linux/drivers/atm/horizon.c
<<
>>
Prefs
   1/*
   2  Madge Horizon ATM Adapter driver.
   3  Copyright (C) 1995-1999  Madge Networks Ltd.
   4  
   5  This program is free software; you can redistribute it and/or modify
   6  it under the terms of the GNU General Public License as published by
   7  the Free Software Foundation; either version 2 of the License, or
   8  (at your option) any later version.
   9  
  10  This program is distributed in the hope that it will be useful,
  11  but WITHOUT ANY WARRANTY; without even the implied warranty of
  12  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13  GNU General Public License for more details.
  14  
  15  You should have received a copy of the GNU General Public License
  16  along with this program; if not, write to the Free Software
  17  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18  
  19  The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
  20  system and in the file COPYING in the Linux kernel source.
  21*/
  22
  23/*
  24  IMPORTANT NOTE: Madge Networks no longer makes the adapters
  25  supported by this driver and makes no commitment to maintain it.
  26*/
  27
  28#include <linux/module.h>
  29#include <linux/kernel.h>
  30#include <linux/mm.h>
  31#include <linux/pci.h>
  32#include <linux/errno.h>
  33#include <linux/atm.h>
  34#include <linux/atmdev.h>
  35#include <linux/sonet.h>
  36#include <linux/skbuff.h>
  37#include <linux/time.h>
  38#include <linux/delay.h>
  39#include <linux/uio.h>
  40#include <linux/init.h>
  41#include <linux/interrupt.h>
  42#include <linux/ioport.h>
  43#include <linux/wait.h>
  44#include <linux/slab.h>
  45
  46#include <asm/io.h>
  47#include <linux/atomic.h>
  48#include <asm/uaccess.h>
  49#include <asm/string.h>
  50#include <asm/byteorder.h>
  51
  52#include "horizon.h"
  53
  54#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
  55#define description_string "Madge ATM Horizon [Ultra] driver"
  56#define version_string "1.2.1"
  57
  58static inline void __init show_version (void) {
  59  printk ("%s version %s\n", description_string, version_string);
  60}
  61
  62/*
  63  
  64  CREDITS
  65  
  66  Driver and documentation by:
  67  
  68  Chris Aston        Madge Networks
  69  Giuliano Procida   Madge Networks
  70  Simon Benham       Madge Networks
  71  Simon Johnson      Madge Networks
  72  Various Others     Madge Networks
  73  
  74  Some inspiration taken from other drivers by:
  75  
  76  Alexandru Cucos    UTBv
  77  Kari Mettinen      University of Helsinki
  78  Werner Almesberger EPFL LRC
  79  
  80  Theory of Operation
  81  
  82  I Hardware, detection, initialisation and shutdown.
  83  
  84  1. Supported Hardware
  85  
  86  This driver should handle all variants of the PCI Madge ATM adapters
  87  with the Horizon chipset. These are all PCI cards supporting PIO, BM
  88  DMA and a form of MMIO (registers only, not internal RAM).
  89  
  90  The driver is only known to work with SONET and UTP Horizon Ultra
  91  cards at 155Mb/s. However, code is in place to deal with both the
  92  original Horizon and 25Mb/s operation.
  93  
  94  There are two revisions of the Horizon ASIC: the original and the
  95  Ultra. Details of hardware bugs are in section III.
  96  
  97  The ASIC version can be distinguished by chip markings but is NOT
  98  indicated by the PCI revision (all adapters seem to have PCI rev 1).
  99  
 100  I believe that:
 101  
 102  Horizon       => Collage  25 PCI Adapter (UTP and STP)
 103  Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
 104  Ambassador x  => Collage 155 PCI Server (completely different)
 105  
 106  Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
 107  have a Madge B154 plus glue logic serializer. I have also found a
 108  really ancient version of this with slightly different glue. It
 109  comes with the revision 0 (140-025-01) ASIC.
 110  
 111  Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
 112  output (UTP) or an HP HFBR 5205 output (SONET). It has either
 113  Madge's SAMBA framer or a SUNI-lite device (early versions). It
 114  comes with the revision 1 (140-027-01) ASIC.
 115  
 116  2. Detection
 117  
 118  All Horizon-based cards present with the same PCI Vendor and Device
 119  IDs. The standard Linux 2.2 PCI API is used to locate any cards and
 120  to enable bus-mastering (with appropriate latency).
 121  
 122  ATM_LAYER_STATUS in the control register distinguishes between the
 123  two possible physical layers (25 and 155). It is not clear whether
 124  the 155 cards can also operate at 25Mbps. We rely on the fact that a
 125  card operates at 155 if and only if it has the newer Horizon Ultra
 126  ASIC.
 127  
 128  For 155 cards the two possible framers are probed for and then set
 129  up for loop-timing.
 130  
 131  3. Initialisation
 132  
 133  The card is reset and then put into a known state. The physical
 134  layer is configured for normal operation at the appropriate speed;
 135  in the case of the 155 cards, the framer is initialised with
 136  line-based timing; the internal RAM is zeroed and the allocation of
 137  buffers for RX and TX is made; the Burnt In Address is read and
 138  copied to the ATM ESI; various policy settings for RX (VPI bits,
 139  unknown VCs, oam cells) are made. Ideally all policy items should be
 140  configurable at module load (if not actually on-demand), however,
 141  only the vpi vs vci bit allocation can be specified at insmod.
 142  
 143  4. Shutdown
 144  
 145  This is in response to module_cleaup. No VCs are in use and the card
 146  should be idle; it is reset.
 147  
 148  II Driver software (as it should be)
 149  
 150  0. Traffic Parameters
 151  
 152  The traffic classes (not an enumeration) are currently: ATM_NONE (no
 153  traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
 154  (compatible with everything). Together with (perhaps only some of)
 155  the following items they make up the traffic specification.
 156  
 157  struct atm_trafprm {
 158    unsigned char traffic_class; traffic class (ATM_UBR, ...)
 159    int           max_pcr;       maximum PCR in cells per second
 160    int           pcr;           desired PCR in cells per second
 161    int           min_pcr;       minimum PCR in cells per second
 162    int           max_cdv;       maximum CDV in microseconds
 163    int           max_sdu;       maximum SDU in bytes
 164  };
 165  
 166  Note that these denote bandwidth available not bandwidth used; the
 167  possibilities according to ATMF are:
 168  
 169  Real Time (cdv and max CDT given)
 170  
 171  CBR(pcr)             pcr bandwidth always available
 172  rtVBR(pcr,scr,mbs)   scr bandwidth always available, up to pcr at mbs too
 173  
 174  Non Real Time
 175  
 176  nrtVBR(pcr,scr,mbs)  scr bandwidth always available, up to pcr at mbs too
 177  UBR()
 178  ABR(mcr,pcr)         mcr bandwidth always available, up to pcr (depending) too
 179  
 180  mbs is max burst size (bucket)
 181  pcr and scr have associated cdvt values
 182  mcr is like scr but has no cdtv
 183  cdtv may differ at each hop
 184  
 185  Some of the above items are qos items (as opposed to traffic
 186  parameters). We have nothing to do with qos. All except ABR can have
 187  their traffic parameters converted to GCRA parameters. The GCRA may
 188  be implemented as a (real-number) leaky bucket. The GCRA can be used
 189  in complicated ways by switches and in simpler ways by end-stations.
 190  It can be used both to filter incoming cells and shape out-going
 191  cells.
 192  
 193  ATM Linux actually supports:
 194  
 195  ATM_NONE() (no traffic in this direction)
 196  ATM_UBR(max_frame_size)
 197  ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
 198  
 199  0 or ATM_MAX_PCR are used to indicate maximum available PCR
 200  
 201  A traffic specification consists of the AAL type and separate
 202  traffic specifications for either direction. In ATM Linux it is:
 203  
 204  struct atm_qos {
 205  struct atm_trafprm txtp;
 206  struct atm_trafprm rxtp;
 207  unsigned char aal;
 208  };
 209  
 210  AAL types are:
 211  
 212  ATM_NO_AAL    AAL not specified
 213  ATM_AAL0      "raw" ATM cells
 214  ATM_AAL1      AAL1 (CBR)
 215  ATM_AAL2      AAL2 (VBR)
 216  ATM_AAL34     AAL3/4 (data)
 217  ATM_AAL5      AAL5 (data)
 218  ATM_SAAL      signaling AAL
 219  
 220  The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
 221  it does not implement AAL 3/4 SAR and it has a different notion of
 222  "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
 223  supported by this driver.
 224  
 225  The Horizon has limited support for ABR (including UBR), VBR and
 226  CBR. Each TX channel has a bucket (containing up to 31 cell units)
 227  and two timers (PCR and SCR) associated with it that can be used to
 228  govern cell emissions and host notification (in the case of ABR this
 229  is presumably so that RM cells may be emitted at appropriate times).
 230  The timers may either be disabled or may be set to any of 240 values
 231  (determined by the clock crystal, a fixed (?) per-device divider, a
 232  configurable divider and a configurable timer preload value).
 233  
 234  At the moment only UBR and CBR are supported by the driver. VBR will
 235  be supported as soon as ATM for Linux supports it. ABR support is
 236  very unlikely as RM cell handling is completely up to the driver.
 237  
 238  1. TX (TX channel setup and TX transfer)
 239  
 240  The TX half of the driver owns the TX Horizon registers. The TX
 241  component in the IRQ handler is the BM completion handler. This can
 242  only be entered when tx_busy is true (enforced by hardware). The
 243  other TX component can only be entered when tx_busy is false
 244  (enforced by driver). So TX is single-threaded.
 245  
 246  Apart from a minor optimisation to not re-select the last channel,
 247  the TX send component works as follows:
 248  
 249  Atomic test and set tx_busy until we succeed; we should implement
 250  some sort of timeout so that tx_busy will never be stuck at true.
 251  
 252  If no TX channel is set up for this VC we wait for an idle one (if
 253  necessary) and set it up.
 254  
 255  At this point we have a TX channel ready for use. We wait for enough
 256  buffers to become available then start a TX transmit (set the TX
 257  descriptor, schedule transfer, exit).
 258  
 259  The IRQ component handles TX completion (stats, free buffer, tx_busy
 260  unset, exit). We also re-schedule further transfers for the same
 261  frame if needed.
 262  
 263  TX setup in more detail:
 264  
 265  TX open is a nop, the relevant information is held in the hrz_vcc
 266  (vcc->dev_data) structure and is "cached" on the card.
 267  
 268  TX close gets the TX lock and clears the channel from the "cache".
 269  
 270  2. RX (Data Available and RX transfer)
 271  
 272  The RX half of the driver owns the RX registers. There are two RX
 273  components in the IRQ handler: the data available handler deals with
 274  fresh data that has arrived on the card, the BM completion handler
 275  is very similar to the TX completion handler. The data available
 276  handler grabs the rx_lock and it is only released once the data has
 277  been discarded or completely transferred to the host. The BM
 278  completion handler only runs when the lock is held; the data
 279  available handler is locked out over the same period.
 280  
 281  Data available on the card triggers an interrupt. If the data is not
 282  suitable for our existing RX channels or we cannot allocate a buffer
 283  it is flushed. Otherwise an RX receive is scheduled. Multiple RX
 284  transfers may be scheduled for the same frame.
 285  
 286  RX setup in more detail:
 287  
 288  RX open...
 289  RX close...
 290  
 291  III Hardware Bugs
 292  
 293  0. Byte vs Word addressing of adapter RAM.
 294  
 295  A design feature; see the .h file (especially the memory map).
 296  
 297  1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
 298  
 299  The host must not start a transmit direction transfer at a
 300  non-four-byte boundary in host memory. Instead the host should
 301  perform a byte, or a two byte, or one byte followed by two byte
 302  transfer in order to start the rest of the transfer on a four byte
 303  boundary. RX is OK.
 304  
 305  Simultaneous transmit and receive direction bus master transfers are
 306  not allowed.
 307  
 308  The simplest solution to these two is to always do PIO (never DMA)
 309  in the TX direction on the original Horizon. More complicated
 310  solutions are likely to hurt my brain.
 311  
 312  2. Loss of buffer on close VC
 313  
 314  When a VC is being closed, the buffer associated with it is not
 315  returned to the pool. The host must store the reference to this
 316  buffer and when opening a new VC then give it to that new VC.
 317  
 318  The host intervention currently consists of stacking such a buffer
 319  pointer at VC close and checking the stack at VC open.
 320  
 321  3. Failure to close a VC
 322  
 323  If a VC is currently receiving a frame then closing the VC may fail
 324  and the frame continues to be received.
 325  
 326  The solution is to make sure any received frames are flushed when
 327  ready. This is currently done just before the solution to 2.
 328  
 329  4. PCI bus (original Horizon only, fixed in Ultra)
 330  
 331  Reading from the data port prior to initialisation will hang the PCI
 332  bus. Just don't do that then! We don't.
 333  
 334  IV To Do List
 335  
 336  . Timer code may be broken.
 337  
 338  . Allow users to specify buffer allocation split for TX and RX.
 339  
 340  . Deal once and for all with buggy VC close.
 341  
 342  . Handle interrupted and/or non-blocking operations.
 343  
 344  . Change some macros to functions and move from .h to .c.
 345  
 346  . Try to limit the number of TX frames each VC may have queued, in
 347    order to reduce the chances of TX buffer exhaustion.
 348  
 349  . Implement VBR (bucket and timers not understood) and ABR (need to
 350    do RM cells manually); also no Linux support for either.
 351  
 352  . Implement QoS changes on open VCs (involves extracting parts of VC open
 353    and close into separate functions and using them to make changes).
 354  
 355*/
 356
 357/********** globals **********/
 358
 359static void do_housekeeping (unsigned long arg);
 360
 361static unsigned short debug = 0;
 362static unsigned short vpi_bits = 0;
 363static int max_tx_size = 9000;
 364static int max_rx_size = 9000;
 365static unsigned char pci_lat = 0;
 366
 367/********** access functions **********/
 368
 369/* Read / Write Horizon registers */
 370static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
 371  outl (cpu_to_le32 (data), dev->iobase + reg);
 372}
 373
 374static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
 375  return le32_to_cpu (inl (dev->iobase + reg));
 376}
 377
 378static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
 379  outw (cpu_to_le16 (data), dev->iobase + reg);
 380}
 381
 382static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
 383  return le16_to_cpu (inw (dev->iobase + reg));
 384}
 385
 386static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 387  outsb (dev->iobase + reg, addr, len);
 388}
 389
 390static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 391  insb (dev->iobase + reg, addr, len);
 392}
 393
 394/* Read / Write to a given address in Horizon buffer memory.
 395   Interrupts must be disabled between the address register and data
 396   port accesses as these must form an atomic operation. */
 397static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
 398  // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
 399  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 400  wr_regl (dev, MEMORY_PORT_OFF, data);
 401}
 402
 403static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
 404  // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
 405  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 406  return rd_regl (dev, MEMORY_PORT_OFF);
 407}
 408
 409static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
 410  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
 411  wr_regl (dev, MEMORY_PORT_OFF, data);
 412}
 413
 414static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
 415  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
 416  return rd_regl (dev, MEMORY_PORT_OFF);
 417}
 418
 419/********** specialised access functions **********/
 420
 421/* RX */
 422
 423static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 424  wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
 425  return;
 426}
 427
 428static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
 429  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
 430    ;
 431  return;
 432}
 433
 434static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 435  wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
 436  return;
 437}
 438
 439static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
 440  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
 441    ;
 442  return;
 443}
 444
 445/* TX */
 446
 447static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
 448  wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
 449  return;
 450}
 451
 452/* Update or query one configuration parameter of a particular channel. */
 453
 454static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
 455  wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
 456           chan * TX_CHANNEL_CONFIG_MULT | mode);
 457    wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
 458    return;
 459}
 460
 461/********** dump functions **********/
 462
 463static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
 464#ifdef DEBUG_HORIZON
 465  unsigned int i;
 466  unsigned char * data = skb->data;
 467  PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
 468  for (i=0; i<skb->len && i < 256;i++)
 469    PRINTDM (DBG_DATA, "%02x ", data[i]);
 470  PRINTDE (DBG_DATA,"");
 471#else
 472  (void) prefix;
 473  (void) vc;
 474  (void) skb;
 475#endif
 476  return;
 477}
 478
 479static inline void dump_regs (hrz_dev * dev) {
 480#ifdef DEBUG_HORIZON
 481  PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
 482  PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
 483  PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
 484  PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
 485  PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
 486  PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
 487#else
 488  (void) dev;
 489#endif
 490  return;
 491}
 492
 493static inline void dump_framer (hrz_dev * dev) {
 494#ifdef DEBUG_HORIZON
 495  unsigned int i;
 496  PRINTDB (DBG_REGS, "framer registers:");
 497  for (i = 0; i < 0x10; ++i)
 498    PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
 499  PRINTDE (DBG_REGS,"");
 500#else
 501  (void) dev;
 502#endif
 503  return;
 504}
 505
 506/********** VPI/VCI <-> (RX) channel conversions **********/
 507
 508/* RX channels are 10 bit integers, these fns are quite paranoid */
 509
 510static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
 511  unsigned short vci_bits = 10 - vpi_bits;
 512  if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
 513    *channel = vpi<<vci_bits | vci;
 514    return *channel ? 0 : -EINVAL;
 515  }
 516  return -EINVAL;
 517}
 518
 519/********** decode RX queue entries **********/
 520
 521static inline u16 rx_q_entry_to_length (u32 x) {
 522  return x & RX_Q_ENTRY_LENGTH_MASK;
 523}
 524
 525static inline u16 rx_q_entry_to_rx_channel (u32 x) {
 526  return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
 527}
 528
 529/* Cell Transmit Rate Values
 530 *
 531 * the cell transmit rate (cells per sec) can be set to a variety of
 532 * different values by specifying two parameters: a timer preload from
 533 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
 534 * an exponent from 0 to 14; the special value 15 disables the timer).
 535 *
 536 * cellrate = baserate / (preload * 2^divider)
 537 *
 538 * The maximum cell rate that can be specified is therefore just the
 539 * base rate. Halving the preload is equivalent to adding 1 to the
 540 * divider and so values 1 to 8 of the preload are redundant except
 541 * in the case of a maximal divider (14).
 542 *
 543 * Given a desired cell rate, an algorithm to determine the preload
 544 * and divider is:
 545 * 
 546 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
 547 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
 548 *    if x <= 16 then set p = x, d = 0 (high rates), done
 549 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
 550 *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
 551 *    we find the range (n will be between 1 and 14), set d = n
 552 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
 553 *
 554 * The algorithm used below is a minor variant of the above.
 555 *
 556 * The base rate is derived from the oscillator frequency (Hz) using a
 557 * fixed divider:
 558 *
 559 * baserate = freq / 32 in the case of some Unknown Card
 560 * baserate = freq / 8  in the case of the Horizon        25
 561 * baserate = freq / 8  in the case of the Horizon Ultra 155
 562 *
 563 * The Horizon cards have oscillators and base rates as follows:
 564 *
 565 * Card               Oscillator  Base Rate
 566 * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
 567 * Horizon        25  32 MHz      4       MHz
 568 * Horizon Ultra 155  40 MHz      5       MHz
 569 *
 570 * The following defines give the base rates in Hz. These were
 571 * previously a factor of 100 larger, no doubt someone was using
 572 * cps*100.
 573 */
 574
 575#define BR_UKN 1031250l
 576#define BR_HRZ 4000000l
 577#define BR_ULT 5000000l
 578
 579// d is an exponent
 580#define CR_MIND 0
 581#define CR_MAXD 14
 582
 583// p ranges from 1 to a power of 2
 584#define CR_MAXPEXP 4
 585 
 586static int make_rate (const hrz_dev * dev, u32 c, rounding r,
 587                      u16 * bits, unsigned int * actual)
 588{
 589        // note: rounding the rate down means rounding 'p' up
 590        const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
 591  
 592        u32 div = CR_MIND;
 593        u32 pre;
 594  
 595        // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
 596        // the tests below. We could think harder about exact possibilities
 597        // of failure...
 598  
 599        unsigned long br_man = br;
 600        unsigned int br_exp = 0;
 601  
 602        PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
 603                r == round_up ? "up" : r == round_down ? "down" : "nearest");
 604  
 605        // avoid div by zero
 606        if (!c) {
 607                PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
 608                return -EINVAL;
 609        }
 610  
 611        while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
 612                br_man = br_man >> 1;
 613                ++br_exp;
 614        }
 615        // (br >>br_exp) <<br_exp == br and
 616        // br_exp <= CR_MAXPEXP+CR_MIND
 617  
 618        if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
 619                // Equivalent to: B <= (c << (MAXPEXP+MIND))
 620                // take care of rounding
 621                switch (r) {
 622                        case round_down:
 623                                pre = DIV_ROUND_UP(br, c<<div);
 624                                // but p must be non-zero
 625                                if (!pre)
 626                                        pre = 1;
 627                                break;
 628                        case round_nearest:
 629                                pre = DIV_ROUND_CLOSEST(br, c<<div);
 630                                // but p must be non-zero
 631                                if (!pre)
 632                                        pre = 1;
 633                                break;
 634                        default:        /* round_up */
 635                                pre = br/(c<<div);
 636                                // but p must be non-zero
 637                                if (!pre)
 638                                        return -EINVAL;
 639                }
 640                PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
 641                goto got_it;
 642        }
 643  
 644        // at this point we have
 645        // d == MIND and (c << (MAXPEXP+MIND)) < B
 646        while (div < CR_MAXD) {
 647                div++;
 648                if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
 649                        // Equivalent to: B <= (c << (MAXPEXP+d))
 650                        // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
 651                        // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
 652                        // MAXP/2 < B/c2^d <= MAXP
 653                        // take care of rounding
 654                        switch (r) {
 655                                case round_down:
 656                                        pre = DIV_ROUND_UP(br, c<<div);
 657                                        break;
 658                                case round_nearest:
 659                                        pre = DIV_ROUND_CLOSEST(br, c<<div);
 660                                        break;
 661                                default: /* round_up */
 662                                        pre = br/(c<<div);
 663                        }
 664                        PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
 665                        goto got_it;
 666                }
 667        }
 668        // at this point we have
 669        // d == MAXD and (c << (MAXPEXP+MAXD)) < B
 670        // but we cannot go any higher
 671        // take care of rounding
 672        if (r == round_down)
 673                return -EINVAL;
 674        pre = 1 << CR_MAXPEXP;
 675        PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
 676got_it:
 677        // paranoia
 678        if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
 679                PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
 680                        div, pre);
 681                return -EINVAL;
 682        } else {
 683                if (bits)
 684                        *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
 685                if (actual) {
 686                        *actual = DIV_ROUND_UP(br, pre<<div);
 687                        PRINTD (DBG_QOS, "actual rate: %u", *actual);
 688                }
 689                return 0;
 690        }
 691}
 692
 693static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
 694                                     u16 * bit_pattern, unsigned int * actual) {
 695  unsigned int my_actual;
 696  
 697  PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
 698          c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
 699  
 700  if (!actual)
 701    // actual rate is not returned
 702    actual = &my_actual;
 703  
 704  if (make_rate (dev, c, round_nearest, bit_pattern, actual))
 705    // should never happen as round_nearest always succeeds
 706    return -1;
 707  
 708  if (c - tol <= *actual && *actual <= c + tol)
 709    // within tolerance
 710    return 0;
 711  else
 712    // intolerant, try rounding instead
 713    return make_rate (dev, c, r, bit_pattern, actual);
 714}
 715
 716/********** Listen on a VC **********/
 717
 718static int hrz_open_rx (hrz_dev * dev, u16 channel) {
 719  // is there any guarantee that we don't get two simulataneous
 720  // identical calls of this function from different processes? yes
 721  // rate_lock
 722  unsigned long flags;
 723  u32 channel_type; // u16?
 724  
 725  u16 buf_ptr = RX_CHANNEL_IDLE;
 726  
 727  rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
 728  
 729  PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
 730  
 731  spin_lock_irqsave (&dev->mem_lock, flags);
 732  channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 733  spin_unlock_irqrestore (&dev->mem_lock, flags);
 734  
 735  // very serious error, should never occur
 736  if (channel_type != RX_CHANNEL_DISABLED) {
 737    PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
 738    return -EBUSY; // clean up?
 739  }
 740  
 741  // Give back spare buffer
 742  if (dev->noof_spare_buffers) {
 743    buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
 744    PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
 745    // should never occur
 746    if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
 747      // but easy to recover from
 748      PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
 749      buf_ptr = RX_CHANNEL_IDLE;
 750    }
 751  } else {
 752    PRINTD (DBG_VCC, "using IDLE buffer pointer");
 753  }
 754  
 755  // Channel is currently disabled so change its status to idle
 756  
 757  // do we really need to save the flags again?
 758  spin_lock_irqsave (&dev->mem_lock, flags);
 759  
 760  wr_mem (dev, &rx_desc->wr_buf_type,
 761          buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
 762  if (buf_ptr != RX_CHANNEL_IDLE)
 763    wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
 764  
 765  spin_unlock_irqrestore (&dev->mem_lock, flags);
 766  
 767  // rxer->rate = make_rate (qos->peak_cells);
 768  
 769  PRINTD (DBG_FLOW, "hrz_open_rx ok");
 770  
 771  return 0;
 772}
 773
 774#if 0
 775/********** change vc rate for a given vc **********/
 776
 777static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
 778  rxer->rate = make_rate (qos->peak_cells);
 779}
 780#endif
 781
 782/********** free an skb (as per ATM device driver documentation) **********/
 783
 784static void hrz_kfree_skb (struct sk_buff * skb) {
 785  if (ATM_SKB(skb)->vcc->pop) {
 786    ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
 787  } else {
 788    dev_kfree_skb_any (skb);
 789  }
 790}
 791
 792/********** cancel listen on a VC **********/
 793
 794static void hrz_close_rx (hrz_dev * dev, u16 vc) {
 795  unsigned long flags;
 796  
 797  u32 value;
 798  
 799  u32 r1, r2;
 800  
 801  rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
 802  
 803  int was_idle = 0;
 804  
 805  spin_lock_irqsave (&dev->mem_lock, flags);
 806  value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 807  spin_unlock_irqrestore (&dev->mem_lock, flags);
 808  
 809  if (value == RX_CHANNEL_DISABLED) {
 810    // I suppose this could happen once we deal with _NONE traffic properly
 811    PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
 812    return;
 813  }
 814  if (value == RX_CHANNEL_IDLE)
 815    was_idle = 1;
 816  
 817  spin_lock_irqsave (&dev->mem_lock, flags);
 818  
 819  for (;;) {
 820    wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
 821    
 822    if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
 823      break;
 824    
 825    was_idle = 0;
 826  }
 827  
 828  if (was_idle) {
 829    spin_unlock_irqrestore (&dev->mem_lock, flags);
 830    return;
 831  }
 832  
 833  WAIT_FLUSH_RX_COMPLETE(dev);
 834  
 835  // XXX Is this all really necessary? We can rely on the rx_data_av
 836  // handler to discard frames that remain queued for delivery. If the
 837  // worry is that immediately reopening the channel (perhaps by a
 838  // different process) may cause some data to be mis-delivered then
 839  // there may still be a simpler solution (such as busy-waiting on
 840  // rx_busy once the channel is disabled or before a new one is
 841  // opened - does this leave any holes?). Arguably setting up and
 842  // tearing down the TX and RX halves of each virtual circuit could
 843  // most safely be done within ?x_busy protected regions.
 844  
 845  // OK, current changes are that Simon's marker is disabled and we DO
 846  // look for NULL rxer elsewhere. The code here seems flush frames
 847  // and then remember the last dead cell belonging to the channel
 848  // just disabled - the cell gets relinked at the next vc_open.
 849  // However, when all VCs are closed or only a few opened there are a
 850  // handful of buffers that are unusable.
 851  
 852  // Does anyone feel like documenting spare_buffers properly?
 853  // Does anyone feel like fixing this in a nicer way?
 854  
 855  // Flush any data which is left in the channel
 856  for (;;) {
 857    // Change the rx channel port to something different to the RX
 858    // channel we are trying to close to force Horizon to flush the rx
 859    // channel read and write pointers.
 860    
 861    u16 other = vc^(RX_CHANS/2);
 862    
 863    SELECT_RX_CHANNEL (dev, other);
 864    WAIT_UPDATE_COMPLETE (dev);
 865    
 866    r1 = rd_mem (dev, &rx_desc->rd_buf_type);
 867    
 868    // Select this RX channel. Flush doesn't seem to work unless we
 869    // select an RX channel before hand
 870    
 871    SELECT_RX_CHANNEL (dev, vc);
 872    WAIT_UPDATE_COMPLETE (dev);
 873    
 874    // Attempt to flush a frame on this RX channel
 875    
 876    FLUSH_RX_CHANNEL (dev, vc);
 877    WAIT_FLUSH_RX_COMPLETE (dev);
 878    
 879    // Force Horizon to flush rx channel read and write pointers as before
 880    
 881    SELECT_RX_CHANNEL (dev, other);
 882    WAIT_UPDATE_COMPLETE (dev);
 883    
 884    r2 = rd_mem (dev, &rx_desc->rd_buf_type);
 885    
 886    PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
 887    
 888    if (r1 == r2) {
 889      dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
 890      break;
 891    }
 892  }
 893  
 894#if 0
 895  {
 896    rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
 897    rx_q_entry * rd_ptr = dev->rx_q_entry;
 898    
 899    PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
 900    
 901    while (rd_ptr != wr_ptr) {
 902      u32 x = rd_mem (dev, (HDW *) rd_ptr);
 903      
 904      if (vc == rx_q_entry_to_rx_channel (x)) {
 905        x |= SIMONS_DODGEY_MARKER;
 906        
 907        PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
 908        
 909        wr_mem (dev, (HDW *) rd_ptr, x);
 910      }
 911      
 912      if (rd_ptr == dev->rx_q_wrap)
 913        rd_ptr = dev->rx_q_reset;
 914      else
 915        rd_ptr++;
 916    }
 917  }
 918#endif
 919  
 920  spin_unlock_irqrestore (&dev->mem_lock, flags);
 921  
 922  return;
 923}
 924
 925/********** schedule RX transfers **********/
 926
 927// Note on tail recursion: a GCC developer said that it is not likely
 928// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
 929// are sure it does as you may otherwise overflow the kernel stack.
 930
 931// giving this fn a return value would help GCC, allegedly
 932
 933static void rx_schedule (hrz_dev * dev, int irq) {
 934  unsigned int rx_bytes;
 935  
 936  int pio_instead = 0;
 937#ifndef TAILRECURSIONWORKS
 938  pio_instead = 1;
 939  while (pio_instead) {
 940#endif
 941    // bytes waiting for RX transfer
 942    rx_bytes = dev->rx_bytes;
 943    
 944#if 0
 945    spin_count = 0;
 946    while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
 947      PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
 948      if (++spin_count > 10) {
 949        PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
 950        wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
 951        clear_bit (rx_busy, &dev->flags);
 952        hrz_kfree_skb (dev->rx_skb);
 953        return;
 954      }
 955    }
 956#endif
 957    
 958    // this code follows the TX code but (at the moment) there is only
 959    // one region - the skb itself. I don't know if this will change,
 960    // but it doesn't hurt to have the code here, disabled.
 961    
 962    if (rx_bytes) {
 963      // start next transfer within same region
 964      if (rx_bytes <= MAX_PIO_COUNT) {
 965        PRINTD (DBG_RX|DBG_BUS, "(pio)");
 966        pio_instead = 1;
 967      }
 968      if (rx_bytes <= MAX_TRANSFER_COUNT) {
 969        PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
 970        dev->rx_bytes = 0;
 971      } else {
 972        PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
 973        dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
 974        rx_bytes = MAX_TRANSFER_COUNT;
 975      }
 976    } else {
 977      // rx_bytes == 0 -- we're between regions
 978      // regions remaining to transfer
 979#if 0
 980      unsigned int rx_regions = dev->rx_regions;
 981#else
 982      unsigned int rx_regions = 0;
 983#endif
 984      
 985      if (rx_regions) {
 986#if 0
 987        // start a new region
 988        dev->rx_addr = dev->rx_iovec->iov_base;
 989        rx_bytes = dev->rx_iovec->iov_len;
 990        ++dev->rx_iovec;
 991        dev->rx_regions = rx_regions - 1;
 992        
 993        if (rx_bytes <= MAX_PIO_COUNT) {
 994          PRINTD (DBG_RX|DBG_BUS, "(pio)");
 995          pio_instead = 1;
 996        }
 997        if (rx_bytes <= MAX_TRANSFER_COUNT) {
 998          PRINTD (DBG_RX|DBG_BUS, "(full region)");
 999          dev->rx_bytes = 0;
1000        } else {
1001          PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1002          dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1003          rx_bytes = MAX_TRANSFER_COUNT;
1004        }
1005#endif
1006      } else {
1007        // rx_regions == 0
1008        // that's all folks - end of frame
1009        struct sk_buff * skb = dev->rx_skb;
1010        // dev->rx_iovec = 0;
1011        
1012        FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1013        
1014        dump_skb ("<<<", dev->rx_channel, skb);
1015        
1016        PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1017        
1018        {
1019          struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1020          // VC layer stats
1021          atomic_inc(&vcc->stats->rx);
1022          __net_timestamp(skb);
1023          // end of our responsibility
1024          vcc->push (vcc, skb);
1025        }
1026      }
1027    }
1028    
1029    // note: writing RX_COUNT clears any interrupt condition
1030    if (rx_bytes) {
1031      if (pio_instead) {
1032        if (irq)
1033          wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1034        rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1035      } else {
1036        wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1037        wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1038      }
1039      dev->rx_addr += rx_bytes;
1040    } else {
1041      if (irq)
1042        wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1043      // allow another RX thread to start
1044      YELLOW_LED_ON(dev);
1045      clear_bit (rx_busy, &dev->flags);
1046      PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1047    }
1048    
1049#ifdef TAILRECURSIONWORKS
1050    // and we all bless optimised tail calls
1051    if (pio_instead)
1052      return rx_schedule (dev, 0);
1053    return;
1054#else
1055    // grrrrrrr!
1056    irq = 0;
1057  }
1058  return;
1059#endif
1060}
1061
1062/********** handle RX bus master complete events **********/
1063
1064static void rx_bus_master_complete_handler (hrz_dev * dev) {
1065  if (test_bit (rx_busy, &dev->flags)) {
1066    rx_schedule (dev, 1);
1067  } else {
1068    PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1069    // clear interrupt condition on adapter
1070    wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1071  }
1072  return;
1073}
1074
1075/********** (queue to) become the next TX thread **********/
1076
1077static int tx_hold (hrz_dev * dev) {
1078  PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1079  wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1080  PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1081  if (signal_pending (current))
1082    return -1;
1083  PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1084  return 0;
1085}
1086
1087/********** allow another TX thread to start **********/
1088
1089static inline void tx_release (hrz_dev * dev) {
1090  clear_bit (tx_busy, &dev->flags);
1091  PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1092  wake_up_interruptible (&dev->tx_queue);
1093}
1094
1095/********** schedule TX transfers **********/
1096
1097static void tx_schedule (hrz_dev * const dev, int irq) {
1098  unsigned int tx_bytes;
1099  
1100  int append_desc = 0;
1101  
1102  int pio_instead = 0;
1103#ifndef TAILRECURSIONWORKS
1104  pio_instead = 1;
1105  while (pio_instead) {
1106#endif
1107    // bytes in current region waiting for TX transfer
1108    tx_bytes = dev->tx_bytes;
1109    
1110#if 0
1111    spin_count = 0;
1112    while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1113      PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1114      if (++spin_count > 10) {
1115        PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1116        wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1117        tx_release (dev);
1118        hrz_kfree_skb (dev->tx_skb);
1119        return;
1120      }
1121    }
1122#endif
1123    
1124    if (tx_bytes) {
1125      // start next transfer within same region
1126      if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1127        PRINTD (DBG_TX|DBG_BUS, "(pio)");
1128        pio_instead = 1;
1129      }
1130      if (tx_bytes <= MAX_TRANSFER_COUNT) {
1131        PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1132        if (!dev->tx_iovec) {
1133          // end of last region
1134          append_desc = 1;
1135        }
1136        dev->tx_bytes = 0;
1137      } else {
1138        PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1139        dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1140        tx_bytes = MAX_TRANSFER_COUNT;
1141      }
1142    } else {
1143      // tx_bytes == 0 -- we're between regions
1144      // regions remaining to transfer
1145      unsigned int tx_regions = dev->tx_regions;
1146      
1147      if (tx_regions) {
1148        // start a new region
1149        dev->tx_addr = dev->tx_iovec->iov_base;
1150        tx_bytes = dev->tx_iovec->iov_len;
1151        ++dev->tx_iovec;
1152        dev->tx_regions = tx_regions - 1;
1153        
1154        if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1155          PRINTD (DBG_TX|DBG_BUS, "(pio)");
1156          pio_instead = 1;
1157        }
1158        if (tx_bytes <= MAX_TRANSFER_COUNT) {
1159          PRINTD (DBG_TX|DBG_BUS, "(full region)");
1160          dev->tx_bytes = 0;
1161        } else {
1162          PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1163          dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1164          tx_bytes = MAX_TRANSFER_COUNT;
1165        }
1166      } else {
1167        // tx_regions == 0
1168        // that's all folks - end of frame
1169        struct sk_buff * skb = dev->tx_skb;
1170        dev->tx_iovec = NULL;
1171        
1172        // VC layer stats
1173        atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1174        
1175        // free the skb
1176        hrz_kfree_skb (skb);
1177      }
1178    }
1179    
1180    // note: writing TX_COUNT clears any interrupt condition
1181    if (tx_bytes) {
1182      if (pio_instead) {
1183        if (irq)
1184          wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1185        wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1186        if (append_desc)
1187          wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1188      } else {
1189        wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1190        if (append_desc)
1191          wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1192        wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1193                 append_desc
1194                 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1195                 : tx_bytes);
1196      }
1197      dev->tx_addr += tx_bytes;
1198    } else {
1199      if (irq)
1200        wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1201      YELLOW_LED_ON(dev);
1202      tx_release (dev);
1203    }
1204    
1205#ifdef TAILRECURSIONWORKS
1206    // and we all bless optimised tail calls
1207    if (pio_instead)
1208      return tx_schedule (dev, 0);
1209    return;
1210#else
1211    // grrrrrrr!
1212    irq = 0;
1213  }
1214  return;
1215#endif
1216}
1217
1218/********** handle TX bus master complete events **********/
1219
1220static void tx_bus_master_complete_handler (hrz_dev * dev) {
1221  if (test_bit (tx_busy, &dev->flags)) {
1222    tx_schedule (dev, 1);
1223  } else {
1224    PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1225    // clear interrupt condition on adapter
1226    wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1227  }
1228  return;
1229}
1230
1231/********** move RX Q pointer to next item in circular buffer **********/
1232
1233// called only from IRQ sub-handler
1234static u32 rx_queue_entry_next (hrz_dev * dev) {
1235  u32 rx_queue_entry;
1236  spin_lock (&dev->mem_lock);
1237  rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1238  if (dev->rx_q_entry == dev->rx_q_wrap)
1239    dev->rx_q_entry = dev->rx_q_reset;
1240  else
1241    dev->rx_q_entry++;
1242  wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1243  spin_unlock (&dev->mem_lock);
1244  return rx_queue_entry;
1245}
1246
1247/********** handle RX data received by device **********/
1248
1249// called from IRQ handler
1250static void rx_data_av_handler (hrz_dev * dev) {
1251  u32 rx_queue_entry;
1252  u32 rx_queue_entry_flags;
1253  u16 rx_len;
1254  u16 rx_channel;
1255  
1256  PRINTD (DBG_FLOW, "hrz_data_av_handler");
1257  
1258  // try to grab rx lock (not possible during RX bus mastering)
1259  if (test_and_set_bit (rx_busy, &dev->flags)) {
1260    PRINTD (DBG_RX, "locked out of rx lock");
1261    return;
1262  }
1263  PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1264  // lock is cleared if we fail now, o/w after bus master completion
1265  
1266  YELLOW_LED_OFF(dev);
1267  
1268  rx_queue_entry = rx_queue_entry_next (dev);
1269  
1270  rx_len = rx_q_entry_to_length (rx_queue_entry);
1271  rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1272  
1273  WAIT_FLUSH_RX_COMPLETE (dev);
1274  
1275  SELECT_RX_CHANNEL (dev, rx_channel);
1276  
1277  PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1278  rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1279  
1280  if (!rx_len) {
1281    // (at least) bus-mastering breaks if we try to handle a
1282    // zero-length frame, besides AAL5 does not support them
1283    PRINTK (KERN_ERR, "zero-length frame!");
1284    rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1285  }
1286  
1287  if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1288    PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1289  }
1290  if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1291    struct atm_vcc * atm_vcc;
1292    
1293    PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1294    
1295    atm_vcc = dev->rxer[rx_channel];
1296    // if no vcc is assigned to this channel, we should drop the frame
1297    // (is this what SIMONS etc. was trying to achieve?)
1298    
1299    if (atm_vcc) {
1300      
1301      if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1302        
1303        if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1304            
1305          struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1306          if (skb) {
1307            // remember this so we can push it later
1308            dev->rx_skb = skb;
1309            // remember this so we can flush it later
1310            dev->rx_channel = rx_channel;
1311            
1312            // prepare socket buffer
1313            skb_put (skb, rx_len);
1314            ATM_SKB(skb)->vcc = atm_vcc;
1315            
1316            // simple transfer
1317            // dev->rx_regions = 0;
1318            // dev->rx_iovec = 0;
1319            dev->rx_bytes = rx_len;
1320            dev->rx_addr = skb->data;
1321            PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1322                    skb->data, rx_len);
1323            
1324            // do the business
1325            rx_schedule (dev, 0);
1326            return;
1327            
1328          } else {
1329            PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1330          }
1331          
1332        } else {
1333          PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1334          // do we count this?
1335        }
1336        
1337      } else {
1338        PRINTK (KERN_WARNING, "dropped over-size frame");
1339        // do we count this?
1340      }
1341      
1342    } else {
1343      PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1344      // do we count this?
1345    }
1346    
1347  } else {
1348    // Wait update complete ? SPONG
1349  }
1350  
1351  // RX was aborted
1352  YELLOW_LED_ON(dev);
1353  
1354  FLUSH_RX_CHANNEL (dev,rx_channel);
1355  clear_bit (rx_busy, &dev->flags);
1356  
1357  return;
1358}
1359
1360/********** interrupt handler **********/
1361
1362static irqreturn_t interrupt_handler(int irq, void *dev_id)
1363{
1364  hrz_dev *dev = dev_id;
1365  u32 int_source;
1366  unsigned int irq_ok;
1367  
1368  PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1369  
1370  // definitely for us
1371  irq_ok = 0;
1372  while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1373          & INTERESTING_INTERRUPTS)) {
1374    // In the interests of fairness, the handlers below are
1375    // called in sequence and without immediate return to the head of
1376    // the while loop. This is only of issue for slow hosts (or when
1377    // debugging messages are on). Really slow hosts may find a fast
1378    // sender keeps them permanently in the IRQ handler. :(
1379    
1380    // (only an issue for slow hosts) RX completion goes before
1381    // rx_data_av as the former implies rx_busy and so the latter
1382    // would just abort. If it reschedules another transfer
1383    // (continuing the same frame) then it will not clear rx_busy.
1384    
1385    // (only an issue for slow hosts) TX completion goes before RX
1386    // data available as it is a much shorter routine - there is the
1387    // chance that any further transfers it schedules will be complete
1388    // by the time of the return to the head of the while loop
1389    
1390    if (int_source & RX_BUS_MASTER_COMPLETE) {
1391      ++irq_ok;
1392      PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1393      rx_bus_master_complete_handler (dev);
1394    }
1395    if (int_source & TX_BUS_MASTER_COMPLETE) {
1396      ++irq_ok;
1397      PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1398      tx_bus_master_complete_handler (dev);
1399    }
1400    if (int_source & RX_DATA_AV) {
1401      ++irq_ok;
1402      PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1403      rx_data_av_handler (dev);
1404    }
1405  }
1406  if (irq_ok) {
1407    PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1408  } else {
1409    PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1410  }
1411  
1412  PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1413  if (irq_ok)
1414        return IRQ_HANDLED;
1415  return IRQ_NONE;
1416}
1417
1418/********** housekeeping **********/
1419
1420static void do_housekeeping (unsigned long arg) {
1421  // just stats at the moment
1422  hrz_dev * dev = (hrz_dev *) arg;
1423
1424  // collect device-specific (not driver/atm-linux) stats here
1425  dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1426  dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1427  dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1428  dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1429
1430  mod_timer (&dev->housekeeping, jiffies + HZ/10);
1431
1432  return;
1433}
1434
1435/********** find an idle channel for TX and set it up **********/
1436
1437// called with tx_busy set
1438static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1439  unsigned short idle_channels;
1440  short tx_channel = -1;
1441  unsigned int spin_count;
1442  PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1443  
1444  // better would be to fail immediately, the caller can then decide whether
1445  // to wait or drop (depending on whether this is UBR etc.)
1446  spin_count = 0;
1447  while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1448    PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1449    // delay a bit here
1450    if (++spin_count > 100) {
1451      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1452      return -EBUSY;
1453    }
1454  }
1455  
1456  // got an idle channel
1457  {
1458    // tx_idle ensures we look for idle channels in RR order
1459    int chan = dev->tx_idle;
1460    
1461    int keep_going = 1;
1462    while (keep_going) {
1463      if (idle_channels & (1<<chan)) {
1464        tx_channel = chan;
1465        keep_going = 0;
1466      }
1467      ++chan;
1468      if (chan == TX_CHANS)
1469        chan = 0;
1470    }
1471    
1472    dev->tx_idle = chan;
1473  }
1474  
1475  // set up the channel we found
1476  {
1477    // Initialise the cell header in the transmit channel descriptor
1478    // a.k.a. prepare the channel and remember that we have done so.
1479    
1480    tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1481    u32 rd_ptr;
1482    u32 wr_ptr;
1483    u16 channel = vcc->channel;
1484    
1485    unsigned long flags;
1486    spin_lock_irqsave (&dev->mem_lock, flags);
1487    
1488    // Update the transmit channel record.
1489    dev->tx_channel_record[tx_channel] = channel;
1490    
1491    // xBR channel
1492    update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1493                              vcc->tx_xbr_bits);
1494    
1495    // Update the PCR counter preload value etc.
1496    update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1497                              vcc->tx_pcr_bits);
1498
1499#if 0
1500    if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1501      // SCR timer
1502      update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1503                                vcc->tx_scr_bits);
1504      
1505      // Bucket size...
1506      update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1507                                vcc->tx_bucket_bits);
1508      
1509      // ... and fullness
1510      update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1511                                vcc->tx_bucket_bits);
1512    }
1513#endif
1514
1515    // Initialise the read and write buffer pointers
1516    rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1517    wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1518    
1519    // idle TX channels should have identical pointers
1520    if (rd_ptr != wr_ptr) {
1521      PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1522      // spin_unlock... return -E...
1523      // I wonder if gcc would get rid of one of the pointer aliases
1524    }
1525    PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1526            rd_ptr, wr_ptr);
1527    
1528    switch (vcc->aal) {
1529      case aal0:
1530        PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1531        rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1532        wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1533        break;
1534      case aal34:
1535        PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1536        rd_ptr |= CHANNEL_TYPE_AAL3_4;
1537        wr_ptr |= CHANNEL_TYPE_AAL3_4;
1538        break;
1539      case aal5:
1540        rd_ptr |= CHANNEL_TYPE_AAL5;
1541        wr_ptr |= CHANNEL_TYPE_AAL5;
1542        // Initialise the CRC
1543        wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1544        break;
1545    }
1546    
1547    wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1548    wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1549    
1550    // Write the Cell Header
1551    // Payload Type, CLP and GFC would go here if non-zero
1552    wr_mem (dev, &tx_desc->cell_header, channel);
1553    
1554    spin_unlock_irqrestore (&dev->mem_lock, flags);
1555  }
1556  
1557  return tx_channel;
1558}
1559
1560/********** send a frame **********/
1561
1562static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1563  unsigned int spin_count;
1564  int free_buffers;
1565  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1566  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1567  u16 channel = vcc->channel;
1568  
1569  u32 buffers_required;
1570  
1571  /* signed for error return */
1572  short tx_channel;
1573  
1574  PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1575          channel, skb->data, skb->len);
1576  
1577  dump_skb (">>>", channel, skb);
1578  
1579  if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1580    PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1581    hrz_kfree_skb (skb);
1582    return -EIO;
1583  }
1584  
1585  // don't understand this
1586  ATM_SKB(skb)->vcc = atm_vcc;
1587  
1588  if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1589    PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1590    hrz_kfree_skb (skb);
1591    return -EIO;
1592  }
1593  
1594  if (!channel) {
1595    PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1596    hrz_kfree_skb (skb);
1597    return -EIO;
1598  }
1599  
1600#if 0
1601  {
1602    // where would be a better place for this? housekeeping?
1603    u16 status;
1604    pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1605    if (status & PCI_STATUS_REC_MASTER_ABORT) {
1606      PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1607      status &= ~PCI_STATUS_REC_MASTER_ABORT;
1608      pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1609      if (test_bit (tx_busy, &dev->flags)) {
1610        hrz_kfree_skb (dev->tx_skb);
1611        tx_release (dev);
1612      }
1613    }
1614  }
1615#endif
1616  
1617#ifdef DEBUG_HORIZON
1618  /* wey-hey! */
1619  if (channel == 1023) {
1620    unsigned int i;
1621    unsigned short d = 0;
1622    char * s = skb->data;
1623    if (*s++ == 'D') {
1624        for (i = 0; i < 4; ++i)
1625                d = (d << 4) | hex_to_bin(*s++);
1626      PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1627    }
1628  }
1629#endif
1630  
1631  // wait until TX is free and grab lock
1632  if (tx_hold (dev)) {
1633    hrz_kfree_skb (skb);
1634    return -ERESTARTSYS;
1635  }
1636 
1637  // Wait for enough space to be available in transmit buffer memory.
1638  
1639  // should be number of cells needed + 2 (according to hardware docs)
1640  // = ((framelen+8)+47) / 48 + 2
1641  // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1642  buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1643  
1644  // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1645  spin_count = 0;
1646  while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1647    PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1648            free_buffers, buffers_required);
1649    // what is the appropriate delay? implement a timeout? (depending on line speed?)
1650    // mdelay (1);
1651    // what happens if we kill (current_pid, SIGKILL) ?
1652    schedule();
1653    if (++spin_count > 1000) {
1654      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1655              free_buffers, buffers_required);
1656      tx_release (dev);
1657      hrz_kfree_skb (skb);
1658      return -ERESTARTSYS;
1659    }
1660  }
1661  
1662  // Select a channel to transmit the frame on.
1663  if (channel == dev->last_vc) {
1664    PRINTD (DBG_TX, "last vc hack: hit");
1665    tx_channel = dev->tx_last;
1666  } else {
1667    PRINTD (DBG_TX, "last vc hack: miss");
1668    // Are we currently transmitting this VC on one of the channels?
1669    for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1670      if (dev->tx_channel_record[tx_channel] == channel) {
1671        PRINTD (DBG_TX, "vc already on channel: hit");
1672        break;
1673      }
1674    if (tx_channel == TX_CHANS) { 
1675      PRINTD (DBG_TX, "vc already on channel: miss");
1676      // Find and set up an idle channel.
1677      tx_channel = setup_idle_tx_channel (dev, vcc);
1678      if (tx_channel < 0) {
1679        PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1680        tx_release (dev);
1681        return tx_channel;
1682      }
1683    }
1684    
1685    PRINTD (DBG_TX, "got channel");
1686    SELECT_TX_CHANNEL(dev, tx_channel);
1687    
1688    dev->last_vc = channel;
1689    dev->tx_last = tx_channel;
1690  }
1691  
1692  PRINTD (DBG_TX, "using channel %u", tx_channel);
1693  
1694  YELLOW_LED_OFF(dev);
1695  
1696  // TX start transfer
1697  
1698  {
1699    unsigned int tx_len = skb->len;
1700    unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1701    // remember this so we can free it later
1702    dev->tx_skb = skb;
1703    
1704    if (tx_iovcnt) {
1705      // scatter gather transfer
1706      dev->tx_regions = tx_iovcnt;
1707      dev->tx_iovec = NULL;             /* @@@ needs rewritten */
1708      dev->tx_bytes = 0;
1709      PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1710              skb->data, tx_len);
1711      tx_release (dev);
1712      hrz_kfree_skb (skb);
1713      return -EIO;
1714    } else {
1715      // simple transfer
1716      dev->tx_regions = 0;
1717      dev->tx_iovec = NULL;
1718      dev->tx_bytes = tx_len;
1719      dev->tx_addr = skb->data;
1720      PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1721              skb->data, tx_len);
1722    }
1723    
1724    // and do the business
1725    tx_schedule (dev, 0);
1726    
1727  }
1728  
1729  return 0;
1730}
1731
1732/********** reset a card **********/
1733
1734static void hrz_reset (const hrz_dev * dev) {
1735  u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1736  
1737  // why not set RESET_HORIZON to one and wait for the card to
1738  // reassert that bit as zero? Like so:
1739  control_0_reg = control_0_reg & RESET_HORIZON;
1740  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1741  while (control_0_reg & RESET_HORIZON)
1742    control_0_reg = rd_regl (dev, CONTROL_0_REG);
1743  
1744  // old reset code retained:
1745  wr_regl (dev, CONTROL_0_REG, control_0_reg |
1746           RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1747  // just guessing here
1748  udelay (1000);
1749  
1750  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1751}
1752
1753/********** read the burnt in address **********/
1754
1755static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1756{
1757        wr_regl (dev, CONTROL_0_REG, ctrl);
1758        udelay (5);
1759}
1760  
1761static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1762{
1763        // DI must be valid around rising SK edge
1764        WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1765        WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1766}
1767
1768static u16 read_bia(const hrz_dev *dev, u16 addr)
1769{
1770  u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1771  
1772  const unsigned int addr_bits = 6;
1773  const unsigned int data_bits = 16;
1774  
1775  unsigned int i;
1776  
1777  u16 res;
1778  
1779  ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1780  WRITE_IT_WAIT(dev, ctrl);
1781  
1782  // wake Serial EEPROM and send 110 (READ) command
1783  ctrl |=  (SEEPROM_CS | SEEPROM_DI);
1784  CLOCK_IT(dev, ctrl);
1785  
1786  ctrl |= SEEPROM_DI;
1787  CLOCK_IT(dev, ctrl);
1788  
1789  ctrl &= ~SEEPROM_DI;
1790  CLOCK_IT(dev, ctrl);
1791  
1792  for (i=0; i<addr_bits; i++) {
1793    if (addr & (1 << (addr_bits-1)))
1794      ctrl |= SEEPROM_DI;
1795    else
1796      ctrl &= ~SEEPROM_DI;
1797    
1798    CLOCK_IT(dev, ctrl);
1799    
1800    addr = addr << 1;
1801  }
1802  
1803  // we could check that we have DO = 0 here
1804  ctrl &= ~SEEPROM_DI;
1805  
1806  res = 0;
1807  for (i=0;i<data_bits;i++) {
1808    res = res >> 1;
1809    
1810    CLOCK_IT(dev, ctrl);
1811    
1812    if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1813      res |= (1 << (data_bits-1));
1814  }
1815  
1816  ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1817  WRITE_IT_WAIT(dev, ctrl);
1818  
1819  return res;
1820}
1821
1822/********** initialise a card **********/
1823
1824static int hrz_init(hrz_dev *dev)
1825{
1826  int onefivefive;
1827  
1828  u16 chan;
1829  
1830  int buff_count;
1831  
1832  HDW * mem;
1833  
1834  cell_buf * tx_desc;
1835  cell_buf * rx_desc;
1836  
1837  u32 ctrl;
1838  
1839  ctrl = rd_regl (dev, CONTROL_0_REG);
1840  PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1841  onefivefive = ctrl & ATM_LAYER_STATUS;
1842  
1843  if (onefivefive)
1844    printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1845  else
1846    printk (DEV_LABEL ": Horizon (at 25 MBps)");
1847  
1848  printk (":");
1849  // Reset the card to get everything in a known state
1850  
1851  printk (" reset");
1852  hrz_reset (dev);
1853  
1854  // Clear all the buffer memory
1855  
1856  printk (" clearing memory");
1857  
1858  for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1859    wr_mem (dev, mem, 0);
1860  
1861  printk (" tx channels");
1862  
1863  // All transmit eight channels are set up as AAL5 ABR channels with
1864  // a 16us cell spacing. Why?
1865  
1866  // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1867  // buffer at 110h etc.
1868  
1869  for (chan = 0; chan < TX_CHANS; ++chan) {
1870    tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1871    cell_buf * buf = &memmap->inittxbufs[chan];
1872    
1873    // initialise the read and write buffer pointers
1874    wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1875    wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1876    
1877    // set the status of the initial buffers to empty
1878    wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1879  }
1880  
1881  // Use space bufn3 at the moment for tx buffers
1882  
1883  printk (" tx buffers");
1884  
1885  tx_desc = memmap->bufn3;
1886  
1887  wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1888  
1889  for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1890    wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1891    tx_desc++;
1892  }
1893  
1894  wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1895  
1896  // Initialise the transmit free buffer count
1897  wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1898  
1899  printk (" rx channels");
1900  
1901  // Initialise all of the receive channels to be AAL5 disabled with
1902  // an interrupt threshold of 0
1903  
1904  for (chan = 0; chan < RX_CHANS; ++chan) {
1905    rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1906    
1907    wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1908  }
1909  
1910  printk (" rx buffers");
1911  
1912  // Use space bufn4 at the moment for rx buffers
1913  
1914  rx_desc = memmap->bufn4;
1915  
1916  wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1917  
1918  for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1919    wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1920    
1921    rx_desc++;
1922  }
1923  
1924  wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1925  
1926  // Initialise the receive free buffer count
1927  wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1928  
1929  // Initialize Horizons registers
1930  
1931  // TX config
1932  wr_regw (dev, TX_CONFIG_OFF,
1933           ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1934  
1935  // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1936  wr_regw (dev, RX_CONFIG_OFF,
1937           DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1938  
1939  // RX line config
1940  wr_regw (dev, RX_LINE_CONFIG_OFF,
1941           LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1942  
1943  // Set the max AAL5 cell count to be just enough to contain the
1944  // largest AAL5 frame that the user wants to receive
1945  wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1946           DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1947  
1948  // Enable receive
1949  wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1950  
1951  printk (" control");
1952  
1953  // Drive the OE of the LEDs then turn the green LED on
1954  ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1955  wr_regl (dev, CONTROL_0_REG, ctrl);
1956  
1957  // Test for a 155-capable card
1958  
1959  if (onefivefive) {
1960    // Select 155 mode... make this a choice (or: how do we detect
1961    // external line speed and switch?)
1962    ctrl |= ATM_LAYER_SELECT;
1963    wr_regl (dev, CONTROL_0_REG, ctrl);
1964    
1965    // test SUNI-lite vs SAMBA
1966    
1967    // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1968    // they will always be zero for the SAMBA.  Ha!  Bloody hardware
1969    // engineers.  It'll never work.
1970    
1971    if (rd_framer (dev, 0) & 0x00f0) {
1972      // SUNI
1973      printk (" SUNI");
1974      
1975      // Reset, just in case
1976      wr_framer (dev, 0x00, 0x0080);
1977      wr_framer (dev, 0x00, 0x0000);
1978      
1979      // Configure transmit FIFO
1980      wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
1981      
1982      // Set line timed mode
1983      wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
1984    } else {
1985      // SAMBA
1986      printk (" SAMBA");
1987      
1988      // Reset, just in case
1989      wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
1990      wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
1991      
1992      // Turn off diagnostic loopback and enable line-timed mode
1993      wr_framer (dev, 0, 0x0002);
1994      
1995      // Turn on transmit outputs
1996      wr_framer (dev, 2, 0x0B80);
1997    }
1998  } else {
1999    // Select 25 mode
2000    ctrl &= ~ATM_LAYER_SELECT;
2001    
2002    // Madge B154 setup
2003    // none required?
2004  }
2005  
2006  printk (" LEDs");
2007  
2008  GREEN_LED_ON(dev);
2009  YELLOW_LED_ON(dev);
2010  
2011  printk (" ESI=");
2012  
2013  {
2014    u16 b = 0;
2015    int i;
2016    u8 * esi = dev->atm_dev->esi;
2017    
2018    // in the card I have, EEPROM
2019    // addresses 0, 1, 2 contain 0
2020    // addresess 5, 6 etc. contain ffff
2021    // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2022    // the read_bia routine gets the BIA in Ethernet bit order
2023    
2024    for (i=0; i < ESI_LEN; ++i) {
2025      if (i % 2 == 0)
2026        b = read_bia (dev, i/2 + 2);
2027      else
2028        b = b >> 8;
2029      esi[i] = b & 0xFF;
2030      printk ("%02x", esi[i]);
2031    }
2032  }
2033  
2034  // Enable RX_Q and ?X_COMPLETE interrupts only
2035  wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2036  printk (" IRQ on");
2037  
2038  printk (".\n");
2039  
2040  return onefivefive;
2041}
2042
2043/********** check max_sdu **********/
2044
2045static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2046  PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2047  
2048  switch (aal) {
2049    case aal0:
2050      if (!(tp->max_sdu)) {
2051        PRINTD (DBG_QOS, "defaulting max_sdu");
2052        tp->max_sdu = ATM_AAL0_SDU;
2053      } else if (tp->max_sdu != ATM_AAL0_SDU) {
2054        PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2055        return -EINVAL;
2056      }
2057      break;
2058    case aal34:
2059      if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2060        PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2061        tp->max_sdu = ATM_MAX_AAL34_PDU;
2062      }
2063      break;
2064    case aal5:
2065      if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2066        PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2067        tp->max_sdu = max_frame_size;
2068      }
2069      break;
2070  }
2071  return 0;
2072}
2073
2074/********** check pcr **********/
2075
2076// something like this should be part of ATM Linux
2077static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2078  // we are assuming non-UBR, and non-special values of pcr
2079  if (tp->min_pcr == ATM_MAX_PCR)
2080    PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2081  else if (tp->min_pcr < 0)
2082    PRINTD (DBG_QOS, "luser gave negative min_pcr");
2083  else if (tp->min_pcr && tp->min_pcr > pcr)
2084    PRINTD (DBG_QOS, "pcr less than min_pcr");
2085  else
2086    // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2087    // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2088    // [this would get rid of next two conditionals]
2089    if ((0) && tp->max_pcr == ATM_MAX_PCR)
2090      PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2091    else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2092      PRINTD (DBG_QOS, "luser gave negative max_pcr");
2093    else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2094      PRINTD (DBG_QOS, "pcr greater than max_pcr");
2095    else {
2096      // each limit unspecified or not violated
2097      PRINTD (DBG_QOS, "xBR(pcr) OK");
2098      return 0;
2099    }
2100  PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2101          pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2102  return -EINVAL;
2103}
2104
2105/********** open VC **********/
2106
2107static int hrz_open (struct atm_vcc *atm_vcc)
2108{
2109  int error;
2110  u16 channel;
2111  
2112  struct atm_qos * qos;
2113  struct atm_trafprm * txtp;
2114  struct atm_trafprm * rxtp;
2115  
2116  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2117  hrz_vcc vcc;
2118  hrz_vcc * vccp; // allocated late
2119  short vpi = atm_vcc->vpi;
2120  int vci = atm_vcc->vci;
2121  PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2122  
2123#ifdef ATM_VPI_UNSPEC
2124  // UNSPEC is deprecated, remove this code eventually
2125  if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2126    PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2127    return -EINVAL;
2128  }
2129#endif
2130  
2131  error = vpivci_to_channel (&channel, vpi, vci);
2132  if (error) {
2133    PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2134    return error;
2135  }
2136  
2137  vcc.channel = channel;
2138  // max speed for the moment
2139  vcc.tx_rate = 0x0;
2140  
2141  qos = &atm_vcc->qos;
2142  
2143  // check AAL and remember it
2144  switch (qos->aal) {
2145    case ATM_AAL0:
2146      // we would if it were 48 bytes and not 52!
2147      PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2148      vcc.aal = aal0;
2149      break;
2150    case ATM_AAL34:
2151      // we would if I knew how do the SAR!
2152      PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2153      vcc.aal = aal34;
2154      break;
2155    case ATM_AAL5:
2156      PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2157      vcc.aal = aal5;
2158      break;
2159    default:
2160      PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2161      return -EINVAL;
2162  }
2163  
2164  // TX traffic parameters
2165  
2166  // there are two, interrelated problems here: 1. the reservation of
2167  // PCR is not a binary choice, we are given bounds and/or a
2168  // desirable value; 2. the device is only capable of certain values,
2169  // most of which are not integers. It is almost certainly acceptable
2170  // to be off by a maximum of 1 to 10 cps.
2171  
2172  // Pragmatic choice: always store an integral PCR as that which has
2173  // been allocated, even if we allocate a little (or a lot) less,
2174  // after rounding. The actual allocation depends on what we can
2175  // manage with our rate selection algorithm. The rate selection
2176  // algorithm is given an integral PCR and a tolerance and told
2177  // whether it should round the value up or down if the tolerance is
2178  // exceeded; it returns: a) the actual rate selected (rounded up to
2179  // the nearest integer), b) a bit pattern to feed to the timer
2180  // register, and c) a failure value if no applicable rate exists.
2181  
2182  // Part of the job is done by atm_pcr_goal which gives us a PCR
2183  // specification which says: EITHER grab the maximum available PCR
2184  // (and perhaps a lower bound which we musn't pass), OR grab this
2185  // amount, rounding down if you have to (and perhaps a lower bound
2186  // which we musn't pass) OR grab this amount, rounding up if you
2187  // have to (and perhaps an upper bound which we musn't pass). If any
2188  // bounds ARE passed we fail. Note that rounding is only rounding to
2189  // match device limitations, we do not round down to satisfy
2190  // bandwidth availability even if this would not violate any given
2191  // lower bound.
2192  
2193  // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2194  // (say) so this is not even a binary fixpoint cell rate (but this
2195  // device can do it). To avoid this sort of hassle we use a
2196  // tolerance parameter (currently fixed at 10 cps).
2197  
2198  PRINTD (DBG_QOS, "TX:");
2199  
2200  txtp = &qos->txtp;
2201  
2202  // set up defaults for no traffic
2203  vcc.tx_rate = 0;
2204  // who knows what would actually happen if you try and send on this?
2205  vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2206  vcc.tx_pcr_bits = CLOCK_DISABLE;
2207#if 0
2208  vcc.tx_scr_bits = CLOCK_DISABLE;
2209  vcc.tx_bucket_bits = 0;
2210#endif
2211  
2212  if (txtp->traffic_class != ATM_NONE) {
2213    error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2214    if (error) {
2215      PRINTD (DBG_QOS, "TX max_sdu check failed");
2216      return error;
2217    }
2218    
2219    switch (txtp->traffic_class) {
2220      case ATM_UBR: {
2221        // we take "the PCR" as a rate-cap
2222        // not reserved
2223        vcc.tx_rate = 0;
2224        make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2225        vcc.tx_xbr_bits = ABR_RATE_TYPE;
2226        break;
2227      }
2228#if 0
2229      case ATM_ABR: {
2230        // reserve min, allow up to max
2231        vcc.tx_rate = 0; // ?
2232        make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2233        vcc.tx_xbr_bits = ABR_RATE_TYPE;
2234        break;
2235      }
2236#endif
2237      case ATM_CBR: {
2238        int pcr = atm_pcr_goal (txtp);
2239        rounding r;
2240        if (!pcr) {
2241          // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2242          // should really have: once someone gets unlimited bandwidth
2243          // that no more non-UBR channels can be opened until the
2244          // unlimited one closes?? For the moment, round_down means
2245          // greedy people actually get something and not nothing
2246          r = round_down;
2247          // slight race (no locking) here so we may get -EAGAIN
2248          // later; the greedy bastards would deserve it :)
2249          PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2250          pcr = dev->tx_avail;
2251        } else if (pcr < 0) {
2252          r = round_down;
2253          pcr = -pcr;
2254        } else {
2255          r = round_up;
2256        }
2257        error = make_rate_with_tolerance (dev, pcr, r, 10,
2258                                          &vcc.tx_pcr_bits, &vcc.tx_rate);
2259        if (error) {
2260          PRINTD (DBG_QOS, "could not make rate from TX PCR");
2261          return error;
2262        }
2263        // not really clear what further checking is needed
2264        error = atm_pcr_check (txtp, vcc.tx_rate);
2265        if (error) {
2266          PRINTD (DBG_QOS, "TX PCR failed consistency check");
2267          return error;
2268        }
2269        vcc.tx_xbr_bits = CBR_RATE_TYPE;
2270        break;
2271      }
2272#if 0
2273      case ATM_VBR: {
2274        int pcr = atm_pcr_goal (txtp);
2275        // int scr = atm_scr_goal (txtp);
2276        int scr = pcr/2; // just for fun
2277        unsigned int mbs = 60; // just for fun
2278        rounding pr;
2279        rounding sr;
2280        unsigned int bucket;
2281        if (!pcr) {
2282          pr = round_nearest;
2283          pcr = 1<<30;
2284        } else if (pcr < 0) {
2285          pr = round_down;
2286          pcr = -pcr;
2287        } else {
2288          pr = round_up;
2289        }
2290        error = make_rate_with_tolerance (dev, pcr, pr, 10,
2291                                          &vcc.tx_pcr_bits, 0);
2292        if (!scr) {
2293          // see comments for PCR with CBR above
2294          sr = round_down;
2295          // slight race (no locking) here so we may get -EAGAIN
2296          // later; the greedy bastards would deserve it :)
2297          PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2298          scr = dev->tx_avail;
2299        } else if (scr < 0) {
2300          sr = round_down;
2301          scr = -scr;
2302        } else {
2303          sr = round_up;
2304        }
2305        error = make_rate_with_tolerance (dev, scr, sr, 10,
2306                                          &vcc.tx_scr_bits, &vcc.tx_rate);
2307        if (error) {
2308          PRINTD (DBG_QOS, "could not make rate from TX SCR");
2309          return error;
2310        }
2311        // not really clear what further checking is needed
2312        // error = atm_scr_check (txtp, vcc.tx_rate);
2313        if (error) {
2314          PRINTD (DBG_QOS, "TX SCR failed consistency check");
2315          return error;
2316        }
2317        // bucket calculations (from a piece of paper...) cell bucket
2318        // capacity must be largest integer smaller than m(p-s)/p + 1
2319        // where m = max burst size, p = pcr, s = scr
2320        bucket = mbs*(pcr-scr)/pcr;
2321        if (bucket*pcr != mbs*(pcr-scr))
2322          bucket += 1;
2323        if (bucket > BUCKET_MAX_SIZE) {
2324          PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2325                  bucket, BUCKET_MAX_SIZE);
2326          bucket = BUCKET_MAX_SIZE;
2327        }
2328        vcc.tx_xbr_bits = VBR_RATE_TYPE;
2329        vcc.tx_bucket_bits = bucket;
2330        break;
2331      }
2332#endif
2333      default: {
2334        PRINTD (DBG_QOS, "unsupported TX traffic class");
2335        return -EINVAL;
2336      }
2337    }
2338  }
2339  
2340  // RX traffic parameters
2341  
2342  PRINTD (DBG_QOS, "RX:");
2343  
2344  rxtp = &qos->rxtp;
2345  
2346  // set up defaults for no traffic
2347  vcc.rx_rate = 0;
2348  
2349  if (rxtp->traffic_class != ATM_NONE) {
2350    error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2351    if (error) {
2352      PRINTD (DBG_QOS, "RX max_sdu check failed");
2353      return error;
2354    }
2355    switch (rxtp->traffic_class) {
2356      case ATM_UBR: {
2357        // not reserved
2358        break;
2359      }
2360#if 0
2361      case ATM_ABR: {
2362        // reserve min
2363        vcc.rx_rate = 0; // ?
2364        break;
2365      }
2366#endif
2367      case ATM_CBR: {
2368        int pcr = atm_pcr_goal (rxtp);
2369        if (!pcr) {
2370          // slight race (no locking) here so we may get -EAGAIN
2371          // later; the greedy bastards would deserve it :)
2372          PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2373          pcr = dev->rx_avail;
2374        } else if (pcr < 0) {
2375          pcr = -pcr;
2376        }
2377        vcc.rx_rate = pcr;
2378        // not really clear what further checking is needed
2379        error = atm_pcr_check (rxtp, vcc.rx_rate);
2380        if (error) {
2381          PRINTD (DBG_QOS, "RX PCR failed consistency check");
2382          return error;
2383        }
2384        break;
2385      }
2386#if 0
2387      case ATM_VBR: {
2388        // int scr = atm_scr_goal (rxtp);
2389        int scr = 1<<16; // just for fun
2390        if (!scr) {
2391          // slight race (no locking) here so we may get -EAGAIN
2392          // later; the greedy bastards would deserve it :)
2393          PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2394          scr = dev->rx_avail;
2395        } else if (scr < 0) {
2396          scr = -scr;
2397        }
2398        vcc.rx_rate = scr;
2399        // not really clear what further checking is needed
2400        // error = atm_scr_check (rxtp, vcc.rx_rate);
2401        if (error) {
2402          PRINTD (DBG_QOS, "RX SCR failed consistency check");
2403          return error;
2404        }
2405        break;
2406      }
2407#endif
2408      default: {
2409        PRINTD (DBG_QOS, "unsupported RX traffic class");
2410        return -EINVAL;
2411      }
2412    }
2413  }
2414  
2415  
2416  // late abort useful for diagnostics
2417  if (vcc.aal != aal5) {
2418    PRINTD (DBG_QOS, "AAL not supported");
2419    return -EINVAL;
2420  }
2421  
2422  // get space for our vcc stuff and copy parameters into it
2423  vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2424  if (!vccp) {
2425    PRINTK (KERN_ERR, "out of memory!");
2426    return -ENOMEM;
2427  }
2428  *vccp = vcc;
2429  
2430  // clear error and grab cell rate resource lock
2431  error = 0;
2432  spin_lock (&dev->rate_lock);
2433  
2434  if (vcc.tx_rate > dev->tx_avail) {
2435    PRINTD (DBG_QOS, "not enough TX PCR left");
2436    error = -EAGAIN;
2437  }
2438  
2439  if (vcc.rx_rate > dev->rx_avail) {
2440    PRINTD (DBG_QOS, "not enough RX PCR left");
2441    error = -EAGAIN;
2442  }
2443  
2444  if (!error) {
2445    // really consume cell rates
2446    dev->tx_avail -= vcc.tx_rate;
2447    dev->rx_avail -= vcc.rx_rate;
2448    PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2449            vcc.tx_rate, vcc.rx_rate);
2450  }
2451  
2452  // release lock and exit on error
2453  spin_unlock (&dev->rate_lock);
2454  if (error) {
2455    PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2456    kfree (vccp);
2457    return error;
2458  }
2459  
2460  // this is "immediately before allocating the connection identifier
2461  // in hardware" - so long as the next call does not fail :)
2462  set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2463  
2464  // any errors here are very serious and should never occur
2465  
2466  if (rxtp->traffic_class != ATM_NONE) {
2467    if (dev->rxer[channel]) {
2468      PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2469      error = -EBUSY;
2470    }
2471    if (!error)
2472      error = hrz_open_rx (dev, channel);
2473    if (error) {
2474      kfree (vccp);
2475      return error;
2476    }
2477    // this link allows RX frames through
2478    dev->rxer[channel] = atm_vcc;
2479  }
2480  
2481  // success, set elements of atm_vcc
2482  atm_vcc->dev_data = (void *) vccp;
2483  
2484  // indicate readiness
2485  set_bit(ATM_VF_READY,&atm_vcc->flags);
2486  
2487  return 0;
2488}
2489
2490/********** close VC **********/
2491
2492static void hrz_close (struct atm_vcc * atm_vcc) {
2493  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2494  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2495  u16 channel = vcc->channel;
2496  PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2497  
2498  // indicate unreadiness
2499  clear_bit(ATM_VF_READY,&atm_vcc->flags);
2500
2501  if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2502    unsigned int i;
2503    
2504    // let any TX on this channel that has started complete
2505    // no restart, just keep trying
2506    while (tx_hold (dev))
2507      ;
2508    // remove record of any tx_channel having been setup for this channel
2509    for (i = 0; i < TX_CHANS; ++i)
2510      if (dev->tx_channel_record[i] == channel) {
2511        dev->tx_channel_record[i] = -1;
2512        break;
2513      }
2514    if (dev->last_vc == channel)
2515      dev->tx_last = -1;
2516    tx_release (dev);
2517  }
2518
2519  if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2520    // disable RXing - it tries quite hard
2521    hrz_close_rx (dev, channel);
2522    // forget the vcc - no more skbs will be pushed
2523    if (atm_vcc != dev->rxer[channel])
2524      PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2525              "arghhh! we're going to die!",
2526              atm_vcc, dev->rxer[channel]);
2527    dev->rxer[channel] = NULL;
2528  }
2529  
2530  // atomically release our rate reservation
2531  spin_lock (&dev->rate_lock);
2532  PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2533          vcc->tx_rate, vcc->rx_rate);
2534  dev->tx_avail += vcc->tx_rate;
2535  dev->rx_avail += vcc->rx_rate;
2536  spin_unlock (&dev->rate_lock);
2537  
2538  // free our structure
2539  kfree (vcc);
2540  // say the VPI/VCI is free again
2541  clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2542}
2543
2544#if 0
2545static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2546                           void *optval, int optlen) {
2547  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2548  PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2549  switch (level) {
2550    case SOL_SOCKET:
2551      switch (optname) {
2552//      case SO_BCTXOPT:
2553//        break;
2554//      case SO_BCRXOPT:
2555//        break;
2556        default:
2557          return -ENOPROTOOPT;
2558      };
2559      break;
2560  }
2561  return -EINVAL;
2562}
2563
2564static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2565                           void *optval, unsigned int optlen) {
2566  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2567  PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2568  switch (level) {
2569    case SOL_SOCKET:
2570      switch (optname) {
2571//      case SO_BCTXOPT:
2572//        break;
2573//      case SO_BCRXOPT:
2574//        break;
2575        default:
2576          return -ENOPROTOOPT;
2577      };
2578      break;
2579  }
2580  return -EINVAL;
2581}
2582#endif
2583
2584#if 0
2585static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2586  hrz_dev * dev = HRZ_DEV(atm_dev);
2587  PRINTD (DBG_FLOW, "hrz_ioctl");
2588  return -1;
2589}
2590
2591unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2592  hrz_dev * dev = HRZ_DEV(atm_dev);
2593  PRINTD (DBG_FLOW, "hrz_phy_get");
2594  return 0;
2595}
2596
2597static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2598                         unsigned long addr) {
2599  hrz_dev * dev = HRZ_DEV(atm_dev);
2600  PRINTD (DBG_FLOW, "hrz_phy_put");
2601}
2602
2603static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2604  hrz_dev * dev = HRZ_DEV(vcc->dev);
2605  PRINTD (DBG_FLOW, "hrz_change_qos");
2606  return -1;
2607}
2608#endif
2609
2610/********** proc file contents **********/
2611
2612static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2613  hrz_dev * dev = HRZ_DEV(atm_dev);
2614  int left = *pos;
2615  PRINTD (DBG_FLOW, "hrz_proc_read");
2616  
2617  /* more diagnostics here? */
2618  
2619#if 0
2620  if (!left--) {
2621    unsigned int count = sprintf (page, "vbr buckets:");
2622    unsigned int i;
2623    for (i = 0; i < TX_CHANS; ++i)
2624      count += sprintf (page, " %u/%u",
2625                        query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2626                        query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2627    count += sprintf (page+count, ".\n");
2628    return count;
2629  }
2630#endif
2631  
2632  if (!left--)
2633    return sprintf (page,
2634                    "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2635                    dev->tx_cell_count, dev->rx_cell_count,
2636                    dev->hec_error_count, dev->unassigned_cell_count);
2637  
2638  if (!left--)
2639    return sprintf (page,
2640                    "free cell buffers: TX %hu, RX %hu+%hu.\n",
2641                    rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2642                    rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2643                    dev->noof_spare_buffers);
2644  
2645  if (!left--)
2646    return sprintf (page,
2647                    "cps remaining: TX %u, RX %u\n",
2648                    dev->tx_avail, dev->rx_avail);
2649  
2650  return 0;
2651}
2652
2653static const struct atmdev_ops hrz_ops = {
2654  .open = hrz_open,
2655  .close        = hrz_close,
2656  .send = hrz_send,
2657  .proc_read    = hrz_proc_read,
2658  .owner        = THIS_MODULE,
2659};
2660
2661static int hrz_probe(struct pci_dev *pci_dev,
2662                     const struct pci_device_id *pci_ent)
2663{
2664        hrz_dev * dev;
2665        int err = 0;
2666
2667        // adapter slot free, read resources from PCI configuration space
2668        u32 iobase = pci_resource_start (pci_dev, 0);
2669        u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2670        unsigned int irq;
2671        unsigned char lat;
2672
2673        PRINTD (DBG_FLOW, "hrz_probe");
2674
2675        if (pci_enable_device(pci_dev))
2676                return -EINVAL;
2677
2678        /* XXX DEV_LABEL is a guess */
2679        if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2680                err = -EINVAL;
2681                goto out_disable;
2682        }
2683
2684        dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2685        if (!dev) {
2686                // perhaps we should be nice: deregister all adapters and abort?
2687                PRINTD(DBG_ERR, "out of memory");
2688                err = -ENOMEM;
2689                goto out_release;
2690        }
2691
2692        pci_set_drvdata(pci_dev, dev);
2693
2694        // grab IRQ and install handler - move this someplace more sensible
2695        irq = pci_dev->irq;
2696        if (request_irq(irq,
2697                        interrupt_handler,
2698                        IRQF_SHARED, /* irqflags guess */
2699                        DEV_LABEL, /* name guess */
2700                        dev)) {
2701                PRINTD(DBG_WARN, "request IRQ failed!");
2702                err = -EINVAL;
2703                goto out_free;
2704        }
2705
2706        PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2707               iobase, irq, membase);
2708
2709        dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2710                                        NULL);
2711        if (!(dev->atm_dev)) {
2712                PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2713                err = -EINVAL;
2714                goto out_free_irq;
2715        }
2716
2717        PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2718               dev->atm_dev->number, dev, dev->atm_dev);
2719        dev->atm_dev->dev_data = (void *) dev;
2720        dev->pci_dev = pci_dev; 
2721
2722        // enable bus master accesses
2723        pci_set_master(pci_dev);
2724
2725        // frobnicate latency (upwards, usually)
2726        pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2727        if (pci_lat) {
2728                PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2729                       "changing", lat, pci_lat);
2730                pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2731        } else if (lat < MIN_PCI_LATENCY) {
2732                PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2733                       "increasing", lat, MIN_PCI_LATENCY);
2734                pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2735        }
2736
2737        dev->iobase = iobase;
2738        dev->irq = irq; 
2739        dev->membase = membase; 
2740
2741        dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2742        dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
2743
2744        // these next three are performance hacks
2745        dev->last_vc = -1;
2746        dev->tx_last = -1;
2747        dev->tx_idle = 0;
2748
2749        dev->tx_regions = 0;
2750        dev->tx_bytes = 0;
2751        dev->tx_skb = NULL;
2752        dev->tx_iovec = NULL;
2753
2754        dev->tx_cell_count = 0;
2755        dev->rx_cell_count = 0;
2756        dev->hec_error_count = 0;
2757        dev->unassigned_cell_count = 0;
2758
2759        dev->noof_spare_buffers = 0;
2760
2761        {
2762                unsigned int i;
2763                for (i = 0; i < TX_CHANS; ++i)
2764                        dev->tx_channel_record[i] = -1;
2765        }
2766
2767        dev->flags = 0;
2768
2769        // Allocate cell rates and remember ASIC version
2770        // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2771        // Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2772        // Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2773
2774        if (hrz_init(dev)) {
2775                // to be really pedantic, this should be ATM_OC3c_PCR
2776                dev->tx_avail = ATM_OC3_PCR;
2777                dev->rx_avail = ATM_OC3_PCR;
2778                set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2779        } else {
2780                dev->tx_avail = ((25600000/8)*26)/(27*53);
2781                dev->rx_avail = ((25600000/8)*26)/(27*53);
2782                PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2783        }
2784
2785        // rate changes spinlock
2786        spin_lock_init(&dev->rate_lock);
2787
2788        // on-board memory access spinlock; we want atomic reads and
2789        // writes to adapter memory (handles IRQ and SMP)
2790        spin_lock_init(&dev->mem_lock);
2791
2792        init_waitqueue_head(&dev->tx_queue);
2793
2794        // vpi in 0..4, vci in 6..10
2795        dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2796        dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2797
2798        init_timer(&dev->housekeeping);
2799        dev->housekeeping.function = do_housekeeping;
2800        dev->housekeeping.data = (unsigned long) dev;
2801        mod_timer(&dev->housekeeping, jiffies);
2802
2803out:
2804        return err;
2805
2806out_free_irq:
2807        free_irq(dev->irq, dev);
2808out_free:
2809        kfree(dev);
2810out_release:
2811        release_region(iobase, HRZ_IO_EXTENT);
2812out_disable:
2813        pci_disable_device(pci_dev);
2814        goto out;
2815}
2816
2817static void hrz_remove_one(struct pci_dev *pci_dev)
2818{
2819        hrz_dev *dev;
2820
2821        dev = pci_get_drvdata(pci_dev);
2822
2823        PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2824        del_timer_sync(&dev->housekeeping);
2825        hrz_reset(dev);
2826        atm_dev_deregister(dev->atm_dev);
2827        free_irq(dev->irq, dev);
2828        release_region(dev->iobase, HRZ_IO_EXTENT);
2829        kfree(dev);
2830
2831        pci_disable_device(pci_dev);
2832}
2833
2834static void __init hrz_check_args (void) {
2835#ifdef DEBUG_HORIZON
2836  PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2837#else
2838  if (debug)
2839    PRINTK (KERN_NOTICE, "no debug support in this image");
2840#endif
2841  
2842  if (vpi_bits > HRZ_MAX_VPI)
2843    PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2844            vpi_bits = HRZ_MAX_VPI);
2845  
2846  if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2847    PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2848            max_tx_size = TX_AAL5_LIMIT);
2849  
2850  if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2851    PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2852            max_rx_size = RX_AAL5_LIMIT);
2853  
2854  return;
2855}
2856
2857MODULE_AUTHOR(maintainer_string);
2858MODULE_DESCRIPTION(description_string);
2859MODULE_LICENSE("GPL");
2860module_param(debug, ushort, 0644);
2861module_param(vpi_bits, ushort, 0);
2862module_param(max_tx_size, int, 0);
2863module_param(max_rx_size, int, 0);
2864module_param(pci_lat, byte, 0);
2865MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2866MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2867MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2868MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2869MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2870
2871static struct pci_device_id hrz_pci_tbl[] = {
2872        { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2873          0, 0, 0 },
2874        { 0, }
2875};
2876
2877MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2878
2879static struct pci_driver hrz_driver = {
2880        .name =         "horizon",
2881        .probe =        hrz_probe,
2882        .remove =       hrz_remove_one,
2883        .id_table =     hrz_pci_tbl,
2884};
2885
2886/********** module entry **********/
2887
2888static int __init hrz_module_init (void) {
2889  // sanity check - cast is needed since printk does not support %Zu
2890  if (sizeof(struct MEMMAP) != 128*1024/4) {
2891    PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2892            (unsigned long) sizeof(struct MEMMAP));
2893    return -ENOMEM;
2894  }
2895  
2896  show_version();
2897  
2898  // check arguments
2899  hrz_check_args();
2900  
2901  // get the juice
2902  return pci_register_driver(&hrz_driver);
2903}
2904
2905/********** module exit **********/
2906
2907static void __exit hrz_module_exit (void) {
2908  PRINTD (DBG_FLOW, "cleanup_module");
2909
2910  pci_unregister_driver(&hrz_driver);
2911}
2912
2913module_init(hrz_module_init);
2914module_exit(hrz_module_exit);
2915