linux/drivers/block/loop.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/block/loop.c
   3 *
   4 *  Written by Theodore Ts'o, 3/29/93
   5 *
   6 * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
   7 * permitted under the GNU General Public License.
   8 *
   9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11 *
  12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14 *
  15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16 *
  17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18 *
  19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20 *
  21 * Loadable modules and other fixes by AK, 1998
  22 *
  23 * Make real block number available to downstream transfer functions, enables
  24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25 * Reed H. Petty, rhp@draper.net
  26 *
  27 * Maximum number of loop devices now dynamic via max_loop module parameter.
  28 * Russell Kroll <rkroll@exploits.org> 19990701
  29 *
  30 * Maximum number of loop devices when compiled-in now selectable by passing
  31 * max_loop=<1-255> to the kernel on boot.
  32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33 *
  34 * Completely rewrite request handling to be make_request_fn style and
  35 * non blocking, pushing work to a helper thread. Lots of fixes from
  36 * Al Viro too.
  37 * Jens Axboe <axboe@suse.de>, Nov 2000
  38 *
  39 * Support up to 256 loop devices
  40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41 *
  42 * Support for falling back on the write file operation when the address space
  43 * operations write_begin is not available on the backing filesystem.
  44 * Anton Altaparmakov, 16 Feb 2005
  45 *
  46 * Still To Fix:
  47 * - Advisory locking is ignored here.
  48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  49 *
  50 */
  51
  52#include <linux/module.h>
  53#include <linux/moduleparam.h>
  54#include <linux/sched.h>
  55#include <linux/fs.h>
  56#include <linux/file.h>
  57#include <linux/stat.h>
  58#include <linux/errno.h>
  59#include <linux/major.h>
  60#include <linux/wait.h>
  61#include <linux/blkdev.h>
  62#include <linux/blkpg.h>
  63#include <linux/init.h>
  64#include <linux/swap.h>
  65#include <linux/slab.h>
  66#include <linux/compat.h>
  67#include <linux/suspend.h>
  68#include <linux/freezer.h>
  69#include <linux/mutex.h>
  70#include <linux/writeback.h>
  71#include <linux/completion.h>
  72#include <linux/highmem.h>
  73#include <linux/kthread.h>
  74#include <linux/splice.h>
  75#include <linux/sysfs.h>
  76#include <linux/miscdevice.h>
  77#include <linux/falloc.h>
  78#include <linux/uio.h>
  79#include "loop.h"
  80
  81#include <asm/uaccess.h>
  82
  83static DEFINE_IDR(loop_index_idr);
  84static DEFINE_MUTEX(loop_index_mutex);
  85
  86static int max_part;
  87static int part_shift;
  88
  89static struct workqueue_struct *loop_wq;
  90
  91static int transfer_xor(struct loop_device *lo, int cmd,
  92                        struct page *raw_page, unsigned raw_off,
  93                        struct page *loop_page, unsigned loop_off,
  94                        int size, sector_t real_block)
  95{
  96        char *raw_buf = kmap_atomic(raw_page) + raw_off;
  97        char *loop_buf = kmap_atomic(loop_page) + loop_off;
  98        char *in, *out, *key;
  99        int i, keysize;
 100
 101        if (cmd == READ) {
 102                in = raw_buf;
 103                out = loop_buf;
 104        } else {
 105                in = loop_buf;
 106                out = raw_buf;
 107        }
 108
 109        key = lo->lo_encrypt_key;
 110        keysize = lo->lo_encrypt_key_size;
 111        for (i = 0; i < size; i++)
 112                *out++ = *in++ ^ key[(i & 511) % keysize];
 113
 114        kunmap_atomic(loop_buf);
 115        kunmap_atomic(raw_buf);
 116        cond_resched();
 117        return 0;
 118}
 119
 120static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
 121{
 122        if (unlikely(info->lo_encrypt_key_size <= 0))
 123                return -EINVAL;
 124        return 0;
 125}
 126
 127static struct loop_func_table none_funcs = {
 128        .number = LO_CRYPT_NONE,
 129}; 
 130
 131static struct loop_func_table xor_funcs = {
 132        .number = LO_CRYPT_XOR,
 133        .transfer = transfer_xor,
 134        .init = xor_init
 135}; 
 136
 137/* xfer_funcs[0] is special - its release function is never called */
 138static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
 139        &none_funcs,
 140        &xor_funcs
 141};
 142
 143static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
 144{
 145        loff_t loopsize;
 146
 147        /* Compute loopsize in bytes */
 148        loopsize = i_size_read(file->f_mapping->host);
 149        if (offset > 0)
 150                loopsize -= offset;
 151        /* offset is beyond i_size, weird but possible */
 152        if (loopsize < 0)
 153                return 0;
 154
 155        if (sizelimit > 0 && sizelimit < loopsize)
 156                loopsize = sizelimit;
 157        /*
 158         * Unfortunately, if we want to do I/O on the device,
 159         * the number of 512-byte sectors has to fit into a sector_t.
 160         */
 161        return loopsize >> 9;
 162}
 163
 164static loff_t get_loop_size(struct loop_device *lo, struct file *file)
 165{
 166        return get_size(lo->lo_offset, lo->lo_sizelimit, file);
 167}
 168
 169static int
 170figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
 171{
 172        loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
 173        sector_t x = (sector_t)size;
 174        struct block_device *bdev = lo->lo_device;
 175
 176        if (unlikely((loff_t)x != size))
 177                return -EFBIG;
 178        if (lo->lo_offset != offset)
 179                lo->lo_offset = offset;
 180        if (lo->lo_sizelimit != sizelimit)
 181                lo->lo_sizelimit = sizelimit;
 182        set_capacity(lo->lo_disk, x);
 183        bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
 184        /* let user-space know about the new size */
 185        kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 186        return 0;
 187}
 188
 189static inline int
 190lo_do_transfer(struct loop_device *lo, int cmd,
 191               struct page *rpage, unsigned roffs,
 192               struct page *lpage, unsigned loffs,
 193               int size, sector_t rblock)
 194{
 195        int ret;
 196
 197        ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
 198        if (likely(!ret))
 199                return 0;
 200
 201        printk_ratelimited(KERN_ERR
 202                "loop: Transfer error at byte offset %llu, length %i.\n",
 203                (unsigned long long)rblock << 9, size);
 204        return ret;
 205}
 206
 207static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
 208{
 209        struct iov_iter i;
 210        ssize_t bw;
 211
 212        iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
 213
 214        file_start_write(file);
 215        bw = vfs_iter_write(file, &i, ppos);
 216        file_end_write(file);
 217
 218        if (likely(bw ==  bvec->bv_len))
 219                return 0;
 220
 221        printk_ratelimited(KERN_ERR
 222                "loop: Write error at byte offset %llu, length %i.\n",
 223                (unsigned long long)*ppos, bvec->bv_len);
 224        if (bw >= 0)
 225                bw = -EIO;
 226        return bw;
 227}
 228
 229static int lo_write_simple(struct loop_device *lo, struct request *rq,
 230                loff_t pos)
 231{
 232        struct bio_vec bvec;
 233        struct req_iterator iter;
 234        int ret = 0;
 235
 236        rq_for_each_segment(bvec, rq, iter) {
 237                ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
 238                if (ret < 0)
 239                        break;
 240                cond_resched();
 241        }
 242
 243        return ret;
 244}
 245
 246/*
 247 * This is the slow, transforming version that needs to double buffer the
 248 * data as it cannot do the transformations in place without having direct
 249 * access to the destination pages of the backing file.
 250 */
 251static int lo_write_transfer(struct loop_device *lo, struct request *rq,
 252                loff_t pos)
 253{
 254        struct bio_vec bvec, b;
 255        struct req_iterator iter;
 256        struct page *page;
 257        int ret = 0;
 258
 259        page = alloc_page(GFP_NOIO);
 260        if (unlikely(!page))
 261                return -ENOMEM;
 262
 263        rq_for_each_segment(bvec, rq, iter) {
 264                ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
 265                        bvec.bv_offset, bvec.bv_len, pos >> 9);
 266                if (unlikely(ret))
 267                        break;
 268
 269                b.bv_page = page;
 270                b.bv_offset = 0;
 271                b.bv_len = bvec.bv_len;
 272                ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
 273                if (ret < 0)
 274                        break;
 275        }
 276
 277        __free_page(page);
 278        return ret;
 279}
 280
 281static int lo_read_simple(struct loop_device *lo, struct request *rq,
 282                loff_t pos)
 283{
 284        struct bio_vec bvec;
 285        struct req_iterator iter;
 286        struct iov_iter i;
 287        ssize_t len;
 288
 289        rq_for_each_segment(bvec, rq, iter) {
 290                iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
 291                len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
 292                if (len < 0)
 293                        return len;
 294
 295                flush_dcache_page(bvec.bv_page);
 296
 297                if (len != bvec.bv_len) {
 298                        struct bio *bio;
 299
 300                        __rq_for_each_bio(bio, rq)
 301                                zero_fill_bio(bio);
 302                        break;
 303                }
 304                cond_resched();
 305        }
 306
 307        return 0;
 308}
 309
 310static int lo_read_transfer(struct loop_device *lo, struct request *rq,
 311                loff_t pos)
 312{
 313        struct bio_vec bvec, b;
 314        struct req_iterator iter;
 315        struct iov_iter i;
 316        struct page *page;
 317        ssize_t len;
 318        int ret = 0;
 319
 320        page = alloc_page(GFP_NOIO);
 321        if (unlikely(!page))
 322                return -ENOMEM;
 323
 324        rq_for_each_segment(bvec, rq, iter) {
 325                loff_t offset = pos;
 326
 327                b.bv_page = page;
 328                b.bv_offset = 0;
 329                b.bv_len = bvec.bv_len;
 330
 331                iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
 332                len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
 333                if (len < 0) {
 334                        ret = len;
 335                        goto out_free_page;
 336                }
 337
 338                ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
 339                        bvec.bv_offset, len, offset >> 9);
 340                if (ret)
 341                        goto out_free_page;
 342
 343                flush_dcache_page(bvec.bv_page);
 344
 345                if (len != bvec.bv_len) {
 346                        struct bio *bio;
 347
 348                        __rq_for_each_bio(bio, rq)
 349                                zero_fill_bio(bio);
 350                        break;
 351                }
 352        }
 353
 354        ret = 0;
 355out_free_page:
 356        __free_page(page);
 357        return ret;
 358}
 359
 360static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
 361{
 362        /*
 363         * We use punch hole to reclaim the free space used by the
 364         * image a.k.a. discard. However we do not support discard if
 365         * encryption is enabled, because it may give an attacker
 366         * useful information.
 367         */
 368        struct file *file = lo->lo_backing_file;
 369        int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
 370        int ret;
 371
 372        if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
 373                ret = -EOPNOTSUPP;
 374                goto out;
 375        }
 376
 377        ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
 378        if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
 379                ret = -EIO;
 380 out:
 381        return ret;
 382}
 383
 384static int lo_req_flush(struct loop_device *lo, struct request *rq)
 385{
 386        struct file *file = lo->lo_backing_file;
 387        int ret = vfs_fsync(file, 0);
 388        if (unlikely(ret && ret != -EINVAL))
 389                ret = -EIO;
 390
 391        return ret;
 392}
 393
 394static int do_req_filebacked(struct loop_device *lo, struct request *rq)
 395{
 396        loff_t pos;
 397        int ret;
 398
 399        pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
 400
 401        if (rq->cmd_flags & REQ_WRITE) {
 402                if (rq->cmd_flags & REQ_FLUSH)
 403                        ret = lo_req_flush(lo, rq);
 404                else if (rq->cmd_flags & REQ_DISCARD)
 405                        ret = lo_discard(lo, rq, pos);
 406                else if (lo->transfer)
 407                        ret = lo_write_transfer(lo, rq, pos);
 408                else
 409                        ret = lo_write_simple(lo, rq, pos);
 410
 411        } else {
 412                if (lo->transfer)
 413                        ret = lo_read_transfer(lo, rq, pos);
 414                else
 415                        ret = lo_read_simple(lo, rq, pos);
 416        }
 417
 418        return ret;
 419}
 420
 421struct switch_request {
 422        struct file *file;
 423        struct completion wait;
 424};
 425
 426/*
 427 * Do the actual switch; called from the BIO completion routine
 428 */
 429static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
 430{
 431        struct file *file = p->file;
 432        struct file *old_file = lo->lo_backing_file;
 433        struct address_space *mapping;
 434
 435        /* if no new file, only flush of queued bios requested */
 436        if (!file)
 437                return;
 438
 439        mapping = file->f_mapping;
 440        mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
 441        lo->lo_backing_file = file;
 442        lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
 443                mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
 444        lo->old_gfp_mask = mapping_gfp_mask(mapping);
 445        mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
 446}
 447
 448/*
 449 * loop_switch performs the hard work of switching a backing store.
 450 * First it needs to flush existing IO, it does this by sending a magic
 451 * BIO down the pipe. The completion of this BIO does the actual switch.
 452 */
 453static int loop_switch(struct loop_device *lo, struct file *file)
 454{
 455        struct switch_request w;
 456
 457        w.file = file;
 458
 459        /* freeze queue and wait for completion of scheduled requests */
 460        blk_mq_freeze_queue(lo->lo_queue);
 461
 462        /* do the switch action */
 463        do_loop_switch(lo, &w);
 464
 465        /* unfreeze */
 466        blk_mq_unfreeze_queue(lo->lo_queue);
 467
 468        return 0;
 469}
 470
 471/*
 472 * Helper to flush the IOs in loop, but keeping loop thread running
 473 */
 474static int loop_flush(struct loop_device *lo)
 475{
 476        return loop_switch(lo, NULL);
 477}
 478
 479/*
 480 * loop_change_fd switched the backing store of a loopback device to
 481 * a new file. This is useful for operating system installers to free up
 482 * the original file and in High Availability environments to switch to
 483 * an alternative location for the content in case of server meltdown.
 484 * This can only work if the loop device is used read-only, and if the
 485 * new backing store is the same size and type as the old backing store.
 486 */
 487static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
 488                          unsigned int arg)
 489{
 490        struct file     *file, *old_file;
 491        struct inode    *inode;
 492        int             error;
 493
 494        error = -ENXIO;
 495        if (lo->lo_state != Lo_bound)
 496                goto out;
 497
 498        /* the loop device has to be read-only */
 499        error = -EINVAL;
 500        if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
 501                goto out;
 502
 503        error = -EBADF;
 504        file = fget(arg);
 505        if (!file)
 506                goto out;
 507
 508        inode = file->f_mapping->host;
 509        old_file = lo->lo_backing_file;
 510
 511        error = -EINVAL;
 512
 513        if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
 514                goto out_putf;
 515
 516        /* size of the new backing store needs to be the same */
 517        if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
 518                goto out_putf;
 519
 520        /* and ... switch */
 521        error = loop_switch(lo, file);
 522        if (error)
 523                goto out_putf;
 524
 525        fput(old_file);
 526        if (lo->lo_flags & LO_FLAGS_PARTSCAN)
 527                ioctl_by_bdev(bdev, BLKRRPART, 0);
 528        return 0;
 529
 530 out_putf:
 531        fput(file);
 532 out:
 533        return error;
 534}
 535
 536static inline int is_loop_device(struct file *file)
 537{
 538        struct inode *i = file->f_mapping->host;
 539
 540        return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
 541}
 542
 543/* loop sysfs attributes */
 544
 545static ssize_t loop_attr_show(struct device *dev, char *page,
 546                              ssize_t (*callback)(struct loop_device *, char *))
 547{
 548        struct gendisk *disk = dev_to_disk(dev);
 549        struct loop_device *lo = disk->private_data;
 550
 551        return callback(lo, page);
 552}
 553
 554#define LOOP_ATTR_RO(_name)                                             \
 555static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);  \
 556static ssize_t loop_attr_do_show_##_name(struct device *d,              \
 557                                struct device_attribute *attr, char *b) \
 558{                                                                       \
 559        return loop_attr_show(d, b, loop_attr_##_name##_show);          \
 560}                                                                       \
 561static struct device_attribute loop_attr_##_name =                      \
 562        __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
 563
 564static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
 565{
 566        ssize_t ret;
 567        char *p = NULL;
 568
 569        spin_lock_irq(&lo->lo_lock);
 570        if (lo->lo_backing_file)
 571                p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
 572        spin_unlock_irq(&lo->lo_lock);
 573
 574        if (IS_ERR_OR_NULL(p))
 575                ret = PTR_ERR(p);
 576        else {
 577                ret = strlen(p);
 578                memmove(buf, p, ret);
 579                buf[ret++] = '\n';
 580                buf[ret] = 0;
 581        }
 582
 583        return ret;
 584}
 585
 586static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
 587{
 588        return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
 589}
 590
 591static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
 592{
 593        return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
 594}
 595
 596static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
 597{
 598        int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
 599
 600        return sprintf(buf, "%s\n", autoclear ? "1" : "0");
 601}
 602
 603static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
 604{
 605        int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
 606
 607        return sprintf(buf, "%s\n", partscan ? "1" : "0");
 608}
 609
 610LOOP_ATTR_RO(backing_file);
 611LOOP_ATTR_RO(offset);
 612LOOP_ATTR_RO(sizelimit);
 613LOOP_ATTR_RO(autoclear);
 614LOOP_ATTR_RO(partscan);
 615
 616static struct attribute *loop_attrs[] = {
 617        &loop_attr_backing_file.attr,
 618        &loop_attr_offset.attr,
 619        &loop_attr_sizelimit.attr,
 620        &loop_attr_autoclear.attr,
 621        &loop_attr_partscan.attr,
 622        NULL,
 623};
 624
 625static struct attribute_group loop_attribute_group = {
 626        .name = "loop",
 627        .attrs= loop_attrs,
 628};
 629
 630static int loop_sysfs_init(struct loop_device *lo)
 631{
 632        return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
 633                                  &loop_attribute_group);
 634}
 635
 636static void loop_sysfs_exit(struct loop_device *lo)
 637{
 638        sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
 639                           &loop_attribute_group);
 640}
 641
 642static void loop_config_discard(struct loop_device *lo)
 643{
 644        struct file *file = lo->lo_backing_file;
 645        struct inode *inode = file->f_mapping->host;
 646        struct request_queue *q = lo->lo_queue;
 647
 648        /*
 649         * We use punch hole to reclaim the free space used by the
 650         * image a.k.a. discard. However we do not support discard if
 651         * encryption is enabled, because it may give an attacker
 652         * useful information.
 653         */
 654        if ((!file->f_op->fallocate) ||
 655            lo->lo_encrypt_key_size) {
 656                q->limits.discard_granularity = 0;
 657                q->limits.discard_alignment = 0;
 658                q->limits.max_discard_sectors = 0;
 659                q->limits.discard_zeroes_data = 0;
 660                queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
 661                return;
 662        }
 663
 664        q->limits.discard_granularity = inode->i_sb->s_blocksize;
 665        q->limits.discard_alignment = 0;
 666        q->limits.max_discard_sectors = UINT_MAX >> 9;
 667        q->limits.discard_zeroes_data = 1;
 668        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
 669}
 670
 671static int loop_set_fd(struct loop_device *lo, fmode_t mode,
 672                       struct block_device *bdev, unsigned int arg)
 673{
 674        struct file     *file, *f;
 675        struct inode    *inode;
 676        struct address_space *mapping;
 677        unsigned lo_blocksize;
 678        int             lo_flags = 0;
 679        int             error;
 680        loff_t          size;
 681
 682        /* This is safe, since we have a reference from open(). */
 683        __module_get(THIS_MODULE);
 684
 685        error = -EBADF;
 686        file = fget(arg);
 687        if (!file)
 688                goto out;
 689
 690        error = -EBUSY;
 691        if (lo->lo_state != Lo_unbound)
 692                goto out_putf;
 693
 694        /* Avoid recursion */
 695        f = file;
 696        while (is_loop_device(f)) {
 697                struct loop_device *l;
 698
 699                if (f->f_mapping->host->i_bdev == bdev)
 700                        goto out_putf;
 701
 702                l = f->f_mapping->host->i_bdev->bd_disk->private_data;
 703                if (l->lo_state == Lo_unbound) {
 704                        error = -EINVAL;
 705                        goto out_putf;
 706                }
 707                f = l->lo_backing_file;
 708        }
 709
 710        mapping = file->f_mapping;
 711        inode = mapping->host;
 712
 713        error = -EINVAL;
 714        if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
 715                goto out_putf;
 716
 717        if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
 718            !file->f_op->write_iter)
 719                lo_flags |= LO_FLAGS_READ_ONLY;
 720
 721        lo_blocksize = S_ISBLK(inode->i_mode) ?
 722                inode->i_bdev->bd_block_size : PAGE_SIZE;
 723
 724        error = -EFBIG;
 725        size = get_loop_size(lo, file);
 726        if ((loff_t)(sector_t)size != size)
 727                goto out_putf;
 728
 729        error = 0;
 730
 731        set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
 732
 733        lo->lo_blocksize = lo_blocksize;
 734        lo->lo_device = bdev;
 735        lo->lo_flags = lo_flags;
 736        lo->lo_backing_file = file;
 737        lo->transfer = NULL;
 738        lo->ioctl = NULL;
 739        lo->lo_sizelimit = 0;
 740        lo->old_gfp_mask = mapping_gfp_mask(mapping);
 741        mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
 742
 743        if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
 744                blk_queue_flush(lo->lo_queue, REQ_FLUSH);
 745
 746        set_capacity(lo->lo_disk, size);
 747        bd_set_size(bdev, size << 9);
 748        loop_sysfs_init(lo);
 749        /* let user-space know about the new size */
 750        kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 751
 752        set_blocksize(bdev, lo_blocksize);
 753
 754        lo->lo_state = Lo_bound;
 755        if (part_shift)
 756                lo->lo_flags |= LO_FLAGS_PARTSCAN;
 757        if (lo->lo_flags & LO_FLAGS_PARTSCAN)
 758                ioctl_by_bdev(bdev, BLKRRPART, 0);
 759
 760        /* Grab the block_device to prevent its destruction after we
 761         * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
 762         */
 763        bdgrab(bdev);
 764        return 0;
 765
 766 out_putf:
 767        fput(file);
 768 out:
 769        /* This is safe: open() is still holding a reference. */
 770        module_put(THIS_MODULE);
 771        return error;
 772}
 773
 774static int
 775loop_release_xfer(struct loop_device *lo)
 776{
 777        int err = 0;
 778        struct loop_func_table *xfer = lo->lo_encryption;
 779
 780        if (xfer) {
 781                if (xfer->release)
 782                        err = xfer->release(lo);
 783                lo->transfer = NULL;
 784                lo->lo_encryption = NULL;
 785                module_put(xfer->owner);
 786        }
 787        return err;
 788}
 789
 790static int
 791loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
 792               const struct loop_info64 *i)
 793{
 794        int err = 0;
 795
 796        if (xfer) {
 797                struct module *owner = xfer->owner;
 798
 799                if (!try_module_get(owner))
 800                        return -EINVAL;
 801                if (xfer->init)
 802                        err = xfer->init(lo, i);
 803                if (err)
 804                        module_put(owner);
 805                else
 806                        lo->lo_encryption = xfer;
 807        }
 808        return err;
 809}
 810
 811static int loop_clr_fd(struct loop_device *lo)
 812{
 813        struct file *filp = lo->lo_backing_file;
 814        gfp_t gfp = lo->old_gfp_mask;
 815        struct block_device *bdev = lo->lo_device;
 816
 817        if (lo->lo_state != Lo_bound)
 818                return -ENXIO;
 819
 820        /*
 821         * If we've explicitly asked to tear down the loop device,
 822         * and it has an elevated reference count, set it for auto-teardown when
 823         * the last reference goes away. This stops $!~#$@ udev from
 824         * preventing teardown because it decided that it needs to run blkid on
 825         * the loopback device whenever they appear. xfstests is notorious for
 826         * failing tests because blkid via udev races with a losetup
 827         * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
 828         * command to fail with EBUSY.
 829         */
 830        if (lo->lo_refcnt > 1) {
 831                lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
 832                mutex_unlock(&lo->lo_ctl_mutex);
 833                return 0;
 834        }
 835
 836        if (filp == NULL)
 837                return -EINVAL;
 838
 839        spin_lock_irq(&lo->lo_lock);
 840        lo->lo_state = Lo_rundown;
 841        lo->lo_backing_file = NULL;
 842        spin_unlock_irq(&lo->lo_lock);
 843
 844        loop_release_xfer(lo);
 845        lo->transfer = NULL;
 846        lo->ioctl = NULL;
 847        lo->lo_device = NULL;
 848        lo->lo_encryption = NULL;
 849        lo->lo_offset = 0;
 850        lo->lo_sizelimit = 0;
 851        lo->lo_encrypt_key_size = 0;
 852        memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
 853        memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
 854        memset(lo->lo_file_name, 0, LO_NAME_SIZE);
 855        if (bdev) {
 856                bdput(bdev);
 857                invalidate_bdev(bdev);
 858        }
 859        set_capacity(lo->lo_disk, 0);
 860        loop_sysfs_exit(lo);
 861        if (bdev) {
 862                bd_set_size(bdev, 0);
 863                /* let user-space know about this change */
 864                kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 865        }
 866        mapping_set_gfp_mask(filp->f_mapping, gfp);
 867        lo->lo_state = Lo_unbound;
 868        /* This is safe: open() is still holding a reference. */
 869        module_put(THIS_MODULE);
 870        if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
 871                ioctl_by_bdev(bdev, BLKRRPART, 0);
 872        lo->lo_flags = 0;
 873        if (!part_shift)
 874                lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
 875        mutex_unlock(&lo->lo_ctl_mutex);
 876        /*
 877         * Need not hold lo_ctl_mutex to fput backing file.
 878         * Calling fput holding lo_ctl_mutex triggers a circular
 879         * lock dependency possibility warning as fput can take
 880         * bd_mutex which is usually taken before lo_ctl_mutex.
 881         */
 882        fput(filp);
 883        return 0;
 884}
 885
 886static int
 887loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
 888{
 889        int err;
 890        struct loop_func_table *xfer;
 891        kuid_t uid = current_uid();
 892
 893        if (lo->lo_encrypt_key_size &&
 894            !uid_eq(lo->lo_key_owner, uid) &&
 895            !capable(CAP_SYS_ADMIN))
 896                return -EPERM;
 897        if (lo->lo_state != Lo_bound)
 898                return -ENXIO;
 899        if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
 900                return -EINVAL;
 901
 902        err = loop_release_xfer(lo);
 903        if (err)
 904                return err;
 905
 906        if (info->lo_encrypt_type) {
 907                unsigned int type = info->lo_encrypt_type;
 908
 909                if (type >= MAX_LO_CRYPT)
 910                        return -EINVAL;
 911                xfer = xfer_funcs[type];
 912                if (xfer == NULL)
 913                        return -EINVAL;
 914        } else
 915                xfer = NULL;
 916
 917        err = loop_init_xfer(lo, xfer, info);
 918        if (err)
 919                return err;
 920
 921        if (lo->lo_offset != info->lo_offset ||
 922            lo->lo_sizelimit != info->lo_sizelimit)
 923                if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
 924                        return -EFBIG;
 925
 926        loop_config_discard(lo);
 927
 928        memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
 929        memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
 930        lo->lo_file_name[LO_NAME_SIZE-1] = 0;
 931        lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
 932
 933        if (!xfer)
 934                xfer = &none_funcs;
 935        lo->transfer = xfer->transfer;
 936        lo->ioctl = xfer->ioctl;
 937
 938        if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
 939             (info->lo_flags & LO_FLAGS_AUTOCLEAR))
 940                lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
 941
 942        if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
 943             !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
 944                lo->lo_flags |= LO_FLAGS_PARTSCAN;
 945                lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
 946                ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
 947        }
 948
 949        lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
 950        lo->lo_init[0] = info->lo_init[0];
 951        lo->lo_init[1] = info->lo_init[1];
 952        if (info->lo_encrypt_key_size) {
 953                memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
 954                       info->lo_encrypt_key_size);
 955                lo->lo_key_owner = uid;
 956        }
 957
 958        return 0;
 959}
 960
 961static int
 962loop_get_status(struct loop_device *lo, struct loop_info64 *info)
 963{
 964        struct file *file = lo->lo_backing_file;
 965        struct kstat stat;
 966        int error;
 967
 968        if (lo->lo_state != Lo_bound)
 969                return -ENXIO;
 970        error = vfs_getattr(&file->f_path, &stat);
 971        if (error)
 972                return error;
 973        memset(info, 0, sizeof(*info));
 974        info->lo_number = lo->lo_number;
 975        info->lo_device = huge_encode_dev(stat.dev);
 976        info->lo_inode = stat.ino;
 977        info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
 978        info->lo_offset = lo->lo_offset;
 979        info->lo_sizelimit = lo->lo_sizelimit;
 980        info->lo_flags = lo->lo_flags;
 981        memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
 982        memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
 983        info->lo_encrypt_type =
 984                lo->lo_encryption ? lo->lo_encryption->number : 0;
 985        if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
 986                info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
 987                memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
 988                       lo->lo_encrypt_key_size);
 989        }
 990        return 0;
 991}
 992
 993static void
 994loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
 995{
 996        memset(info64, 0, sizeof(*info64));
 997        info64->lo_number = info->lo_number;
 998        info64->lo_device = info->lo_device;
 999        info64->lo_inode = info->lo_inode;
1000        info64->lo_rdevice = info->lo_rdevice;
1001        info64->lo_offset = info->lo_offset;
1002        info64->lo_sizelimit = 0;
1003        info64->lo_encrypt_type = info->lo_encrypt_type;
1004        info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1005        info64->lo_flags = info->lo_flags;
1006        info64->lo_init[0] = info->lo_init[0];
1007        info64->lo_init[1] = info->lo_init[1];
1008        if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1009                memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1010        else
1011                memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1012        memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1013}
1014
1015static int
1016loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1017{
1018        memset(info, 0, sizeof(*info));
1019        info->lo_number = info64->lo_number;
1020        info->lo_device = info64->lo_device;
1021        info->lo_inode = info64->lo_inode;
1022        info->lo_rdevice = info64->lo_rdevice;
1023        info->lo_offset = info64->lo_offset;
1024        info->lo_encrypt_type = info64->lo_encrypt_type;
1025        info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1026        info->lo_flags = info64->lo_flags;
1027        info->lo_init[0] = info64->lo_init[0];
1028        info->lo_init[1] = info64->lo_init[1];
1029        if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1030                memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1031        else
1032                memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1033        memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1034
1035        /* error in case values were truncated */
1036        if (info->lo_device != info64->lo_device ||
1037            info->lo_rdevice != info64->lo_rdevice ||
1038            info->lo_inode != info64->lo_inode ||
1039            info->lo_offset != info64->lo_offset)
1040                return -EOVERFLOW;
1041
1042        return 0;
1043}
1044
1045static int
1046loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1047{
1048        struct loop_info info;
1049        struct loop_info64 info64;
1050
1051        if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1052                return -EFAULT;
1053        loop_info64_from_old(&info, &info64);
1054        return loop_set_status(lo, &info64);
1055}
1056
1057static int
1058loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1059{
1060        struct loop_info64 info64;
1061
1062        if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1063                return -EFAULT;
1064        return loop_set_status(lo, &info64);
1065}
1066
1067static int
1068loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1069        struct loop_info info;
1070        struct loop_info64 info64;
1071        int err = 0;
1072
1073        if (!arg)
1074                err = -EINVAL;
1075        if (!err)
1076                err = loop_get_status(lo, &info64);
1077        if (!err)
1078                err = loop_info64_to_old(&info64, &info);
1079        if (!err && copy_to_user(arg, &info, sizeof(info)))
1080                err = -EFAULT;
1081
1082        return err;
1083}
1084
1085static int
1086loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1087        struct loop_info64 info64;
1088        int err = 0;
1089
1090        if (!arg)
1091                err = -EINVAL;
1092        if (!err)
1093                err = loop_get_status(lo, &info64);
1094        if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1095                err = -EFAULT;
1096
1097        return err;
1098}
1099
1100static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1101{
1102        if (unlikely(lo->lo_state != Lo_bound))
1103                return -ENXIO;
1104
1105        return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1106}
1107
1108static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1109        unsigned int cmd, unsigned long arg)
1110{
1111        struct loop_device *lo = bdev->bd_disk->private_data;
1112        int err;
1113
1114        mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1115        switch (cmd) {
1116        case LOOP_SET_FD:
1117                err = loop_set_fd(lo, mode, bdev, arg);
1118                break;
1119        case LOOP_CHANGE_FD:
1120                err = loop_change_fd(lo, bdev, arg);
1121                break;
1122        case LOOP_CLR_FD:
1123                /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1124                err = loop_clr_fd(lo);
1125                if (!err)
1126                        goto out_unlocked;
1127                break;
1128        case LOOP_SET_STATUS:
1129                err = -EPERM;
1130                if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1131                        err = loop_set_status_old(lo,
1132                                        (struct loop_info __user *)arg);
1133                break;
1134        case LOOP_GET_STATUS:
1135                err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1136                break;
1137        case LOOP_SET_STATUS64:
1138                err = -EPERM;
1139                if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1140                        err = loop_set_status64(lo,
1141                                        (struct loop_info64 __user *) arg);
1142                break;
1143        case LOOP_GET_STATUS64:
1144                err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1145                break;
1146        case LOOP_SET_CAPACITY:
1147                err = -EPERM;
1148                if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1149                        err = loop_set_capacity(lo, bdev);
1150                break;
1151        default:
1152                err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1153        }
1154        mutex_unlock(&lo->lo_ctl_mutex);
1155
1156out_unlocked:
1157        return err;
1158}
1159
1160#ifdef CONFIG_COMPAT
1161struct compat_loop_info {
1162        compat_int_t    lo_number;      /* ioctl r/o */
1163        compat_dev_t    lo_device;      /* ioctl r/o */
1164        compat_ulong_t  lo_inode;       /* ioctl r/o */
1165        compat_dev_t    lo_rdevice;     /* ioctl r/o */
1166        compat_int_t    lo_offset;
1167        compat_int_t    lo_encrypt_type;
1168        compat_int_t    lo_encrypt_key_size;    /* ioctl w/o */
1169        compat_int_t    lo_flags;       /* ioctl r/o */
1170        char            lo_name[LO_NAME_SIZE];
1171        unsigned char   lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1172        compat_ulong_t  lo_init[2];
1173        char            reserved[4];
1174};
1175
1176/*
1177 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1178 * - noinlined to reduce stack space usage in main part of driver
1179 */
1180static noinline int
1181loop_info64_from_compat(const struct compat_loop_info __user *arg,
1182                        struct loop_info64 *info64)
1183{
1184        struct compat_loop_info info;
1185
1186        if (copy_from_user(&info, arg, sizeof(info)))
1187                return -EFAULT;
1188
1189        memset(info64, 0, sizeof(*info64));
1190        info64->lo_number = info.lo_number;
1191        info64->lo_device = info.lo_device;
1192        info64->lo_inode = info.lo_inode;
1193        info64->lo_rdevice = info.lo_rdevice;
1194        info64->lo_offset = info.lo_offset;
1195        info64->lo_sizelimit = 0;
1196        info64->lo_encrypt_type = info.lo_encrypt_type;
1197        info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1198        info64->lo_flags = info.lo_flags;
1199        info64->lo_init[0] = info.lo_init[0];
1200        info64->lo_init[1] = info.lo_init[1];
1201        if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1202                memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1203        else
1204                memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1205        memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1206        return 0;
1207}
1208
1209/*
1210 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1211 * - noinlined to reduce stack space usage in main part of driver
1212 */
1213static noinline int
1214loop_info64_to_compat(const struct loop_info64 *info64,
1215                      struct compat_loop_info __user *arg)
1216{
1217        struct compat_loop_info info;
1218
1219        memset(&info, 0, sizeof(info));
1220        info.lo_number = info64->lo_number;
1221        info.lo_device = info64->lo_device;
1222        info.lo_inode = info64->lo_inode;
1223        info.lo_rdevice = info64->lo_rdevice;
1224        info.lo_offset = info64->lo_offset;
1225        info.lo_encrypt_type = info64->lo_encrypt_type;
1226        info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1227        info.lo_flags = info64->lo_flags;
1228        info.lo_init[0] = info64->lo_init[0];
1229        info.lo_init[1] = info64->lo_init[1];
1230        if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1231                memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1232        else
1233                memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1234        memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1235
1236        /* error in case values were truncated */
1237        if (info.lo_device != info64->lo_device ||
1238            info.lo_rdevice != info64->lo_rdevice ||
1239            info.lo_inode != info64->lo_inode ||
1240            info.lo_offset != info64->lo_offset ||
1241            info.lo_init[0] != info64->lo_init[0] ||
1242            info.lo_init[1] != info64->lo_init[1])
1243                return -EOVERFLOW;
1244
1245        if (copy_to_user(arg, &info, sizeof(info)))
1246                return -EFAULT;
1247        return 0;
1248}
1249
1250static int
1251loop_set_status_compat(struct loop_device *lo,
1252                       const struct compat_loop_info __user *arg)
1253{
1254        struct loop_info64 info64;
1255        int ret;
1256
1257        ret = loop_info64_from_compat(arg, &info64);
1258        if (ret < 0)
1259                return ret;
1260        return loop_set_status(lo, &info64);
1261}
1262
1263static int
1264loop_get_status_compat(struct loop_device *lo,
1265                       struct compat_loop_info __user *arg)
1266{
1267        struct loop_info64 info64;
1268        int err = 0;
1269
1270        if (!arg)
1271                err = -EINVAL;
1272        if (!err)
1273                err = loop_get_status(lo, &info64);
1274        if (!err)
1275                err = loop_info64_to_compat(&info64, arg);
1276        return err;
1277}
1278
1279static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1280                           unsigned int cmd, unsigned long arg)
1281{
1282        struct loop_device *lo = bdev->bd_disk->private_data;
1283        int err;
1284
1285        switch(cmd) {
1286        case LOOP_SET_STATUS:
1287                mutex_lock(&lo->lo_ctl_mutex);
1288                err = loop_set_status_compat(
1289                        lo, (const struct compat_loop_info __user *) arg);
1290                mutex_unlock(&lo->lo_ctl_mutex);
1291                break;
1292        case LOOP_GET_STATUS:
1293                mutex_lock(&lo->lo_ctl_mutex);
1294                err = loop_get_status_compat(
1295                        lo, (struct compat_loop_info __user *) arg);
1296                mutex_unlock(&lo->lo_ctl_mutex);
1297                break;
1298        case LOOP_SET_CAPACITY:
1299        case LOOP_CLR_FD:
1300        case LOOP_GET_STATUS64:
1301        case LOOP_SET_STATUS64:
1302                arg = (unsigned long) compat_ptr(arg);
1303        case LOOP_SET_FD:
1304        case LOOP_CHANGE_FD:
1305                err = lo_ioctl(bdev, mode, cmd, arg);
1306                break;
1307        default:
1308                err = -ENOIOCTLCMD;
1309                break;
1310        }
1311        return err;
1312}
1313#endif
1314
1315static int lo_open(struct block_device *bdev, fmode_t mode)
1316{
1317        struct loop_device *lo;
1318        int err = 0;
1319
1320        mutex_lock(&loop_index_mutex);
1321        lo = bdev->bd_disk->private_data;
1322        if (!lo) {
1323                err = -ENXIO;
1324                goto out;
1325        }
1326
1327        mutex_lock(&lo->lo_ctl_mutex);
1328        lo->lo_refcnt++;
1329        mutex_unlock(&lo->lo_ctl_mutex);
1330out:
1331        mutex_unlock(&loop_index_mutex);
1332        return err;
1333}
1334
1335static void lo_release(struct gendisk *disk, fmode_t mode)
1336{
1337        struct loop_device *lo = disk->private_data;
1338        int err;
1339
1340        mutex_lock(&lo->lo_ctl_mutex);
1341
1342        if (--lo->lo_refcnt)
1343                goto out;
1344
1345        if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1346                /*
1347                 * In autoclear mode, stop the loop thread
1348                 * and remove configuration after last close.
1349                 */
1350                err = loop_clr_fd(lo);
1351                if (!err)
1352                        return;
1353        } else {
1354                /*
1355                 * Otherwise keep thread (if running) and config,
1356                 * but flush possible ongoing bios in thread.
1357                 */
1358                loop_flush(lo);
1359        }
1360
1361out:
1362        mutex_unlock(&lo->lo_ctl_mutex);
1363}
1364
1365static const struct block_device_operations lo_fops = {
1366        .owner =        THIS_MODULE,
1367        .open =         lo_open,
1368        .release =      lo_release,
1369        .ioctl =        lo_ioctl,
1370#ifdef CONFIG_COMPAT
1371        .compat_ioctl = lo_compat_ioctl,
1372#endif
1373};
1374
1375/*
1376 * And now the modules code and kernel interface.
1377 */
1378static int max_loop;
1379module_param(max_loop, int, S_IRUGO);
1380MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1381module_param(max_part, int, S_IRUGO);
1382MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1383MODULE_LICENSE("GPL");
1384MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1385
1386int loop_register_transfer(struct loop_func_table *funcs)
1387{
1388        unsigned int n = funcs->number;
1389
1390        if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1391                return -EINVAL;
1392        xfer_funcs[n] = funcs;
1393        return 0;
1394}
1395
1396static int unregister_transfer_cb(int id, void *ptr, void *data)
1397{
1398        struct loop_device *lo = ptr;
1399        struct loop_func_table *xfer = data;
1400
1401        mutex_lock(&lo->lo_ctl_mutex);
1402        if (lo->lo_encryption == xfer)
1403                loop_release_xfer(lo);
1404        mutex_unlock(&lo->lo_ctl_mutex);
1405        return 0;
1406}
1407
1408int loop_unregister_transfer(int number)
1409{
1410        unsigned int n = number;
1411        struct loop_func_table *xfer;
1412
1413        if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1414                return -EINVAL;
1415
1416        xfer_funcs[n] = NULL;
1417        idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1418        return 0;
1419}
1420
1421EXPORT_SYMBOL(loop_register_transfer);
1422EXPORT_SYMBOL(loop_unregister_transfer);
1423
1424static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1425                const struct blk_mq_queue_data *bd)
1426{
1427        struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1428
1429        blk_mq_start_request(bd->rq);
1430
1431        if (cmd->rq->cmd_flags & REQ_WRITE) {
1432                struct loop_device *lo = cmd->rq->q->queuedata;
1433                bool need_sched = true;
1434
1435                spin_lock_irq(&lo->lo_lock);
1436                if (lo->write_started)
1437                        need_sched = false;
1438                else
1439                        lo->write_started = true;
1440                list_add_tail(&cmd->list, &lo->write_cmd_head);
1441                spin_unlock_irq(&lo->lo_lock);
1442
1443                if (need_sched)
1444                        queue_work(loop_wq, &lo->write_work);
1445        } else {
1446                queue_work(loop_wq, &cmd->read_work);
1447        }
1448
1449        return BLK_MQ_RQ_QUEUE_OK;
1450}
1451
1452static void loop_handle_cmd(struct loop_cmd *cmd)
1453{
1454        const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1455        struct loop_device *lo = cmd->rq->q->queuedata;
1456        int ret = -EIO;
1457
1458        if (lo->lo_state != Lo_bound)
1459                goto failed;
1460
1461        if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY))
1462                goto failed;
1463
1464        ret = do_req_filebacked(lo, cmd->rq);
1465
1466 failed:
1467        if (ret)
1468                cmd->rq->errors = -EIO;
1469        blk_mq_complete_request(cmd->rq);
1470}
1471
1472static void loop_queue_write_work(struct work_struct *work)
1473{
1474        struct loop_device *lo =
1475                container_of(work, struct loop_device, write_work);
1476        LIST_HEAD(cmd_list);
1477
1478        spin_lock_irq(&lo->lo_lock);
1479 repeat:
1480        list_splice_init(&lo->write_cmd_head, &cmd_list);
1481        spin_unlock_irq(&lo->lo_lock);
1482
1483        while (!list_empty(&cmd_list)) {
1484                struct loop_cmd *cmd = list_first_entry(&cmd_list,
1485                                struct loop_cmd, list);
1486                list_del_init(&cmd->list);
1487                loop_handle_cmd(cmd);
1488        }
1489
1490        spin_lock_irq(&lo->lo_lock);
1491        if (!list_empty(&lo->write_cmd_head))
1492                goto repeat;
1493        lo->write_started = false;
1494        spin_unlock_irq(&lo->lo_lock);
1495}
1496
1497static void loop_queue_read_work(struct work_struct *work)
1498{
1499        struct loop_cmd *cmd =
1500                container_of(work, struct loop_cmd, read_work);
1501
1502        loop_handle_cmd(cmd);
1503}
1504
1505static int loop_init_request(void *data, struct request *rq,
1506                unsigned int hctx_idx, unsigned int request_idx,
1507                unsigned int numa_node)
1508{
1509        struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1510
1511        cmd->rq = rq;
1512        INIT_WORK(&cmd->read_work, loop_queue_read_work);
1513
1514        return 0;
1515}
1516
1517static struct blk_mq_ops loop_mq_ops = {
1518        .queue_rq       = loop_queue_rq,
1519        .map_queue      = blk_mq_map_queue,
1520        .init_request   = loop_init_request,
1521};
1522
1523static int loop_add(struct loop_device **l, int i)
1524{
1525        struct loop_device *lo;
1526        struct gendisk *disk;
1527        int err;
1528
1529        err = -ENOMEM;
1530        lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1531        if (!lo)
1532                goto out;
1533
1534        lo->lo_state = Lo_unbound;
1535
1536        /* allocate id, if @id >= 0, we're requesting that specific id */
1537        if (i >= 0) {
1538                err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1539                if (err == -ENOSPC)
1540                        err = -EEXIST;
1541        } else {
1542                err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1543        }
1544        if (err < 0)
1545                goto out_free_dev;
1546        i = err;
1547
1548        err = -ENOMEM;
1549        lo->tag_set.ops = &loop_mq_ops;
1550        lo->tag_set.nr_hw_queues = 1;
1551        lo->tag_set.queue_depth = 128;
1552        lo->tag_set.numa_node = NUMA_NO_NODE;
1553        lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1554        lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1555        lo->tag_set.driver_data = lo;
1556
1557        err = blk_mq_alloc_tag_set(&lo->tag_set);
1558        if (err)
1559                goto out_free_idr;
1560
1561        lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1562        if (IS_ERR_OR_NULL(lo->lo_queue)) {
1563                err = PTR_ERR(lo->lo_queue);
1564                goto out_cleanup_tags;
1565        }
1566        lo->lo_queue->queuedata = lo;
1567
1568        INIT_LIST_HEAD(&lo->write_cmd_head);
1569        INIT_WORK(&lo->write_work, loop_queue_write_work);
1570
1571        disk = lo->lo_disk = alloc_disk(1 << part_shift);
1572        if (!disk)
1573                goto out_free_queue;
1574
1575        /*
1576         * Disable partition scanning by default. The in-kernel partition
1577         * scanning can be requested individually per-device during its
1578         * setup. Userspace can always add and remove partitions from all
1579         * devices. The needed partition minors are allocated from the
1580         * extended minor space, the main loop device numbers will continue
1581         * to match the loop minors, regardless of the number of partitions
1582         * used.
1583         *
1584         * If max_part is given, partition scanning is globally enabled for
1585         * all loop devices. The minors for the main loop devices will be
1586         * multiples of max_part.
1587         *
1588         * Note: Global-for-all-devices, set-only-at-init, read-only module
1589         * parameteters like 'max_loop' and 'max_part' make things needlessly
1590         * complicated, are too static, inflexible and may surprise
1591         * userspace tools. Parameters like this in general should be avoided.
1592         */
1593        if (!part_shift)
1594                disk->flags |= GENHD_FL_NO_PART_SCAN;
1595        disk->flags |= GENHD_FL_EXT_DEVT;
1596        mutex_init(&lo->lo_ctl_mutex);
1597        lo->lo_number           = i;
1598        spin_lock_init(&lo->lo_lock);
1599        disk->major             = LOOP_MAJOR;
1600        disk->first_minor       = i << part_shift;
1601        disk->fops              = &lo_fops;
1602        disk->private_data      = lo;
1603        disk->queue             = lo->lo_queue;
1604        sprintf(disk->disk_name, "loop%d", i);
1605        add_disk(disk);
1606        *l = lo;
1607        return lo->lo_number;
1608
1609out_free_queue:
1610        blk_cleanup_queue(lo->lo_queue);
1611out_cleanup_tags:
1612        blk_mq_free_tag_set(&lo->tag_set);
1613out_free_idr:
1614        idr_remove(&loop_index_idr, i);
1615out_free_dev:
1616        kfree(lo);
1617out:
1618        return err;
1619}
1620
1621static void loop_remove(struct loop_device *lo)
1622{
1623        blk_cleanup_queue(lo->lo_queue);
1624        del_gendisk(lo->lo_disk);
1625        blk_mq_free_tag_set(&lo->tag_set);
1626        put_disk(lo->lo_disk);
1627        kfree(lo);
1628}
1629
1630static int find_free_cb(int id, void *ptr, void *data)
1631{
1632        struct loop_device *lo = ptr;
1633        struct loop_device **l = data;
1634
1635        if (lo->lo_state == Lo_unbound) {
1636                *l = lo;
1637                return 1;
1638        }
1639        return 0;
1640}
1641
1642static int loop_lookup(struct loop_device **l, int i)
1643{
1644        struct loop_device *lo;
1645        int ret = -ENODEV;
1646
1647        if (i < 0) {
1648                int err;
1649
1650                err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1651                if (err == 1) {
1652                        *l = lo;
1653                        ret = lo->lo_number;
1654                }
1655                goto out;
1656        }
1657
1658        /* lookup and return a specific i */
1659        lo = idr_find(&loop_index_idr, i);
1660        if (lo) {
1661                *l = lo;
1662                ret = lo->lo_number;
1663        }
1664out:
1665        return ret;
1666}
1667
1668static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1669{
1670        struct loop_device *lo;
1671        struct kobject *kobj;
1672        int err;
1673
1674        mutex_lock(&loop_index_mutex);
1675        err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1676        if (err < 0)
1677                err = loop_add(&lo, MINOR(dev) >> part_shift);
1678        if (err < 0)
1679                kobj = NULL;
1680        else
1681                kobj = get_disk(lo->lo_disk);
1682        mutex_unlock(&loop_index_mutex);
1683
1684        *part = 0;
1685        return kobj;
1686}
1687
1688static long loop_control_ioctl(struct file *file, unsigned int cmd,
1689                               unsigned long parm)
1690{
1691        struct loop_device *lo;
1692        int ret = -ENOSYS;
1693
1694        mutex_lock(&loop_index_mutex);
1695        switch (cmd) {
1696        case LOOP_CTL_ADD:
1697                ret = loop_lookup(&lo, parm);
1698                if (ret >= 0) {
1699                        ret = -EEXIST;
1700                        break;
1701                }
1702                ret = loop_add(&lo, parm);
1703                break;
1704        case LOOP_CTL_REMOVE:
1705                ret = loop_lookup(&lo, parm);
1706                if (ret < 0)
1707                        break;
1708                mutex_lock(&lo->lo_ctl_mutex);
1709                if (lo->lo_state != Lo_unbound) {
1710                        ret = -EBUSY;
1711                        mutex_unlock(&lo->lo_ctl_mutex);
1712                        break;
1713                }
1714                if (lo->lo_refcnt > 0) {
1715                        ret = -EBUSY;
1716                        mutex_unlock(&lo->lo_ctl_mutex);
1717                        break;
1718                }
1719                lo->lo_disk->private_data = NULL;
1720                mutex_unlock(&lo->lo_ctl_mutex);
1721                idr_remove(&loop_index_idr, lo->lo_number);
1722                loop_remove(lo);
1723                break;
1724        case LOOP_CTL_GET_FREE:
1725                ret = loop_lookup(&lo, -1);
1726                if (ret >= 0)
1727                        break;
1728                ret = loop_add(&lo, -1);
1729        }
1730        mutex_unlock(&loop_index_mutex);
1731
1732        return ret;
1733}
1734
1735static const struct file_operations loop_ctl_fops = {
1736        .open           = nonseekable_open,
1737        .unlocked_ioctl = loop_control_ioctl,
1738        .compat_ioctl   = loop_control_ioctl,
1739        .owner          = THIS_MODULE,
1740        .llseek         = noop_llseek,
1741};
1742
1743static struct miscdevice loop_misc = {
1744        .minor          = LOOP_CTRL_MINOR,
1745        .name           = "loop-control",
1746        .fops           = &loop_ctl_fops,
1747};
1748
1749MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1750MODULE_ALIAS("devname:loop-control");
1751
1752static int __init loop_init(void)
1753{
1754        int i, nr;
1755        unsigned long range;
1756        struct loop_device *lo;
1757        int err;
1758
1759        err = misc_register(&loop_misc);
1760        if (err < 0)
1761                return err;
1762
1763        part_shift = 0;
1764        if (max_part > 0) {
1765                part_shift = fls(max_part);
1766
1767                /*
1768                 * Adjust max_part according to part_shift as it is exported
1769                 * to user space so that user can decide correct minor number
1770                 * if [s]he want to create more devices.
1771                 *
1772                 * Note that -1 is required because partition 0 is reserved
1773                 * for the whole disk.
1774                 */
1775                max_part = (1UL << part_shift) - 1;
1776        }
1777
1778        if ((1UL << part_shift) > DISK_MAX_PARTS) {
1779                err = -EINVAL;
1780                goto misc_out;
1781        }
1782
1783        if (max_loop > 1UL << (MINORBITS - part_shift)) {
1784                err = -EINVAL;
1785                goto misc_out;
1786        }
1787
1788        /*
1789         * If max_loop is specified, create that many devices upfront.
1790         * This also becomes a hard limit. If max_loop is not specified,
1791         * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1792         * init time. Loop devices can be requested on-demand with the
1793         * /dev/loop-control interface, or be instantiated by accessing
1794         * a 'dead' device node.
1795         */
1796        if (max_loop) {
1797                nr = max_loop;
1798                range = max_loop << part_shift;
1799        } else {
1800                nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1801                range = 1UL << MINORBITS;
1802        }
1803
1804        if (register_blkdev(LOOP_MAJOR, "loop")) {
1805                err = -EIO;
1806                goto misc_out;
1807        }
1808
1809        loop_wq = alloc_workqueue("kloopd",
1810                        WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_UNBOUND, 0);
1811        if (!loop_wq) {
1812                err = -ENOMEM;
1813                goto misc_out;
1814        }
1815
1816        blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1817                                  THIS_MODULE, loop_probe, NULL, NULL);
1818
1819        /* pre-create number of devices given by config or max_loop */
1820        mutex_lock(&loop_index_mutex);
1821        for (i = 0; i < nr; i++)
1822                loop_add(&lo, i);
1823        mutex_unlock(&loop_index_mutex);
1824
1825        printk(KERN_INFO "loop: module loaded\n");
1826        return 0;
1827
1828misc_out:
1829        misc_deregister(&loop_misc);
1830        return err;
1831}
1832
1833static int loop_exit_cb(int id, void *ptr, void *data)
1834{
1835        struct loop_device *lo = ptr;
1836
1837        loop_remove(lo);
1838        return 0;
1839}
1840
1841static void __exit loop_exit(void)
1842{
1843        unsigned long range;
1844
1845        range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1846
1847        idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1848        idr_destroy(&loop_index_idr);
1849
1850        blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1851        unregister_blkdev(LOOP_MAJOR, "loop");
1852
1853        destroy_workqueue(loop_wq);
1854
1855        misc_deregister(&loop_misc);
1856}
1857
1858module_init(loop_init);
1859module_exit(loop_exit);
1860
1861#ifndef MODULE
1862static int __init max_loop_setup(char *str)
1863{
1864        max_loop = simple_strtol(str, NULL, 0);
1865        return 1;
1866}
1867
1868__setup("max_loop=", max_loop_setup);
1869#endif
1870