdef CONFIG_KEXEC_FILE
  30static struct kexec_file_ops *kexec_file_loaders[] = {
  31                &kexec_bzImage64_ops,
  32};
  33#endif
  34
  35static void free_transition_pgtable(struct kimage *image)
  36{
  37        free_page((unsigned long)image->arch.pud);
  38        free_page((unsigned long)image->arch.pmd);
  39        free_page((unsigned long)image->arch.pte);
  40}
  41
  42static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
  43{
  44        pud_t *pud;
  45        pmd_t *pmd;
  46        pte_t *pte;
  47        unsigned long vaddr, paddr;
  48        int result = -ENOMEM;
  49
  50        vaddr = (unsigned long)relocate_kernel;
  51        paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
  52        pgd += pgd_index(vaddr);
  53        if (!pgd_present(*pgd)) {
  54                pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
  55                if (!pud)
  56                        goto err;
  57                image->arch.pud = pud;
  58                set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
  59        }
  60        pud = pud_offset(pgd, vaddr);
  61        if (!pud_present(*pud)) {
  62                pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
  63                if (!pmd)
  64                        goto err;
  65                image->arch.pmd = pmd;
  66                set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
  67        }
  68        pmd = pmd_offset(pud, vaddr);
  69        if (!pmd_present(*pmd)) {
  70                pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
  71                if (!pte)
  72                        goto err;
  73                image->arch.pte = pte;
  74                set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
  75        }
  76        pte = pte_offset_kernel(pmd, vaddr);
  77        set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
  78        return 0;
  79err:
  80        free_transition_pgtable(image);
  81        return result;
  82}
  83
  84static void *alloc_pgt_page(void *data)
  85{
  86        struct kimage *image = (struct kimage *)data;
  87        struct page *page;
  88        void *p = NULL;
  89
  90        page = kimage_alloc_control_pages(image, 0);
  91        if (page) {
  92                p = page_address(page);
  93                clear_page(p);
  94        }
  95
  96        return p;
  97}
  98
  99static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
 100{
 101        struct x86_mapping_info info = {
 102                .alloc_pgt_page = alloc_pgt_page,
 103                .context        = image,
 104                .pmd_flag       = __PAGE_KERNEL_LARGE_EXEC,
 105        };
 106        unsigned long mstart, mend;
 107        pgd_t *level4p;
 108        int result;
 109        int i;
 110
 111        level4p = (pgd_t *)__va(start_pgtable);
 112        clear_page(level4p);
 113        for (i = 0; i < nr_pfn_mapped; i++) {
 114                mstart = pfn_mapped[i].start << PAGE_SHIFT;
 115                mend   = pfn_mapped[i].end << PAGE_SHIFT;
 116
 117                result = kernel_ident_mapping_init(&info,
 118                                                 level4p, mstart, mend);
 119                if (result)
 120                        return result;
 121        }
 122
 123        /*
 124         * segments's mem ranges could be outside 0 ~ max_pfn,
 125         * for example when jump back to original kernel from kexeced kernel.
 126         * or first kernel is booted with user mem map, and second kernel
 127         * could be loaded out of that range.
 128         */
 129        for (i = 0; i < image->nr_segments; i++) {
 130                mstart = image->segment[i].mem;
 131                mend   = mstart + image->segment[i].memsz;
 132
 133                result = kernel_ident_mapping_init(&info,
 134                                                 level4p, mstart, mend);
 135
 136                if (result)
 137                        return result;
 138        }
 139
 140        return init_transition_pgtable(image, level4p);
 141}
 142
 143static void set_idt(void *newidt, u16 limit)
 144{
 145        struct desc_ptr curidt;
 146
 147        /* x86-64 supports unaliged loads & stores */
 148        curidt.size    = limit;
 149        curidt.address = (unsigned long)newidt;
 150
 151        __asm__ __volatile__ (
 152                "lidtq %0\n"
 153                : : "m" (curidt)
 154                );
 155};
 156
 157
 158static void set_gdt(void *newgdt, u16 limit)
 159{
 160        struct desc_ptr curgdt;
 161
 162        /* x86-64 supports unaligned loads & stores */
 163        curgdt.size    = limit;
 164        curgdt.address = (unsigned long)newgdt;
 165
 166        __asm__ __volatile__ (
 167                "lgdtq %0\n"
 168                : : "m" (curgdt)
 169                );
 170};
 171
 172static void load_segments(void)
 173{
 174        __asm__ __volatile__ (
 175                "\tmovl %0,%%ds\n"
 176                "\tmovl %0,%%es\n"
 177                "\tmovl %0,%%ss\n"
 178                "\tmovl %0,%%fs\n"
 179                "\tmovl %0,%%gs\n"
 180                : : "a" (__KERNEL_DS) : "memory"
 181                );
 182}
 183
 184#ifdef CONFIG_KEXEC_FILE
 185/* Update purgatory as needed after various image segments have been prepared */
 186static int arch_update_purgatory(struct kimage *image)
 187{
 188        int ret = 0;
 189
 190        if (!image->file_mode)
 191                return 0;
 192
 193        /* Setup copying of backup region */
 194        if (image->type == KEXEC_TYPE_CRASH) {
 195                ret = kexec_purgatory_get_set_symbol(image, "backup_dest",
 196                                &image->arch.backup_load_addr,
 197                                sizeof(image->arch.backup_load_addr), 0);
 198                if (ret)
 199                        return ret;
 200
 201                ret = kexec_purgatory_get_set_symbol(image, "backup_src",
 202                                &image->arch.backup_src_start,
 203                                sizeof(image->arch.backup_src_start), 0);
 204                if (ret)
 205                        return ret;
 206
 207                ret = kexec_purgatory_get_set_symbol(image, "backup_sz",
 208                                &image->arch.backup_src_sz,
 209                                sizeof(image->arch.backup_src_sz), 0);
 210                if (ret)
 211                        return ret;
 212        }
 213
 214        return ret;
 215}
 216#else /* !CONFIG_KEXEC_FILE */
 217static inline int arch_update_purgatory(struct kimage *image)
 218{
 219        return 0;
 220}
 221#endif /* CONFIG_KEXEC_FILE */
 222
 223int machine_kexec_prepare(struct kimage *image)
 224{
 225        unsigned long start_pgtable;
 226        int result;
 227
 228        /* Calculate the offsets */
 229        start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
 230
 231        /* Setup the identity mapped 64bit page table */
 232        result = init_pgtable(image, start_pgtable);
 233        if (result)
 234                return result;
 235
 236        /* update purgatory as needed */
 237        result = arch_update_purgatory(image);
 238        if (result)
 239                return result;
 240
 241        return 0;
 242}
 243
 244void machine_kexec_cleanup(struct kimage *image)
 245{
 246        free_transition_pgtable(image);
 247}
 248
 249/*
 250 * Do not allocate memory (or fail in any way) in machine_kexec().
 251 * We are past the point of no return, committed to rebooting now.
 252 */
 253void machine_kexec(struct kimage *image)
 254{
 255        unsigned long page_list[PAGES_NR];
 256        void *control_page;
 257        int save_ftrace_enabled;
 258
 259#ifdef CONFIG_KEXEC_JUMP
 260        if (image->preserve_context)
 261                save_processor_state();
 262#endif
 263
 264        save_ftrace_enabled = __ftrace_enabled_save();
 265
 266        /* Interrupts aren't acceptable while we reboot */
 267        local_irq_disable();
 268        hw_breakpoint_disable();
 269
 270        if (image->preserve_context) {
 271#ifdef CONFIG_X86_IO_APIC
 272                /*
 273                 * We need to put APICs in legacy mode so that we can
 274                 * get timer interrupts in second kernel. kexec/kdump
 275                 * paths already have calls to disable_IO_APIC() in
 276                 * one form or other. kexec jump path also need
 277                 * one.
 278                 */
 279                disable_IO_APIC();
 280#endif
 281        }
 282
 283        control_page = page_address(image->control_code_page) + PAGE_SIZE;
 284        memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
 285
 286        page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
 287        page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
 288        page_list[PA_TABLE_PAGE] =
 289          (unsigned long)__pa(page_address(image->control_code_page));
 290
 291        if (image->type == KEXEC_TYPE_DEFAULT)
 292                page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
 293                                                << PAGE_SHIFT);
 294
 295        /*
 296         * The segment registers are funny things, they have both a
 297         * visible and an invisible part.  Whenever the visible part is
 298         * set to a specific selector, the invisible part is loaded
 299         * with from a table in memory.  At no other time is the
 300         * descriptor table in memory accessed.
 301         *
 302         * I take advantage of this here by force loading the
 303         * segments, before I zap the gdt with an invalid value.
 304         */
 305        load_segments();
 306        /*
 307         * The gdt & idt are now invalid.
 308         * If you want to load them you must set up your own idt & gdt.
 309         */
 310        set_gdt(phys_to_virt(0), 0);
 311        set_idt(phys_to_virt(0), 0);
 312
 313        /* now call it */
 314        image->start = relocate_kernel((unsigned long)image->head,
 315                                       (unsigned long)page_list,
 316                                       image->start,
 317                                       image->preserve_context);
 318
 319#ifdef CONFIG_KEXEC_JUMP
 320        if (image->preserve_context)
 321                restore_processor_state();
 322#endif
 323
 324        __ftrace_enabled_restore(save_ftrace_enabled);
 325}
 326
 327void arch_crash_save_vmcoreinfo(void)
 328{
 329        VMCOREINFO_SYMBOL(phys_base);
 330        VMCOREINFO_SYMBOL(init_level4_pgt);
 331
 332#ifdef CONFIG_NUMA
 333        VMCOREINFO_SYMBOL(node_data);
 334        VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
 335#endif
 336        vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
 337                              (unsigned long)&_text - __START_KERNEL);
 338}
 339
 340/* arch-dependent functionality related to kexec file-based syscall */
 341
 342#ifdef CONFIG_KEXEC_FILE
 343int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
 344                                  unsigned long buf_len)
 345{
 346        int i, ret = -ENOEXEC;
 347        struct kexec_file_ops *fops;
 348
 349        for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
 350                fops = kexec_file_loaders[i];
 351                if (!fops || !fops->probe)
 352                        continue;
 353
 354                ret = fops->probe(buf, buf_len);
 355                if (!ret) {
 356                        image->fops = fops;
 357                        return ret;
 358                }
 359        }
 360
 361        return ret;
 362}
 363
 364void *arch_kexec_kernel_image_load(struct kimage *image)
 365{
 366        vfree(image->arch.elf_headers);
 367        image->arch.elf_headers = NULL;
 368
 369        if (!image->fops || !image->fops->load)
 370                return ERR_PTR(-ENOEXEC);
 371
 372        return image->fops->load(image, image->kernel_buf,
 373                                 image->kernel_buf_len, image->initrd_buf,
 374                                 image->initrd_buf_len, image->cmdline_buf,
 375                                 image->cmdline_buf_len);
 376}
 377
 378int arch_kimage_file_post_load_cleanup(struct kimage *image)
 379{
 380        if (!image->fops || !image->fops->cleanup)
 381                return 0;
 382
 383        return image->fops->cleanup(image->image_loader_data);
 384}
 385
 386int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
 387                                 unsigned long kernel_len)
 388{
 389        if (!image->fops || !image->fops->verify_sig) {
 390                pr_debug("kernel loader does not support signature verification.");
 391                return -EKEYREJECTED;
 392        }
 393
 394        return image->fops->verify_sig(kernel, kernel_len);
 395}
 396
 397/*
 398 * Apply purgatory relocations.
 399 *
 400 * ehdr: Pointer to elf headers
 401 * sechdrs: Pointer to section headers.
 402 * relsec: section index of SHT_RELA section.
 403 *
 404 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
 405 */
 406int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
 407                                     Elf64_Shdr *sechdrs, unsigned int relsec)
 408{
 409        unsigned int i;
 410        Elf64_Rela *rel;
 411        Elf64_Sym *sym;
 412        void *location;
 413        Elf64_Shdr *section, *symtabsec;
 414        unsigned long address, sec_base, value;
 415        const char *strtab, *name, *shstrtab;
 416
 417        /*
 418         * ->sh_offset has been modified to keep the pointer to section
 419         * contents in memory
 420         */
 421        rel = (void *)sechdrs[relsec].sh_offset;
 422
 423        /* Section to which relocations apply */
 424        section = &sechdrs[sechdrs[relsec].sh_info];
 425
 426        pr_debug("Applying relocate section %u to %u\n", relsec,
 427                 sechdrs[relsec].sh_info);
 428
 429        /* Associated symbol table */
 430        symtabsec = &sechdrs[sechdrs[relsec].sh_link];
 431
 432        /* String table */
 433        if (symtabsec->sh_link >= ehdr->e_shnum) {
 434                /* Invalid strtab section number */
 435                pr_err("Invalid string table section index %d\n",
 436                       symtabsec->sh_link);
 437                return -ENOEXEC;
 438        }
 439
 440        strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
 441
 442        /* section header string table */
 443        shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
 444
 445        for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
 446
 447                /*
 448                 * rel[i].r_offset contains byte offset from beginning
 449                 * of section to the storage unit affected.
 450                 *
 451                 * This is location to update (->sh_offset). This is temporary
 452                 * buffer where section is currently loaded. This will finally
 453                 * be loaded to a different address later, pointed to by
 454                 * ->sh_addr. kexec takes care of moving it
 455                 *  (kexec_load_segment()).
 456                 */
 457                location = (void *)(section->sh_offset + rel[i].r_offset);
 458
 459                /* Final address of the location */
 460                address = section->sh_addr + rel[i].r_offset;
 461
 462                /*
 463                 * rel[i].r_info contains information about symbol table index
 464                 * w.r.t which relocation must be made and type of relocation
 465                 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
 466                 * these respectively.
 467                 */
 468                sym = (Elf64_Sym *)symtabsec->sh_offset +
 469                                ELF64_R_SYM(rel[i].r_info);
 470
 471                if (sym->st_name)
 472                        name = strtab + sym->st_name;
 473                else
 474                        name = shstrtab + sechdrs[sym->st_shndx].sh_name;
 475
 476                pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
 477                         name, sym->st_info, sym->st_shndx, sym->st_value,
 478                         sym->st_size);
 479
 480                if (sym->st_shndx == SHN_UNDEF) {
 481                        pr_err("Undefined symbol: %s\n", name);
 482                        return -ENOEXEC;
 483                }
 484
 485                if (sym->st_shndx == SHN_COMMON) {
 486                        pr_err("symbol '%s' in common section\n", name);
 487                        return -ENOEXEC;
 488                }
 489
 490                if (sym->st_shndx == SHN_ABS)
 491                        sec_base = 0;
 492                else if (sym->st_shndx >= ehdr->e_shnum) {
 493                        pr_err("Invalid section %d for symbol %s\n",
 494                               sym->st_shndx, name);
 495                        return -ENOEXEC;
 496                } else
 497                        sec_base = sechdrs[sym->st_shndx].sh_addr;
 498
 499                value = sym->st_value;
 500                value += sec_base;
 501                value += rel[i].r_addend;
 502
 503                switch (ELF64_R_TYPE(rel[i].r_info)) {
 504                case R_X86_64_NONE:
 505                        break;
 506                case R_X86_64_64:
 507                        *(u64 *)location = value;
 508                        break;
 509                case R_X86_64_32:
 510                        *(u32 *)location = value;
 511                        if (value != *(u32 *)location)
 512                                goto overflow;
 513                        break;
 514                case R_X86_64_32S:
 515                        *(s32 *)location = value;
 516                        if ((s64)value != *(s32 *)location)
 517                                goto overflow;
 518                        break;
 519                case R_X86_64_PC32:
 520                        value -= (u64)address;
 521                        *(u32 *)location = value;
 522                        break;
 523                default:
 524                        pr_err("Unknown rela relocation: %llu\n",
 525                               ELF64_R_TYPE(rel[i].r_info));
 526                        return -ENOEXEC;
 527                }
 528        }
 529        return 0;
 530
 531overflow:
 532        pr_err("Overflow in relocation type %d value 0x%lx\n",
 533               (int)ELF64_R_TYPE(rel[i].r_info), value);
 534        return -ENOEXEC;
 535}
 536#endif /* CONFIG_KEXEC_FILE */
 537