linux/drivers/atm/lanai.c
<<
>>
Prefs
   1/* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
   2 *
   3 *  This program is free software; you can redistribute it and/or
   4 *  modify it under the terms of the GNU General Public License
   5 *  as published by the Free Software Foundation; either version
   6 *  2 of the License, or (at your option) any later version.
   7 *
   8 * This driver supports ATM cards based on the Efficient "Lanai"
   9 * chipset such as the Speedstream 3010 and the ENI-25p.  The
  10 * Speedstream 3060 is currently not supported since we don't
  11 * have the code to drive the on-board Alcatel DSL chipset (yet).
  12 *
  13 * Thanks to Efficient for supporting this project with hardware,
  14 * documentation, and by answering my questions.
  15 *
  16 * Things not working yet:
  17 *
  18 * o  We don't support the Speedstream 3060 yet - this card has
  19 *    an on-board DSL modem chip by Alcatel and the driver will
  20 *    need some extra code added to handle it
  21 *
  22 * o  Note that due to limitations of the Lanai only one VCC can be
  23 *    in CBR at once
  24 *
  25 * o We don't currently parse the EEPROM at all.  The code is all
  26 *   there as per the spec, but it doesn't actually work.  I think
  27 *   there may be some issues with the docs.  Anyway, do NOT
  28 *   enable it yet - bugs in that code may actually damage your
  29 *   hardware!  Because of this you should hardware an ESI before
  30 *   trying to use this in a LANE or MPOA environment.
  31 *
  32 * o  AAL0 is stubbed in but the actual rx/tx path isn't written yet:
  33 *      vcc_tx_aal0() needs to send or queue a SKB
  34 *      vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
  35 *      vcc_rx_aal0() needs to handle AAL0 interrupts
  36 *    This isn't too much work - I just wanted to get other things
  37 *    done first.
  38 *
  39 * o  lanai_change_qos() isn't written yet
  40 *
  41 * o  There aren't any ioctl's yet -- I'd like to eventually support
  42 *    setting loopback and LED modes that way.
  43 *
  44 * o  If the segmentation engine or DMA gets shut down we should restart
  45 *    card as per section 17.0i.  (see lanai_reset)
  46 *
  47 * o setsockopt(SO_CIRANGE) isn't done (although despite what the
  48 *   API says it isn't exactly commonly implemented)
  49 */
  50
  51/* Version history:
  52 *   v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
  53 *   v.0.02 -- 11-JAN-2000 -- Endian fixes
  54 *   v.0.01 -- 30-NOV-1999 -- Initial release
  55 */
  56
  57#include <linux/module.h>
  58#include <linux/slab.h>
  59#include <linux/mm.h>
  60#include <linux/atmdev.h>
  61#include <asm/io.h>
  62#include <asm/byteorder.h>
  63#include <linux/spinlock.h>
  64#include <linux/pci.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/init.h>
  67#include <linux/delay.h>
  68#include <linux/interrupt.h>
  69
  70/* -------------------- TUNABLE PARAMATERS: */
  71
  72/*
  73 * Maximum number of VCIs per card.  Setting it lower could theoretically
  74 * save some memory, but since we allocate our vcc list with get_free_pages,
  75 * it's not really likely for most architectures
  76 */
  77#define NUM_VCI                 (1024)
  78
  79/*
  80 * Enable extra debugging
  81 */
  82#define DEBUG
  83/*
  84 * Debug _all_ register operations with card, except the memory test.
  85 * Also disables the timed poll to prevent extra chattiness.  This
  86 * isn't for normal use
  87 */
  88#undef DEBUG_RW
  89
  90/*
  91 * The programming guide specifies a full test of the on-board SRAM
  92 * at initialization time.  Undefine to remove this
  93 */
  94#define FULL_MEMORY_TEST
  95
  96/*
  97 * This is the number of (4 byte) service entries that we will
  98 * try to allocate at startup.  Note that we will end up with
  99 * one PAGE_SIZE's worth regardless of what this is set to
 100 */
 101#define SERVICE_ENTRIES         (1024)
 102/* TODO: make above a module load-time option */
 103
 104/*
 105 * We normally read the onboard EEPROM in order to discover our MAC
 106 * address.  Undefine to _not_ do this
 107 */
 108/* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
 109/* TODO: make above a module load-time option (also) */
 110
 111/*
 112 * Depth of TX fifo (in 128 byte units; range 2-31)
 113 * Smaller numbers are better for network latency
 114 * Larger numbers are better for PCI latency
 115 * I'm really sure where the best tradeoff is, but the BSD driver uses
 116 * 7 and it seems to work ok.
 117 */
 118#define TX_FIFO_DEPTH           (7)
 119/* TODO: make above a module load-time option */
 120
 121/*
 122 * How often (in jiffies) we will try to unstick stuck connections -
 123 * shouldn't need to happen much
 124 */
 125#define LANAI_POLL_PERIOD       (10*HZ)
 126/* TODO: make above a module load-time option */
 127
 128/*
 129 * When allocating an AAL5 receiving buffer, try to make it at least
 130 * large enough to hold this many max_sdu sized PDUs
 131 */
 132#define AAL5_RX_MULTIPLIER      (3)
 133/* TODO: make above a module load-time option */
 134
 135/*
 136 * Same for transmitting buffer
 137 */
 138#define AAL5_TX_MULTIPLIER      (3)
 139/* TODO: make above a module load-time option */
 140
 141/*
 142 * When allocating an AAL0 transmiting buffer, how many cells should fit.
 143 * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
 144 * really critical
 145 */
 146#define AAL0_TX_MULTIPLIER      (40)
 147/* TODO: make above a module load-time option */
 148
 149/*
 150 * How large should we make the AAL0 receiving buffer.  Remember that this
 151 * is shared between all AAL0 VC's
 152 */
 153#define AAL0_RX_BUFFER_SIZE     (PAGE_SIZE)
 154/* TODO: make above a module load-time option */
 155
 156/*
 157 * Should we use Lanai's "powerdown" feature when no vcc's are bound?
 158 */
 159/* #define USE_POWERDOWN */
 160/* TODO: make above a module load-time option (also) */
 161
 162/* -------------------- DEBUGGING AIDS: */
 163
 164#define DEV_LABEL "lanai"
 165
 166#ifdef DEBUG
 167
 168#define DPRINTK(format, args...) \
 169        printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
 170#define APRINTK(truth, format, args...) \
 171        do { \
 172                if (unlikely(!(truth))) \
 173                        printk(KERN_ERR DEV_LABEL ": " format, ##args); \
 174        } while (0)
 175
 176#else /* !DEBUG */
 177
 178#define DPRINTK(format, args...)
 179#define APRINTK(truth, format, args...)
 180
 181#endif /* DEBUG */
 182
 183#ifdef DEBUG_RW
 184#define RWDEBUG(format, args...) \
 185        printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
 186#else /* !DEBUG_RW */
 187#define RWDEBUG(format, args...)
 188#endif
 189
 190/* -------------------- DATA DEFINITIONS: */
 191
 192#define LANAI_MAPPING_SIZE      (0x40000)
 193#define LANAI_EEPROM_SIZE       (128)
 194
 195typedef int vci_t;
 196typedef void __iomem *bus_addr_t;
 197
 198/* DMA buffer in host memory for TX, RX, or service list. */
 199struct lanai_buffer {
 200        u32 *start;     /* From get_free_pages */
 201        u32 *end;       /* One past last byte */
 202        u32 *ptr;       /* Pointer to current host location */
 203        dma_addr_t dmaaddr;
 204};
 205
 206struct lanai_vcc_stats {
 207        unsigned rx_nomem;
 208        union {
 209                struct {
 210                        unsigned rx_badlen;
 211                        unsigned service_trash;
 212                        unsigned service_stream;
 213                        unsigned service_rxcrc;
 214                } aal5;
 215                struct {
 216                } aal0;
 217        } x;
 218};
 219
 220struct lanai_dev;                       /* Forward declaration */
 221
 222/*
 223 * This is the card-specific per-vcc data.  Note that unlike some other
 224 * drivers there is NOT a 1-to-1 correspondance between these and
 225 * atm_vcc's - each one of these represents an actual 2-way vcc, but
 226 * an atm_vcc can be 1-way and share with a 1-way vcc in the other
 227 * direction.  To make it weirder, there can even be 0-way vccs
 228 * bound to us, waiting to do a change_qos
 229 */
 230struct lanai_vcc {
 231        bus_addr_t vbase;               /* Base of VCC's registers */
 232        struct lanai_vcc_stats stats;
 233        int nref;                       /* # of atm_vcc's who reference us */
 234        vci_t vci;
 235        struct {
 236                struct lanai_buffer buf;
 237                struct atm_vcc *atmvcc; /* atm_vcc who is receiver */
 238        } rx;
 239        struct {
 240                struct lanai_buffer buf;
 241                struct atm_vcc *atmvcc; /* atm_vcc who is transmitter */
 242                int endptr;             /* last endptr from service entry */
 243                struct sk_buff_head backlog;
 244                void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
 245        } tx;
 246};
 247
 248enum lanai_type {
 249        lanai2  = PCI_DEVICE_ID_EF_ATM_LANAI2,
 250        lanaihb = PCI_DEVICE_ID_EF_ATM_LANAIHB
 251};
 252
 253struct lanai_dev_stats {
 254        unsigned ovfl_trash;    /* # of cells dropped - buffer overflow */
 255        unsigned vci_trash;     /* # of cells dropped - closed vci */
 256        unsigned hec_err;       /* # of cells dropped - bad HEC */
 257        unsigned atm_ovfl;      /* # of cells dropped - rx fifo overflow */
 258        unsigned pcierr_parity_detect;
 259        unsigned pcierr_serr_set;
 260        unsigned pcierr_master_abort;
 261        unsigned pcierr_m_target_abort;
 262        unsigned pcierr_s_target_abort;
 263        unsigned pcierr_master_parity;
 264        unsigned service_notx;
 265        unsigned service_norx;
 266        unsigned service_rxnotaal5;
 267        unsigned dma_reenable;
 268        unsigned card_reset;
 269};
 270
 271struct lanai_dev {
 272        bus_addr_t base;
 273        struct lanai_dev_stats stats;
 274        struct lanai_buffer service;
 275        struct lanai_vcc **vccs;
 276#ifdef USE_POWERDOWN
 277        int nbound;                     /* number of bound vccs */
 278#endif
 279        enum lanai_type type;
 280        vci_t num_vci;                  /* Currently just NUM_VCI */
 281        u8 eeprom[LANAI_EEPROM_SIZE];
 282        u32 serialno, magicno;
 283        struct pci_dev *pci;
 284        DECLARE_BITMAP(backlog_vccs, NUM_VCI);   /* VCCs with tx backlog */
 285        DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
 286        struct timer_list timer;
 287        int naal0;
 288        struct lanai_buffer aal0buf;    /* AAL0 RX buffers */
 289        u32 conf1, conf2;               /* CONFIG[12] registers */
 290        u32 status;                     /* STATUS register */
 291        spinlock_t endtxlock;
 292        spinlock_t servicelock;
 293        struct atm_vcc *cbrvcc;
 294        int number;
 295        int board_rev;
 296/* TODO - look at race conditions with maintence of conf1/conf2 */
 297/* TODO - transmit locking: should we use _irq not _irqsave? */
 298/* TODO - organize above in some rational fashion (see <asm/cache.h>) */
 299};
 300
 301/*
 302 * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
 303 * This function iterates one of these, calling a given function for each
 304 * vci with their bit set
 305 */
 306static void vci_bitfield_iterate(struct lanai_dev *lanai,
 307        const unsigned long *lp,
 308        void (*func)(struct lanai_dev *,vci_t vci))
 309{
 310        vci_t vci;
 311
 312        for_each_set_bit(vci, lp, NUM_VCI)
 313                func(lanai, vci);
 314}
 315
 316/* -------------------- BUFFER  UTILITIES: */
 317
 318/*
 319 * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
 320 * usually any page allocation will do.  Just to be safe in case
 321 * PAGE_SIZE is insanely tiny, though...
 322 */
 323#define LANAI_PAGE_SIZE   ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
 324
 325/*
 326 * Allocate a buffer in host RAM for service list, RX, or TX
 327 * Returns buf->start==NULL if no memory
 328 * Note that the size will be rounded up 2^n bytes, and
 329 * if we can't allocate that we'll settle for something smaller
 330 * until minbytes
 331 */
 332static void lanai_buf_allocate(struct lanai_buffer *buf,
 333        size_t bytes, size_t minbytes, struct pci_dev *pci)
 334{
 335        int size;
 336
 337        if (bytes > (128 * 1024))       /* max lanai buffer size */
 338                bytes = 128 * 1024;
 339        for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
 340                ;
 341        if (minbytes < LANAI_PAGE_SIZE)
 342                minbytes = LANAI_PAGE_SIZE;
 343        do {
 344                /*
 345                 * Technically we could use non-consistent mappings for
 346                 * everything, but the way the lanai uses DMA memory would
 347                 * make that a terrific pain.  This is much simpler.
 348                 */
 349                buf->start = dma_alloc_coherent(&pci->dev,
 350                                                size, &buf->dmaaddr, GFP_KERNEL);
 351                if (buf->start != NULL) {       /* Success */
 352                        /* Lanai requires 256-byte alignment of DMA bufs */
 353                        APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
 354                            "bad dmaaddr: 0x%lx\n",
 355                            (unsigned long) buf->dmaaddr);
 356                        buf->ptr = buf->start;
 357                        buf->end = (u32 *)
 358                            (&((unsigned char *) buf->start)[size]);
 359                        memset(buf->start, 0, size);
 360                        break;
 361                }
 362                size /= 2;
 363        } while (size >= minbytes);
 364}
 365
 366/* size of buffer in bytes */
 367static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
 368{
 369        return ((unsigned long) buf->end) - ((unsigned long) buf->start);
 370}
 371
 372static void lanai_buf_deallocate(struct lanai_buffer *buf,
 373        struct pci_dev *pci)
 374{
 375        if (buf->start != NULL) {
 376                dma_free_coherent(&pci->dev, lanai_buf_size(buf),
 377                                  buf->start, buf->dmaaddr);
 378                buf->start = buf->end = buf->ptr = NULL;
 379        }
 380}
 381
 382/* size of buffer as "card order" (0=1k .. 7=128k) */
 383static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
 384{
 385        int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
 386
 387        /* This can only happen if PAGE_SIZE is gigantic, but just in case */
 388        if (order > 7)
 389                order = 7;
 390        return order;
 391}
 392
 393/* -------------------- PORT I/O UTILITIES: */
 394
 395/* Registers (and their bit-fields) */
 396enum lanai_register {
 397        Reset_Reg               = 0x00, /* Reset; read for chip type; bits: */
 398#define   RESET_GET_BOARD_REV(x)    (((x)>> 0)&0x03)    /* Board revision */
 399#define   RESET_GET_BOARD_ID(x)     (((x)>> 2)&0x03)    /* Board ID */
 400#define     BOARD_ID_LANAI256           (0)     /* 25.6M adapter card */
 401        Endian_Reg              = 0x04, /* Endian setting */
 402        IntStatus_Reg           = 0x08, /* Interrupt status */
 403        IntStatusMasked_Reg     = 0x0C, /* Interrupt status (masked) */
 404        IntAck_Reg              = 0x10, /* Interrupt acknowledge */
 405        IntAckMasked_Reg        = 0x14, /* Interrupt acknowledge (masked) */
 406        IntStatusSet_Reg        = 0x18, /* Get status + enable/disable */
 407        IntStatusSetMasked_Reg  = 0x1C, /* Get status + en/di (masked) */
 408        IntControlEna_Reg       = 0x20, /* Interrupt control enable */
 409        IntControlDis_Reg       = 0x24, /* Interrupt control disable */
 410        Status_Reg              = 0x28, /* Status */
 411#define   STATUS_PROMDATA        (0x00000001)   /* PROM_DATA pin */
 412#define   STATUS_WAITING         (0x00000002)   /* Interrupt being delayed */
 413#define   STATUS_SOOL            (0x00000004)   /* SOOL alarm */
 414#define   STATUS_LOCD            (0x00000008)   /* LOCD alarm */
 415#define   STATUS_LED             (0x00000010)   /* LED (HAPPI) output */
 416#define   STATUS_GPIN            (0x00000020)   /* GPIN pin */
 417#define   STATUS_BUTTBUSY        (0x00000040)   /* Butt register is pending */
 418        Config1_Reg             = 0x2C, /* Config word 1; bits: */
 419#define   CONFIG1_PROMDATA       (0x00000001)   /* PROM_DATA pin */
 420#define   CONFIG1_PROMCLK        (0x00000002)   /* PROM_CLK pin */
 421#define   CONFIG1_SET_READMODE(x) ((x)*0x004)   /* PCI BM reads; values: */
 422#define     READMODE_PLAIN          (0)         /*   Plain memory read */
 423#define     READMODE_LINE           (2)         /*   Memory read line */
 424#define     READMODE_MULTIPLE       (3)         /*   Memory read multiple */
 425#define   CONFIG1_DMA_ENABLE     (0x00000010)   /* Turn on DMA */
 426#define   CONFIG1_POWERDOWN      (0x00000020)   /* Turn off clocks */
 427#define   CONFIG1_SET_LOOPMODE(x) ((x)*0x080)   /* Clock&loop mode; values: */
 428#define     LOOPMODE_NORMAL         (0)         /*   Normal - no loop */
 429#define     LOOPMODE_TIME           (1)
 430#define     LOOPMODE_DIAG           (2)
 431#define     LOOPMODE_LINE           (3)
 432#define   CONFIG1_MASK_LOOPMODE  (0x00000180)
 433#define   CONFIG1_SET_LEDMODE(x) ((x)*0x0200)   /* Mode of LED; values: */
 434#define     LEDMODE_NOT_SOOL        (0)         /*   !SOOL */
 435#define     LEDMODE_OFF             (1)         /*   0     */
 436#define     LEDMODE_ON              (2)         /*   1     */
 437#define     LEDMODE_NOT_LOCD        (3)         /*   !LOCD */
 438#define     LEDMORE_GPIN            (4)         /*   GPIN  */
 439#define     LEDMODE_NOT_GPIN        (7)         /*   !GPIN */
 440#define   CONFIG1_MASK_LEDMODE   (0x00000E00)
 441#define   CONFIG1_GPOUT1         (0x00001000)   /* Toggle for reset */
 442#define   CONFIG1_GPOUT2         (0x00002000)   /* Loopback PHY */
 443#define   CONFIG1_GPOUT3         (0x00004000)   /* Loopback lanai */
 444        Config2_Reg             = 0x30, /* Config word 2; bits: */
 445#define   CONFIG2_HOWMANY        (0x00000001)   /* >512 VCIs? */
 446#define   CONFIG2_PTI7_MODE      (0x00000002)   /* Make PTI=7 RM, not OAM */
 447#define   CONFIG2_VPI_CHK_DIS    (0x00000004)   /* Ignore RX VPI value */
 448#define   CONFIG2_HEC_DROP       (0x00000008)   /* Drop cells w/ HEC errors */
 449#define   CONFIG2_VCI0_NORMAL    (0x00000010)   /* Treat VCI=0 normally */
 450#define   CONFIG2_CBR_ENABLE     (0x00000020)   /* Deal with CBR traffic */
 451#define   CONFIG2_TRASH_ALL      (0x00000040)   /* Trashing incoming cells */
 452#define   CONFIG2_TX_DISABLE     (0x00000080)   /* Trashing outgoing cells */
 453#define   CONFIG2_SET_TRASH      (0x00000100)   /* Turn trashing on */
 454        Statistics_Reg          = 0x34, /* Statistics; bits: */
 455#define   STATS_GET_FIFO_OVFL(x)    (((x)>> 0)&0xFF)    /* FIFO overflowed */
 456#define   STATS_GET_HEC_ERR(x)      (((x)>> 8)&0xFF)    /* HEC was bad */
 457#define   STATS_GET_BAD_VCI(x)      (((x)>>16)&0xFF)    /* VCI not open */
 458#define   STATS_GET_BUF_OVFL(x)     (((x)>>24)&0xFF)    /* VCC buffer full */
 459        ServiceStuff_Reg        = 0x38, /* Service stuff; bits: */
 460#define   SSTUFF_SET_SIZE(x) ((x)*0x20000000)   /* size of service buffer */
 461#define   SSTUFF_SET_ADDR(x)        ((x)>>8)    /* set address of buffer */
 462        ServWrite_Reg           = 0x3C, /* ServWrite Pointer */
 463        ServRead_Reg            = 0x40, /* ServRead Pointer */
 464        TxDepth_Reg             = 0x44, /* FIFO Transmit Depth */
 465        Butt_Reg                = 0x48, /* Butt register */
 466        CBR_ICG_Reg             = 0x50,
 467        CBR_PTR_Reg             = 0x54,
 468        PingCount_Reg           = 0x58, /* Ping count */
 469        DMA_Addr_Reg            = 0x5C  /* DMA address */
 470};
 471
 472static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
 473        enum lanai_register reg)
 474{
 475        return lanai->base + reg;
 476}
 477
 478static inline u32 reg_read(const struct lanai_dev *lanai,
 479        enum lanai_register reg)
 480{
 481        u32 t;
 482        t = readl(reg_addr(lanai, reg));
 483        RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
 484            (int) reg, t);
 485        return t;
 486}
 487
 488static inline void reg_write(const struct lanai_dev *lanai, u32 val,
 489        enum lanai_register reg)
 490{
 491        RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
 492            (int) reg, val);
 493        writel(val, reg_addr(lanai, reg));
 494}
 495
 496static inline void conf1_write(const struct lanai_dev *lanai)
 497{
 498        reg_write(lanai, lanai->conf1, Config1_Reg);
 499}
 500
 501static inline void conf2_write(const struct lanai_dev *lanai)
 502{
 503        reg_write(lanai, lanai->conf2, Config2_Reg);
 504}
 505
 506/* Same as conf2_write(), but defers I/O if we're powered down */
 507static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
 508{
 509#ifdef USE_POWERDOWN
 510        if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
 511                return;
 512#endif /* USE_POWERDOWN */
 513        conf2_write(lanai);
 514}
 515
 516static inline void reset_board(const struct lanai_dev *lanai)
 517{
 518        DPRINTK("about to reset board\n");
 519        reg_write(lanai, 0, Reset_Reg);
 520        /*
 521         * If we don't delay a little while here then we can end up
 522         * leaving the card in a VERY weird state and lock up the
 523         * PCI bus.  This isn't documented anywhere but I've convinced
 524         * myself after a lot of painful experimentation
 525         */
 526        udelay(5);
 527}
 528
 529/* -------------------- CARD SRAM UTILITIES: */
 530
 531/* The SRAM is mapped into normal PCI memory space - the only catch is
 532 * that it is only 16-bits wide but must be accessed as 32-bit.  The
 533 * 16 high bits will be zero.  We don't hide this, since they get
 534 * programmed mostly like discrete registers anyway
 535 */
 536#define SRAM_START (0x20000)
 537#define SRAM_BYTES (0x20000)    /* Again, half don't really exist */
 538
 539static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
 540{
 541        return lanai->base + SRAM_START + offset;
 542}
 543
 544static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
 545{
 546        return readl(sram_addr(lanai, offset));
 547}
 548
 549static inline void sram_write(const struct lanai_dev *lanai,
 550        u32 val, int offset)
 551{
 552        writel(val, sram_addr(lanai, offset));
 553}
 554
 555static int sram_test_word(const struct lanai_dev *lanai, int offset,
 556                          u32 pattern)
 557{
 558        u32 readback;
 559        sram_write(lanai, pattern, offset);
 560        readback = sram_read(lanai, offset);
 561        if (likely(readback == pattern))
 562                return 0;
 563        printk(KERN_ERR DEV_LABEL
 564            "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
 565            lanai->number, offset,
 566            (unsigned int) pattern, (unsigned int) readback);
 567        return -EIO;
 568}
 569
 570static int sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
 571{
 572        int offset, result = 0;
 573        for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
 574                result = sram_test_word(lanai, offset, pattern);
 575        return result;
 576}
 577
 578static int sram_test_and_clear(const struct lanai_dev *lanai)
 579{
 580#ifdef FULL_MEMORY_TEST
 581        int result;
 582        DPRINTK("testing SRAM\n");
 583        if ((result = sram_test_pass(lanai, 0x5555)) != 0)
 584                return result;
 585        if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
 586                return result;
 587#endif
 588        DPRINTK("clearing SRAM\n");
 589        return sram_test_pass(lanai, 0x0000);
 590}
 591
 592/* -------------------- CARD-BASED VCC TABLE UTILITIES: */
 593
 594/* vcc table */
 595enum lanai_vcc_offset {
 596        vcc_rxaddr1             = 0x00, /* Location1, plus bits: */
 597#define   RXADDR1_SET_SIZE(x) ((x)*0x0000100)   /* size of RX buffer */
 598#define   RXADDR1_SET_RMMODE(x) ((x)*0x00800)   /* RM cell action; values: */
 599#define     RMMODE_TRASH          (0)           /*   discard */
 600#define     RMMODE_PRESERVE       (1)           /*   input as AAL0 */
 601#define     RMMODE_PIPE           (2)           /*   pipe to coscheduler */
 602#define     RMMODE_PIPEALL        (3)           /*   pipe non-RM too */
 603#define   RXADDR1_OAM_PRESERVE   (0x00002000)   /* Input OAM cells as AAL0 */
 604#define   RXADDR1_SET_MODE(x) ((x)*0x0004000)   /* Reassembly mode */
 605#define     RXMODE_TRASH          (0)           /*   discard */
 606#define     RXMODE_AAL0           (1)           /*   non-AAL5 mode */
 607#define     RXMODE_AAL5           (2)           /*   AAL5, intr. each PDU */
 608#define     RXMODE_AAL5_STREAM    (3)           /*   AAL5 w/o per-PDU intr */
 609        vcc_rxaddr2             = 0x04, /* Location2 */
 610        vcc_rxcrc1              = 0x08, /* RX CRC claculation space */
 611        vcc_rxcrc2              = 0x0C,
 612        vcc_rxwriteptr          = 0x10, /* RX writeptr, plus bits: */
 613#define   RXWRITEPTR_LASTEFCI    (0x00002000)   /* Last PDU had EFCI bit */
 614#define   RXWRITEPTR_DROPPING    (0x00004000)   /* Had error, dropping */
 615#define   RXWRITEPTR_TRASHING    (0x00008000)   /* Trashing */
 616        vcc_rxbufstart          = 0x14, /* RX bufstart, plus bits: */
 617#define   RXBUFSTART_CLP         (0x00004000)
 618#define   RXBUFSTART_CI          (0x00008000)
 619        vcc_rxreadptr           = 0x18, /* RX readptr */
 620        vcc_txicg               = 0x1C, /* TX ICG */
 621        vcc_txaddr1             = 0x20, /* Location1, plus bits: */
 622#define   TXADDR1_SET_SIZE(x) ((x)*0x0000100)   /* size of TX buffer */
 623#define   TXADDR1_ABR            (0x00008000)   /* use ABR (doesn't work) */
 624        vcc_txaddr2             = 0x24, /* Location2 */
 625        vcc_txcrc1              = 0x28, /* TX CRC claculation space */
 626        vcc_txcrc2              = 0x2C,
 627        vcc_txreadptr           = 0x30, /* TX Readptr, plus bits: */
 628#define   TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
 629#define   TXREADPTR_MASK_DELTA  (0x0000E000)    /* ? */
 630        vcc_txendptr            = 0x34, /* TX Endptr, plus bits: */
 631#define   TXENDPTR_CLP          (0x00002000)
 632#define   TXENDPTR_MASK_PDUMODE (0x0000C000)    /* PDU mode; values: */
 633#define     PDUMODE_AAL0         (0*0x04000)
 634#define     PDUMODE_AAL5         (2*0x04000)
 635#define     PDUMODE_AAL5STREAM   (3*0x04000)
 636        vcc_txwriteptr          = 0x38, /* TX Writeptr */
 637#define   TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
 638        vcc_txcbr_next          = 0x3C  /* # of next CBR VCI in ring */
 639#define   TXCBR_NEXT_BOZO       (0x00008000)    /* "bozo bit" */
 640};
 641
 642#define CARDVCC_SIZE    (0x40)
 643
 644static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
 645        vci_t vci)
 646{
 647        return sram_addr(lanai, vci * CARDVCC_SIZE);
 648}
 649
 650static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
 651        enum lanai_vcc_offset offset)
 652{
 653        u32 val;
 654        APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
 655        val= readl(lvcc->vbase + offset);
 656        RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
 657            lvcc->vci, (int) offset, val);
 658        return val;
 659}
 660
 661static inline void cardvcc_write(const struct lanai_vcc *lvcc,
 662        u32 val, enum lanai_vcc_offset offset)
 663{
 664        APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
 665        APRINTK((val & ~0xFFFF) == 0,
 666            "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
 667            (unsigned int) val, lvcc->vci, (unsigned int) offset);
 668        RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
 669            lvcc->vci, (unsigned int) offset, (unsigned int) val);
 670        writel(val, lvcc->vbase + offset);
 671}
 672
 673/* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
 674
 675/* How many bytes will an AAL5 PDU take to transmit - remember that:
 676 *   o  we need to add 8 bytes for length, CPI, UU, and CRC
 677 *   o  we need to round up to 48 bytes for cells
 678 */
 679static inline int aal5_size(int size)
 680{
 681        int cells = (size + 8 + 47) / 48;
 682        return cells * 48;
 683}
 684
 685/* -------------------- FREE AN ATM SKB: */
 686
 687static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
 688{
 689        if (atmvcc->pop != NULL)
 690                atmvcc->pop(atmvcc, skb);
 691        else
 692                dev_kfree_skb_any(skb);
 693}
 694
 695/* -------------------- TURN VCCS ON AND OFF: */
 696
 697static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
 698{
 699        u32 addr1;
 700        if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
 701                dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
 702                cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
 703                cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
 704                cardvcc_write(lvcc, 0, vcc_rxwriteptr);
 705                cardvcc_write(lvcc, 0, vcc_rxbufstart);
 706                cardvcc_write(lvcc, 0, vcc_rxreadptr);
 707                cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
 708                addr1 = ((dmaaddr >> 8) & 0xFF) |
 709                    RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
 710                    RXADDR1_SET_RMMODE(RMMODE_TRASH) |  /* ??? */
 711                 /* RXADDR1_OAM_PRESERVE |      --- no OAM support yet */
 712                    RXADDR1_SET_MODE(RXMODE_AAL5);
 713        } else
 714                addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
 715                    RXADDR1_OAM_PRESERVE |                    /* ??? */
 716                    RXADDR1_SET_MODE(RXMODE_AAL0);
 717        /* This one must be last! */
 718        cardvcc_write(lvcc, addr1, vcc_rxaddr1);
 719}
 720
 721static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
 722{
 723        dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
 724        cardvcc_write(lvcc, 0, vcc_txicg);
 725        cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
 726        cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
 727        cardvcc_write(lvcc, 0, vcc_txreadptr);
 728        cardvcc_write(lvcc, 0, vcc_txendptr);
 729        cardvcc_write(lvcc, 0, vcc_txwriteptr);
 730        cardvcc_write(lvcc,
 731                (lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
 732                TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
 733        cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
 734        cardvcc_write(lvcc,
 735            ((dmaaddr >> 8) & 0xFF) |
 736            TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
 737            vcc_txaddr1);
 738}
 739
 740/* Shutdown receiving on card */
 741static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
 742{
 743        if (lvcc->vbase == NULL)        /* We were never bound to a VCI */
 744                return;
 745        /* 15.1.1 - set to trashing, wait one cell time (15us) */
 746        cardvcc_write(lvcc,
 747            RXADDR1_SET_RMMODE(RMMODE_TRASH) |
 748            RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
 749        udelay(15);
 750        /* 15.1.2 - clear rest of entries */
 751        cardvcc_write(lvcc, 0, vcc_rxaddr2);
 752        cardvcc_write(lvcc, 0, vcc_rxcrc1);
 753        cardvcc_write(lvcc, 0, vcc_rxcrc2);
 754        cardvcc_write(lvcc, 0, vcc_rxwriteptr);
 755        cardvcc_write(lvcc, 0, vcc_rxbufstart);
 756        cardvcc_write(lvcc, 0, vcc_rxreadptr);
 757}
 758
 759/* Shutdown transmitting on card.
 760 * Unfortunately the lanai needs us to wait until all the data
 761 * drains out of the buffer before we can dealloc it, so this
 762 * can take awhile -- up to 370ms for a full 128KB buffer
 763 * assuming everone else is quiet.  In theory the time is
 764 * boundless if there's a CBR VCC holding things up.
 765 */
 766static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
 767        struct lanai_vcc *lvcc)
 768{
 769        struct sk_buff *skb;
 770        unsigned long flags, timeout;
 771        int read, write, lastread = -1;
 772        APRINTK(!in_interrupt(),
 773            "lanai_shutdown_tx_vci called w/o process context!\n");
 774        if (lvcc->vbase == NULL)        /* We were never bound to a VCI */
 775                return;
 776        /* 15.2.1 - wait for queue to drain */
 777        while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
 778                lanai_free_skb(lvcc->tx.atmvcc, skb);
 779        read_lock_irqsave(&vcc_sklist_lock, flags);
 780        __clear_bit(lvcc->vci, lanai->backlog_vccs);
 781        read_unlock_irqrestore(&vcc_sklist_lock, flags);
 782        /*
 783         * We need to wait for the VCC to drain but don't wait forever.  We
 784         * give each 1K of buffer size 1/128th of a second to clear out.
 785         * TODO: maybe disable CBR if we're about to timeout?
 786         */
 787        timeout = jiffies +
 788            (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
 789        write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
 790        for (;;) {
 791                read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
 792                if (read == write &&       /* Is TX buffer empty? */
 793                    (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
 794                    (cardvcc_read(lvcc, vcc_txcbr_next) &
 795                    TXCBR_NEXT_BOZO) == 0))
 796                        break;
 797                if (read != lastread) {    /* Has there been any progress? */
 798                        lastread = read;
 799                        timeout += HZ / 10;
 800                }
 801                if (unlikely(time_after(jiffies, timeout))) {
 802                        printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
 803                            "backlog closing vci %d\n",
 804                            lvcc->tx.atmvcc->dev->number, lvcc->vci);
 805                        DPRINTK("read, write = %d, %d\n", read, write);
 806                        break;
 807                }
 808                msleep(40);
 809        }
 810        /* 15.2.2 - clear out all tx registers */
 811        cardvcc_write(lvcc, 0, vcc_txreadptr);
 812        cardvcc_write(lvcc, 0, vcc_txwriteptr);
 813        cardvcc_write(lvcc, 0, vcc_txendptr);
 814        cardvcc_write(lvcc, 0, vcc_txcrc1);
 815        cardvcc_write(lvcc, 0, vcc_txcrc2);
 816        cardvcc_write(lvcc, 0, vcc_txaddr2);
 817        cardvcc_write(lvcc, 0, vcc_txaddr1);
 818}
 819
 820/* -------------------- MANAGING AAL0 RX BUFFER: */
 821
 822static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
 823{
 824        DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
 825        lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
 826                           lanai->pci);
 827        return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
 828}
 829
 830static inline void aal0_buffer_free(struct lanai_dev *lanai)
 831{
 832        DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
 833        lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
 834}
 835
 836/* -------------------- EEPROM UTILITIES: */
 837
 838/* Offsets of data in the EEPROM */
 839#define EEPROM_COPYRIGHT        (0)
 840#define EEPROM_COPYRIGHT_LEN    (44)
 841#define EEPROM_CHECKSUM         (62)
 842#define EEPROM_CHECKSUM_REV     (63)
 843#define EEPROM_MAC              (64)
 844#define EEPROM_MAC_REV          (70)
 845#define EEPROM_SERIAL           (112)
 846#define EEPROM_SERIAL_REV       (116)
 847#define EEPROM_MAGIC            (120)
 848#define EEPROM_MAGIC_REV        (124)
 849
 850#define EEPROM_MAGIC_VALUE      (0x5AB478D2)
 851
 852#ifndef READ_EEPROM
 853
 854/* Stub functions to use if EEPROM reading is disabled */
 855static int eeprom_read(struct lanai_dev *lanai)
 856{
 857        printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
 858            lanai->number);
 859        memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
 860        return 0;
 861}
 862
 863static int eeprom_validate(struct lanai_dev *lanai)
 864{
 865        lanai->serialno = 0;
 866        lanai->magicno = EEPROM_MAGIC_VALUE;
 867        return 0;
 868}
 869
 870#else /* READ_EEPROM */
 871
 872static int eeprom_read(struct lanai_dev *lanai)
 873{
 874        int i, address;
 875        u8 data;
 876        u32 tmp;
 877#define set_config1(x)   do { lanai->conf1 = x; conf1_write(lanai); \
 878                            } while (0)
 879#define clock_h()        set_config1(lanai->conf1 | CONFIG1_PROMCLK)
 880#define clock_l()        set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
 881#define data_h()         set_config1(lanai->conf1 | CONFIG1_PROMDATA)
 882#define data_l()         set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
 883#define pre_read()       do { data_h(); clock_h(); udelay(5); } while (0)
 884#define read_pin()       (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
 885#define send_stop()      do { data_l(); udelay(5); clock_h(); udelay(5); \
 886                              data_h(); udelay(5); } while (0)
 887        /* start with both clock and data high */
 888        data_h(); clock_h(); udelay(5);
 889        for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
 890                data = (address << 1) | 1;      /* Command=read + address */
 891                /* send start bit */
 892                data_l(); udelay(5);
 893                clock_l(); udelay(5);
 894                for (i = 128; i != 0; i >>= 1) {   /* write command out */
 895                        tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
 896                            ((data & i) ? CONFIG1_PROMDATA : 0);
 897                        if (lanai->conf1 != tmp) {
 898                                set_config1(tmp);
 899                                udelay(5);      /* Let new data settle */
 900                        }
 901                        clock_h(); udelay(5); clock_l(); udelay(5);
 902                }
 903                /* look for ack */
 904                data_h(); clock_h(); udelay(5);
 905                if (read_pin() != 0)
 906                        goto error;     /* No ack seen */
 907                clock_l(); udelay(5);
 908                /* read back result */
 909                for (data = 0, i = 7; i >= 0; i--) {
 910                        data_h(); clock_h(); udelay(5);
 911                        data = (data << 1) | !!read_pin();
 912                        clock_l(); udelay(5);
 913                }
 914                /* look again for ack */
 915                data_h(); clock_h(); udelay(5);
 916                if (read_pin() == 0)
 917                        goto error;     /* Spurious ack */
 918                clock_l(); udelay(5);
 919                send_stop();
 920                lanai->eeprom[address] = data;
 921                DPRINTK("EEPROM 0x%04X %02X\n",
 922                    (unsigned int) address, (unsigned int) data);
 923        }
 924        return 0;
 925    error:
 926        clock_l(); udelay(5);           /* finish read */
 927        send_stop();
 928        printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
 929            lanai->number, address);
 930        return -EIO;
 931#undef set_config1
 932#undef clock_h
 933#undef clock_l
 934#undef data_h
 935#undef data_l
 936#undef pre_read
 937#undef read_pin
 938#undef send_stop
 939}
 940
 941/* read a big-endian 4-byte value out of eeprom */
 942static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
 943{
 944        return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
 945}
 946
 947/* Checksum/validate EEPROM contents */
 948static int eeprom_validate(struct lanai_dev *lanai)
 949{
 950        int i, s;
 951        u32 v;
 952        const u8 *e = lanai->eeprom;
 953#ifdef DEBUG
 954        /* First, see if we can get an ASCIIZ string out of the copyright */
 955        for (i = EEPROM_COPYRIGHT;
 956            i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
 957                if (e[i] < 0x20 || e[i] > 0x7E)
 958                        break;
 959        if ( i != EEPROM_COPYRIGHT &&
 960            i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
 961                DPRINTK("eeprom: copyright = \"%s\"\n",
 962                    (char *) &e[EEPROM_COPYRIGHT]);
 963        else
 964                DPRINTK("eeprom: copyright not found\n");
 965#endif
 966        /* Validate checksum */
 967        for (i = s = 0; i < EEPROM_CHECKSUM; i++)
 968                s += e[i];
 969        s &= 0xFF;
 970        if (s != e[EEPROM_CHECKSUM]) {
 971                printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
 972                    "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
 973                    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
 974                return -EIO;
 975        }
 976        s ^= 0xFF;
 977        if (s != e[EEPROM_CHECKSUM_REV]) {
 978                printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
 979                    "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
 980                    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
 981                return -EIO;
 982        }
 983        /* Verify MAC address */
 984        for (i = 0; i < 6; i++)
 985                if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
 986                        printk(KERN_ERR DEV_LABEL
 987                            "(itf %d) : EEPROM MAC addresses don't match "
 988                            "(0x%02X, inverse 0x%02X)\n", lanai->number,
 989                            (unsigned int) e[EEPROM_MAC + i],
 990                            (unsigned int) e[EEPROM_MAC_REV + i]);
 991                        return -EIO;
 992                }
 993        DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
 994        /* Verify serial number */
 995        lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
 996        v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
 997        if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
 998                printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
 999                    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1000                    (unsigned int) lanai->serialno, (unsigned int) v);
1001                return -EIO;
1002        }
1003        DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
1004        /* Verify magic number */
1005        lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1006        v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1007        if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1008                printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1009                    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1010                    lanai->magicno, v);
1011                return -EIO;
1012        }
1013        DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1014        if (lanai->magicno != EEPROM_MAGIC_VALUE)
1015                printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1016                    "magic not what expected (got 0x%08X, not 0x%08X)\n",
1017                    lanai->number, (unsigned int) lanai->magicno,
1018                    (unsigned int) EEPROM_MAGIC_VALUE);
1019        return 0;
1020}
1021
1022#endif /* READ_EEPROM */
1023
1024static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1025{
1026        return &lanai->eeprom[EEPROM_MAC];
1027}
1028
1029/* -------------------- INTERRUPT HANDLING UTILITIES: */
1030
1031/* Interrupt types */
1032#define INT_STATS       (0x00000002)    /* Statistics counter overflow */
1033#define INT_SOOL        (0x00000004)    /* SOOL changed state */
1034#define INT_LOCD        (0x00000008)    /* LOCD changed state */
1035#define INT_LED         (0x00000010)    /* LED (HAPPI) changed state */
1036#define INT_GPIN        (0x00000020)    /* GPIN changed state */
1037#define INT_PING        (0x00000040)    /* PING_COUNT fulfilled */
1038#define INT_WAKE        (0x00000080)    /* Lanai wants bus */
1039#define INT_CBR0        (0x00000100)    /* CBR sched hit VCI 0 */
1040#define INT_LOCK        (0x00000200)    /* Service list overflow */
1041#define INT_MISMATCH    (0x00000400)    /* TX magic list mismatch */
1042#define INT_AAL0_STR    (0x00000800)    /* Non-AAL5 buffer half filled */
1043#define INT_AAL0        (0x00001000)    /* Non-AAL5 data available */
1044#define INT_SERVICE     (0x00002000)    /* Service list entries available */
1045#define INT_TABORTSENT  (0x00004000)    /* Target abort sent by lanai */
1046#define INT_TABORTBM    (0x00008000)    /* Abort rcv'd as bus master */
1047#define INT_TIMEOUTBM   (0x00010000)    /* No response to bus master */
1048#define INT_PCIPARITY   (0x00020000)    /* Parity error on PCI */
1049
1050/* Sets of the above */
1051#define INT_ALL         (0x0003FFFE)    /* All interrupts */
1052#define INT_STATUS      (0x0000003C)    /* Some status pin changed */
1053#define INT_DMASHUT     (0x00038000)    /* DMA engine got shut down */
1054#define INT_SEGSHUT     (0x00000700)    /* Segmentation got shut down */
1055
1056static inline u32 intr_pending(const struct lanai_dev *lanai)
1057{
1058        return reg_read(lanai, IntStatusMasked_Reg);
1059}
1060
1061static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1062{
1063        reg_write(lanai, i, IntControlEna_Reg);
1064}
1065
1066static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1067{
1068        reg_write(lanai, i, IntControlDis_Reg);
1069}
1070
1071/* -------------------- CARD/PCI STATUS: */
1072
1073static void status_message(int itf, const char *name, int status)
1074{
1075        static const char *onoff[2] = { "off to on", "on to off" };
1076        printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1077            itf, name, onoff[!status]);
1078}
1079
1080static void lanai_check_status(struct lanai_dev *lanai)
1081{
1082        u32 new = reg_read(lanai, Status_Reg);
1083        u32 changes = new ^ lanai->status;
1084        lanai->status = new;
1085#define e(flag, name) \
1086                if (changes & flag) \
1087                        status_message(lanai->number, name, new & flag)
1088        e(STATUS_SOOL, "SOOL");
1089        e(STATUS_LOCD, "LOCD");
1090        e(STATUS_LED, "LED");
1091        e(STATUS_GPIN, "GPIN");
1092#undef e
1093}
1094
1095static void pcistatus_got(int itf, const char *name)
1096{
1097        printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1098}
1099
1100static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1101{
1102        u16 s;
1103        int result;
1104        result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1105        if (result != PCIBIOS_SUCCESSFUL) {
1106                printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1107                    "%d\n", lanai->number, result);
1108                return;
1109        }
1110        s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1111            PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1112            PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1113        if (s == 0)
1114                return;
1115        result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1116        if (result != PCIBIOS_SUCCESSFUL)
1117                printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1118                    "%d\n", lanai->number, result);
1119        if (clearonly)
1120                return;
1121#define e(flag, name, stat) \
1122                if (s & flag) { \
1123                        pcistatus_got(lanai->number, name); \
1124                        ++lanai->stats.pcierr_##stat; \
1125                }
1126        e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1127        e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1128        e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1129        e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1130        e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1131        e(PCI_STATUS_PARITY, "master parity", master_parity);
1132#undef e
1133}
1134
1135/* -------------------- VCC TX BUFFER UTILITIES: */
1136
1137/* space left in tx buffer in bytes */
1138static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1139{
1140        int r;
1141        r = endptr * 16;
1142        r -= ((unsigned long) lvcc->tx.buf.ptr) -
1143            ((unsigned long) lvcc->tx.buf.start);
1144        r -= 16;        /* Leave "bubble" - if start==end it looks empty */
1145        if (r < 0)
1146                r += lanai_buf_size(&lvcc->tx.buf);
1147        return r;
1148}
1149
1150/* test if VCC is currently backlogged */
1151static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1152{
1153        return !skb_queue_empty(&lvcc->tx.backlog);
1154}
1155
1156/* Bit fields in the segmentation buffer descriptor */
1157#define DESCRIPTOR_MAGIC        (0xD0000000)
1158#define DESCRIPTOR_AAL5         (0x00008000)
1159#define DESCRIPTOR_AAL5_STREAM  (0x00004000)
1160#define DESCRIPTOR_CLP          (0x00002000)
1161
1162/* Add 32-bit descriptor with its padding */
1163static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1164        u32 flags, int len)
1165{
1166        int pos;
1167        APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1168            "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1169        lvcc->tx.buf.ptr += 4;  /* Hope the values REALLY don't matter */
1170        pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1171            (unsigned char *) lvcc->tx.buf.start;
1172        APRINTK((pos & ~0x0001FFF0) == 0,
1173            "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1174            "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1175            lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1176        pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1177        APRINTK((pos & ~0x0001FFF0) == 0,
1178            "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1179            "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1180            lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1181        lvcc->tx.buf.ptr[-1] =
1182            cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1183            ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1184            DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1185        if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1186                lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1187}
1188
1189/* Add 32-bit AAL5 trailer and leave room for its CRC */
1190static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1191        int len, int cpi, int uu)
1192{
1193        APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1194            "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1195        lvcc->tx.buf.ptr += 2;
1196        lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1197        if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1198                lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1199}
1200
1201static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1202        const unsigned char *src, int n)
1203{
1204        unsigned char *e;
1205        int m;
1206        e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1207        m = e - (unsigned char *) lvcc->tx.buf.end;
1208        if (m < 0)
1209                m = 0;
1210        memcpy(lvcc->tx.buf.ptr, src, n - m);
1211        if (m != 0) {
1212                memcpy(lvcc->tx.buf.start, src + n - m, m);
1213                e = ((unsigned char *) lvcc->tx.buf.start) + m;
1214        }
1215        lvcc->tx.buf.ptr = (u32 *) e;
1216}
1217
1218static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1219{
1220        unsigned char *e;
1221        int m;
1222        if (n == 0)
1223                return;
1224        e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1225        m = e - (unsigned char *) lvcc->tx.buf.end;
1226        if (m < 0)
1227                m = 0;
1228        memset(lvcc->tx.buf.ptr, 0, n - m);
1229        if (m != 0) {
1230                memset(lvcc->tx.buf.start, 0, m);
1231                e = ((unsigned char *) lvcc->tx.buf.start) + m;
1232        }
1233        lvcc->tx.buf.ptr = (u32 *) e;
1234}
1235
1236/* Update "butt" register to specify new WritePtr */
1237static inline void lanai_endtx(struct lanai_dev *lanai,
1238        const struct lanai_vcc *lvcc)
1239{
1240        int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1241            (unsigned char *) lvcc->tx.buf.start;
1242        APRINTK((ptr & ~0x0001FFF0) == 0,
1243            "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1244            ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1245            lvcc->tx.buf.end);
1246
1247        /*
1248         * Since the "butt register" is a shared resounce on the card we
1249         * serialize all accesses to it through this spinlock.  This is
1250         * mostly just paranoia since the register is rarely "busy" anyway
1251         * but is needed for correctness.
1252         */
1253        spin_lock(&lanai->endtxlock);
1254        /*
1255         * We need to check if the "butt busy" bit is set before
1256         * updating the butt register.  In theory this should
1257         * never happen because the ATM card is plenty fast at
1258         * updating the register.  Still, we should make sure
1259         */
1260        for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1261                if (unlikely(i > 50)) {
1262                        printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1263                            "always busy!\n", lanai->number);
1264                        break;
1265                }
1266                udelay(5);
1267        }
1268        /*
1269         * Before we tall the card to start work we need to be sure 100% of
1270         * the info in the service buffer has been written before we tell
1271         * the card about it
1272         */
1273        wmb();
1274        reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1275        spin_unlock(&lanai->endtxlock);
1276}
1277
1278/*
1279 * Add one AAL5 PDU to lvcc's transmit buffer.  Caller garauntees there's
1280 * space available.  "pdusize" is the number of bytes the PDU will take
1281 */
1282static void lanai_send_one_aal5(struct lanai_dev *lanai,
1283        struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1284{
1285        int pad;
1286        APRINTK(pdusize == aal5_size(skb->len),
1287            "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1288            pdusize, aal5_size(skb->len));
1289        vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1290        pad = pdusize - skb->len - 8;
1291        APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1292        APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1293        vcc_tx_memcpy(lvcc, skb->data, skb->len);
1294        vcc_tx_memzero(lvcc, pad);
1295        vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1296        lanai_endtx(lanai, lvcc);
1297        lanai_free_skb(lvcc->tx.atmvcc, skb);
1298        atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1299}
1300
1301/* Try to fill the buffer - don't call unless there is backlog */
1302static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1303        struct lanai_vcc *lvcc, int endptr)
1304{
1305        int n;
1306        struct sk_buff *skb;
1307        int space = vcc_tx_space(lvcc, endptr);
1308        APRINTK(vcc_is_backlogged(lvcc),
1309            "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1310            lvcc->vci);
1311        while (space >= 64) {
1312                skb = skb_dequeue(&lvcc->tx.backlog);
1313                if (skb == NULL)
1314                        goto no_backlog;
1315                n = aal5_size(skb->len);
1316                if (n + 16 > space) {
1317                        /* No room for this packet - put it back on queue */
1318                        skb_queue_head(&lvcc->tx.backlog, skb);
1319                        return;
1320                }
1321                lanai_send_one_aal5(lanai, lvcc, skb, n);
1322                space -= n + 16;
1323        }
1324        if (!vcc_is_backlogged(lvcc)) {
1325            no_backlog:
1326                __clear_bit(lvcc->vci, lanai->backlog_vccs);
1327        }
1328}
1329
1330/* Given an skb that we want to transmit either send it now or queue */
1331static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1332        struct sk_buff *skb)
1333{
1334        int space, n;
1335        if (vcc_is_backlogged(lvcc))            /* Already backlogged */
1336                goto queue_it;
1337        space = vcc_tx_space(lvcc,
1338                    TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1339        n = aal5_size(skb->len);
1340        APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1341        if (space < n + 16) {                   /* No space for this PDU */
1342                __set_bit(lvcc->vci, lanai->backlog_vccs);
1343            queue_it:
1344                skb_queue_tail(&lvcc->tx.backlog, skb);
1345                return;
1346        }
1347        lanai_send_one_aal5(lanai, lvcc, skb, n);
1348}
1349
1350static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1351        struct lanai_vcc *lvcc, int endptr)
1352{
1353        printk(KERN_INFO DEV_LABEL
1354            ": vcc_tx_unqueue_aal0: not implemented\n");
1355}
1356
1357static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1358        struct sk_buff *skb)
1359{
1360        printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1361        /* Remember to increment lvcc->tx.atmvcc->stats->tx */
1362        lanai_free_skb(lvcc->tx.atmvcc, skb);
1363}
1364
1365/* -------------------- VCC RX BUFFER UTILITIES: */
1366
1367/* unlike the _tx_ cousins, this doesn't update ptr */
1368static inline void vcc_rx_memcpy(unsigned char *dest,
1369        const struct lanai_vcc *lvcc, int n)
1370{
1371        int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1372            ((const unsigned char *) (lvcc->rx.buf.end));
1373        if (m < 0)
1374                m = 0;
1375        memcpy(dest, lvcc->rx.buf.ptr, n - m);
1376        memcpy(dest + n - m, lvcc->rx.buf.start, m);
1377        /* Make sure that these copies don't get reordered */
1378        barrier();
1379}
1380
1381/* Receive AAL5 data on a VCC with a particular endptr */
1382static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1383{
1384        int size;
1385        struct sk_buff *skb;
1386        const u32 *x;
1387        u32 *end = &lvcc->rx.buf.start[endptr * 4];
1388        int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1389        if (n < 0)
1390                n += lanai_buf_size(&lvcc->rx.buf);
1391        APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1392            "vcc_rx_aal5: n out of range (%d/%Zu)\n",
1393            n, lanai_buf_size(&lvcc->rx.buf));
1394        /* Recover the second-to-last word to get true pdu length */
1395        if ((x = &end[-2]) < lvcc->rx.buf.start)
1396                x = &lvcc->rx.buf.end[-2];
1397        /*
1398         * Before we actually read from the buffer, make sure the memory
1399         * changes have arrived
1400         */
1401        rmb();
1402        size = be32_to_cpup(x) & 0xffff;
1403        if (unlikely(n != aal5_size(size))) {
1404                /* Make sure size matches padding */
1405                printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1406                    "on vci=%d - size=%d n=%d\n",
1407                    lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1408                lvcc->stats.x.aal5.rx_badlen++;
1409                goto out;
1410        }
1411        skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1412        if (unlikely(skb == NULL)) {
1413                lvcc->stats.rx_nomem++;
1414                goto out;
1415        }
1416        skb_put(skb, size);
1417        vcc_rx_memcpy(skb->data, lvcc, size);
1418        ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1419        __net_timestamp(skb);
1420        lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1421        atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1422    out:
1423        lvcc->rx.buf.ptr = end;
1424        cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1425}
1426
1427static void vcc_rx_aal0(struct lanai_dev *lanai)
1428{
1429        printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1430        /* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1431        /* Remember to increment lvcc->rx.atmvcc->stats->rx */
1432}
1433
1434/* -------------------- MANAGING HOST-BASED VCC TABLE: */
1435
1436/* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1437#if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1438#define VCCTABLE_GETFREEPAGE
1439#else
1440#include <linux/vmalloc.h>
1441#endif
1442
1443static int vcc_table_allocate(struct lanai_dev *lanai)
1444{
1445#ifdef VCCTABLE_GETFREEPAGE
1446        APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1447            "vcc table > PAGE_SIZE!");
1448        lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1449        return (lanai->vccs == NULL) ? -ENOMEM : 0;
1450#else
1451        int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1452        lanai->vccs = vzalloc(bytes);
1453        if (unlikely(lanai->vccs == NULL))
1454                return -ENOMEM;
1455        return 0;
1456#endif
1457}
1458
1459static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1460{
1461#ifdef VCCTABLE_GETFREEPAGE
1462        free_page((unsigned long) lanai->vccs);
1463#else
1464        vfree(lanai->vccs);
1465#endif
1466}
1467
1468/* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1469static inline struct lanai_vcc *new_lanai_vcc(void)
1470{
1471        struct lanai_vcc *lvcc;
1472        lvcc =  kzalloc(sizeof(*lvcc), GFP_KERNEL);
1473        if (likely(lvcc != NULL)) {
1474                skb_queue_head_init(&lvcc->tx.backlog);
1475#ifdef DEBUG
1476                lvcc->vci = -1;
1477#endif
1478        }
1479        return lvcc;
1480}
1481
1482static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1483        struct lanai_buffer *buf, int max_sdu, int multiplier,
1484        const char *name)
1485{
1486        int size;
1487        if (unlikely(max_sdu < 1))
1488                max_sdu = 1;
1489        max_sdu = aal5_size(max_sdu);
1490        size = (max_sdu + 16) * multiplier + 16;
1491        lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1492        if (unlikely(buf->start == NULL))
1493                return -ENOMEM;
1494        if (unlikely(lanai_buf_size(buf) < size))
1495                printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1496                    "for %s buffer, got only %Zu\n", lanai->number, size,
1497                    name, lanai_buf_size(buf));
1498        DPRINTK("Allocated %Zu byte %s buffer\n", lanai_buf_size(buf), name);
1499        return 0;
1500}
1501
1502/* Setup a RX buffer for a currently unbound AAL5 vci */
1503static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1504        struct lanai_vcc *lvcc, const struct atm_qos *qos)
1505{
1506        return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1507            qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1508}
1509
1510/* Setup a TX buffer for a currently unbound AAL5 vci */
1511static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1512        const struct atm_qos *qos)
1513{
1514        int max_sdu, multiplier;
1515        if (qos->aal == ATM_AAL0) {
1516                lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1517                max_sdu = ATM_CELL_SIZE - 1;
1518                multiplier = AAL0_TX_MULTIPLIER;
1519        } else {
1520                lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1521                max_sdu = qos->txtp.max_sdu;
1522                multiplier = AAL5_TX_MULTIPLIER;
1523        }
1524        return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1525            multiplier, "TX");
1526}
1527
1528static inline void host_vcc_bind(struct lanai_dev *lanai,
1529        struct lanai_vcc *lvcc, vci_t vci)
1530{
1531        if (lvcc->vbase != NULL)
1532                return;    /* We already were bound in the other direction */
1533        DPRINTK("Binding vci %d\n", vci);
1534#ifdef USE_POWERDOWN
1535        if (lanai->nbound++ == 0) {
1536                DPRINTK("Coming out of powerdown\n");
1537                lanai->conf1 &= ~CONFIG1_POWERDOWN;
1538                conf1_write(lanai);
1539                conf2_write(lanai);
1540        }
1541#endif
1542        lvcc->vbase = cardvcc_addr(lanai, vci);
1543        lanai->vccs[lvcc->vci = vci] = lvcc;
1544}
1545
1546static inline void host_vcc_unbind(struct lanai_dev *lanai,
1547        struct lanai_vcc *lvcc)
1548{
1549        if (lvcc->vbase == NULL)
1550                return; /* This vcc was never bound */
1551        DPRINTK("Unbinding vci %d\n", lvcc->vci);
1552        lvcc->vbase = NULL;
1553        lanai->vccs[lvcc->vci] = NULL;
1554#ifdef USE_POWERDOWN
1555        if (--lanai->nbound == 0) {
1556                DPRINTK("Going into powerdown\n");
1557                lanai->conf1 |= CONFIG1_POWERDOWN;
1558                conf1_write(lanai);
1559        }
1560#endif
1561}
1562
1563/* -------------------- RESET CARD: */
1564
1565static void lanai_reset(struct lanai_dev *lanai)
1566{
1567        printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* resetting - not "
1568            "implemented\n", lanai->number);
1569        /* TODO */
1570        /* The following is just a hack until we write the real
1571         * resetter - at least ack whatever interrupt sent us
1572         * here
1573         */
1574        reg_write(lanai, INT_ALL, IntAck_Reg);
1575        lanai->stats.card_reset++;
1576}
1577
1578/* -------------------- SERVICE LIST UTILITIES: */
1579
1580/*
1581 * Allocate service buffer and tell card about it
1582 */
1583static int service_buffer_allocate(struct lanai_dev *lanai)
1584{
1585        lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1586            lanai->pci);
1587        if (unlikely(lanai->service.start == NULL))
1588                return -ENOMEM;
1589        DPRINTK("allocated service buffer at 0x%08lX, size %Zu(%d)\n",
1590            (unsigned long) lanai->service.start,
1591            lanai_buf_size(&lanai->service),
1592            lanai_buf_size_cardorder(&lanai->service));
1593        /* Clear ServWrite register to be safe */
1594        reg_write(lanai, 0, ServWrite_Reg);
1595        /* ServiceStuff register contains size and address of buffer */
1596        reg_write(lanai,
1597            SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1598            SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1599            ServiceStuff_Reg);
1600        return 0;
1601}
1602
1603static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1604{
1605        lanai_buf_deallocate(&lanai->service, lanai->pci);
1606}
1607
1608/* Bitfields in service list */
1609#define SERVICE_TX      (0x80000000)    /* Was from transmission */
1610#define SERVICE_TRASH   (0x40000000)    /* RXed PDU was trashed */
1611#define SERVICE_CRCERR  (0x20000000)    /* RXed PDU had CRC error */
1612#define SERVICE_CI      (0x10000000)    /* RXed PDU had CI set */
1613#define SERVICE_CLP     (0x08000000)    /* RXed PDU had CLP set */
1614#define SERVICE_STREAM  (0x04000000)    /* RX Stream mode */
1615#define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1616#define SERVICE_GET_END(x) ((x)&0x1FFF)
1617
1618/* Handle one thing from the service list - returns true if it marked a
1619 * VCC ready for xmit
1620 */
1621static int handle_service(struct lanai_dev *lanai, u32 s)
1622{
1623        vci_t vci = SERVICE_GET_VCI(s);
1624        struct lanai_vcc *lvcc;
1625        read_lock(&vcc_sklist_lock);
1626        lvcc = lanai->vccs[vci];
1627        if (unlikely(lvcc == NULL)) {
1628                read_unlock(&vcc_sklist_lock);
1629                DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1630                    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1631                if (s & SERVICE_TX)
1632                        lanai->stats.service_notx++;
1633                else
1634                        lanai->stats.service_norx++;
1635                return 0;
1636        }
1637        if (s & SERVICE_TX) {                   /* segmentation interrupt */
1638                if (unlikely(lvcc->tx.atmvcc == NULL)) {
1639                        read_unlock(&vcc_sklist_lock);
1640                        DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1641                            "vcc %d\n", lanai->number, (unsigned int) s, vci);
1642                        lanai->stats.service_notx++;
1643                        return 0;
1644                }
1645                __set_bit(vci, lanai->transmit_ready);
1646                lvcc->tx.endptr = SERVICE_GET_END(s);
1647                read_unlock(&vcc_sklist_lock);
1648                return 1;
1649        }
1650        if (unlikely(lvcc->rx.atmvcc == NULL)) {
1651                read_unlock(&vcc_sklist_lock);
1652                DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1653                    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1654                lanai->stats.service_norx++;
1655                return 0;
1656        }
1657        if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1658                read_unlock(&vcc_sklist_lock);
1659                DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1660                    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1661                lanai->stats.service_rxnotaal5++;
1662                atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1663                return 0;
1664        }
1665        if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1666                vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1667                read_unlock(&vcc_sklist_lock);
1668                return 0;
1669        }
1670        if (s & SERVICE_TRASH) {
1671                int bytes;
1672                read_unlock(&vcc_sklist_lock);
1673                DPRINTK("got trashed rx pdu on vci %d\n", vci);
1674                atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1675                lvcc->stats.x.aal5.service_trash++;
1676                bytes = (SERVICE_GET_END(s) * 16) -
1677                    (((unsigned long) lvcc->rx.buf.ptr) -
1678                    ((unsigned long) lvcc->rx.buf.start)) + 47;
1679                if (bytes < 0)
1680                        bytes += lanai_buf_size(&lvcc->rx.buf);
1681                lanai->stats.ovfl_trash += (bytes / 48);
1682                return 0;
1683        }
1684        if (s & SERVICE_STREAM) {
1685                read_unlock(&vcc_sklist_lock);
1686                atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1687                lvcc->stats.x.aal5.service_stream++;
1688                printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1689                    "PDU on VCI %d!\n", lanai->number, vci);
1690                lanai_reset(lanai);
1691                return 0;
1692        }
1693        DPRINTK("got rx crc error on vci %d\n", vci);
1694        atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1695        lvcc->stats.x.aal5.service_rxcrc++;
1696        lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1697        cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1698        read_unlock(&vcc_sklist_lock);
1699        return 0;
1700}
1701
1702/* Try transmitting on all VCIs that we marked ready to serve */
1703static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1704{
1705        struct lanai_vcc *lvcc = lanai->vccs[vci];
1706        if (vcc_is_backlogged(lvcc))
1707                lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1708}
1709
1710/* Run service queue -- called from interrupt context or with
1711 * interrupts otherwise disabled and with the lanai->servicelock
1712 * lock held
1713 */
1714static void run_service(struct lanai_dev *lanai)
1715{
1716        int ntx = 0;
1717        u32 wreg = reg_read(lanai, ServWrite_Reg);
1718        const u32 *end = lanai->service.start + wreg;
1719        while (lanai->service.ptr != end) {
1720                ntx += handle_service(lanai,
1721                    le32_to_cpup(lanai->service.ptr++));
1722                if (lanai->service.ptr >= lanai->service.end)
1723                        lanai->service.ptr = lanai->service.start;
1724        }
1725        reg_write(lanai, wreg, ServRead_Reg);
1726        if (ntx != 0) {
1727                read_lock(&vcc_sklist_lock);
1728                vci_bitfield_iterate(lanai, lanai->transmit_ready,
1729                    iter_transmit);
1730                bitmap_zero(lanai->transmit_ready, NUM_VCI);
1731                read_unlock(&vcc_sklist_lock);
1732        }
1733}
1734
1735/* -------------------- GATHER STATISTICS: */
1736
1737static void get_statistics(struct lanai_dev *lanai)
1738{
1739        u32 statreg = reg_read(lanai, Statistics_Reg);
1740        lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1741        lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1742        lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1743        lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1744}
1745
1746/* -------------------- POLLING TIMER: */
1747
1748#ifndef DEBUG_RW
1749/* Try to undequeue 1 backlogged vcc */
1750static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1751{
1752        struct lanai_vcc *lvcc = lanai->vccs[vci];
1753        int endptr;
1754        if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1755            !vcc_is_backlogged(lvcc)) {
1756                __clear_bit(vci, lanai->backlog_vccs);
1757                return;
1758        }
1759        endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1760        lvcc->tx.unqueue(lanai, lvcc, endptr);
1761}
1762#endif /* !DEBUG_RW */
1763
1764static void lanai_timed_poll(unsigned long arg)
1765{
1766        struct lanai_dev *lanai = (struct lanai_dev *) arg;
1767#ifndef DEBUG_RW
1768        unsigned long flags;
1769#ifdef USE_POWERDOWN
1770        if (lanai->conf1 & CONFIG1_POWERDOWN)
1771                return;
1772#endif /* USE_POWERDOWN */
1773        local_irq_save(flags);
1774        /* If we can grab the spinlock, check if any services need to be run */
1775        if (spin_trylock(&lanai->servicelock)) {
1776                run_service(lanai);
1777                spin_unlock(&lanai->servicelock);
1778        }
1779        /* ...and see if any backlogged VCs can make progress */
1780        /* unfortunately linux has no read_trylock() currently */
1781        read_lock(&vcc_sklist_lock);
1782        vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1783        read_unlock(&vcc_sklist_lock);
1784        local_irq_restore(flags);
1785
1786        get_statistics(lanai);
1787#endif /* !DEBUG_RW */
1788        mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1789}
1790
1791static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1792{
1793        init_timer(&lanai->timer);
1794        lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1795        lanai->timer.data = (unsigned long) lanai;
1796        lanai->timer.function = lanai_timed_poll;
1797        add_timer(&lanai->timer);
1798}
1799
1800static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1801{
1802        del_timer_sync(&lanai->timer);
1803}
1804
1805/* -------------------- INTERRUPT SERVICE: */
1806
1807static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1808{
1809        u32 ack = 0;
1810        if (reason & INT_SERVICE) {
1811                ack = INT_SERVICE;
1812                spin_lock(&lanai->servicelock);
1813                run_service(lanai);
1814                spin_unlock(&lanai->servicelock);
1815        }
1816        if (reason & (INT_AAL0_STR | INT_AAL0)) {
1817                ack |= reason & (INT_AAL0_STR | INT_AAL0);
1818                vcc_rx_aal0(lanai);
1819        }
1820        /* The rest of the interrupts are pretty rare */
1821        if (ack == reason)
1822                goto done;
1823        if (reason & INT_STATS) {
1824                reason &= ~INT_STATS;   /* No need to ack */
1825                get_statistics(lanai);
1826        }
1827        if (reason & INT_STATUS) {
1828                ack |= reason & INT_STATUS;
1829                lanai_check_status(lanai);
1830        }
1831        if (unlikely(reason & INT_DMASHUT)) {
1832                printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1833                    "shutdown, reason=0x%08X, address=0x%08X\n",
1834                    lanai->number, (unsigned int) (reason & INT_DMASHUT),
1835                    (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1836                if (reason & INT_TABORTBM) {
1837                        lanai_reset(lanai);
1838                        return;
1839                }
1840                ack |= (reason & INT_DMASHUT);
1841                printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1842                    lanai->number);
1843                conf1_write(lanai);
1844                lanai->stats.dma_reenable++;
1845                pcistatus_check(lanai, 0);
1846        }
1847        if (unlikely(reason & INT_TABORTSENT)) {
1848                ack |= (reason & INT_TABORTSENT);
1849                printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1850                    lanai->number);
1851                pcistatus_check(lanai, 0);
1852        }
1853        if (unlikely(reason & INT_SEGSHUT)) {
1854                printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1855                    "segmentation shutdown, reason=0x%08X\n", lanai->number,
1856                    (unsigned int) (reason & INT_SEGSHUT));
1857                lanai_reset(lanai);
1858                return;
1859        }
1860        if (unlikely(reason & (INT_PING | INT_WAKE))) {
1861                printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1862                    "unexpected interrupt 0x%08X, resetting\n",
1863                    lanai->number,
1864                    (unsigned int) (reason & (INT_PING | INT_WAKE)));
1865                lanai_reset(lanai);
1866                return;
1867        }
1868#ifdef DEBUG
1869        if (unlikely(ack != reason)) {
1870                DPRINTK("unacked ints: 0x%08X\n",
1871                    (unsigned int) (reason & ~ack));
1872                ack = reason;
1873        }
1874#endif
1875   done:
1876        if (ack != 0)
1877                reg_write(lanai, ack, IntAck_Reg);
1878}
1879
1880static irqreturn_t lanai_int(int irq, void *devid)
1881{
1882        struct lanai_dev *lanai = devid;
1883        u32 reason;
1884
1885#ifdef USE_POWERDOWN
1886        /*
1887         * If we're powered down we shouldn't be generating any interrupts -
1888         * so assume that this is a shared interrupt line and it's for someone
1889         * else
1890         */
1891        if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1892                return IRQ_NONE;
1893#endif
1894
1895        reason = intr_pending(lanai);
1896        if (reason == 0)
1897                return IRQ_NONE;        /* Must be for someone else */
1898
1899        do {
1900                if (unlikely(reason == 0xFFFFFFFF))
1901                        break;          /* Maybe we've been unplugged? */
1902                lanai_int_1(lanai, reason);
1903                reason = intr_pending(lanai);
1904        } while (reason != 0);
1905
1906        return IRQ_HANDLED;
1907}
1908
1909/* TODO - it would be nice if we could use the "delayed interrupt" system
1910 *   to some advantage
1911 */
1912
1913/* -------------------- CHECK BOARD ID/REV: */
1914
1915/*
1916 * The board id and revision are stored both in the reset register and
1917 * in the PCI configuration space - the documentation says to check
1918 * each of them.  If revp!=NULL we store the revision there
1919 */
1920static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1921{
1922        DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1923                (int) RESET_GET_BOARD_ID(val),
1924                (int) RESET_GET_BOARD_REV(val));
1925        if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1926                printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1927                    "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1928                return -ENODEV;
1929        }
1930        if (revp != NULL)
1931                *revp = RESET_GET_BOARD_REV(val);
1932        return 0;
1933}
1934
1935/* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1936
1937static int lanai_pci_start(struct lanai_dev *lanai)
1938{
1939        struct pci_dev *pci = lanai->pci;
1940        int result;
1941
1942        if (pci_enable_device(pci) != 0) {
1943                printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1944                    "PCI device", lanai->number);
1945                return -ENXIO;
1946        }
1947        pci_set_master(pci);
1948        if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32)) != 0) {
1949                printk(KERN_WARNING DEV_LABEL
1950                    "(itf %d): No suitable DMA available.\n", lanai->number);
1951                return -EBUSY;
1952        }
1953        result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
1954        if (result != 0)
1955                return result;
1956        /* Set latency timer to zero as per lanai docs */
1957        result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1958        if (result != PCIBIOS_SUCCESSFUL) {
1959                printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1960                    "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1961                return -EINVAL;
1962        }
1963        pcistatus_check(lanai, 1);
1964        pcistatus_check(lanai, 0);
1965        return 0;
1966}
1967
1968/* -------------------- VPI/VCI ALLOCATION: */
1969
1970/*
1971 * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1972 * get a CBRZERO interrupt), and we can use it only if no one is receiving
1973 * AAL0 traffic (since they will use the same queue) - according to the
1974 * docs we shouldn't even use it for AAL0 traffic
1975 */
1976static inline int vci0_is_ok(struct lanai_dev *lanai,
1977        const struct atm_qos *qos)
1978{
1979        if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
1980                return 0;
1981        if (qos->rxtp.traffic_class != ATM_NONE) {
1982                if (lanai->naal0 != 0)
1983                        return 0;
1984                lanai->conf2 |= CONFIG2_VCI0_NORMAL;
1985                conf2_write_if_powerup(lanai);
1986        }
1987        return 1;
1988}
1989
1990/* return true if vci is currently unused, or if requested qos is
1991 * compatible
1992 */
1993static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
1994        const struct atm_vcc *atmvcc)
1995{
1996        const struct atm_qos *qos = &atmvcc->qos;
1997        const struct lanai_vcc *lvcc = lanai->vccs[vci];
1998        if (vci == 0 && !vci0_is_ok(lanai, qos))
1999                return 0;
2000        if (unlikely(lvcc != NULL)) {
2001                if (qos->rxtp.traffic_class != ATM_NONE &&
2002                    lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
2003                        return 0;
2004                if (qos->txtp.traffic_class != ATM_NONE &&
2005                    lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
2006                        return 0;
2007                if (qos->txtp.traffic_class == ATM_CBR &&
2008                    lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2009                        return 0;
2010        }
2011        if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2012            qos->rxtp.traffic_class != ATM_NONE) {
2013                const struct lanai_vcc *vci0 = lanai->vccs[0];
2014                if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2015                        return 0;
2016                lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2017                conf2_write_if_powerup(lanai);
2018        }
2019        return 1;
2020}
2021
2022static int lanai_normalize_ci(struct lanai_dev *lanai,
2023        const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2024{
2025        switch (*vpip) {
2026                case ATM_VPI_ANY:
2027                        *vpip = 0;
2028                        /* FALLTHROUGH */
2029                case 0:
2030                        break;
2031                default:
2032                        return -EADDRINUSE;
2033        }
2034        switch (*vcip) {
2035                case ATM_VCI_ANY:
2036                        for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2037                            (*vcip)++)
2038                                if (vci_is_ok(lanai, *vcip, atmvcc))
2039                                        return 0;
2040                        return -EADDRINUSE;
2041                default:
2042                        if (*vcip >= lanai->num_vci || *vcip < 0 ||
2043                            !vci_is_ok(lanai, *vcip, atmvcc))
2044                                return -EADDRINUSE;
2045        }
2046        return 0;
2047}
2048
2049/* -------------------- MANAGE CBR: */
2050
2051/*
2052 * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2053 * Note that storing a number greater than 2046.0 will result in
2054 * incorrect shaping
2055 */
2056#define CBRICG_FRAC_BITS        (4)
2057#define CBRICG_MAX              (2046 << CBRICG_FRAC_BITS)
2058
2059/*
2060 * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2061 * where MAXPCR is (according to the docs) 25600000/(54*8),
2062 * which is equal to (3125<<9)/27.
2063 *
2064 * Solving for ICG, we get:
2065 *    ICG = MAXPCR/PCR - 1
2066 *    ICG = (3125<<9)/(27*PCR) - 1
2067 *    ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2068 *
2069 * The end result is supposed to be a fixed-point number with FRAC_BITS
2070 * bits of a fractional part, so we keep everything in the numerator
2071 * shifted by that much as we compute
2072 *
2073 */
2074static int pcr_to_cbricg(const struct atm_qos *qos)
2075{
2076        int rounddown = 0;      /* 1 = Round PCR down, i.e. round ICG _up_ */
2077        int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2078        if (pcr == 0)           /* Use maximum bandwidth */
2079                return 0;
2080        if (pcr < 0) {
2081                rounddown = 1;
2082                pcr = -pcr;
2083        }
2084        x = pcr * 27;
2085        icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2086        if (rounddown)
2087                icg += x - 1;
2088        icg /= x;
2089        if (icg > CBRICG_MAX)
2090                icg = CBRICG_MAX;
2091        DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2092            pcr, rounddown ? 'Y' : 'N', icg);
2093        return icg;
2094}
2095
2096static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2097{
2098        reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2099        reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2100        lanai->conf2 |= CONFIG2_CBR_ENABLE;
2101        conf2_write(lanai);
2102}
2103
2104static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2105{
2106        lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2107        conf2_write(lanai);
2108}
2109
2110/* -------------------- OPERATIONS: */
2111
2112/* setup a newly detected device */
2113static int lanai_dev_open(struct atm_dev *atmdev)
2114{
2115        struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2116        unsigned long raw_base;
2117        int result;
2118
2119        DPRINTK("In lanai_dev_open()\n");
2120        /* Basic device fields */
2121        lanai->number = atmdev->number;
2122        lanai->num_vci = NUM_VCI;
2123        bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2124        bitmap_zero(lanai->transmit_ready, NUM_VCI);
2125        lanai->naal0 = 0;
2126#ifdef USE_POWERDOWN
2127        lanai->nbound = 0;
2128#endif
2129        lanai->cbrvcc = NULL;
2130        memset(&lanai->stats, 0, sizeof lanai->stats);
2131        spin_lock_init(&lanai->endtxlock);
2132        spin_lock_init(&lanai->servicelock);
2133        atmdev->ci_range.vpi_bits = 0;
2134        atmdev->ci_range.vci_bits = 0;
2135        while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2136                atmdev->ci_range.vci_bits++;
2137        atmdev->link_rate = ATM_25_PCR;
2138
2139        /* 3.2: PCI initialization */
2140        if ((result = lanai_pci_start(lanai)) != 0)
2141                goto error;
2142        raw_base = lanai->pci->resource[0].start;
2143        lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2144        if (lanai->base == NULL) {
2145                printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2146                goto error_pci;
2147        }
2148        /* 3.3: Reset lanai and PHY */
2149        reset_board(lanai);
2150        lanai->conf1 = reg_read(lanai, Config1_Reg);
2151        lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2152            CONFIG1_MASK_LEDMODE);
2153        lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2154        reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2155        udelay(1000);
2156        conf1_write(lanai);
2157
2158        /*
2159         * 3.4: Turn on endian mode for big-endian hardware
2160         *   We don't actually want to do this - the actual bit fields
2161         *   in the endian register are not documented anywhere.
2162         *   Instead we do the bit-flipping ourselves on big-endian
2163         *   hardware.
2164         *
2165         * 3.5: get the board ID/rev by reading the reset register
2166         */
2167        result = check_board_id_and_rev("register",
2168            reg_read(lanai, Reset_Reg), &lanai->board_rev);
2169        if (result != 0)
2170                goto error_unmap;
2171
2172        /* 3.6: read EEPROM */
2173        if ((result = eeprom_read(lanai)) != 0)
2174                goto error_unmap;
2175        if ((result = eeprom_validate(lanai)) != 0)
2176                goto error_unmap;
2177
2178        /* 3.7: re-reset PHY, do loopback tests, setup PHY */
2179        reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2180        udelay(1000);
2181        conf1_write(lanai);
2182        /* TODO - loopback tests */
2183        lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2184        conf1_write(lanai);
2185
2186        /* 3.8/3.9: test and initialize card SRAM */
2187        if ((result = sram_test_and_clear(lanai)) != 0)
2188                goto error_unmap;
2189
2190        /* 3.10: initialize lanai registers */
2191        lanai->conf1 |= CONFIG1_DMA_ENABLE;
2192        conf1_write(lanai);
2193        if ((result = service_buffer_allocate(lanai)) != 0)
2194                goto error_unmap;
2195        if ((result = vcc_table_allocate(lanai)) != 0)
2196                goto error_service;
2197        lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2198            CONFIG2_HEC_DROP |  /* ??? */ CONFIG2_PTI7_MODE;
2199        conf2_write(lanai);
2200        reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2201        reg_write(lanai, 0, CBR_ICG_Reg);       /* CBR defaults to no limit */
2202        if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2203            DEV_LABEL, lanai)) != 0) {
2204                printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2205                goto error_vcctable;
2206        }
2207        mb();                           /* Make sure that all that made it */
2208        intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2209        /* 3.11: initialize loop mode (i.e. turn looping off) */
2210        lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2211            CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2212            CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2213        conf1_write(lanai);
2214        lanai->status = reg_read(lanai, Status_Reg);
2215        /* We're now done initializing this card */
2216#ifdef USE_POWERDOWN
2217        lanai->conf1 |= CONFIG1_POWERDOWN;
2218        conf1_write(lanai);
2219#endif
2220        memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2221        lanai_timed_poll_start(lanai);
2222        printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=0x%lx, irq=%u "
2223                "(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2224                (unsigned long) lanai->base, lanai->pci->irq, atmdev->esi);
2225        printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2226            "board_rev=%d\n", lanai->number,
2227            lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2228            (unsigned int) lanai->serialno, lanai->board_rev);
2229        return 0;
2230
2231    error_vcctable:
2232        vcc_table_deallocate(lanai);
2233    error_service:
2234        service_buffer_deallocate(lanai);
2235    error_unmap:
2236        reset_board(lanai);
2237#ifdef USE_POWERDOWN
2238        lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2239        conf1_write(lanai);
2240#endif
2241        iounmap(lanai->base);
2242    error_pci:
2243        pci_disable_device(lanai->pci);
2244    error:
2245        return result;
2246}
2247
2248/* called when device is being shutdown, and all vcc's are gone - higher
2249 * levels will deallocate the atm device for us
2250 */
2251static void lanai_dev_close(struct atm_dev *atmdev)
2252{
2253        struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2254        printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2255            lanai->number);
2256        lanai_timed_poll_stop(lanai);
2257#ifdef USE_POWERDOWN
2258        lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2259        conf1_write(lanai);
2260#endif
2261        intr_disable(lanai, INT_ALL);
2262        free_irq(lanai->pci->irq, lanai);
2263        reset_board(lanai);
2264#ifdef USE_POWERDOWN
2265        lanai->conf1 |= CONFIG1_POWERDOWN;
2266        conf1_write(lanai);
2267#endif
2268        pci_disable_device(lanai->pci);
2269        vcc_table_deallocate(lanai);
2270        service_buffer_deallocate(lanai);
2271        iounmap(lanai->base);
2272        kfree(lanai);
2273}
2274
2275/* close a vcc */
2276static void lanai_close(struct atm_vcc *atmvcc)
2277{
2278        struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2279        struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2280        if (lvcc == NULL)
2281                return;
2282        clear_bit(ATM_VF_READY, &atmvcc->flags);
2283        clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2284        if (lvcc->rx.atmvcc == atmvcc) {
2285                lanai_shutdown_rx_vci(lvcc);
2286                if (atmvcc->qos.aal == ATM_AAL0) {
2287                        if (--lanai->naal0 <= 0)
2288                                aal0_buffer_free(lanai);
2289                } else
2290                        lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2291                lvcc->rx.atmvcc = NULL;
2292        }
2293        if (lvcc->tx.atmvcc == atmvcc) {
2294                if (atmvcc == lanai->cbrvcc) {
2295                        if (lvcc->vbase != NULL)
2296                                lanai_cbr_shutdown(lanai);
2297                        lanai->cbrvcc = NULL;
2298                }
2299                lanai_shutdown_tx_vci(lanai, lvcc);
2300                lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2301                lvcc->tx.atmvcc = NULL;
2302        }
2303        if (--lvcc->nref == 0) {
2304                host_vcc_unbind(lanai, lvcc);
2305                kfree(lvcc);
2306        }
2307        atmvcc->dev_data = NULL;
2308        clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2309}
2310
2311/* open a vcc on the card to vpi/vci */
2312static int lanai_open(struct atm_vcc *atmvcc)
2313{
2314        struct lanai_dev *lanai;
2315        struct lanai_vcc *lvcc;
2316        int result = 0;
2317        int vci = atmvcc->vci;
2318        short vpi = atmvcc->vpi;
2319        /* we don't support partial open - it's not really useful anyway */
2320        if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2321            (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2322                return -EINVAL;
2323        lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2324        result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2325        if (unlikely(result != 0))
2326                goto out;
2327        set_bit(ATM_VF_ADDR, &atmvcc->flags);
2328        if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2329                return -EINVAL;
2330        DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2331            (int) vpi, vci);
2332        lvcc = lanai->vccs[vci];
2333        if (lvcc == NULL) {
2334                lvcc = new_lanai_vcc();
2335                if (unlikely(lvcc == NULL))
2336                        return -ENOMEM;
2337                atmvcc->dev_data = lvcc;
2338        }
2339        lvcc->nref++;
2340        if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2341                APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2342                    vci);
2343                if (atmvcc->qos.aal == ATM_AAL0) {
2344                        if (lanai->naal0 == 0)
2345                                result = aal0_buffer_allocate(lanai);
2346                } else
2347                        result = lanai_setup_rx_vci_aal5(
2348                            lanai, lvcc, &atmvcc->qos);
2349                if (unlikely(result != 0))
2350                        goto out_free;
2351                lvcc->rx.atmvcc = atmvcc;
2352                lvcc->stats.rx_nomem = 0;
2353                lvcc->stats.x.aal5.rx_badlen = 0;
2354                lvcc->stats.x.aal5.service_trash = 0;
2355                lvcc->stats.x.aal5.service_stream = 0;
2356                lvcc->stats.x.aal5.service_rxcrc = 0;
2357                if (atmvcc->qos.aal == ATM_AAL0)
2358                        lanai->naal0++;
2359        }
2360        if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2361                APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2362                    vci);
2363                result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2364                if (unlikely(result != 0))
2365                        goto out_free;
2366                lvcc->tx.atmvcc = atmvcc;
2367                if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2368                        APRINTK(lanai->cbrvcc == NULL,
2369                            "cbrvcc!=NULL, vci=%d\n", vci);
2370                        lanai->cbrvcc = atmvcc;
2371                }
2372        }
2373        host_vcc_bind(lanai, lvcc, vci);
2374        /*
2375         * Make sure everything made it to RAM before we tell the card about
2376         * the VCC
2377         */
2378        wmb();
2379        if (atmvcc == lvcc->rx.atmvcc)
2380                host_vcc_start_rx(lvcc);
2381        if (atmvcc == lvcc->tx.atmvcc) {
2382                host_vcc_start_tx(lvcc);
2383                if (lanai->cbrvcc == atmvcc)
2384                        lanai_cbr_setup(lanai);
2385        }
2386        set_bit(ATM_VF_READY, &atmvcc->flags);
2387        return 0;
2388    out_free:
2389        lanai_close(atmvcc);
2390    out:
2391        return result;
2392}
2393
2394static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2395{
2396        struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2397        struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2398        unsigned long flags;
2399        if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2400              lvcc->tx.atmvcc != atmvcc))
2401                goto einval;
2402#ifdef DEBUG
2403        if (unlikely(skb == NULL)) {
2404                DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2405                goto einval;
2406        }
2407        if (unlikely(lanai == NULL)) {
2408                DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2409                goto einval;
2410        }
2411#endif
2412        ATM_SKB(skb)->vcc = atmvcc;
2413        switch (atmvcc->qos.aal) {
2414                case ATM_AAL5:
2415                        read_lock_irqsave(&vcc_sklist_lock, flags);
2416                        vcc_tx_aal5(lanai, lvcc, skb);
2417                        read_unlock_irqrestore(&vcc_sklist_lock, flags);
2418                        return 0;
2419                case ATM_AAL0:
2420                        if (unlikely(skb->len != ATM_CELL_SIZE-1))
2421                                goto einval;
2422  /* NOTE - this next line is technically invalid - we haven't unshared skb */
2423                        cpu_to_be32s((u32 *) skb->data);
2424                        read_lock_irqsave(&vcc_sklist_lock, flags);
2425                        vcc_tx_aal0(lanai, lvcc, skb);
2426                        read_unlock_irqrestore(&vcc_sklist_lock, flags);
2427                        return 0;
2428        }
2429        DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2430            atmvcc->vci);
2431    einval:
2432        lanai_free_skb(atmvcc, skb);
2433        return -EINVAL;
2434}
2435
2436static int lanai_change_qos(struct atm_vcc *atmvcc,
2437        /*const*/ struct atm_qos *qos, int flags)
2438{
2439        return -EBUSY;          /* TODO: need to write this */
2440}
2441
2442#ifndef CONFIG_PROC_FS
2443#define lanai_proc_read NULL
2444#else
2445static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2446{
2447        struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2448        loff_t left = *pos;
2449        struct lanai_vcc *lvcc;
2450        if (left-- == 0)
2451                return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2452                    "serial=%u, magic=0x%08X, num_vci=%d\n",
2453                    atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2454                    (unsigned int) lanai->serialno,
2455                    (unsigned int) lanai->magicno, lanai->num_vci);
2456        if (left-- == 0)
2457                return sprintf(page, "revision: board=%d, pci_if=%d\n",
2458                    lanai->board_rev, (int) lanai->pci->revision);
2459        if (left-- == 0)
2460                return sprintf(page, "EEPROM ESI: %pM\n",
2461                    &lanai->eeprom[EEPROM_MAC]);
2462        if (left-- == 0)
2463                return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2464                    "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2465                    (lanai->status & STATUS_LOCD) ? 1 : 0,
2466                    (lanai->status & STATUS_LED) ? 1 : 0,
2467                    (lanai->status & STATUS_GPIN) ? 1 : 0);
2468        if (left-- == 0)
2469                return sprintf(page, "global buffer sizes: service=%Zu, "
2470                    "aal0_rx=%Zu\n", lanai_buf_size(&lanai->service),
2471                    lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2472        if (left-- == 0) {
2473                get_statistics(lanai);
2474                return sprintf(page, "cells in error: overflow=%u, "
2475                    "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2476                    lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2477                    lanai->stats.hec_err, lanai->stats.atm_ovfl);
2478        }
2479        if (left-- == 0)
2480                return sprintf(page, "PCI errors: parity_detect=%u, "
2481                    "master_abort=%u, master_target_abort=%u,\n",
2482                    lanai->stats.pcierr_parity_detect,
2483                    lanai->stats.pcierr_serr_set,
2484                    lanai->stats.pcierr_m_target_abort);
2485        if (left-- == 0)
2486                return sprintf(page, "            slave_target_abort=%u, "
2487                    "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2488                    lanai->stats.pcierr_master_parity);
2489        if (left-- == 0)
2490                return sprintf(page, "                     no_tx=%u, "
2491                    "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2492                    lanai->stats.service_notx,
2493                    lanai->stats.service_rxnotaal5);
2494        if (left-- == 0)
2495                return sprintf(page, "resets: dma=%u, card=%u\n",
2496                    lanai->stats.dma_reenable, lanai->stats.card_reset);
2497        /* At this point, "left" should be the VCI we're looking for */
2498        read_lock(&vcc_sklist_lock);
2499        for (; ; left++) {
2500                if (left >= NUM_VCI) {
2501                        left = 0;
2502                        goto out;
2503                }
2504                if ((lvcc = lanai->vccs[left]) != NULL)
2505                        break;
2506                (*pos)++;
2507        }
2508        /* Note that we re-use "left" here since we're done with it */
2509        left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u",  (vci_t) left,
2510            lvcc->nref, lvcc->stats.rx_nomem);
2511        if (lvcc->rx.atmvcc != NULL) {
2512                left += sprintf(&page[left], ",\n          rx_AAL=%d",
2513                    lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2514                if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2515                        left += sprintf(&page[left], ", rx_buf_size=%Zu, "
2516                            "rx_bad_len=%u,\n          rx_service_trash=%u, "
2517                            "rx_service_stream=%u, rx_bad_crc=%u",
2518                            lanai_buf_size(&lvcc->rx.buf),
2519                            lvcc->stats.x.aal5.rx_badlen,
2520                            lvcc->stats.x.aal5.service_trash,
2521                            lvcc->stats.x.aal5.service_stream,
2522                            lvcc->stats.x.aal5.service_rxcrc);
2523        }
2524        if (lvcc->tx.atmvcc != NULL)
2525                left += sprintf(&page[left], ",\n          tx_AAL=%d, "
2526                    "tx_buf_size=%Zu, tx_qos=%cBR, tx_backlogged=%c",
2527                    lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2528                    lanai_buf_size(&lvcc->tx.buf),
2529                    lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2530                    vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2531        page[left++] = '\n';
2532        page[left] = '\0';
2533    out:
2534        read_unlock(&vcc_sklist_lock);
2535        return left;
2536}
2537#endif /* CONFIG_PROC_FS */
2538
2539/* -------------------- HOOKS: */
2540
2541static const struct atmdev_ops ops = {
2542        .dev_close      = lanai_dev_close,
2543        .open           = lanai_open,
2544        .close          = lanai_close,
2545        .getsockopt     = NULL,
2546        .setsockopt     = NULL,
2547        .send           = lanai_send,
2548        .phy_put        = NULL,
2549        .phy_get        = NULL,
2550        .change_qos     = lanai_change_qos,
2551        .proc_read      = lanai_proc_read,
2552        .owner          = THIS_MODULE
2553};
2554
2555/* initialize one probed card */
2556static int lanai_init_one(struct pci_dev *pci,
2557                          const struct pci_device_id *ident)
2558{
2559        struct lanai_dev *lanai;
2560        struct atm_dev *atmdev;
2561        int result;
2562
2563        lanai = kmalloc(sizeof(*lanai), GFP_KERNEL);
2564        if (lanai == NULL) {
2565                printk(KERN_ERR DEV_LABEL
2566                       ": couldn't allocate dev_data structure!\n");
2567                return -ENOMEM;
2568        }
2569
2570        atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
2571        if (atmdev == NULL) {
2572                printk(KERN_ERR DEV_LABEL
2573                    ": couldn't register atm device!\n");
2574                kfree(lanai);
2575                return -EBUSY;
2576        }
2577
2578        atmdev->dev_data = lanai;
2579        lanai->pci = pci;
2580        lanai->type = (enum lanai_type) ident->device;
2581
2582        result = lanai_dev_open(atmdev);
2583        if (result != 0) {
2584                DPRINTK("lanai_start() failed, err=%d\n", -result);
2585                atm_dev_deregister(atmdev);
2586                kfree(lanai);
2587        }
2588        return result;
2589}
2590
2591static struct pci_device_id lanai_pci_tbl[] = {
2592        { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2593        { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2594        { 0, }  /* terminal entry */
2595};
2596MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2597
2598static struct pci_driver lanai_driver = {
2599        .name     = DEV_LABEL,
2600        .id_table = lanai_pci_tbl,
2601        .probe    = lanai_init_one,
2602};
2603
2604module_pci_driver(lanai_driver);
2605
2606MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2607MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2608MODULE_LICENSE("GPL");
2609