linux/arch/x86/xen/enlighten.c
<<
>>
Prefs
   1/*
   2 * Core of Xen paravirt_ops implementation.
   3 *
   4 * This file contains the xen_paravirt_ops structure itself, and the
   5 * implementations for:
   6 * - privileged instructions
   7 * - interrupt flags
   8 * - segment operations
   9 * - booting and setup
  10 *
  11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12 */
  13
  14#include <linux/cpu.h>
  15#include <linux/kernel.h>
  16#include <linux/init.h>
  17#include <linux/smp.h>
  18#include <linux/preempt.h>
  19#include <linux/hardirq.h>
  20#include <linux/percpu.h>
  21#include <linux/delay.h>
  22#include <linux/start_kernel.h>
  23#include <linux/sched.h>
  24#include <linux/kprobes.h>
  25#include <linux/bootmem.h>
  26#include <linux/module.h>
  27#include <linux/mm.h>
  28#include <linux/page-flags.h>
  29#include <linux/highmem.h>
  30#include <linux/console.h>
  31#include <linux/pci.h>
  32#include <linux/gfp.h>
  33#include <linux/memblock.h>
  34#include <linux/edd.h>
  35
  36#include <xen/xen.h>
  37#include <xen/events.h>
  38#include <xen/interface/xen.h>
  39#include <xen/interface/version.h>
  40#include <xen/interface/physdev.h>
  41#include <xen/interface/vcpu.h>
  42#include <xen/interface/memory.h>
  43#include <xen/interface/nmi.h>
  44#include <xen/interface/xen-mca.h>
  45#include <xen/features.h>
  46#include <xen/page.h>
  47#include <xen/hvm.h>
  48#include <xen/hvc-console.h>
  49#include <xen/acpi.h>
  50
  51#include <asm/paravirt.h>
  52#include <asm/apic.h>
  53#include <asm/page.h>
  54#include <asm/xen/pci.h>
  55#include <asm/xen/hypercall.h>
  56#include <asm/xen/hypervisor.h>
  57#include <asm/fixmap.h>
  58#include <asm/processor.h>
  59#include <asm/proto.h>
  60#include <asm/msr-index.h>
  61#include <asm/traps.h>
  62#include <asm/setup.h>
  63#include <asm/desc.h>
  64#include <asm/pgalloc.h>
  65#include <asm/pgtable.h>
  66#include <asm/tlbflush.h>
  67#include <asm/reboot.h>
  68#include <asm/stackprotector.h>
  69#include <asm/hypervisor.h>
  70#include <asm/mach_traps.h>
  71#include <asm/mwait.h>
  72#include <asm/pci_x86.h>
  73#include <asm/pat.h>
  74
  75#ifdef CONFIG_ACPI
  76#include <linux/acpi.h>
  77#include <asm/acpi.h>
  78#include <acpi/pdc_intel.h>
  79#include <acpi/processor.h>
  80#include <xen/interface/platform.h>
  81#endif
  82
  83#include "xen-ops.h"
  84#include "mmu.h"
  85#include "smp.h"
  86#include "multicalls.h"
  87
  88EXPORT_SYMBOL_GPL(hypercall_page);
  89
  90/*
  91 * Pointer to the xen_vcpu_info structure or
  92 * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
  93 * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
  94 * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
  95 * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
  96 * acknowledge pending events.
  97 * Also more subtly it is used by the patched version of irq enable/disable
  98 * e.g. xen_irq_enable_direct and xen_iret in PV mode.
  99 *
 100 * The desire to be able to do those mask/unmask operations as a single
 101 * instruction by using the per-cpu offset held in %gs is the real reason
 102 * vcpu info is in a per-cpu pointer and the original reason for this
 103 * hypercall.
 104 *
 105 */
 106DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
 107
 108/*
 109 * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
 110 * hypercall. This can be used both in PV and PVHVM mode. The structure
 111 * overrides the default per_cpu(xen_vcpu, cpu) value.
 112 */
 113DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
 114
 115enum xen_domain_type xen_domain_type = XEN_NATIVE;
 116EXPORT_SYMBOL_GPL(xen_domain_type);
 117
 118unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
 119EXPORT_SYMBOL(machine_to_phys_mapping);
 120unsigned long  machine_to_phys_nr;
 121EXPORT_SYMBOL(machine_to_phys_nr);
 122
 123struct start_info *xen_start_info;
 124EXPORT_SYMBOL_GPL(xen_start_info);
 125
 126struct shared_info xen_dummy_shared_info;
 127
 128void *xen_initial_gdt;
 129
 130RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
 131__read_mostly int xen_have_vector_callback;
 132EXPORT_SYMBOL_GPL(xen_have_vector_callback);
 133
 134/*
 135 * Point at some empty memory to start with. We map the real shared_info
 136 * page as soon as fixmap is up and running.
 137 */
 138struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
 139
 140/*
 141 * Flag to determine whether vcpu info placement is available on all
 142 * VCPUs.  We assume it is to start with, and then set it to zero on
 143 * the first failure.  This is because it can succeed on some VCPUs
 144 * and not others, since it can involve hypervisor memory allocation,
 145 * or because the guest failed to guarantee all the appropriate
 146 * constraints on all VCPUs (ie buffer can't cross a page boundary).
 147 *
 148 * Note that any particular CPU may be using a placed vcpu structure,
 149 * but we can only optimise if the all are.
 150 *
 151 * 0: not available, 1: available
 152 */
 153static int have_vcpu_info_placement = 1;
 154
 155struct tls_descs {
 156        struct desc_struct desc[3];
 157};
 158
 159/*
 160 * Updating the 3 TLS descriptors in the GDT on every task switch is
 161 * surprisingly expensive so we avoid updating them if they haven't
 162 * changed.  Since Xen writes different descriptors than the one
 163 * passed in the update_descriptor hypercall we keep shadow copies to
 164 * compare against.
 165 */
 166static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
 167
 168static void clamp_max_cpus(void)
 169{
 170#ifdef CONFIG_SMP
 171        if (setup_max_cpus > MAX_VIRT_CPUS)
 172                setup_max_cpus = MAX_VIRT_CPUS;
 173#endif
 174}
 175
 176static void xen_vcpu_setup(int cpu)
 177{
 178        struct vcpu_register_vcpu_info info;
 179        int err;
 180        struct vcpu_info *vcpup;
 181
 182        BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
 183
 184        /*
 185         * This path is called twice on PVHVM - first during bootup via
 186         * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
 187         * hotplugged: cpu_up -> xen_hvm_cpu_notify.
 188         * As we can only do the VCPUOP_register_vcpu_info once lets
 189         * not over-write its result.
 190         *
 191         * For PV it is called during restore (xen_vcpu_restore) and bootup
 192         * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
 193         * use this function.
 194         */
 195        if (xen_hvm_domain()) {
 196                if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
 197                        return;
 198        }
 199        if (cpu < MAX_VIRT_CPUS)
 200                per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
 201
 202        if (!have_vcpu_info_placement) {
 203                if (cpu >= MAX_VIRT_CPUS)
 204                        clamp_max_cpus();
 205                return;
 206        }
 207
 208        vcpup = &per_cpu(xen_vcpu_info, cpu);
 209        info.mfn = arbitrary_virt_to_mfn(vcpup);
 210        info.offset = offset_in_page(vcpup);
 211
 212        /* Check to see if the hypervisor will put the vcpu_info
 213           structure where we want it, which allows direct access via
 214           a percpu-variable.
 215           N.B. This hypercall can _only_ be called once per CPU. Subsequent
 216           calls will error out with -EINVAL. This is due to the fact that
 217           hypervisor has no unregister variant and this hypercall does not
 218           allow to over-write info.mfn and info.offset.
 219         */
 220        err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
 221
 222        if (err) {
 223                printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
 224                have_vcpu_info_placement = 0;
 225                clamp_max_cpus();
 226        } else {
 227                /* This cpu is using the registered vcpu info, even if
 228                   later ones fail to. */
 229                per_cpu(xen_vcpu, cpu) = vcpup;
 230        }
 231}
 232
 233/*
 234 * On restore, set the vcpu placement up again.
 235 * If it fails, then we're in a bad state, since
 236 * we can't back out from using it...
 237 */
 238void xen_vcpu_restore(void)
 239{
 240        int cpu;
 241
 242        for_each_possible_cpu(cpu) {
 243                bool other_cpu = (cpu != smp_processor_id());
 244                bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
 245
 246                if (other_cpu && is_up &&
 247                    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
 248                        BUG();
 249
 250                xen_setup_runstate_info(cpu);
 251
 252                if (have_vcpu_info_placement)
 253                        xen_vcpu_setup(cpu);
 254
 255                if (other_cpu && is_up &&
 256                    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
 257                        BUG();
 258        }
 259}
 260
 261static void __init xen_banner(void)
 262{
 263        unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
 264        struct xen_extraversion extra;
 265        HYPERVISOR_xen_version(XENVER_extraversion, &extra);
 266
 267        pr_info("Booting paravirtualized kernel %son %s\n",
 268                xen_feature(XENFEAT_auto_translated_physmap) ?
 269                        "with PVH extensions " : "", pv_info.name);
 270        printk(KERN_INFO "Xen version: %d.%d%s%s\n",
 271               version >> 16, version & 0xffff, extra.extraversion,
 272               xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
 273}
 274/* Check if running on Xen version (major, minor) or later */
 275bool
 276xen_running_on_version_or_later(unsigned int major, unsigned int minor)
 277{
 278        unsigned int version;
 279
 280        if (!xen_domain())
 281                return false;
 282
 283        version = HYPERVISOR_xen_version(XENVER_version, NULL);
 284        if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
 285                ((version >> 16) > major))
 286                return true;
 287        return false;
 288}
 289
 290#define CPUID_THERM_POWER_LEAF 6
 291#define APERFMPERF_PRESENT 0
 292
 293static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
 294static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
 295
 296static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
 297static __read_mostly unsigned int cpuid_leaf5_ecx_val;
 298static __read_mostly unsigned int cpuid_leaf5_edx_val;
 299
 300static void xen_cpuid(unsigned int *ax, unsigned int *bx,
 301                      unsigned int *cx, unsigned int *dx)
 302{
 303        unsigned maskebx = ~0;
 304        unsigned maskecx = ~0;
 305        unsigned maskedx = ~0;
 306        unsigned setecx = 0;
 307        /*
 308         * Mask out inconvenient features, to try and disable as many
 309         * unsupported kernel subsystems as possible.
 310         */
 311        switch (*ax) {
 312        case 1:
 313                maskecx = cpuid_leaf1_ecx_mask;
 314                setecx = cpuid_leaf1_ecx_set_mask;
 315                maskedx = cpuid_leaf1_edx_mask;
 316                break;
 317
 318        case CPUID_MWAIT_LEAF:
 319                /* Synthesize the values.. */
 320                *ax = 0;
 321                *bx = 0;
 322                *cx = cpuid_leaf5_ecx_val;
 323                *dx = cpuid_leaf5_edx_val;
 324                return;
 325
 326        case CPUID_THERM_POWER_LEAF:
 327                /* Disabling APERFMPERF for kernel usage */
 328                maskecx = ~(1 << APERFMPERF_PRESENT);
 329                break;
 330
 331        case 0xb:
 332                /* Suppress extended topology stuff */
 333                maskebx = 0;
 334                break;
 335        }
 336
 337        asm(XEN_EMULATE_PREFIX "cpuid"
 338                : "=a" (*ax),
 339                  "=b" (*bx),
 340                  "=c" (*cx),
 341                  "=d" (*dx)
 342                : "0" (*ax), "2" (*cx));
 343
 344        *bx &= maskebx;
 345        *cx &= maskecx;
 346        *cx |= setecx;
 347        *dx &= maskedx;
 348
 349}
 350
 351static bool __init xen_check_mwait(void)
 352{
 353#ifdef CONFIG_ACPI
 354        struct xen_platform_op op = {
 355                .cmd                    = XENPF_set_processor_pminfo,
 356                .u.set_pminfo.id        = -1,
 357                .u.set_pminfo.type      = XEN_PM_PDC,
 358        };
 359        uint32_t buf[3];
 360        unsigned int ax, bx, cx, dx;
 361        unsigned int mwait_mask;
 362
 363        /* We need to determine whether it is OK to expose the MWAIT
 364         * capability to the kernel to harvest deeper than C3 states from ACPI
 365         * _CST using the processor_harvest_xen.c module. For this to work, we
 366         * need to gather the MWAIT_LEAF values (which the cstate.c code
 367         * checks against). The hypervisor won't expose the MWAIT flag because
 368         * it would break backwards compatibility; so we will find out directly
 369         * from the hardware and hypercall.
 370         */
 371        if (!xen_initial_domain())
 372                return false;
 373
 374        /*
 375         * When running under platform earlier than Xen4.2, do not expose
 376         * mwait, to avoid the risk of loading native acpi pad driver
 377         */
 378        if (!xen_running_on_version_or_later(4, 2))
 379                return false;
 380
 381        ax = 1;
 382        cx = 0;
 383
 384        native_cpuid(&ax, &bx, &cx, &dx);
 385
 386        mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
 387                     (1 << (X86_FEATURE_MWAIT % 32));
 388
 389        if ((cx & mwait_mask) != mwait_mask)
 390                return false;
 391
 392        /* We need to emulate the MWAIT_LEAF and for that we need both
 393         * ecx and edx. The hypercall provides only partial information.
 394         */
 395
 396        ax = CPUID_MWAIT_LEAF;
 397        bx = 0;
 398        cx = 0;
 399        dx = 0;
 400
 401        native_cpuid(&ax, &bx, &cx, &dx);
 402
 403        /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
 404         * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
 405         */
 406        buf[0] = ACPI_PDC_REVISION_ID;
 407        buf[1] = 1;
 408        buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
 409
 410        set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
 411
 412        if ((HYPERVISOR_dom0_op(&op) == 0) &&
 413            (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
 414                cpuid_leaf5_ecx_val = cx;
 415                cpuid_leaf5_edx_val = dx;
 416        }
 417        return true;
 418#else
 419        return false;
 420#endif
 421}
 422static void __init xen_init_cpuid_mask(void)
 423{
 424        unsigned int ax, bx, cx, dx;
 425        unsigned int xsave_mask;
 426
 427        cpuid_leaf1_edx_mask =
 428                ~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
 429                  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
 430
 431        if (!xen_initial_domain())
 432                cpuid_leaf1_edx_mask &=
 433                        ~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
 434
 435        cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
 436
 437        ax = 1;
 438        cx = 0;
 439        cpuid(1, &ax, &bx, &cx, &dx);
 440
 441        xsave_mask =
 442                (1 << (X86_FEATURE_XSAVE % 32)) |
 443                (1 << (X86_FEATURE_OSXSAVE % 32));
 444
 445        /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
 446        if ((cx & xsave_mask) != xsave_mask)
 447                cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
 448        if (xen_check_mwait())
 449                cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
 450}
 451
 452static void xen_set_debugreg(int reg, unsigned long val)
 453{
 454        HYPERVISOR_set_debugreg(reg, val);
 455}
 456
 457static unsigned long xen_get_debugreg(int reg)
 458{
 459        return HYPERVISOR_get_debugreg(reg);
 460}
 461
 462static void xen_end_context_switch(struct task_struct *next)
 463{
 464        xen_mc_flush();
 465        paravirt_end_context_switch(next);
 466}
 467
 468static unsigned long xen_store_tr(void)
 469{
 470        return 0;
 471}
 472
 473/*
 474 * Set the page permissions for a particular virtual address.  If the
 475 * address is a vmalloc mapping (or other non-linear mapping), then
 476 * find the linear mapping of the page and also set its protections to
 477 * match.
 478 */
 479static void set_aliased_prot(void *v, pgprot_t prot)
 480{
 481        int level;
 482        pte_t *ptep;
 483        pte_t pte;
 484        unsigned long pfn;
 485        struct page *page;
 486
 487        ptep = lookup_address((unsigned long)v, &level);
 488        BUG_ON(ptep == NULL);
 489
 490        pfn = pte_pfn(*ptep);
 491        page = pfn_to_page(pfn);
 492
 493        pte = pfn_pte(pfn, prot);
 494
 495        if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
 496                BUG();
 497
 498        if (!PageHighMem(page)) {
 499                void *av = __va(PFN_PHYS(pfn));
 500
 501                if (av != v)
 502                        if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
 503                                BUG();
 504        } else
 505                kmap_flush_unused();
 506}
 507
 508static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
 509{
 510        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 511        int i;
 512
 513        for(i = 0; i < entries; i += entries_per_page)
 514                set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
 515}
 516
 517static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
 518{
 519        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 520        int i;
 521
 522        for(i = 0; i < entries; i += entries_per_page)
 523                set_aliased_prot(ldt + i, PAGE_KERNEL);
 524}
 525
 526static void xen_set_ldt(const void *addr, unsigned entries)
 527{
 528        struct mmuext_op *op;
 529        struct multicall_space mcs = xen_mc_entry(sizeof(*op));
 530
 531        trace_xen_cpu_set_ldt(addr, entries);
 532
 533        op = mcs.args;
 534        op->cmd = MMUEXT_SET_LDT;
 535        op->arg1.linear_addr = (unsigned long)addr;
 536        op->arg2.nr_ents = entries;
 537
 538        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 539
 540        xen_mc_issue(PARAVIRT_LAZY_CPU);
 541}
 542
 543static void xen_load_gdt(const struct desc_ptr *dtr)
 544{
 545        unsigned long va = dtr->address;
 546        unsigned int size = dtr->size + 1;
 547        unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
 548        unsigned long frames[pages];
 549        int f;
 550
 551        /*
 552         * A GDT can be up to 64k in size, which corresponds to 8192
 553         * 8-byte entries, or 16 4k pages..
 554         */
 555
 556        BUG_ON(size > 65536);
 557        BUG_ON(va & ~PAGE_MASK);
 558
 559        for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
 560                int level;
 561                pte_t *ptep;
 562                unsigned long pfn, mfn;
 563                void *virt;
 564
 565                /*
 566                 * The GDT is per-cpu and is in the percpu data area.
 567                 * That can be virtually mapped, so we need to do a
 568                 * page-walk to get the underlying MFN for the
 569                 * hypercall.  The page can also be in the kernel's
 570                 * linear range, so we need to RO that mapping too.
 571                 */
 572                ptep = lookup_address(va, &level);
 573                BUG_ON(ptep == NULL);
 574
 575                pfn = pte_pfn(*ptep);
 576                mfn = pfn_to_mfn(pfn);
 577                virt = __va(PFN_PHYS(pfn));
 578
 579                frames[f] = mfn;
 580
 581                make_lowmem_page_readonly((void *)va);
 582                make_lowmem_page_readonly(virt);
 583        }
 584
 585        if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
 586                BUG();
 587}
 588
 589/*
 590 * load_gdt for early boot, when the gdt is only mapped once
 591 */
 592static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
 593{
 594        unsigned long va = dtr->address;
 595        unsigned int size = dtr->size + 1;
 596        unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
 597        unsigned long frames[pages];
 598        int f;
 599
 600        /*
 601         * A GDT can be up to 64k in size, which corresponds to 8192
 602         * 8-byte entries, or 16 4k pages..
 603         */
 604
 605        BUG_ON(size > 65536);
 606        BUG_ON(va & ~PAGE_MASK);
 607
 608        for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
 609                pte_t pte;
 610                unsigned long pfn, mfn;
 611
 612                pfn = virt_to_pfn(va);
 613                mfn = pfn_to_mfn(pfn);
 614
 615                pte = pfn_pte(pfn, PAGE_KERNEL_RO);
 616
 617                if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 618                        BUG();
 619
 620                frames[f] = mfn;
 621        }
 622
 623        if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
 624                BUG();
 625}
 626
 627static inline bool desc_equal(const struct desc_struct *d1,
 628                              const struct desc_struct *d2)
 629{
 630        return d1->a == d2->a && d1->b == d2->b;
 631}
 632
 633static void load_TLS_descriptor(struct thread_struct *t,
 634                                unsigned int cpu, unsigned int i)
 635{
 636        struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
 637        struct desc_struct *gdt;
 638        xmaddr_t maddr;
 639        struct multicall_space mc;
 640
 641        if (desc_equal(shadow, &t->tls_array[i]))
 642                return;
 643
 644        *shadow = t->tls_array[i];
 645
 646        gdt = get_cpu_gdt_table(cpu);
 647        maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
 648        mc = __xen_mc_entry(0);
 649
 650        MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
 651}
 652
 653static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
 654{
 655        /*
 656         * XXX sleazy hack: If we're being called in a lazy-cpu zone
 657         * and lazy gs handling is enabled, it means we're in a
 658         * context switch, and %gs has just been saved.  This means we
 659         * can zero it out to prevent faults on exit from the
 660         * hypervisor if the next process has no %gs.  Either way, it
 661         * has been saved, and the new value will get loaded properly.
 662         * This will go away as soon as Xen has been modified to not
 663         * save/restore %gs for normal hypercalls.
 664         *
 665         * On x86_64, this hack is not used for %gs, because gs points
 666         * to KERNEL_GS_BASE (and uses it for PDA references), so we
 667         * must not zero %gs on x86_64
 668         *
 669         * For x86_64, we need to zero %fs, otherwise we may get an
 670         * exception between the new %fs descriptor being loaded and
 671         * %fs being effectively cleared at __switch_to().
 672         */
 673        if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
 674#ifdef CONFIG_X86_32
 675                lazy_load_gs(0);
 676#else
 677                loadsegment(fs, 0);
 678#endif
 679        }
 680
 681        xen_mc_batch();
 682
 683        load_TLS_descriptor(t, cpu, 0);
 684        load_TLS_descriptor(t, cpu, 1);
 685        load_TLS_descriptor(t, cpu, 2);
 686
 687        xen_mc_issue(PARAVIRT_LAZY_CPU);
 688}
 689
 690#ifdef CONFIG_X86_64
 691static void xen_load_gs_index(unsigned int idx)
 692{
 693        if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
 694                BUG();
 695}
 696#endif
 697
 698static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
 699                                const void *ptr)
 700{
 701        xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
 702        u64 entry = *(u64 *)ptr;
 703
 704        trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
 705
 706        preempt_disable();
 707
 708        xen_mc_flush();
 709        if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
 710                BUG();
 711
 712        preempt_enable();
 713}
 714
 715static int cvt_gate_to_trap(int vector, const gate_desc *val,
 716                            struct trap_info *info)
 717{
 718        unsigned long addr;
 719
 720        if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
 721                return 0;
 722
 723        info->vector = vector;
 724
 725        addr = gate_offset(*val);
 726#ifdef CONFIG_X86_64
 727        /*
 728         * Look for known traps using IST, and substitute them
 729         * appropriately.  The debugger ones are the only ones we care
 730         * about.  Xen will handle faults like double_fault,
 731         * so we should never see them.  Warn if
 732         * there's an unexpected IST-using fault handler.
 733         */
 734        if (addr == (unsigned long)debug)
 735                addr = (unsigned long)xen_debug;
 736        else if (addr == (unsigned long)int3)
 737                addr = (unsigned long)xen_int3;
 738        else if (addr == (unsigned long)stack_segment)
 739                addr = (unsigned long)xen_stack_segment;
 740        else if (addr == (unsigned long)double_fault) {
 741                /* Don't need to handle these */
 742                return 0;
 743#ifdef CONFIG_X86_MCE
 744        } else if (addr == (unsigned long)machine_check) {
 745                /*
 746                 * when xen hypervisor inject vMCE to guest,
 747                 * use native mce handler to handle it
 748                 */
 749                ;
 750#endif
 751        } else if (addr == (unsigned long)nmi)
 752                /*
 753                 * Use the native version as well.
 754                 */
 755                ;
 756        else {
 757                /* Some other trap using IST? */
 758                if (WARN_ON(val->ist != 0))
 759                        return 0;
 760        }
 761#endif  /* CONFIG_X86_64 */
 762        info->address = addr;
 763
 764        info->cs = gate_segment(*val);
 765        info->flags = val->dpl;
 766        /* interrupt gates clear IF */
 767        if (val->type == GATE_INTERRUPT)
 768                info->flags |= 1 << 2;
 769
 770        return 1;
 771}
 772
 773/* Locations of each CPU's IDT */
 774static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
 775
 776/* Set an IDT entry.  If the entry is part of the current IDT, then
 777   also update Xen. */
 778static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
 779{
 780        unsigned long p = (unsigned long)&dt[entrynum];
 781        unsigned long start, end;
 782
 783        trace_xen_cpu_write_idt_entry(dt, entrynum, g);
 784
 785        preempt_disable();
 786
 787        start = __this_cpu_read(idt_desc.address);
 788        end = start + __this_cpu_read(idt_desc.size) + 1;
 789
 790        xen_mc_flush();
 791
 792        native_write_idt_entry(dt, entrynum, g);
 793
 794        if (p >= start && (p + 8) <= end) {
 795                struct trap_info info[2];
 796
 797                info[1].address = 0;
 798
 799                if (cvt_gate_to_trap(entrynum, g, &info[0]))
 800                        if (HYPERVISOR_set_trap_table(info))
 801                                BUG();
 802        }
 803
 804        preempt_enable();
 805}
 806
 807static void xen_convert_trap_info(const struct desc_ptr *desc,
 808                                  struct trap_info *traps)
 809{
 810        unsigned in, out, count;
 811
 812        count = (desc->size+1) / sizeof(gate_desc);
 813        BUG_ON(count > 256);
 814
 815        for (in = out = 0; in < count; in++) {
 816                gate_desc *entry = (gate_desc*)(desc->address) + in;
 817
 818                if (cvt_gate_to_trap(in, entry, &traps[out]))
 819                        out++;
 820        }
 821        traps[out].address = 0;
 822}
 823
 824void xen_copy_trap_info(struct trap_info *traps)
 825{
 826        const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
 827
 828        xen_convert_trap_info(desc, traps);
 829}
 830
 831/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
 832   hold a spinlock to protect the static traps[] array (static because
 833   it avoids allocation, and saves stack space). */
 834static void xen_load_idt(const struct desc_ptr *desc)
 835{
 836        static DEFINE_SPINLOCK(lock);
 837        static struct trap_info traps[257];
 838
 839        trace_xen_cpu_load_idt(desc);
 840
 841        spin_lock(&lock);
 842
 843        memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
 844
 845        xen_convert_trap_info(desc, traps);
 846
 847        xen_mc_flush();
 848        if (HYPERVISOR_set_trap_table(traps))
 849                BUG();
 850
 851        spin_unlock(&lock);
 852}
 853
 854/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
 855   they're handled differently. */
 856static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
 857                                const void *desc, int type)
 858{
 859        trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 860
 861        preempt_disable();
 862
 863        switch (type) {
 864        case DESC_LDT:
 865        case DESC_TSS:
 866                /* ignore */
 867                break;
 868
 869        default: {
 870                xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
 871
 872                xen_mc_flush();
 873                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 874                        BUG();
 875        }
 876
 877        }
 878
 879        preempt_enable();
 880}
 881
 882/*
 883 * Version of write_gdt_entry for use at early boot-time needed to
 884 * update an entry as simply as possible.
 885 */
 886static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
 887                                            const void *desc, int type)
 888{
 889        trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 890
 891        switch (type) {
 892        case DESC_LDT:
 893        case DESC_TSS:
 894                /* ignore */
 895                break;
 896
 897        default: {
 898                xmaddr_t maddr = virt_to_machine(&dt[entry]);
 899
 900                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 901                        dt[entry] = *(struct desc_struct *)desc;
 902        }
 903
 904        }
 905}
 906
 907static void xen_load_sp0(struct tss_struct *tss,
 908                         struct thread_struct *thread)
 909{
 910        struct multicall_space mcs;
 911
 912        mcs = xen_mc_entry(0);
 913        MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
 914        xen_mc_issue(PARAVIRT_LAZY_CPU);
 915        tss->x86_tss.sp0 = thread->sp0;
 916}
 917
 918static void xen_set_iopl_mask(unsigned mask)
 919{
 920        struct physdev_set_iopl set_iopl;
 921
 922        /* Force the change at ring 0. */
 923        set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
 924        HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
 925}
 926
 927static void xen_io_delay(void)
 928{
 929}
 930
 931static void xen_clts(void)
 932{
 933        struct multicall_space mcs;
 934
 935        mcs = xen_mc_entry(0);
 936
 937        MULTI_fpu_taskswitch(mcs.mc, 0);
 938
 939        xen_mc_issue(PARAVIRT_LAZY_CPU);
 940}
 941
 942static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
 943
 944static unsigned long xen_read_cr0(void)
 945{
 946        unsigned long cr0 = this_cpu_read(xen_cr0_value);
 947
 948        if (unlikely(cr0 == 0)) {
 949                cr0 = native_read_cr0();
 950                this_cpu_write(xen_cr0_value, cr0);
 951        }
 952
 953        return cr0;
 954}
 955
 956static void xen_write_cr0(unsigned long cr0)
 957{
 958        struct multicall_space mcs;
 959
 960        this_cpu_write(xen_cr0_value, cr0);
 961
 962        /* Only pay attention to cr0.TS; everything else is
 963           ignored. */
 964        mcs = xen_mc_entry(0);
 965
 966        MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
 967
 968        xen_mc_issue(PARAVIRT_LAZY_CPU);
 969}
 970
 971static void xen_write_cr4(unsigned long cr4)
 972{
 973        cr4 &= ~X86_CR4_PGE;
 974        cr4 &= ~X86_CR4_PSE;
 975
 976        native_write_cr4(cr4);
 977}
 978#ifdef CONFIG_X86_64
 979static inline unsigned long xen_read_cr8(void)
 980{
 981        return 0;
 982}
 983static inline void xen_write_cr8(unsigned long val)
 984{
 985        BUG_ON(val);
 986}
 987#endif
 988
 989static u64 xen_read_msr_safe(unsigned int msr, int *err)
 990{
 991        u64 val;
 992
 993        val = native_read_msr_safe(msr, err);
 994        switch (msr) {
 995        case MSR_IA32_APICBASE:
 996#ifdef CONFIG_X86_X2APIC
 997                if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
 998#endif
 999                        val &= ~X2APIC_ENABLE;
1000                break;
1001        }
1002        return val;
1003}
1004
1005static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1006{
1007        int ret;
1008
1009        ret = 0;
1010
1011        switch (msr) {
1012#ifdef CONFIG_X86_64
1013                unsigned which;
1014                u64 base;
1015
1016        case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
1017        case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
1018        case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
1019
1020        set:
1021                base = ((u64)high << 32) | low;
1022                if (HYPERVISOR_set_segment_base(which, base) != 0)
1023                        ret = -EIO;
1024                break;
1025#endif
1026
1027        case MSR_STAR:
1028        case MSR_CSTAR:
1029        case MSR_LSTAR:
1030        case MSR_SYSCALL_MASK:
1031        case MSR_IA32_SYSENTER_CS:
1032        case MSR_IA32_SYSENTER_ESP:
1033        case MSR_IA32_SYSENTER_EIP:
1034                /* Fast syscall setup is all done in hypercalls, so
1035                   these are all ignored.  Stub them out here to stop
1036                   Xen console noise. */
1037
1038        default:
1039                ret = native_write_msr_safe(msr, low, high);
1040        }
1041
1042        return ret;
1043}
1044
1045void xen_setup_shared_info(void)
1046{
1047        if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1048                set_fixmap(FIX_PARAVIRT_BOOTMAP,
1049                           xen_start_info->shared_info);
1050
1051                HYPERVISOR_shared_info =
1052                        (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1053        } else
1054                HYPERVISOR_shared_info =
1055                        (struct shared_info *)__va(xen_start_info->shared_info);
1056
1057#ifndef CONFIG_SMP
1058        /* In UP this is as good a place as any to set up shared info */
1059        xen_setup_vcpu_info_placement();
1060#endif
1061
1062        xen_setup_mfn_list_list();
1063}
1064
1065/* This is called once we have the cpu_possible_mask */
1066void xen_setup_vcpu_info_placement(void)
1067{
1068        int cpu;
1069
1070        for_each_possible_cpu(cpu)
1071                xen_vcpu_setup(cpu);
1072
1073        /* xen_vcpu_setup managed to place the vcpu_info within the
1074         * percpu area for all cpus, so make use of it. Note that for
1075         * PVH we want to use native IRQ mechanism. */
1076        if (have_vcpu_info_placement && !xen_pvh_domain()) {
1077                pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1078                pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1079                pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1080                pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1081                pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1082        }
1083}
1084
1085static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1086                          unsigned long addr, unsigned len)
1087{
1088        char *start, *end, *reloc;
1089        unsigned ret;
1090
1091        start = end = reloc = NULL;
1092
1093#define SITE(op, x)                                                     \
1094        case PARAVIRT_PATCH(op.x):                                      \
1095        if (have_vcpu_info_placement) {                                 \
1096                start = (char *)xen_##x##_direct;                       \
1097                end = xen_##x##_direct_end;                             \
1098                reloc = xen_##x##_direct_reloc;                         \
1099        }                                                               \
1100        goto patch_site
1101
1102        switch (type) {
1103                SITE(pv_irq_ops, irq_enable);
1104                SITE(pv_irq_ops, irq_disable);
1105                SITE(pv_irq_ops, save_fl);
1106                SITE(pv_irq_ops, restore_fl);
1107#undef SITE
1108
1109        patch_site:
1110                if (start == NULL || (end-start) > len)
1111                        goto default_patch;
1112
1113                ret = paravirt_patch_insns(insnbuf, len, start, end);
1114
1115                /* Note: because reloc is assigned from something that
1116                   appears to be an array, gcc assumes it's non-null,
1117                   but doesn't know its relationship with start and
1118                   end. */
1119                if (reloc > start && reloc < end) {
1120                        int reloc_off = reloc - start;
1121                        long *relocp = (long *)(insnbuf + reloc_off);
1122                        long delta = start - (char *)addr;
1123
1124                        *relocp += delta;
1125                }
1126                break;
1127
1128        default_patch:
1129        default:
1130                ret = paravirt_patch_default(type, clobbers, insnbuf,
1131                                             addr, len);
1132                break;
1133        }
1134
1135        return ret;
1136}
1137
1138static const struct pv_info xen_info __initconst = {
1139        .paravirt_enabled = 1,
1140        .shared_kernel_pmd = 0,
1141
1142#ifdef CONFIG_X86_64
1143        .extra_user_64bit_cs = FLAT_USER_CS64,
1144#endif
1145
1146        .name = "Xen",
1147};
1148
1149static const struct pv_init_ops xen_init_ops __initconst = {
1150        .patch = xen_patch,
1151};
1152
1153static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1154        .cpuid = xen_cpuid,
1155
1156        .set_debugreg = xen_set_debugreg,
1157        .get_debugreg = xen_get_debugreg,
1158
1159        .clts = xen_clts,
1160
1161        .read_cr0 = xen_read_cr0,
1162        .write_cr0 = xen_write_cr0,
1163
1164        .read_cr4 = native_read_cr4,
1165        .read_cr4_safe = native_read_cr4_safe,
1166        .write_cr4 = xen_write_cr4,
1167
1168#ifdef CONFIG_X86_64
1169        .read_cr8 = xen_read_cr8,
1170        .write_cr8 = xen_write_cr8,
1171#endif
1172
1173        .wbinvd = native_wbinvd,
1174
1175        .read_msr = xen_read_msr_safe,
1176        .write_msr = xen_write_msr_safe,
1177
1178        .read_tsc = native_read_tsc,
1179        .read_pmc = native_read_pmc,
1180
1181        .read_tscp = native_read_tscp,
1182
1183        .iret = xen_iret,
1184        .irq_enable_sysexit = xen_sysexit,
1185#ifdef CONFIG_X86_64
1186        .usergs_sysret32 = xen_sysret32,
1187        .usergs_sysret64 = xen_sysret64,
1188#endif
1189
1190        .load_tr_desc = paravirt_nop,
1191        .set_ldt = xen_set_ldt,
1192        .load_gdt = xen_load_gdt,
1193        .load_idt = xen_load_idt,
1194        .load_tls = xen_load_tls,
1195#ifdef CONFIG_X86_64
1196        .load_gs_index = xen_load_gs_index,
1197#endif
1198
1199        .alloc_ldt = xen_alloc_ldt,
1200        .free_ldt = xen_free_ldt,
1201
1202        .store_idt = native_store_idt,
1203        .store_tr = xen_store_tr,
1204
1205        .write_ldt_entry = xen_write_ldt_entry,
1206        .write_gdt_entry = xen_write_gdt_entry,
1207        .write_idt_entry = xen_write_idt_entry,
1208        .load_sp0 = xen_load_sp0,
1209
1210        .set_iopl_mask = xen_set_iopl_mask,
1211        .io_delay = xen_io_delay,
1212
1213        /* Xen takes care of %gs when switching to usermode for us */
1214        .swapgs = paravirt_nop,
1215
1216        .start_context_switch = paravirt_start_context_switch,
1217        .end_context_switch = xen_end_context_switch,
1218};
1219
1220static const struct pv_apic_ops xen_apic_ops __initconst = {
1221#ifdef CONFIG_X86_LOCAL_APIC
1222        .startup_ipi_hook = paravirt_nop,
1223#endif
1224};
1225
1226static void xen_reboot(int reason)
1227{
1228        struct sched_shutdown r = { .reason = reason };
1229
1230        if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1231                BUG();
1232}
1233
1234static void xen_restart(char *msg)
1235{
1236        xen_reboot(SHUTDOWN_reboot);
1237}
1238
1239static void xen_emergency_restart(void)
1240{
1241        xen_reboot(SHUTDOWN_reboot);
1242}
1243
1244static void xen_machine_halt(void)
1245{
1246        xen_reboot(SHUTDOWN_poweroff);
1247}
1248
1249static void xen_machine_power_off(void)
1250{
1251        if (pm_power_off)
1252                pm_power_off();
1253        xen_reboot(SHUTDOWN_poweroff);
1254}
1255
1256static void xen_crash_shutdown(struct pt_regs *regs)
1257{
1258        xen_reboot(SHUTDOWN_crash);
1259}
1260
1261static int
1262xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1263{
1264        xen_reboot(SHUTDOWN_crash);
1265        return NOTIFY_DONE;
1266}
1267
1268static struct notifier_block xen_panic_block = {
1269        .notifier_call= xen_panic_event,
1270        .priority = INT_MIN
1271};
1272
1273int xen_panic_handler_init(void)
1274{
1275        atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1276        return 0;
1277}
1278
1279static const struct machine_ops xen_machine_ops __initconst = {
1280        .restart = xen_restart,
1281        .halt = xen_machine_halt,
1282        .power_off = xen_machine_power_off,
1283        .shutdown = xen_machine_halt,
1284        .crash_shutdown = xen_crash_shutdown,
1285        .emergency_restart = xen_emergency_restart,
1286};
1287
1288static unsigned char xen_get_nmi_reason(void)
1289{
1290        unsigned char reason = 0;
1291
1292        /* Construct a value which looks like it came from port 0x61. */
1293        if (test_bit(_XEN_NMIREASON_io_error,
1294                     &HYPERVISOR_shared_info->arch.nmi_reason))
1295                reason |= NMI_REASON_IOCHK;
1296        if (test_bit(_XEN_NMIREASON_pci_serr,
1297                     &HYPERVISOR_shared_info->arch.nmi_reason))
1298                reason |= NMI_REASON_SERR;
1299
1300        return reason;
1301}
1302
1303static void __init xen_boot_params_init_edd(void)
1304{
1305#if IS_ENABLED(CONFIG_EDD)
1306        struct xen_platform_op op;
1307        struct edd_info *edd_info;
1308        u32 *mbr_signature;
1309        unsigned nr;
1310        int ret;
1311
1312        edd_info = boot_params.eddbuf;
1313        mbr_signature = boot_params.edd_mbr_sig_buffer;
1314
1315        op.cmd = XENPF_firmware_info;
1316
1317        op.u.firmware_info.type = XEN_FW_DISK_INFO;
1318        for (nr = 0; nr < EDDMAXNR; nr++) {
1319                struct edd_info *info = edd_info + nr;
1320
1321                op.u.firmware_info.index = nr;
1322                info->params.length = sizeof(info->params);
1323                set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1324                                     &info->params);
1325                ret = HYPERVISOR_dom0_op(&op);
1326                if (ret)
1327                        break;
1328
1329#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1330                C(device);
1331                C(version);
1332                C(interface_support);
1333                C(legacy_max_cylinder);
1334                C(legacy_max_head);
1335                C(legacy_sectors_per_track);
1336#undef C
1337        }
1338        boot_params.eddbuf_entries = nr;
1339
1340        op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1341        for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1342                op.u.firmware_info.index = nr;
1343                ret = HYPERVISOR_dom0_op(&op);
1344                if (ret)
1345                        break;
1346                mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1347        }
1348        boot_params.edd_mbr_sig_buf_entries = nr;
1349#endif
1350}
1351
1352/*
1353 * Set up the GDT and segment registers for -fstack-protector.  Until
1354 * we do this, we have to be careful not to call any stack-protected
1355 * function, which is most of the kernel.
1356 *
1357 * Note, that it is __ref because the only caller of this after init
1358 * is PVH which is not going to use xen_load_gdt_boot or other
1359 * __init functions.
1360 */
1361static void __ref xen_setup_gdt(int cpu)
1362{
1363        if (xen_feature(XENFEAT_auto_translated_physmap)) {
1364#ifdef CONFIG_X86_64
1365                unsigned long dummy;
1366
1367                load_percpu_segment(cpu); /* We need to access per-cpu area */
1368                switch_to_new_gdt(cpu); /* GDT and GS set */
1369
1370                /* We are switching of the Xen provided GDT to our HVM mode
1371                 * GDT. The new GDT has  __KERNEL_CS with CS.L = 1
1372                 * and we are jumping to reload it.
1373                 */
1374                asm volatile ("pushq %0\n"
1375                              "leaq 1f(%%rip),%0\n"
1376                              "pushq %0\n"
1377                              "lretq\n"
1378                              "1:\n"
1379                              : "=&r" (dummy) : "0" (__KERNEL_CS));
1380
1381                /*
1382                 * While not needed, we also set the %es, %ds, and %fs
1383                 * to zero. We don't care about %ss as it is NULL.
1384                 * Strictly speaking this is not needed as Xen zeros those
1385                 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1386                 *
1387                 * Linux zeros them in cpu_init() and in secondary_startup_64
1388                 * (for BSP).
1389                 */
1390                loadsegment(es, 0);
1391                loadsegment(ds, 0);
1392                loadsegment(fs, 0);
1393#else
1394                /* PVH: TODO Implement. */
1395                BUG();
1396#endif
1397                return; /* PVH does not need any PV GDT ops. */
1398        }
1399        pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1400        pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1401
1402        setup_stack_canary_segment(0);
1403        switch_to_new_gdt(0);
1404
1405        pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1406        pv_cpu_ops.load_gdt = xen_load_gdt;
1407}
1408
1409#ifdef CONFIG_XEN_PVH
1410/*
1411 * A PV guest starts with default flags that are not set for PVH, set them
1412 * here asap.
1413 */
1414static void xen_pvh_set_cr_flags(int cpu)
1415{
1416
1417        /* Some of these are setup in 'secondary_startup_64'. The others:
1418         * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1419         * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1420        write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1421
1422        if (!cpu)
1423                return;
1424        /*
1425         * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1426         * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu_init.
1427        */
1428        if (cpu_has_pse)
1429                cr4_set_bits_and_update_boot(X86_CR4_PSE);
1430
1431        if (cpu_has_pge)
1432                cr4_set_bits_and_update_boot(X86_CR4_PGE);
1433}
1434
1435/*
1436 * Note, that it is ref - because the only caller of this after init
1437 * is PVH which is not going to use xen_load_gdt_boot or other
1438 * __init functions.
1439 */
1440void __ref xen_pvh_secondary_vcpu_init(int cpu)
1441{
1442        xen_setup_gdt(cpu);
1443        xen_pvh_set_cr_flags(cpu);
1444}
1445
1446static void __init xen_pvh_early_guest_init(void)
1447{
1448        if (!xen_feature(XENFEAT_auto_translated_physmap))
1449                return;
1450
1451        if (!xen_feature(XENFEAT_hvm_callback_vector))
1452                return;
1453
1454        xen_have_vector_callback = 1;
1455
1456        xen_pvh_early_cpu_init(0, false);
1457        xen_pvh_set_cr_flags(0);
1458
1459#ifdef CONFIG_X86_32
1460        BUG(); /* PVH: Implement proper support. */
1461#endif
1462}
1463#endif    /* CONFIG_XEN_PVH */
1464
1465/* First C function to be called on Xen boot */
1466asmlinkage __visible void __init xen_start_kernel(void)
1467{
1468        struct physdev_set_iopl set_iopl;
1469        unsigned long initrd_start = 0;
1470        int rc;
1471
1472        if (!xen_start_info)
1473                return;
1474
1475        xen_domain_type = XEN_PV_DOMAIN;
1476
1477        xen_setup_features();
1478#ifdef CONFIG_XEN_PVH
1479        xen_pvh_early_guest_init();
1480#endif
1481        xen_setup_machphys_mapping();
1482
1483        /* Install Xen paravirt ops */
1484        pv_info = xen_info;
1485        pv_init_ops = xen_init_ops;
1486        pv_apic_ops = xen_apic_ops;
1487        if (!xen_pvh_domain()) {
1488                pv_cpu_ops = xen_cpu_ops;
1489
1490                x86_platform.get_nmi_reason = xen_get_nmi_reason;
1491        }
1492
1493        if (xen_feature(XENFEAT_auto_translated_physmap))
1494                x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1495        else
1496                x86_init.resources.memory_setup = xen_memory_setup;
1497        x86_init.oem.arch_setup = xen_arch_setup;
1498        x86_init.oem.banner = xen_banner;
1499
1500        xen_init_time_ops();
1501
1502        /*
1503         * Set up some pagetable state before starting to set any ptes.
1504         */
1505
1506        xen_init_mmu_ops();
1507
1508        /* Prevent unwanted bits from being set in PTEs. */
1509        __supported_pte_mask &= ~_PAGE_GLOBAL;
1510
1511        /*
1512         * Prevent page tables from being allocated in highmem, even
1513         * if CONFIG_HIGHPTE is enabled.
1514         */
1515        __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1516
1517        /* Work out if we support NX */
1518        x86_configure_nx();
1519
1520        /* Get mfn list */
1521        xen_build_dynamic_phys_to_machine();
1522
1523        /*
1524         * Set up kernel GDT and segment registers, mainly so that
1525         * -fstack-protector code can be executed.
1526         */
1527        xen_setup_gdt(0);
1528
1529        xen_init_irq_ops();
1530        xen_init_cpuid_mask();
1531
1532#ifdef CONFIG_X86_LOCAL_APIC
1533        /*
1534         * set up the basic apic ops.
1535         */
1536        xen_init_apic();
1537#endif
1538
1539        if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1540                pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1541                pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1542        }
1543
1544        machine_ops = xen_machine_ops;
1545
1546        /*
1547         * The only reliable way to retain the initial address of the
1548         * percpu gdt_page is to remember it here, so we can go and
1549         * mark it RW later, when the initial percpu area is freed.
1550         */
1551        xen_initial_gdt = &per_cpu(gdt_page, 0);
1552
1553        xen_smp_init();
1554
1555#ifdef CONFIG_ACPI_NUMA
1556        /*
1557         * The pages we from Xen are not related to machine pages, so
1558         * any NUMA information the kernel tries to get from ACPI will
1559         * be meaningless.  Prevent it from trying.
1560         */
1561        acpi_numa = -1;
1562#endif
1563        /* Don't do the full vcpu_info placement stuff until we have a
1564           possible map and a non-dummy shared_info. */
1565        per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1566
1567        local_irq_disable();
1568        early_boot_irqs_disabled = true;
1569
1570        xen_raw_console_write("mapping kernel into physical memory\n");
1571        xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1572
1573        /*
1574         * Modify the cache mode translation tables to match Xen's PAT
1575         * configuration.
1576         */
1577
1578        pat_init_cache_modes();
1579
1580        /* keep using Xen gdt for now; no urgent need to change it */
1581
1582#ifdef CONFIG_X86_32
1583        pv_info.kernel_rpl = 1;
1584        if (xen_feature(XENFEAT_supervisor_mode_kernel))
1585                pv_info.kernel_rpl = 0;
1586#else
1587        pv_info.kernel_rpl = 0;
1588#endif
1589        /* set the limit of our address space */
1590        xen_reserve_top();
1591
1592        /* PVH: runs at default kernel iopl of 0 */
1593        if (!xen_pvh_domain()) {
1594                /*
1595                 * We used to do this in xen_arch_setup, but that is too late
1596                 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1597                 * early_amd_init which pokes 0xcf8 port.
1598                 */
1599                set_iopl.iopl = 1;
1600                rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1601                if (rc != 0)
1602                        xen_raw_printk("physdev_op failed %d\n", rc);
1603        }
1604
1605#ifdef CONFIG_X86_32
1606        /* set up basic CPUID stuff */
1607        cpu_detect(&new_cpu_data);
1608        set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1609        new_cpu_data.wp_works_ok = 1;
1610        new_cpu_data.x86_capability[0] = cpuid_edx(1);
1611#endif
1612
1613        if (xen_start_info->mod_start) {
1614            if (xen_start_info->flags & SIF_MOD_START_PFN)
1615                initrd_start = PFN_PHYS(xen_start_info->mod_start);
1616            else
1617                initrd_start = __pa(xen_start_info->mod_start);
1618        }
1619
1620        /* Poke various useful things into boot_params */
1621        boot_params.hdr.type_of_loader = (9 << 4) | 0;
1622        boot_params.hdr.ramdisk_image = initrd_start;
1623        boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1624        boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1625
1626        if (!xen_initial_domain()) {
1627                add_preferred_console("xenboot", 0, NULL);
1628                add_preferred_console("tty", 0, NULL);
1629                add_preferred_console("hvc", 0, NULL);
1630                if (pci_xen)
1631                        x86_init.pci.arch_init = pci_xen_init;
1632        } else {
1633                const struct dom0_vga_console_info *info =
1634                        (void *)((char *)xen_start_info +
1635                                 xen_start_info->console.dom0.info_off);
1636                struct xen_platform_op op = {
1637                        .cmd = XENPF_firmware_info,
1638                        .interface_version = XENPF_INTERFACE_VERSION,
1639                        .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1640                };
1641
1642                xen_init_vga(info, xen_start_info->console.dom0.info_size);
1643                xen_start_info->console.domU.mfn = 0;
1644                xen_start_info->console.domU.evtchn = 0;
1645
1646                if (HYPERVISOR_dom0_op(&op) == 0)
1647                        boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1648
1649                /* Make sure ACS will be enabled */
1650                pci_request_acs();
1651
1652                xen_acpi_sleep_register();
1653
1654                /* Avoid searching for BIOS MP tables */
1655                x86_init.mpparse.find_smp_config = x86_init_noop;
1656                x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1657
1658                xen_boot_params_init_edd();
1659        }
1660#ifdef CONFIG_PCI
1661        /* PCI BIOS service won't work from a PV guest. */
1662        pci_probe &= ~PCI_PROBE_BIOS;
1663#endif
1664        xen_raw_console_write("about to get started...\n");
1665
1666        xen_setup_runstate_info(0);
1667
1668        xen_efi_init();
1669
1670        /* Start the world */
1671#ifdef CONFIG_X86_32
1672        i386_start_kernel();
1673#else
1674        cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1675        x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1676#endif
1677}
1678
1679void __ref xen_hvm_init_shared_info(void)
1680{
1681        int cpu;
1682        struct xen_add_to_physmap xatp;
1683        static struct shared_info *shared_info_page = 0;
1684
1685        if (!shared_info_page)
1686                shared_info_page = (struct shared_info *)
1687                        extend_brk(PAGE_SIZE, PAGE_SIZE);
1688        xatp.domid = DOMID_SELF;
1689        xatp.idx = 0;
1690        xatp.space = XENMAPSPACE_shared_info;
1691        xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1692        if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1693                BUG();
1694
1695        HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1696
1697        /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1698         * page, we use it in the event channel upcall and in some pvclock
1699         * related functions. We don't need the vcpu_info placement
1700         * optimizations because we don't use any pv_mmu or pv_irq op on
1701         * HVM.
1702         * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1703         * online but xen_hvm_init_shared_info is run at resume time too and
1704         * in that case multiple vcpus might be online. */
1705        for_each_online_cpu(cpu) {
1706                /* Leave it to be NULL. */
1707                if (cpu >= MAX_VIRT_CPUS)
1708                        continue;
1709                per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1710        }
1711}
1712
1713#ifdef CONFIG_XEN_PVHVM
1714static void __init init_hvm_pv_info(void)
1715{
1716        int major, minor;
1717        uint32_t eax, ebx, ecx, edx, pages, msr, base;
1718        u64 pfn;
1719
1720        base = xen_cpuid_base();
1721        cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1722
1723        major = eax >> 16;
1724        minor = eax & 0xffff;
1725        printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1726
1727        cpuid(base + 2, &pages, &msr, &ecx, &edx);
1728
1729        pfn = __pa(hypercall_page);
1730        wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1731
1732        xen_setup_features();
1733
1734        pv_info.name = "Xen HVM";
1735
1736        xen_domain_type = XEN_HVM_DOMAIN;
1737}
1738
1739static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1740                              void *hcpu)
1741{
1742        int cpu = (long)hcpu;
1743        switch (action) {
1744        case CPU_UP_PREPARE:
1745                xen_vcpu_setup(cpu);
1746                if (xen_have_vector_callback) {
1747                        if (xen_feature(XENFEAT_hvm_safe_pvclock))
1748                                xen_setup_timer(cpu);
1749                }
1750                break;
1751        default:
1752                break;
1753        }
1754        return NOTIFY_OK;
1755}
1756
1757static struct notifier_block xen_hvm_cpu_notifier = {
1758        .notifier_call  = xen_hvm_cpu_notify,
1759};
1760
1761static void __init xen_hvm_guest_init(void)
1762{
1763        if (xen_pv_domain())
1764                return;
1765
1766        init_hvm_pv_info();
1767
1768        xen_hvm_init_shared_info();
1769
1770        xen_panic_handler_init();
1771
1772        if (xen_feature(XENFEAT_hvm_callback_vector))
1773                xen_have_vector_callback = 1;
1774        xen_hvm_smp_init();
1775        register_cpu_notifier(&xen_hvm_cpu_notifier);
1776        xen_unplug_emulated_devices();
1777        x86_init.irqs.intr_init = xen_init_IRQ;
1778        xen_hvm_init_time_ops();
1779        xen_hvm_init_mmu_ops();
1780}
1781#endif
1782
1783static bool xen_nopv = false;
1784static __init int xen_parse_nopv(char *arg)
1785{
1786       xen_nopv = true;
1787       return 0;
1788}
1789early_param("xen_nopv", xen_parse_nopv);
1790
1791static uint32_t __init xen_platform(void)
1792{
1793        if (xen_nopv)
1794                return 0;
1795
1796        return xen_cpuid_base();
1797}
1798
1799bool xen_hvm_need_lapic(void)
1800{
1801        if (xen_nopv)
1802                return false;
1803        if (xen_pv_domain())
1804                return false;
1805        if (!xen_hvm_domain())
1806                return false;
1807        if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1808                return false;
1809        return true;
1810}
1811EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1812
1813static void xen_set_cpu_features(struct cpuinfo_x86 *c)
1814{
1815        if (xen_pv_domain())
1816                clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1817}
1818
1819const struct hypervisor_x86 x86_hyper_xen = {
1820        .name                   = "Xen",
1821        .detect                 = xen_platform,
1822#ifdef CONFIG_XEN_PVHVM
1823        .init_platform          = xen_hvm_guest_init,
1824#endif
1825        .x2apic_available       = xen_x2apic_para_available,
1826        .set_cpu_features       = xen_set_cpu_features,
1827};
1828EXPORT_SYMBOL(x86_hyper_xen);
1829