linux/drivers/block/nvme-core.c
<<
>>
Prefs
   1/*
   2 * NVM Express device driver
   3 * Copyright (c) 2011-2014, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 */
  14
  15#include <linux/nvme.h>
  16#include <linux/bitops.h>
  17#include <linux/blkdev.h>
  18#include <linux/blk-mq.h>
  19#include <linux/cpu.h>
  20#include <linux/delay.h>
  21#include <linux/errno.h>
  22#include <linux/fs.h>
  23#include <linux/genhd.h>
  24#include <linux/hdreg.h>
  25#include <linux/idr.h>
  26#include <linux/init.h>
  27#include <linux/interrupt.h>
  28#include <linux/io.h>
  29#include <linux/kdev_t.h>
  30#include <linux/kthread.h>
  31#include <linux/kernel.h>
  32#include <linux/mm.h>
  33#include <linux/module.h>
  34#include <linux/moduleparam.h>
  35#include <linux/pci.h>
  36#include <linux/poison.h>
  37#include <linux/ptrace.h>
  38#include <linux/sched.h>
  39#include <linux/slab.h>
  40#include <linux/t10-pi.h>
  41#include <linux/types.h>
  42#include <scsi/sg.h>
  43#include <asm-generic/io-64-nonatomic-lo-hi.h>
  44
  45#define NVME_MINORS             (1U << MINORBITS)
  46#define NVME_Q_DEPTH            1024
  47#define NVME_AQ_DEPTH           256
  48#define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
  49#define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
  50#define ADMIN_TIMEOUT           (admin_timeout * HZ)
  51#define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
  52
  53static unsigned char admin_timeout = 60;
  54module_param(admin_timeout, byte, 0644);
  55MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
  56
  57unsigned char nvme_io_timeout = 30;
  58module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
  59MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
  60
  61static unsigned char shutdown_timeout = 5;
  62module_param(shutdown_timeout, byte, 0644);
  63MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
  64
  65static int nvme_major;
  66module_param(nvme_major, int, 0);
  67
  68static int nvme_char_major;
  69module_param(nvme_char_major, int, 0);
  70
  71static int use_threaded_interrupts;
  72module_param(use_threaded_interrupts, int, 0);
  73
  74static DEFINE_SPINLOCK(dev_list_lock);
  75static LIST_HEAD(dev_list);
  76static struct task_struct *nvme_thread;
  77static struct workqueue_struct *nvme_workq;
  78static wait_queue_head_t nvme_kthread_wait;
  79
  80static struct class *nvme_class;
  81
  82static void nvme_reset_failed_dev(struct work_struct *ws);
  83static int nvme_process_cq(struct nvme_queue *nvmeq);
  84
  85struct async_cmd_info {
  86        struct kthread_work work;
  87        struct kthread_worker *worker;
  88        struct request *req;
  89        u32 result;
  90        int status;
  91        void *ctx;
  92};
  93
  94/*
  95 * An NVM Express queue.  Each device has at least two (one for admin
  96 * commands and one for I/O commands).
  97 */
  98struct nvme_queue {
  99        struct device *q_dmadev;
 100        struct nvme_dev *dev;
 101        char irqname[24];       /* nvme4294967295-65535\0 */
 102        spinlock_t q_lock;
 103        struct nvme_command *sq_cmds;
 104        volatile struct nvme_completion *cqes;
 105        dma_addr_t sq_dma_addr;
 106        dma_addr_t cq_dma_addr;
 107        u32 __iomem *q_db;
 108        u16 q_depth;
 109        s16 cq_vector;
 110        u16 sq_head;
 111        u16 sq_tail;
 112        u16 cq_head;
 113        u16 qid;
 114        u8 cq_phase;
 115        u8 cqe_seen;
 116        struct async_cmd_info cmdinfo;
 117        struct blk_mq_hw_ctx *hctx;
 118};
 119
 120/*
 121 * Check we didin't inadvertently grow the command struct
 122 */
 123static inline void _nvme_check_size(void)
 124{
 125        BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
 126        BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
 127        BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
 128        BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
 129        BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
 130        BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
 131        BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
 132        BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
 133        BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
 134        BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
 135        BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
 136        BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
 137}
 138
 139typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
 140                                                struct nvme_completion *);
 141
 142struct nvme_cmd_info {
 143        nvme_completion_fn fn;
 144        void *ctx;
 145        int aborted;
 146        struct nvme_queue *nvmeq;
 147        struct nvme_iod iod[0];
 148};
 149
 150/*
 151 * Max size of iod being embedded in the request payload
 152 */
 153#define NVME_INT_PAGES          2
 154#define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->page_size)
 155#define NVME_INT_MASK           0x01
 156
 157/*
 158 * Will slightly overestimate the number of pages needed.  This is OK
 159 * as it only leads to a small amount of wasted memory for the lifetime of
 160 * the I/O.
 161 */
 162static int nvme_npages(unsigned size, struct nvme_dev *dev)
 163{
 164        unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
 165        return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
 166}
 167
 168static unsigned int nvme_cmd_size(struct nvme_dev *dev)
 169{
 170        unsigned int ret = sizeof(struct nvme_cmd_info);
 171
 172        ret += sizeof(struct nvme_iod);
 173        ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
 174        ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
 175
 176        return ret;
 177}
 178
 179static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 180                                unsigned int hctx_idx)
 181{
 182        struct nvme_dev *dev = data;
 183        struct nvme_queue *nvmeq = dev->queues[0];
 184
 185        WARN_ON(nvmeq->hctx);
 186        nvmeq->hctx = hctx;
 187        hctx->driver_data = nvmeq;
 188        return 0;
 189}
 190
 191static int nvme_admin_init_request(void *data, struct request *req,
 192                                unsigned int hctx_idx, unsigned int rq_idx,
 193                                unsigned int numa_node)
 194{
 195        struct nvme_dev *dev = data;
 196        struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
 197        struct nvme_queue *nvmeq = dev->queues[0];
 198
 199        BUG_ON(!nvmeq);
 200        cmd->nvmeq = nvmeq;
 201        return 0;
 202}
 203
 204static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 205{
 206        struct nvme_queue *nvmeq = hctx->driver_data;
 207
 208        nvmeq->hctx = NULL;
 209}
 210
 211static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 212                          unsigned int hctx_idx)
 213{
 214        struct nvme_dev *dev = data;
 215        struct nvme_queue *nvmeq = dev->queues[
 216                                        (hctx_idx % dev->queue_count) + 1];
 217
 218        if (!nvmeq->hctx)
 219                nvmeq->hctx = hctx;
 220
 221        /* nvmeq queues are shared between namespaces. We assume here that
 222         * blk-mq map the tags so they match up with the nvme queue tags. */
 223        WARN_ON(nvmeq->hctx->tags != hctx->tags);
 224
 225        hctx->driver_data = nvmeq;
 226        return 0;
 227}
 228
 229static int nvme_init_request(void *data, struct request *req,
 230                                unsigned int hctx_idx, unsigned int rq_idx,
 231                                unsigned int numa_node)
 232{
 233        struct nvme_dev *dev = data;
 234        struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
 235        struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
 236
 237        BUG_ON(!nvmeq);
 238        cmd->nvmeq = nvmeq;
 239        return 0;
 240}
 241
 242static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
 243                                nvme_completion_fn handler)
 244{
 245        cmd->fn = handler;
 246        cmd->ctx = ctx;
 247        cmd->aborted = 0;
 248        blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
 249}
 250
 251static void *iod_get_private(struct nvme_iod *iod)
 252{
 253        return (void *) (iod->private & ~0x1UL);
 254}
 255
 256/*
 257 * If bit 0 is set, the iod is embedded in the request payload.
 258 */
 259static bool iod_should_kfree(struct nvme_iod *iod)
 260{
 261        return (iod->private & NVME_INT_MASK) == 0;
 262}
 263
 264/* Special values must be less than 0x1000 */
 265#define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
 266#define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
 267#define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
 268#define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
 269
 270static void special_completion(struct nvme_queue *nvmeq, void *ctx,
 271                                                struct nvme_completion *cqe)
 272{
 273        if (ctx == CMD_CTX_CANCELLED)
 274                return;
 275        if (ctx == CMD_CTX_COMPLETED) {
 276                dev_warn(nvmeq->q_dmadev,
 277                                "completed id %d twice on queue %d\n",
 278                                cqe->command_id, le16_to_cpup(&cqe->sq_id));
 279                return;
 280        }
 281        if (ctx == CMD_CTX_INVALID) {
 282                dev_warn(nvmeq->q_dmadev,
 283                                "invalid id %d completed on queue %d\n",
 284                                cqe->command_id, le16_to_cpup(&cqe->sq_id));
 285                return;
 286        }
 287        dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
 288}
 289
 290static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
 291{
 292        void *ctx;
 293
 294        if (fn)
 295                *fn = cmd->fn;
 296        ctx = cmd->ctx;
 297        cmd->fn = special_completion;
 298        cmd->ctx = CMD_CTX_CANCELLED;
 299        return ctx;
 300}
 301
 302static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
 303                                                struct nvme_completion *cqe)
 304{
 305        u32 result = le32_to_cpup(&cqe->result);
 306        u16 status = le16_to_cpup(&cqe->status) >> 1;
 307
 308        if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
 309                ++nvmeq->dev->event_limit;
 310        if (status == NVME_SC_SUCCESS)
 311                dev_warn(nvmeq->q_dmadev,
 312                        "async event result %08x\n", result);
 313}
 314
 315static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
 316                                                struct nvme_completion *cqe)
 317{
 318        struct request *req = ctx;
 319
 320        u16 status = le16_to_cpup(&cqe->status) >> 1;
 321        u32 result = le32_to_cpup(&cqe->result);
 322
 323        blk_mq_free_hctx_request(nvmeq->hctx, req);
 324
 325        dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
 326        ++nvmeq->dev->abort_limit;
 327}
 328
 329static void async_completion(struct nvme_queue *nvmeq, void *ctx,
 330                                                struct nvme_completion *cqe)
 331{
 332        struct async_cmd_info *cmdinfo = ctx;
 333        cmdinfo->result = le32_to_cpup(&cqe->result);
 334        cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
 335        queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
 336        blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
 337}
 338
 339static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
 340                                  unsigned int tag)
 341{
 342        struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
 343        struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
 344
 345        return blk_mq_rq_to_pdu(req);
 346}
 347
 348/*
 349 * Called with local interrupts disabled and the q_lock held.  May not sleep.
 350 */
 351static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
 352                                                nvme_completion_fn *fn)
 353{
 354        struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
 355        void *ctx;
 356        if (tag >= nvmeq->q_depth) {
 357                *fn = special_completion;
 358                return CMD_CTX_INVALID;
 359        }
 360        if (fn)
 361                *fn = cmd->fn;
 362        ctx = cmd->ctx;
 363        cmd->fn = special_completion;
 364        cmd->ctx = CMD_CTX_COMPLETED;
 365        return ctx;
 366}
 367
 368/**
 369 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
 370 * @nvmeq: The queue to use
 371 * @cmd: The command to send
 372 *
 373 * Safe to use from interrupt context
 374 */
 375static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
 376{
 377        u16 tail = nvmeq->sq_tail;
 378
 379        memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
 380        if (++tail == nvmeq->q_depth)
 381                tail = 0;
 382        writel(tail, nvmeq->q_db);
 383        nvmeq->sq_tail = tail;
 384
 385        return 0;
 386}
 387
 388static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
 389{
 390        unsigned long flags;
 391        int ret;
 392        spin_lock_irqsave(&nvmeq->q_lock, flags);
 393        ret = __nvme_submit_cmd(nvmeq, cmd);
 394        spin_unlock_irqrestore(&nvmeq->q_lock, flags);
 395        return ret;
 396}
 397
 398static __le64 **iod_list(struct nvme_iod *iod)
 399{
 400        return ((void *)iod) + iod->offset;
 401}
 402
 403static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
 404                            unsigned nseg, unsigned long private)
 405{
 406        iod->private = private;
 407        iod->offset = offsetof(struct nvme_iod, sg[nseg]);
 408        iod->npages = -1;
 409        iod->length = nbytes;
 410        iod->nents = 0;
 411}
 412
 413static struct nvme_iod *
 414__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
 415                 unsigned long priv, gfp_t gfp)
 416{
 417        struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
 418                                sizeof(__le64 *) * nvme_npages(bytes, dev) +
 419                                sizeof(struct scatterlist) * nseg, gfp);
 420
 421        if (iod)
 422                iod_init(iod, bytes, nseg, priv);
 423
 424        return iod;
 425}
 426
 427static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
 428                                       gfp_t gfp)
 429{
 430        unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
 431                                                sizeof(struct nvme_dsm_range);
 432        struct nvme_iod *iod;
 433
 434        if (rq->nr_phys_segments <= NVME_INT_PAGES &&
 435            size <= NVME_INT_BYTES(dev)) {
 436                struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
 437
 438                iod = cmd->iod;
 439                iod_init(iod, size, rq->nr_phys_segments,
 440                                (unsigned long) rq | NVME_INT_MASK);
 441                return iod;
 442        }
 443
 444        return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
 445                                (unsigned long) rq, gfp);
 446}
 447
 448void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
 449{
 450        const int last_prp = dev->page_size / 8 - 1;
 451        int i;
 452        __le64 **list = iod_list(iod);
 453        dma_addr_t prp_dma = iod->first_dma;
 454
 455        if (iod->npages == 0)
 456                dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
 457        for (i = 0; i < iod->npages; i++) {
 458                __le64 *prp_list = list[i];
 459                dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
 460                dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
 461                prp_dma = next_prp_dma;
 462        }
 463
 464        if (iod_should_kfree(iod))
 465                kfree(iod);
 466}
 467
 468static int nvme_error_status(u16 status)
 469{
 470        switch (status & 0x7ff) {
 471        case NVME_SC_SUCCESS:
 472                return 0;
 473        case NVME_SC_CAP_EXCEEDED:
 474                return -ENOSPC;
 475        default:
 476                return -EIO;
 477        }
 478}
 479
 480#ifdef CONFIG_BLK_DEV_INTEGRITY
 481static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
 482{
 483        if (be32_to_cpu(pi->ref_tag) == v)
 484                pi->ref_tag = cpu_to_be32(p);
 485}
 486
 487static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
 488{
 489        if (be32_to_cpu(pi->ref_tag) == p)
 490                pi->ref_tag = cpu_to_be32(v);
 491}
 492
 493/**
 494 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
 495 *
 496 * The virtual start sector is the one that was originally submitted by the
 497 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
 498 * start sector may be different. Remap protection information to match the
 499 * physical LBA on writes, and back to the original seed on reads.
 500 *
 501 * Type 0 and 3 do not have a ref tag, so no remapping required.
 502 */
 503static void nvme_dif_remap(struct request *req,
 504                        void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
 505{
 506        struct nvme_ns *ns = req->rq_disk->private_data;
 507        struct bio_integrity_payload *bip;
 508        struct t10_pi_tuple *pi;
 509        void *p, *pmap;
 510        u32 i, nlb, ts, phys, virt;
 511
 512        if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
 513                return;
 514
 515        bip = bio_integrity(req->bio);
 516        if (!bip)
 517                return;
 518
 519        pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
 520
 521        p = pmap;
 522        virt = bip_get_seed(bip);
 523        phys = nvme_block_nr(ns, blk_rq_pos(req));
 524        nlb = (blk_rq_bytes(req) >> ns->lba_shift);
 525        ts = ns->disk->integrity->tuple_size;
 526
 527        for (i = 0; i < nlb; i++, virt++, phys++) {
 528                pi = (struct t10_pi_tuple *)p;
 529                dif_swap(phys, virt, pi);
 530                p += ts;
 531        }
 532        kunmap_atomic(pmap);
 533}
 534
 535static int nvme_noop_verify(struct blk_integrity_iter *iter)
 536{
 537        return 0;
 538}
 539
 540static int nvme_noop_generate(struct blk_integrity_iter *iter)
 541{
 542        return 0;
 543}
 544
 545struct blk_integrity nvme_meta_noop = {
 546        .name                   = "NVME_META_NOOP",
 547        .generate_fn            = nvme_noop_generate,
 548        .verify_fn              = nvme_noop_verify,
 549};
 550
 551static void nvme_init_integrity(struct nvme_ns *ns)
 552{
 553        struct blk_integrity integrity;
 554
 555        switch (ns->pi_type) {
 556        case NVME_NS_DPS_PI_TYPE3:
 557                integrity = t10_pi_type3_crc;
 558                break;
 559        case NVME_NS_DPS_PI_TYPE1:
 560        case NVME_NS_DPS_PI_TYPE2:
 561                integrity = t10_pi_type1_crc;
 562                break;
 563        default:
 564                integrity = nvme_meta_noop;
 565                break;
 566        }
 567        integrity.tuple_size = ns->ms;
 568        blk_integrity_register(ns->disk, &integrity);
 569        blk_queue_max_integrity_segments(ns->queue, 1);
 570}
 571#else /* CONFIG_BLK_DEV_INTEGRITY */
 572static void nvme_dif_remap(struct request *req,
 573                        void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
 574{
 575}
 576static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
 577{
 578}
 579static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
 580{
 581}
 582static void nvme_init_integrity(struct nvme_ns *ns)
 583{
 584}
 585#endif
 586
 587static void req_completion(struct nvme_queue *nvmeq, void *ctx,
 588                                                struct nvme_completion *cqe)
 589{
 590        struct nvme_iod *iod = ctx;
 591        struct request *req = iod_get_private(iod);
 592        struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
 593
 594        u16 status = le16_to_cpup(&cqe->status) >> 1;
 595
 596        if (unlikely(status)) {
 597                if (!(status & NVME_SC_DNR || blk_noretry_request(req))
 598                    && (jiffies - req->start_time) < req->timeout) {
 599                        unsigned long flags;
 600
 601                        blk_mq_requeue_request(req);
 602                        spin_lock_irqsave(req->q->queue_lock, flags);
 603                        if (!blk_queue_stopped(req->q))
 604                                blk_mq_kick_requeue_list(req->q);
 605                        spin_unlock_irqrestore(req->q->queue_lock, flags);
 606                        return;
 607                }
 608                req->errors = nvme_error_status(status);
 609        } else
 610                req->errors = 0;
 611
 612        if (cmd_rq->aborted)
 613                dev_warn(&nvmeq->dev->pci_dev->dev,
 614                        "completing aborted command with status:%04x\n",
 615                        status);
 616
 617        if (iod->nents) {
 618                dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
 619                        rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 620                if (blk_integrity_rq(req)) {
 621                        if (!rq_data_dir(req))
 622                                nvme_dif_remap(req, nvme_dif_complete);
 623                        dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->meta_sg, 1,
 624                                rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 625                }
 626        }
 627        nvme_free_iod(nvmeq->dev, iod);
 628
 629        blk_mq_complete_request(req);
 630}
 631
 632/* length is in bytes.  gfp flags indicates whether we may sleep. */
 633int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
 634                                                                gfp_t gfp)
 635{
 636        struct dma_pool *pool;
 637        int length = total_len;
 638        struct scatterlist *sg = iod->sg;
 639        int dma_len = sg_dma_len(sg);
 640        u64 dma_addr = sg_dma_address(sg);
 641        u32 page_size = dev->page_size;
 642        int offset = dma_addr & (page_size - 1);
 643        __le64 *prp_list;
 644        __le64 **list = iod_list(iod);
 645        dma_addr_t prp_dma;
 646        int nprps, i;
 647
 648        length -= (page_size - offset);
 649        if (length <= 0)
 650                return total_len;
 651
 652        dma_len -= (page_size - offset);
 653        if (dma_len) {
 654                dma_addr += (page_size - offset);
 655        } else {
 656                sg = sg_next(sg);
 657                dma_addr = sg_dma_address(sg);
 658                dma_len = sg_dma_len(sg);
 659        }
 660
 661        if (length <= page_size) {
 662                iod->first_dma = dma_addr;
 663                return total_len;
 664        }
 665
 666        nprps = DIV_ROUND_UP(length, page_size);
 667        if (nprps <= (256 / 8)) {
 668                pool = dev->prp_small_pool;
 669                iod->npages = 0;
 670        } else {
 671                pool = dev->prp_page_pool;
 672                iod->npages = 1;
 673        }
 674
 675        prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
 676        if (!prp_list) {
 677                iod->first_dma = dma_addr;
 678                iod->npages = -1;
 679                return (total_len - length) + page_size;
 680        }
 681        list[0] = prp_list;
 682        iod->first_dma = prp_dma;
 683        i = 0;
 684        for (;;) {
 685                if (i == page_size >> 3) {
 686                        __le64 *old_prp_list = prp_list;
 687                        prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
 688                        if (!prp_list)
 689                                return total_len - length;
 690                        list[iod->npages++] = prp_list;
 691                        prp_list[0] = old_prp_list[i - 1];
 692                        old_prp_list[i - 1] = cpu_to_le64(prp_dma);
 693                        i = 1;
 694                }
 695                prp_list[i++] = cpu_to_le64(dma_addr);
 696                dma_len -= page_size;
 697                dma_addr += page_size;
 698                length -= page_size;
 699                if (length <= 0)
 700                        break;
 701                if (dma_len > 0)
 702                        continue;
 703                BUG_ON(dma_len < 0);
 704                sg = sg_next(sg);
 705                dma_addr = sg_dma_address(sg);
 706                dma_len = sg_dma_len(sg);
 707        }
 708
 709        return total_len;
 710}
 711
 712/*
 713 * We reuse the small pool to allocate the 16-byte range here as it is not
 714 * worth having a special pool for these or additional cases to handle freeing
 715 * the iod.
 716 */
 717static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
 718                struct request *req, struct nvme_iod *iod)
 719{
 720        struct nvme_dsm_range *range =
 721                                (struct nvme_dsm_range *)iod_list(iod)[0];
 722        struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
 723
 724        range->cattr = cpu_to_le32(0);
 725        range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
 726        range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
 727
 728        memset(cmnd, 0, sizeof(*cmnd));
 729        cmnd->dsm.opcode = nvme_cmd_dsm;
 730        cmnd->dsm.command_id = req->tag;
 731        cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
 732        cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
 733        cmnd->dsm.nr = 0;
 734        cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
 735
 736        if (++nvmeq->sq_tail == nvmeq->q_depth)
 737                nvmeq->sq_tail = 0;
 738        writel(nvmeq->sq_tail, nvmeq->q_db);
 739}
 740
 741static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
 742                                                                int cmdid)
 743{
 744        struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
 745
 746        memset(cmnd, 0, sizeof(*cmnd));
 747        cmnd->common.opcode = nvme_cmd_flush;
 748        cmnd->common.command_id = cmdid;
 749        cmnd->common.nsid = cpu_to_le32(ns->ns_id);
 750
 751        if (++nvmeq->sq_tail == nvmeq->q_depth)
 752                nvmeq->sq_tail = 0;
 753        writel(nvmeq->sq_tail, nvmeq->q_db);
 754}
 755
 756static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
 757                                                        struct nvme_ns *ns)
 758{
 759        struct request *req = iod_get_private(iod);
 760        struct nvme_command *cmnd;
 761        u16 control = 0;
 762        u32 dsmgmt = 0;
 763
 764        if (req->cmd_flags & REQ_FUA)
 765                control |= NVME_RW_FUA;
 766        if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
 767                control |= NVME_RW_LR;
 768
 769        if (req->cmd_flags & REQ_RAHEAD)
 770                dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
 771
 772        cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
 773        memset(cmnd, 0, sizeof(*cmnd));
 774
 775        cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
 776        cmnd->rw.command_id = req->tag;
 777        cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
 778        cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
 779        cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
 780        cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
 781        cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
 782
 783        if (blk_integrity_rq(req)) {
 784                cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
 785                switch (ns->pi_type) {
 786                case NVME_NS_DPS_PI_TYPE3:
 787                        control |= NVME_RW_PRINFO_PRCHK_GUARD;
 788                        break;
 789                case NVME_NS_DPS_PI_TYPE1:
 790                case NVME_NS_DPS_PI_TYPE2:
 791                        control |= NVME_RW_PRINFO_PRCHK_GUARD |
 792                                        NVME_RW_PRINFO_PRCHK_REF;
 793                        cmnd->rw.reftag = cpu_to_le32(
 794                                        nvme_block_nr(ns, blk_rq_pos(req)));
 795                        break;
 796                }
 797        } else if (ns->ms)
 798                control |= NVME_RW_PRINFO_PRACT;
 799
 800        cmnd->rw.control = cpu_to_le16(control);
 801        cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
 802
 803        if (++nvmeq->sq_tail == nvmeq->q_depth)
 804                nvmeq->sq_tail = 0;
 805        writel(nvmeq->sq_tail, nvmeq->q_db);
 806
 807        return 0;
 808}
 809
 810static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
 811                         const struct blk_mq_queue_data *bd)
 812{
 813        struct nvme_ns *ns = hctx->queue->queuedata;
 814        struct nvme_queue *nvmeq = hctx->driver_data;
 815        struct request *req = bd->rq;
 816        struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
 817        struct nvme_iod *iod;
 818        enum dma_data_direction dma_dir;
 819
 820        /*
 821         * If formated with metadata, require the block layer provide a buffer
 822         * unless this namespace is formated such that the metadata can be
 823         * stripped/generated by the controller with PRACT=1.
 824         */
 825        if (ns->ms && !blk_integrity_rq(req)) {
 826                if (!(ns->pi_type && ns->ms == 8)) {
 827                        req->errors = -EFAULT;
 828                        blk_mq_complete_request(req);
 829                        return BLK_MQ_RQ_QUEUE_OK;
 830                }
 831        }
 832
 833        iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
 834        if (!iod)
 835                return BLK_MQ_RQ_QUEUE_BUSY;
 836
 837        if (req->cmd_flags & REQ_DISCARD) {
 838                void *range;
 839                /*
 840                 * We reuse the small pool to allocate the 16-byte range here
 841                 * as it is not worth having a special pool for these or
 842                 * additional cases to handle freeing the iod.
 843                 */
 844                range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
 845                                                GFP_ATOMIC,
 846                                                &iod->first_dma);
 847                if (!range)
 848                        goto retry_cmd;
 849                iod_list(iod)[0] = (__le64 *)range;
 850                iod->npages = 0;
 851        } else if (req->nr_phys_segments) {
 852                dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
 853
 854                sg_init_table(iod->sg, req->nr_phys_segments);
 855                iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
 856                if (!iod->nents)
 857                        goto error_cmd;
 858
 859                if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
 860                        goto retry_cmd;
 861
 862                if (blk_rq_bytes(req) !=
 863                    nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
 864                        dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
 865                                        iod->nents, dma_dir);
 866                        goto retry_cmd;
 867                }
 868                if (blk_integrity_rq(req)) {
 869                        if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
 870                                goto error_cmd;
 871
 872                        sg_init_table(iod->meta_sg, 1);
 873                        if (blk_rq_map_integrity_sg(
 874                                        req->q, req->bio, iod->meta_sg) != 1)
 875                                goto error_cmd;
 876
 877                        if (rq_data_dir(req))
 878                                nvme_dif_remap(req, nvme_dif_prep);
 879
 880                        if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
 881                                goto error_cmd;
 882                }
 883        }
 884
 885        nvme_set_info(cmd, iod, req_completion);
 886        spin_lock_irq(&nvmeq->q_lock);
 887        if (req->cmd_flags & REQ_DISCARD)
 888                nvme_submit_discard(nvmeq, ns, req, iod);
 889        else if (req->cmd_flags & REQ_FLUSH)
 890                nvme_submit_flush(nvmeq, ns, req->tag);
 891        else
 892                nvme_submit_iod(nvmeq, iod, ns);
 893
 894        nvme_process_cq(nvmeq);
 895        spin_unlock_irq(&nvmeq->q_lock);
 896        return BLK_MQ_RQ_QUEUE_OK;
 897
 898 error_cmd:
 899        nvme_free_iod(nvmeq->dev, iod);
 900        return BLK_MQ_RQ_QUEUE_ERROR;
 901 retry_cmd:
 902        nvme_free_iod(nvmeq->dev, iod);
 903        return BLK_MQ_RQ_QUEUE_BUSY;
 904}
 905
 906static int nvme_process_cq(struct nvme_queue *nvmeq)
 907{
 908        u16 head, phase;
 909
 910        head = nvmeq->cq_head;
 911        phase = nvmeq->cq_phase;
 912
 913        for (;;) {
 914                void *ctx;
 915                nvme_completion_fn fn;
 916                struct nvme_completion cqe = nvmeq->cqes[head];
 917                if ((le16_to_cpu(cqe.status) & 1) != phase)
 918                        break;
 919                nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
 920                if (++head == nvmeq->q_depth) {
 921                        head = 0;
 922                        phase = !phase;
 923                }
 924                ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
 925                fn(nvmeq, ctx, &cqe);
 926        }
 927
 928        /* If the controller ignores the cq head doorbell and continuously
 929         * writes to the queue, it is theoretically possible to wrap around
 930         * the queue twice and mistakenly return IRQ_NONE.  Linux only
 931         * requires that 0.1% of your interrupts are handled, so this isn't
 932         * a big problem.
 933         */
 934        if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
 935                return 0;
 936
 937        writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 938        nvmeq->cq_head = head;
 939        nvmeq->cq_phase = phase;
 940
 941        nvmeq->cqe_seen = 1;
 942        return 1;
 943}
 944
 945/* Admin queue isn't initialized as a request queue. If at some point this
 946 * happens anyway, make sure to notify the user */
 947static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
 948                               const struct blk_mq_queue_data *bd)
 949{
 950        WARN_ON_ONCE(1);
 951        return BLK_MQ_RQ_QUEUE_ERROR;
 952}
 953
 954static irqreturn_t nvme_irq(int irq, void *data)
 955{
 956        irqreturn_t result;
 957        struct nvme_queue *nvmeq = data;
 958        spin_lock(&nvmeq->q_lock);
 959        nvme_process_cq(nvmeq);
 960        result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
 961        nvmeq->cqe_seen = 0;
 962        spin_unlock(&nvmeq->q_lock);
 963        return result;
 964}
 965
 966static irqreturn_t nvme_irq_check(int irq, void *data)
 967{
 968        struct nvme_queue *nvmeq = data;
 969        struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
 970        if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
 971                return IRQ_NONE;
 972        return IRQ_WAKE_THREAD;
 973}
 974
 975struct sync_cmd_info {
 976        struct task_struct *task;
 977        u32 result;
 978        int status;
 979};
 980
 981static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
 982                                                struct nvme_completion *cqe)
 983{
 984        struct sync_cmd_info *cmdinfo = ctx;
 985        cmdinfo->result = le32_to_cpup(&cqe->result);
 986        cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
 987        wake_up_process(cmdinfo->task);
 988}
 989
 990/*
 991 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 992 * if the result is positive, it's an NVM Express status code
 993 */
 994static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
 995                                                u32 *result, unsigned timeout)
 996{
 997        struct sync_cmd_info cmdinfo;
 998        struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
 999        struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1000
1001        cmdinfo.task = current;
1002        cmdinfo.status = -EINTR;
1003
1004        cmd->common.command_id = req->tag;
1005
1006        nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
1007
1008        set_current_state(TASK_UNINTERRUPTIBLE);
1009        nvme_submit_cmd(nvmeq, cmd);
1010        schedule();
1011
1012        if (result)
1013                *result = cmdinfo.result;
1014        return cmdinfo.status;
1015}
1016
1017static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1018{
1019        struct nvme_queue *nvmeq = dev->queues[0];
1020        struct nvme_command c;
1021        struct nvme_cmd_info *cmd_info;
1022        struct request *req;
1023
1024        req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1025        if (IS_ERR(req))
1026                return PTR_ERR(req);
1027
1028        req->cmd_flags |= REQ_NO_TIMEOUT;
1029        cmd_info = blk_mq_rq_to_pdu(req);
1030        nvme_set_info(cmd_info, NULL, async_req_completion);
1031
1032        memset(&c, 0, sizeof(c));
1033        c.common.opcode = nvme_admin_async_event;
1034        c.common.command_id = req->tag;
1035
1036        blk_mq_free_hctx_request(nvmeq->hctx, req);
1037        return __nvme_submit_cmd(nvmeq, &c);
1038}
1039
1040static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1041                        struct nvme_command *cmd,
1042                        struct async_cmd_info *cmdinfo, unsigned timeout)
1043{
1044        struct nvme_queue *nvmeq = dev->queues[0];
1045        struct request *req;
1046        struct nvme_cmd_info *cmd_rq;
1047
1048        req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1049        if (IS_ERR(req))
1050                return PTR_ERR(req);
1051
1052        req->timeout = timeout;
1053        cmd_rq = blk_mq_rq_to_pdu(req);
1054        cmdinfo->req = req;
1055        nvme_set_info(cmd_rq, cmdinfo, async_completion);
1056        cmdinfo->status = -EINTR;
1057
1058        cmd->common.command_id = req->tag;
1059
1060        return nvme_submit_cmd(nvmeq, cmd);
1061}
1062
1063static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1064                                                u32 *result, unsigned timeout)
1065{
1066        int res;
1067        struct request *req;
1068
1069        req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1070        if (IS_ERR(req))
1071                return PTR_ERR(req);
1072        res = nvme_submit_sync_cmd(req, cmd, result, timeout);
1073        blk_mq_free_request(req);
1074        return res;
1075}
1076
1077int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1078                                                                u32 *result)
1079{
1080        return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
1081}
1082
1083int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1084                                        struct nvme_command *cmd, u32 *result)
1085{
1086        int res;
1087        struct request *req;
1088
1089        req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
1090                                                                        false);
1091        if (IS_ERR(req))
1092                return PTR_ERR(req);
1093        res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
1094        blk_mq_free_request(req);
1095        return res;
1096}
1097
1098static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1099{
1100        struct nvme_command c;
1101
1102        memset(&c, 0, sizeof(c));
1103        c.delete_queue.opcode = opcode;
1104        c.delete_queue.qid = cpu_to_le16(id);
1105
1106        return nvme_submit_admin_cmd(dev, &c, NULL);
1107}
1108
1109static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1110                                                struct nvme_queue *nvmeq)
1111{
1112        struct nvme_command c;
1113        int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1114
1115        memset(&c, 0, sizeof(c));
1116        c.create_cq.opcode = nvme_admin_create_cq;
1117        c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1118        c.create_cq.cqid = cpu_to_le16(qid);
1119        c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1120        c.create_cq.cq_flags = cpu_to_le16(flags);
1121        c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1122
1123        return nvme_submit_admin_cmd(dev, &c, NULL);
1124}
1125
1126static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1127                                                struct nvme_queue *nvmeq)
1128{
1129        struct nvme_command c;
1130        int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1131
1132        memset(&c, 0, sizeof(c));
1133        c.create_sq.opcode = nvme_admin_create_sq;
1134        c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1135        c.create_sq.sqid = cpu_to_le16(qid);
1136        c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1137        c.create_sq.sq_flags = cpu_to_le16(flags);
1138        c.create_sq.cqid = cpu_to_le16(qid);
1139
1140        return nvme_submit_admin_cmd(dev, &c, NULL);
1141}
1142
1143static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1144{
1145        return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1146}
1147
1148static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1149{
1150        return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1151}
1152
1153int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1154                                                        dma_addr_t dma_addr)
1155{
1156        struct nvme_command c;
1157
1158        memset(&c, 0, sizeof(c));
1159        c.identify.opcode = nvme_admin_identify;
1160        c.identify.nsid = cpu_to_le32(nsid);
1161        c.identify.prp1 = cpu_to_le64(dma_addr);
1162        c.identify.cns = cpu_to_le32(cns);
1163
1164        return nvme_submit_admin_cmd(dev, &c, NULL);
1165}
1166
1167int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1168                                        dma_addr_t dma_addr, u32 *result)
1169{
1170        struct nvme_command c;
1171
1172        memset(&c, 0, sizeof(c));
1173        c.features.opcode = nvme_admin_get_features;
1174        c.features.nsid = cpu_to_le32(nsid);
1175        c.features.prp1 = cpu_to_le64(dma_addr);
1176        c.features.fid = cpu_to_le32(fid);
1177
1178        return nvme_submit_admin_cmd(dev, &c, result);
1179}
1180
1181int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1182                                        dma_addr_t dma_addr, u32 *result)
1183{
1184        struct nvme_command c;
1185
1186        memset(&c, 0, sizeof(c));
1187        c.features.opcode = nvme_admin_set_features;
1188        c.features.prp1 = cpu_to_le64(dma_addr);
1189        c.features.fid = cpu_to_le32(fid);
1190        c.features.dword11 = cpu_to_le32(dword11);
1191
1192        return nvme_submit_admin_cmd(dev, &c, result);
1193}
1194
1195/**
1196 * nvme_abort_req - Attempt aborting a request
1197 *
1198 * Schedule controller reset if the command was already aborted once before and
1199 * still hasn't been returned to the driver, or if this is the admin queue.
1200 */
1201static void nvme_abort_req(struct request *req)
1202{
1203        struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1204        struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1205        struct nvme_dev *dev = nvmeq->dev;
1206        struct request *abort_req;
1207        struct nvme_cmd_info *abort_cmd;
1208        struct nvme_command cmd;
1209
1210        if (!nvmeq->qid || cmd_rq->aborted) {
1211                unsigned long flags;
1212
1213                spin_lock_irqsave(&dev_list_lock, flags);
1214                if (work_busy(&dev->reset_work))
1215                        goto out;
1216                list_del_init(&dev->node);
1217                dev_warn(&dev->pci_dev->dev,
1218                        "I/O %d QID %d timeout, reset controller\n",
1219                                                        req->tag, nvmeq->qid);
1220                dev->reset_workfn = nvme_reset_failed_dev;
1221                queue_work(nvme_workq, &dev->reset_work);
1222 out:
1223                spin_unlock_irqrestore(&dev_list_lock, flags);
1224                return;
1225        }
1226
1227        if (!dev->abort_limit)
1228                return;
1229
1230        abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1231                                                                        false);
1232        if (IS_ERR(abort_req))
1233                return;
1234
1235        abort_cmd = blk_mq_rq_to_pdu(abort_req);
1236        nvme_set_info(abort_cmd, abort_req, abort_completion);
1237
1238        memset(&cmd, 0, sizeof(cmd));
1239        cmd.abort.opcode = nvme_admin_abort_cmd;
1240        cmd.abort.cid = req->tag;
1241        cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1242        cmd.abort.command_id = abort_req->tag;
1243
1244        --dev->abort_limit;
1245        cmd_rq->aborted = 1;
1246
1247        dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1248                                                        nvmeq->qid);
1249        if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1250                dev_warn(nvmeq->q_dmadev,
1251                                "Could not abort I/O %d QID %d",
1252                                req->tag, nvmeq->qid);
1253                blk_mq_free_request(abort_req);
1254        }
1255}
1256
1257static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1258                                struct request *req, void *data, bool reserved)
1259{
1260        struct nvme_queue *nvmeq = data;
1261        void *ctx;
1262        nvme_completion_fn fn;
1263        struct nvme_cmd_info *cmd;
1264        struct nvme_completion cqe;
1265
1266        if (!blk_mq_request_started(req))
1267                return;
1268
1269        cmd = blk_mq_rq_to_pdu(req);
1270
1271        if (cmd->ctx == CMD_CTX_CANCELLED)
1272                return;
1273
1274        if (blk_queue_dying(req->q))
1275                cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1276        else
1277                cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1278
1279
1280        dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1281                                                req->tag, nvmeq->qid);
1282        ctx = cancel_cmd_info(cmd, &fn);
1283        fn(nvmeq, ctx, &cqe);
1284}
1285
1286static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1287{
1288        struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1289        struct nvme_queue *nvmeq = cmd->nvmeq;
1290
1291        dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1292                                                        nvmeq->qid);
1293        spin_lock_irq(&nvmeq->q_lock);
1294        nvme_abort_req(req);
1295        spin_unlock_irq(&nvmeq->q_lock);
1296
1297        /*
1298         * The aborted req will be completed on receiving the abort req.
1299         * We enable the timer again. If hit twice, it'll cause a device reset,
1300         * as the device then is in a faulty state.
1301         */
1302        return BLK_EH_RESET_TIMER;
1303}
1304
1305static void nvme_free_queue(struct nvme_queue *nvmeq)
1306{
1307        dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1308                                (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1309        dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1310                                        nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1311        kfree(nvmeq);
1312}
1313
1314static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1315{
1316        int i;
1317
1318        for (i = dev->queue_count - 1; i >= lowest; i--) {
1319                struct nvme_queue *nvmeq = dev->queues[i];
1320                dev->queue_count--;
1321                dev->queues[i] = NULL;
1322                nvme_free_queue(nvmeq);
1323        }
1324}
1325
1326/**
1327 * nvme_suspend_queue - put queue into suspended state
1328 * @nvmeq - queue to suspend
1329 */
1330static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1331{
1332        int vector;
1333
1334        spin_lock_irq(&nvmeq->q_lock);
1335        if (nvmeq->cq_vector == -1) {
1336                spin_unlock_irq(&nvmeq->q_lock);
1337                return 1;
1338        }
1339        vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1340        nvmeq->dev->online_queues--;
1341        nvmeq->cq_vector = -1;
1342        spin_unlock_irq(&nvmeq->q_lock);
1343
1344        if (!nvmeq->qid && nvmeq->dev->admin_q)
1345                blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1346
1347        irq_set_affinity_hint(vector, NULL);
1348        free_irq(vector, nvmeq);
1349
1350        return 0;
1351}
1352
1353static void nvme_clear_queue(struct nvme_queue *nvmeq)
1354{
1355        struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1356
1357        spin_lock_irq(&nvmeq->q_lock);
1358        if (hctx && hctx->tags)
1359                blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
1360        spin_unlock_irq(&nvmeq->q_lock);
1361}
1362
1363static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1364{
1365        struct nvme_queue *nvmeq = dev->queues[qid];
1366
1367        if (!nvmeq)
1368                return;
1369        if (nvme_suspend_queue(nvmeq))
1370                return;
1371
1372        /* Don't tell the adapter to delete the admin queue.
1373         * Don't tell a removed adapter to delete IO queues. */
1374        if (qid && readl(&dev->bar->csts) != -1) {
1375                adapter_delete_sq(dev, qid);
1376                adapter_delete_cq(dev, qid);
1377        }
1378
1379        spin_lock_irq(&nvmeq->q_lock);
1380        nvme_process_cq(nvmeq);
1381        spin_unlock_irq(&nvmeq->q_lock);
1382}
1383
1384static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1385                                                        int depth)
1386{
1387        struct device *dmadev = &dev->pci_dev->dev;
1388        struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1389        if (!nvmeq)
1390                return NULL;
1391
1392        nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1393                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1394        if (!nvmeq->cqes)
1395                goto free_nvmeq;
1396
1397        nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1398                                        &nvmeq->sq_dma_addr, GFP_KERNEL);
1399        if (!nvmeq->sq_cmds)
1400                goto free_cqdma;
1401
1402        nvmeq->q_dmadev = dmadev;
1403        nvmeq->dev = dev;
1404        snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1405                        dev->instance, qid);
1406        spin_lock_init(&nvmeq->q_lock);
1407        nvmeq->cq_head = 0;
1408        nvmeq->cq_phase = 1;
1409        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1410        nvmeq->q_depth = depth;
1411        nvmeq->qid = qid;
1412        dev->queue_count++;
1413        dev->queues[qid] = nvmeq;
1414
1415        return nvmeq;
1416
1417 free_cqdma:
1418        dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1419                                                        nvmeq->cq_dma_addr);
1420 free_nvmeq:
1421        kfree(nvmeq);
1422        return NULL;
1423}
1424
1425static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1426                                                        const char *name)
1427{
1428        if (use_threaded_interrupts)
1429                return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1430                                        nvme_irq_check, nvme_irq, IRQF_SHARED,
1431                                        name, nvmeq);
1432        return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1433                                IRQF_SHARED, name, nvmeq);
1434}
1435
1436static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1437{
1438        struct nvme_dev *dev = nvmeq->dev;
1439
1440        spin_lock_irq(&nvmeq->q_lock);
1441        nvmeq->sq_tail = 0;
1442        nvmeq->cq_head = 0;
1443        nvmeq->cq_phase = 1;
1444        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1445        memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1446        dev->online_queues++;
1447        spin_unlock_irq(&nvmeq->q_lock);
1448}
1449
1450static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1451{
1452        struct nvme_dev *dev = nvmeq->dev;
1453        int result;
1454
1455        nvmeq->cq_vector = qid - 1;
1456        result = adapter_alloc_cq(dev, qid, nvmeq);
1457        if (result < 0)
1458                return result;
1459
1460        result = adapter_alloc_sq(dev, qid, nvmeq);
1461        if (result < 0)
1462                goto release_cq;
1463
1464        result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1465        if (result < 0)
1466                goto release_sq;
1467
1468        nvme_init_queue(nvmeq, qid);
1469        return result;
1470
1471 release_sq:
1472        adapter_delete_sq(dev, qid);
1473 release_cq:
1474        adapter_delete_cq(dev, qid);
1475        return result;
1476}
1477
1478static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1479{
1480        unsigned long timeout;
1481        u32 bit = enabled ? NVME_CSTS_RDY : 0;
1482
1483        timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1484
1485        while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1486                msleep(100);
1487                if (fatal_signal_pending(current))
1488                        return -EINTR;
1489                if (time_after(jiffies, timeout)) {
1490                        dev_err(&dev->pci_dev->dev,
1491                                "Device not ready; aborting %s\n", enabled ?
1492                                                "initialisation" : "reset");
1493                        return -ENODEV;
1494                }
1495        }
1496
1497        return 0;
1498}
1499
1500/*
1501 * If the device has been passed off to us in an enabled state, just clear
1502 * the enabled bit.  The spec says we should set the 'shutdown notification
1503 * bits', but doing so may cause the device to complete commands to the
1504 * admin queue ... and we don't know what memory that might be pointing at!
1505 */
1506static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1507{
1508        dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1509        dev->ctrl_config &= ~NVME_CC_ENABLE;
1510        writel(dev->ctrl_config, &dev->bar->cc);
1511
1512        return nvme_wait_ready(dev, cap, false);
1513}
1514
1515static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1516{
1517        dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1518        dev->ctrl_config |= NVME_CC_ENABLE;
1519        writel(dev->ctrl_config, &dev->bar->cc);
1520
1521        return nvme_wait_ready(dev, cap, true);
1522}
1523
1524static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1525{
1526        unsigned long timeout;
1527
1528        dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1529        dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1530
1531        writel(dev->ctrl_config, &dev->bar->cc);
1532
1533        timeout = SHUTDOWN_TIMEOUT + jiffies;
1534        while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1535                                                        NVME_CSTS_SHST_CMPLT) {
1536                msleep(100);
1537                if (fatal_signal_pending(current))
1538                        return -EINTR;
1539                if (time_after(jiffies, timeout)) {
1540                        dev_err(&dev->pci_dev->dev,
1541                                "Device shutdown incomplete; abort shutdown\n");
1542                        return -ENODEV;
1543                }
1544        }
1545
1546        return 0;
1547}
1548
1549static struct blk_mq_ops nvme_mq_admin_ops = {
1550        .queue_rq       = nvme_admin_queue_rq,
1551        .map_queue      = blk_mq_map_queue,
1552        .init_hctx      = nvme_admin_init_hctx,
1553        .exit_hctx      = nvme_exit_hctx,
1554        .init_request   = nvme_admin_init_request,
1555        .timeout        = nvme_timeout,
1556};
1557
1558static struct blk_mq_ops nvme_mq_ops = {
1559        .queue_rq       = nvme_queue_rq,
1560        .map_queue      = blk_mq_map_queue,
1561        .init_hctx      = nvme_init_hctx,
1562        .exit_hctx      = nvme_exit_hctx,
1563        .init_request   = nvme_init_request,
1564        .timeout        = nvme_timeout,
1565};
1566
1567static void nvme_dev_remove_admin(struct nvme_dev *dev)
1568{
1569        if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1570                blk_cleanup_queue(dev->admin_q);
1571                blk_mq_free_tag_set(&dev->admin_tagset);
1572        }
1573}
1574
1575static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1576{
1577        if (!dev->admin_q) {
1578                dev->admin_tagset.ops = &nvme_mq_admin_ops;
1579                dev->admin_tagset.nr_hw_queues = 1;
1580                dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1581                dev->admin_tagset.reserved_tags = 1;
1582                dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1583                dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
1584                dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1585                dev->admin_tagset.driver_data = dev;
1586
1587                if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1588                        return -ENOMEM;
1589
1590                dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1591                if (IS_ERR(dev->admin_q)) {
1592                        blk_mq_free_tag_set(&dev->admin_tagset);
1593                        return -ENOMEM;
1594                }
1595                if (!blk_get_queue(dev->admin_q)) {
1596                        nvme_dev_remove_admin(dev);
1597                        return -ENODEV;
1598                }
1599        } else
1600                blk_mq_unfreeze_queue(dev->admin_q);
1601
1602        return 0;
1603}
1604
1605static int nvme_configure_admin_queue(struct nvme_dev *dev)
1606{
1607        int result;
1608        u32 aqa;
1609        u64 cap = readq(&dev->bar->cap);
1610        struct nvme_queue *nvmeq;
1611        unsigned page_shift = PAGE_SHIFT;
1612        unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1613        unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1614
1615        if (page_shift < dev_page_min) {
1616                dev_err(&dev->pci_dev->dev,
1617                                "Minimum device page size (%u) too large for "
1618                                "host (%u)\n", 1 << dev_page_min,
1619                                1 << page_shift);
1620                return -ENODEV;
1621        }
1622        if (page_shift > dev_page_max) {
1623                dev_info(&dev->pci_dev->dev,
1624                                "Device maximum page size (%u) smaller than "
1625                                "host (%u); enabling work-around\n",
1626                                1 << dev_page_max, 1 << page_shift);
1627                page_shift = dev_page_max;
1628        }
1629
1630        result = nvme_disable_ctrl(dev, cap);
1631        if (result < 0)
1632                return result;
1633
1634        nvmeq = dev->queues[0];
1635        if (!nvmeq) {
1636                nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1637                if (!nvmeq)
1638                        return -ENOMEM;
1639        }
1640
1641        aqa = nvmeq->q_depth - 1;
1642        aqa |= aqa << 16;
1643
1644        dev->page_size = 1 << page_shift;
1645
1646        dev->ctrl_config = NVME_CC_CSS_NVM;
1647        dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1648        dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1649        dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1650
1651        writel(aqa, &dev->bar->aqa);
1652        writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1653        writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1654
1655        result = nvme_enable_ctrl(dev, cap);
1656        if (result)
1657                goto free_nvmeq;
1658
1659        nvmeq->cq_vector = 0;
1660        result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1661        if (result)
1662                goto free_nvmeq;
1663
1664        return result;
1665
1666 free_nvmeq:
1667        nvme_free_queues(dev, 0);
1668        return result;
1669}
1670
1671struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1672                                unsigned long addr, unsigned length)
1673{
1674        int i, err, count, nents, offset;
1675        struct scatterlist *sg;
1676        struct page **pages;
1677        struct nvme_iod *iod;
1678
1679        if (addr & 3)
1680                return ERR_PTR(-EINVAL);
1681        if (!length || length > INT_MAX - PAGE_SIZE)
1682                return ERR_PTR(-EINVAL);
1683
1684        offset = offset_in_page(addr);
1685        count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1686        pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1687        if (!pages)
1688                return ERR_PTR(-ENOMEM);
1689
1690        err = get_user_pages_fast(addr, count, 1, pages);
1691        if (err < count) {
1692                count = err;
1693                err = -EFAULT;
1694                goto put_pages;
1695        }
1696
1697        err = -ENOMEM;
1698        iod = __nvme_alloc_iod(count, length, dev, 0, GFP_KERNEL);
1699        if (!iod)
1700                goto put_pages;
1701
1702        sg = iod->sg;
1703        sg_init_table(sg, count);
1704        for (i = 0; i < count; i++) {
1705                sg_set_page(&sg[i], pages[i],
1706                            min_t(unsigned, length, PAGE_SIZE - offset),
1707                            offset);
1708                length -= (PAGE_SIZE - offset);
1709                offset = 0;
1710        }
1711        sg_mark_end(&sg[i - 1]);
1712        iod->nents = count;
1713
1714        nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1715                                write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1716        if (!nents)
1717                goto free_iod;
1718
1719        kfree(pages);
1720        return iod;
1721
1722 free_iod:
1723        kfree(iod);
1724 put_pages:
1725        for (i = 0; i < count; i++)
1726                put_page(pages[i]);
1727        kfree(pages);
1728        return ERR_PTR(err);
1729}
1730
1731void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1732                        struct nvme_iod *iod)
1733{
1734        int i;
1735
1736        dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1737                                write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1738
1739        for (i = 0; i < iod->nents; i++)
1740                put_page(sg_page(&iod->sg[i]));
1741}
1742
1743static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1744{
1745        struct nvme_dev *dev = ns->dev;
1746        struct nvme_user_io io;
1747        struct nvme_command c;
1748        unsigned length, meta_len, prp_len;
1749        int status, write;
1750        struct nvme_iod *iod;
1751        dma_addr_t meta_dma = 0;
1752        void *meta = NULL;
1753        void __user *metadata;
1754
1755        if (copy_from_user(&io, uio, sizeof(io)))
1756                return -EFAULT;
1757        length = (io.nblocks + 1) << ns->lba_shift;
1758        meta_len = (io.nblocks + 1) * ns->ms;
1759
1760        if (meta_len && ((io.metadata & 3) || !io.metadata) && !ns->ext)
1761                return -EINVAL;
1762        else if (meta_len && ns->ext) {
1763                length += meta_len;
1764                meta_len = 0;
1765        }
1766
1767        metadata = (void __user *)(unsigned long)io.metadata;
1768
1769        write = io.opcode & 1;
1770
1771        switch (io.opcode) {
1772        case nvme_cmd_write:
1773        case nvme_cmd_read:
1774        case nvme_cmd_compare:
1775                iod = nvme_map_user_pages(dev, write, io.addr, length);
1776                break;
1777        default:
1778                return -EINVAL;
1779        }
1780
1781        if (IS_ERR(iod))
1782                return PTR_ERR(iod);
1783
1784        prp_len = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1785        if (length != prp_len) {
1786                status = -ENOMEM;
1787                goto unmap;
1788        }
1789        if (meta_len) {
1790                meta = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1791                                                &meta_dma, GFP_KERNEL);
1792
1793                if (!meta) {
1794                        status = -ENOMEM;
1795                        goto unmap;
1796                }
1797                if (write) {
1798                        if (copy_from_user(meta, metadata, meta_len)) {
1799                                status = -EFAULT;
1800                                goto unmap;
1801                        }
1802                }
1803        }
1804
1805        memset(&c, 0, sizeof(c));
1806        c.rw.opcode = io.opcode;
1807        c.rw.flags = io.flags;
1808        c.rw.nsid = cpu_to_le32(ns->ns_id);
1809        c.rw.slba = cpu_to_le64(io.slba);
1810        c.rw.length = cpu_to_le16(io.nblocks);
1811        c.rw.control = cpu_to_le16(io.control);
1812        c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1813        c.rw.reftag = cpu_to_le32(io.reftag);
1814        c.rw.apptag = cpu_to_le16(io.apptag);
1815        c.rw.appmask = cpu_to_le16(io.appmask);
1816        c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1817        c.rw.prp2 = cpu_to_le64(iod->first_dma);
1818        c.rw.metadata = cpu_to_le64(meta_dma);
1819        status = nvme_submit_io_cmd(dev, ns, &c, NULL);
1820 unmap:
1821        nvme_unmap_user_pages(dev, write, iod);
1822        nvme_free_iod(dev, iod);
1823        if (meta) {
1824                if (status == NVME_SC_SUCCESS && !write) {
1825                        if (copy_to_user(metadata, meta, meta_len))
1826                                status = -EFAULT;
1827                }
1828                dma_free_coherent(&dev->pci_dev->dev, meta_len, meta, meta_dma);
1829        }
1830        return status;
1831}
1832
1833static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1834                        struct nvme_passthru_cmd __user *ucmd)
1835{
1836        struct nvme_passthru_cmd cmd;
1837        struct nvme_command c;
1838        int status, length;
1839        struct nvme_iod *uninitialized_var(iod);
1840        unsigned timeout;
1841
1842        if (!capable(CAP_SYS_ADMIN))
1843                return -EACCES;
1844        if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1845                return -EFAULT;
1846
1847        memset(&c, 0, sizeof(c));
1848        c.common.opcode = cmd.opcode;
1849        c.common.flags = cmd.flags;
1850        c.common.nsid = cpu_to_le32(cmd.nsid);
1851        c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1852        c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1853        c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1854        c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1855        c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1856        c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1857        c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1858        c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1859
1860        length = cmd.data_len;
1861        if (cmd.data_len) {
1862                iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1863                                                                length);
1864                if (IS_ERR(iod))
1865                        return PTR_ERR(iod);
1866                length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1867                c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1868                c.common.prp2 = cpu_to_le64(iod->first_dma);
1869        }
1870
1871        timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1872                                                                ADMIN_TIMEOUT;
1873
1874        if (length != cmd.data_len)
1875                status = -ENOMEM;
1876        else if (ns) {
1877                struct request *req;
1878
1879                req = blk_mq_alloc_request(ns->queue, WRITE,
1880                                                (GFP_KERNEL|__GFP_WAIT), false);
1881                if (IS_ERR(req))
1882                        status = PTR_ERR(req);
1883                else {
1884                        status = nvme_submit_sync_cmd(req, &c, &cmd.result,
1885                                                                timeout);
1886                        blk_mq_free_request(req);
1887                }
1888        } else
1889                status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
1890
1891        if (cmd.data_len) {
1892                nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1893                nvme_free_iod(dev, iod);
1894        }
1895
1896        if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1897                                                        sizeof(cmd.result)))
1898                status = -EFAULT;
1899
1900        return status;
1901}
1902
1903static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1904                                                        unsigned long arg)
1905{
1906        struct nvme_ns *ns = bdev->bd_disk->private_data;
1907
1908        switch (cmd) {
1909        case NVME_IOCTL_ID:
1910                force_successful_syscall_return();
1911                return ns->ns_id;
1912        case NVME_IOCTL_ADMIN_CMD:
1913                return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1914        case NVME_IOCTL_IO_CMD:
1915                return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1916        case NVME_IOCTL_SUBMIT_IO:
1917                return nvme_submit_io(ns, (void __user *)arg);
1918        case SG_GET_VERSION_NUM:
1919                return nvme_sg_get_version_num((void __user *)arg);
1920        case SG_IO:
1921                return nvme_sg_io(ns, (void __user *)arg);
1922        default:
1923                return -ENOTTY;
1924        }
1925}
1926
1927#ifdef CONFIG_COMPAT
1928static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1929                                        unsigned int cmd, unsigned long arg)
1930{
1931        switch (cmd) {
1932        case SG_IO:
1933                return -ENOIOCTLCMD;
1934        }
1935        return nvme_ioctl(bdev, mode, cmd, arg);
1936}
1937#else
1938#define nvme_compat_ioctl       NULL
1939#endif
1940
1941static int nvme_open(struct block_device *bdev, fmode_t mode)
1942{
1943        int ret = 0;
1944        struct nvme_ns *ns;
1945
1946        spin_lock(&dev_list_lock);
1947        ns = bdev->bd_disk->private_data;
1948        if (!ns)
1949                ret = -ENXIO;
1950        else if (!kref_get_unless_zero(&ns->dev->kref))
1951                ret = -ENXIO;
1952        spin_unlock(&dev_list_lock);
1953
1954        return ret;
1955}
1956
1957static void nvme_free_dev(struct kref *kref);
1958
1959static void nvme_release(struct gendisk *disk, fmode_t mode)
1960{
1961        struct nvme_ns *ns = disk->private_data;
1962        struct nvme_dev *dev = ns->dev;
1963
1964        kref_put(&dev->kref, nvme_free_dev);
1965}
1966
1967static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1968{
1969        /* some standard values */
1970        geo->heads = 1 << 6;
1971        geo->sectors = 1 << 5;
1972        geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1973        return 0;
1974}
1975
1976static void nvme_config_discard(struct nvme_ns *ns)
1977{
1978        u32 logical_block_size = queue_logical_block_size(ns->queue);
1979        ns->queue->limits.discard_zeroes_data = 0;
1980        ns->queue->limits.discard_alignment = logical_block_size;
1981        ns->queue->limits.discard_granularity = logical_block_size;
1982        ns->queue->limits.max_discard_sectors = 0xffffffff;
1983        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1984}
1985
1986static int nvme_revalidate_disk(struct gendisk *disk)
1987{
1988        struct nvme_ns *ns = disk->private_data;
1989        struct nvme_dev *dev = ns->dev;
1990        struct nvme_id_ns *id;
1991        dma_addr_t dma_addr;
1992        u8 lbaf, pi_type;
1993        u16 old_ms;
1994        unsigned short bs;
1995
1996        id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
1997                                                                GFP_KERNEL);
1998        if (!id) {
1999                dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
2000                                                                __func__);
2001                return 0;
2002        }
2003        if (nvme_identify(dev, ns->ns_id, 0, dma_addr)) {
2004                dev_warn(&dev->pci_dev->dev,
2005                        "identify failed ns:%d, setting capacity to 0\n",
2006                        ns->ns_id);
2007                memset(id, 0, sizeof(*id));
2008        }
2009
2010        old_ms = ns->ms;
2011        lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2012        ns->lba_shift = id->lbaf[lbaf].ds;
2013        ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2014        ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
2015
2016        /*
2017         * If identify namespace failed, use default 512 byte block size so
2018         * block layer can use before failing read/write for 0 capacity.
2019         */
2020        if (ns->lba_shift == 0)
2021                ns->lba_shift = 9;
2022        bs = 1 << ns->lba_shift;
2023
2024        /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2025        pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2026                                        id->dps & NVME_NS_DPS_PI_MASK : 0;
2027
2028        if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2029                                ns->ms != old_ms ||
2030                                bs != queue_logical_block_size(disk->queue) ||
2031                                (ns->ms && ns->ext)))
2032                blk_integrity_unregister(disk);
2033
2034        ns->pi_type = pi_type;
2035        blk_queue_logical_block_size(ns->queue, bs);
2036
2037        if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
2038                                                                !ns->ext)
2039                nvme_init_integrity(ns);
2040
2041        if (id->ncap == 0 || (ns->ms && !blk_get_integrity(disk)))
2042                set_capacity(disk, 0);
2043        else
2044                set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2045
2046        if (dev->oncs & NVME_CTRL_ONCS_DSM)
2047                nvme_config_discard(ns);
2048
2049        dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
2050        return 0;
2051}
2052
2053static const struct block_device_operations nvme_fops = {
2054        .owner          = THIS_MODULE,
2055        .ioctl          = nvme_ioctl,
2056        .compat_ioctl   = nvme_compat_ioctl,
2057        .open           = nvme_open,
2058        .release        = nvme_release,
2059        .getgeo         = nvme_getgeo,
2060        .revalidate_disk= nvme_revalidate_disk,
2061};
2062
2063static int nvme_kthread(void *data)
2064{
2065        struct nvme_dev *dev, *next;
2066
2067        while (!kthread_should_stop()) {
2068                set_current_state(TASK_INTERRUPTIBLE);
2069                spin_lock(&dev_list_lock);
2070                list_for_each_entry_safe(dev, next, &dev_list, node) {
2071                        int i;
2072                        if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
2073                                if (work_busy(&dev->reset_work))
2074                                        continue;
2075                                list_del_init(&dev->node);
2076                                dev_warn(&dev->pci_dev->dev,
2077                                        "Failed status: %x, reset controller\n",
2078                                        readl(&dev->bar->csts));
2079                                dev->reset_workfn = nvme_reset_failed_dev;
2080                                queue_work(nvme_workq, &dev->reset_work);
2081                                continue;
2082                        }
2083                        for (i = 0; i < dev->queue_count; i++) {
2084                                struct nvme_queue *nvmeq = dev->queues[i];
2085                                if (!nvmeq)
2086                                        continue;
2087                                spin_lock_irq(&nvmeq->q_lock);
2088                                nvme_process_cq(nvmeq);
2089
2090                                while ((i == 0) && (dev->event_limit > 0)) {
2091                                        if (nvme_submit_async_admin_req(dev))
2092                                                break;
2093                                        dev->event_limit--;
2094                                }
2095                                spin_unlock_irq(&nvmeq->q_lock);
2096                        }
2097                }
2098                spin_unlock(&dev_list_lock);
2099                schedule_timeout(round_jiffies_relative(HZ));
2100        }
2101        return 0;
2102}
2103
2104static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2105{
2106        struct nvme_ns *ns;
2107        struct gendisk *disk;
2108        int node = dev_to_node(&dev->pci_dev->dev);
2109
2110        ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2111        if (!ns)
2112                return;
2113
2114        ns->queue = blk_mq_init_queue(&dev->tagset);
2115        if (IS_ERR(ns->queue))
2116                goto out_free_ns;
2117        queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2118        queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2119        queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2120        ns->dev = dev;
2121        ns->queue->queuedata = ns;
2122
2123        disk = alloc_disk_node(0, node);
2124        if (!disk)
2125                goto out_free_queue;
2126
2127        ns->ns_id = nsid;
2128        ns->disk = disk;
2129        ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2130        list_add_tail(&ns->list, &dev->namespaces);
2131
2132        blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2133        if (dev->max_hw_sectors)
2134                blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2135        if (dev->stripe_size)
2136                blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2137        if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2138                blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2139
2140        disk->major = nvme_major;
2141        disk->first_minor = 0;
2142        disk->fops = &nvme_fops;
2143        disk->private_data = ns;
2144        disk->queue = ns->queue;
2145        disk->driverfs_dev = dev->device;
2146        disk->flags = GENHD_FL_EXT_DEVT;
2147        sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2148
2149        /*
2150         * Initialize capacity to 0 until we establish the namespace format and
2151         * setup integrity extentions if necessary. The revalidate_disk after
2152         * add_disk allows the driver to register with integrity if the format
2153         * requires it.
2154         */
2155        set_capacity(disk, 0);
2156        nvme_revalidate_disk(ns->disk);
2157        add_disk(ns->disk);
2158        if (ns->ms)
2159                revalidate_disk(ns->disk);
2160        return;
2161 out_free_queue:
2162        blk_cleanup_queue(ns->queue);
2163 out_free_ns:
2164        kfree(ns);
2165}
2166
2167static void nvme_create_io_queues(struct nvme_dev *dev)
2168{
2169        unsigned i;
2170
2171        for (i = dev->queue_count; i <= dev->max_qid; i++)
2172                if (!nvme_alloc_queue(dev, i, dev->q_depth))
2173                        break;
2174
2175        for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2176                if (nvme_create_queue(dev->queues[i], i))
2177                        break;
2178}
2179
2180static int set_queue_count(struct nvme_dev *dev, int count)
2181{
2182        int status;
2183        u32 result;
2184        u32 q_count = (count - 1) | ((count - 1) << 16);
2185
2186        status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2187                                                                &result);
2188        if (status < 0)
2189                return status;
2190        if (status > 0) {
2191                dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2192                                                                        status);
2193                return 0;
2194        }
2195        return min(result & 0xffff, result >> 16) + 1;
2196}
2197
2198static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2199{
2200        return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2201}
2202
2203static int nvme_setup_io_queues(struct nvme_dev *dev)
2204{
2205        struct nvme_queue *adminq = dev->queues[0];
2206        struct pci_dev *pdev = dev->pci_dev;
2207        int result, i, vecs, nr_io_queues, size;
2208
2209        nr_io_queues = num_possible_cpus();
2210        result = set_queue_count(dev, nr_io_queues);
2211        if (result <= 0)
2212                return result;
2213        if (result < nr_io_queues)
2214                nr_io_queues = result;
2215
2216        size = db_bar_size(dev, nr_io_queues);
2217        if (size > 8192) {
2218                iounmap(dev->bar);
2219                do {
2220                        dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2221                        if (dev->bar)
2222                                break;
2223                        if (!--nr_io_queues)
2224                                return -ENOMEM;
2225                        size = db_bar_size(dev, nr_io_queues);
2226                } while (1);
2227                dev->dbs = ((void __iomem *)dev->bar) + 4096;
2228                adminq->q_db = dev->dbs;
2229        }
2230
2231        /* Deregister the admin queue's interrupt */
2232        free_irq(dev->entry[0].vector, adminq);
2233
2234        /*
2235         * If we enable msix early due to not intx, disable it again before
2236         * setting up the full range we need.
2237         */
2238        if (!pdev->irq)
2239                pci_disable_msix(pdev);
2240
2241        for (i = 0; i < nr_io_queues; i++)
2242                dev->entry[i].entry = i;
2243        vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2244        if (vecs < 0) {
2245                vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2246                if (vecs < 0) {
2247                        vecs = 1;
2248                } else {
2249                        for (i = 0; i < vecs; i++)
2250                                dev->entry[i].vector = i + pdev->irq;
2251                }
2252        }
2253
2254        /*
2255         * Should investigate if there's a performance win from allocating
2256         * more queues than interrupt vectors; it might allow the submission
2257         * path to scale better, even if the receive path is limited by the
2258         * number of interrupts.
2259         */
2260        nr_io_queues = vecs;
2261        dev->max_qid = nr_io_queues;
2262
2263        result = queue_request_irq(dev, adminq, adminq->irqname);
2264        if (result)
2265                goto free_queues;
2266
2267        /* Free previously allocated queues that are no longer usable */
2268        nvme_free_queues(dev, nr_io_queues + 1);
2269        nvme_create_io_queues(dev);
2270
2271        return 0;
2272
2273 free_queues:
2274        nvme_free_queues(dev, 1);
2275        return result;
2276}
2277
2278/*
2279 * Return: error value if an error occurred setting up the queues or calling
2280 * Identify Device.  0 if these succeeded, even if adding some of the
2281 * namespaces failed.  At the moment, these failures are silent.  TBD which
2282 * failures should be reported.
2283 */
2284static int nvme_dev_add(struct nvme_dev *dev)
2285{
2286        struct pci_dev *pdev = dev->pci_dev;
2287        int res;
2288        unsigned nn, i;
2289        struct nvme_id_ctrl *ctrl;
2290        void *mem;
2291        dma_addr_t dma_addr;
2292        int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2293
2294        mem = dma_alloc_coherent(&pdev->dev, 4096, &dma_addr, GFP_KERNEL);
2295        if (!mem)
2296                return -ENOMEM;
2297
2298        res = nvme_identify(dev, 0, 1, dma_addr);
2299        if (res) {
2300                dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2301                dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2302                return -EIO;
2303        }
2304
2305        ctrl = mem;
2306        nn = le32_to_cpup(&ctrl->nn);
2307        dev->oncs = le16_to_cpup(&ctrl->oncs);
2308        dev->abort_limit = ctrl->acl + 1;
2309        dev->vwc = ctrl->vwc;
2310        memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2311        memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2312        memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2313        if (ctrl->mdts)
2314                dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2315        if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2316                        (pdev->device == 0x0953) && ctrl->vs[3]) {
2317                unsigned int max_hw_sectors;
2318
2319                dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2320                max_hw_sectors = dev->stripe_size >> (shift - 9);
2321                if (dev->max_hw_sectors) {
2322                        dev->max_hw_sectors = min(max_hw_sectors,
2323                                                        dev->max_hw_sectors);
2324                } else
2325                        dev->max_hw_sectors = max_hw_sectors;
2326        }
2327        dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2328
2329        dev->tagset.ops = &nvme_mq_ops;
2330        dev->tagset.nr_hw_queues = dev->online_queues - 1;
2331        dev->tagset.timeout = NVME_IO_TIMEOUT;
2332        dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
2333        dev->tagset.queue_depth =
2334                                min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2335        dev->tagset.cmd_size = nvme_cmd_size(dev);
2336        dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2337        dev->tagset.driver_data = dev;
2338
2339        if (blk_mq_alloc_tag_set(&dev->tagset))
2340                return 0;
2341
2342        for (i = 1; i <= nn; i++)
2343                nvme_alloc_ns(dev, i);
2344
2345        return 0;
2346}
2347
2348static int nvme_dev_map(struct nvme_dev *dev)
2349{
2350        u64 cap;
2351        int bars, result = -ENOMEM;
2352        struct pci_dev *pdev = dev->pci_dev;
2353
2354        if (pci_enable_device_mem(pdev))
2355                return result;
2356
2357        dev->entry[0].vector = pdev->irq;
2358        pci_set_master(pdev);
2359        bars = pci_select_bars(pdev, IORESOURCE_MEM);
2360        if (!bars)
2361                goto disable_pci;
2362
2363        if (pci_request_selected_regions(pdev, bars, "nvme"))
2364                goto disable_pci;
2365
2366        if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2367            dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2368                goto disable;
2369
2370        dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2371        if (!dev->bar)
2372                goto disable;
2373
2374        if (readl(&dev->bar->csts) == -1) {
2375                result = -ENODEV;
2376                goto unmap;
2377        }
2378
2379        /*
2380         * Some devices don't advertse INTx interrupts, pre-enable a single
2381         * MSIX vec for setup. We'll adjust this later.
2382         */
2383        if (!pdev->irq) {
2384                result = pci_enable_msix(pdev, dev->entry, 1);
2385                if (result < 0)
2386                        goto unmap;
2387        }
2388
2389        cap = readq(&dev->bar->cap);
2390        dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2391        dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2392        dev->dbs = ((void __iomem *)dev->bar) + 4096;
2393
2394        return 0;
2395
2396 unmap:
2397        iounmap(dev->bar);
2398        dev->bar = NULL;
2399 disable:
2400        pci_release_regions(pdev);
2401 disable_pci:
2402        pci_disable_device(pdev);
2403        return result;
2404}
2405
2406static void nvme_dev_unmap(struct nvme_dev *dev)
2407{
2408        if (dev->pci_dev->msi_enabled)
2409                pci_disable_msi(dev->pci_dev);
2410        else if (dev->pci_dev->msix_enabled)
2411                pci_disable_msix(dev->pci_dev);
2412
2413        if (dev->bar) {
2414                iounmap(dev->bar);
2415                dev->bar = NULL;
2416                pci_release_regions(dev->pci_dev);
2417        }
2418
2419        if (pci_is_enabled(dev->pci_dev))
2420                pci_disable_device(dev->pci_dev);
2421}
2422
2423struct nvme_delq_ctx {
2424        struct task_struct *waiter;
2425        struct kthread_worker *worker;
2426        atomic_t refcount;
2427};
2428
2429static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2430{
2431        dq->waiter = current;
2432        mb();
2433
2434        for (;;) {
2435                set_current_state(TASK_KILLABLE);
2436                if (!atomic_read(&dq->refcount))
2437                        break;
2438                if (!schedule_timeout(ADMIN_TIMEOUT) ||
2439                                        fatal_signal_pending(current)) {
2440                        /*
2441                         * Disable the controller first since we can't trust it
2442                         * at this point, but leave the admin queue enabled
2443                         * until all queue deletion requests are flushed.
2444                         * FIXME: This may take a while if there are more h/w
2445                         * queues than admin tags.
2446                         */
2447                        set_current_state(TASK_RUNNING);
2448                        nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2449                        nvme_clear_queue(dev->queues[0]);
2450                        flush_kthread_worker(dq->worker);
2451                        nvme_disable_queue(dev, 0);
2452                        return;
2453                }
2454        }
2455        set_current_state(TASK_RUNNING);
2456}
2457
2458static void nvme_put_dq(struct nvme_delq_ctx *dq)
2459{
2460        atomic_dec(&dq->refcount);
2461        if (dq->waiter)
2462                wake_up_process(dq->waiter);
2463}
2464
2465static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2466{
2467        atomic_inc(&dq->refcount);
2468        return dq;
2469}
2470
2471static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2472{
2473        struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2474        nvme_put_dq(dq);
2475}
2476
2477static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2478                                                kthread_work_func_t fn)
2479{
2480        struct nvme_command c;
2481
2482        memset(&c, 0, sizeof(c));
2483        c.delete_queue.opcode = opcode;
2484        c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2485
2486        init_kthread_work(&nvmeq->cmdinfo.work, fn);
2487        return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2488                                                                ADMIN_TIMEOUT);
2489}
2490
2491static void nvme_del_cq_work_handler(struct kthread_work *work)
2492{
2493        struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2494                                                        cmdinfo.work);
2495        nvme_del_queue_end(nvmeq);
2496}
2497
2498static int nvme_delete_cq(struct nvme_queue *nvmeq)
2499{
2500        return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2501                                                nvme_del_cq_work_handler);
2502}
2503
2504static void nvme_del_sq_work_handler(struct kthread_work *work)
2505{
2506        struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2507                                                        cmdinfo.work);
2508        int status = nvmeq->cmdinfo.status;
2509
2510        if (!status)
2511                status = nvme_delete_cq(nvmeq);
2512        if (status)
2513                nvme_del_queue_end(nvmeq);
2514}
2515
2516static int nvme_delete_sq(struct nvme_queue *nvmeq)
2517{
2518        return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2519                                                nvme_del_sq_work_handler);
2520}
2521
2522static void nvme_del_queue_start(struct kthread_work *work)
2523{
2524        struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2525                                                        cmdinfo.work);
2526        if (nvme_delete_sq(nvmeq))
2527                nvme_del_queue_end(nvmeq);
2528}
2529
2530static void nvme_disable_io_queues(struct nvme_dev *dev)
2531{
2532        int i;
2533        DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2534        struct nvme_delq_ctx dq;
2535        struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2536                                        &worker, "nvme%d", dev->instance);
2537
2538        if (IS_ERR(kworker_task)) {
2539                dev_err(&dev->pci_dev->dev,
2540                        "Failed to create queue del task\n");
2541                for (i = dev->queue_count - 1; i > 0; i--)
2542                        nvme_disable_queue(dev, i);
2543                return;
2544        }
2545
2546        dq.waiter = NULL;
2547        atomic_set(&dq.refcount, 0);
2548        dq.worker = &worker;
2549        for (i = dev->queue_count - 1; i > 0; i--) {
2550                struct nvme_queue *nvmeq = dev->queues[i];
2551
2552                if (nvme_suspend_queue(nvmeq))
2553                        continue;
2554                nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2555                nvmeq->cmdinfo.worker = dq.worker;
2556                init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2557                queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2558        }
2559        nvme_wait_dq(&dq, dev);
2560        kthread_stop(kworker_task);
2561}
2562
2563/*
2564* Remove the node from the device list and check
2565* for whether or not we need to stop the nvme_thread.
2566*/
2567static void nvme_dev_list_remove(struct nvme_dev *dev)
2568{
2569        struct task_struct *tmp = NULL;
2570
2571        spin_lock(&dev_list_lock);
2572        list_del_init(&dev->node);
2573        if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2574                tmp = nvme_thread;
2575                nvme_thread = NULL;
2576        }
2577        spin_unlock(&dev_list_lock);
2578
2579        if (tmp)
2580                kthread_stop(tmp);
2581}
2582
2583static void nvme_freeze_queues(struct nvme_dev *dev)
2584{
2585        struct nvme_ns *ns;
2586
2587        list_for_each_entry(ns, &dev->namespaces, list) {
2588                blk_mq_freeze_queue_start(ns->queue);
2589
2590                spin_lock(ns->queue->queue_lock);
2591                queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2592                spin_unlock(ns->queue->queue_lock);
2593
2594                blk_mq_cancel_requeue_work(ns->queue);
2595                blk_mq_stop_hw_queues(ns->queue);
2596        }
2597}
2598
2599static void nvme_unfreeze_queues(struct nvme_dev *dev)
2600{
2601        struct nvme_ns *ns;
2602
2603        list_for_each_entry(ns, &dev->namespaces, list) {
2604                queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2605                blk_mq_unfreeze_queue(ns->queue);
2606                blk_mq_start_stopped_hw_queues(ns->queue, true);
2607                blk_mq_kick_requeue_list(ns->queue);
2608        }
2609}
2610
2611static void nvme_dev_shutdown(struct nvme_dev *dev)
2612{
2613        int i;
2614        u32 csts = -1;
2615
2616        nvme_dev_list_remove(dev);
2617
2618        if (dev->bar) {
2619                nvme_freeze_queues(dev);
2620                csts = readl(&dev->bar->csts);
2621        }
2622        if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2623                for (i = dev->queue_count - 1; i >= 0; i--) {
2624                        struct nvme_queue *nvmeq = dev->queues[i];
2625                        nvme_suspend_queue(nvmeq);
2626                }
2627        } else {
2628                nvme_disable_io_queues(dev);
2629                nvme_shutdown_ctrl(dev);
2630                nvme_disable_queue(dev, 0);
2631        }
2632        nvme_dev_unmap(dev);
2633
2634        for (i = dev->queue_count - 1; i >= 0; i--)
2635                nvme_clear_queue(dev->queues[i]);
2636}
2637
2638static void nvme_dev_remove(struct nvme_dev *dev)
2639{
2640        struct nvme_ns *ns;
2641
2642        list_for_each_entry(ns, &dev->namespaces, list) {
2643                if (ns->disk->flags & GENHD_FL_UP) {
2644                        if (blk_get_integrity(ns->disk))
2645                                blk_integrity_unregister(ns->disk);
2646                        del_gendisk(ns->disk);
2647                }
2648                if (!blk_queue_dying(ns->queue)) {
2649                        blk_mq_abort_requeue_list(ns->queue);
2650                        blk_cleanup_queue(ns->queue);
2651                }
2652        }
2653}
2654
2655static int nvme_setup_prp_pools(struct nvme_dev *dev)
2656{
2657        struct device *dmadev = &dev->pci_dev->dev;
2658        dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2659                                                PAGE_SIZE, PAGE_SIZE, 0);
2660        if (!dev->prp_page_pool)
2661                return -ENOMEM;
2662
2663        /* Optimisation for I/Os between 4k and 128k */
2664        dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2665                                                256, 256, 0);
2666        if (!dev->prp_small_pool) {
2667                dma_pool_destroy(dev->prp_page_pool);
2668                return -ENOMEM;
2669        }
2670        return 0;
2671}
2672
2673static void nvme_release_prp_pools(struct nvme_dev *dev)
2674{
2675        dma_pool_destroy(dev->prp_page_pool);
2676        dma_pool_destroy(dev->prp_small_pool);
2677}
2678
2679static DEFINE_IDA(nvme_instance_ida);
2680
2681static int nvme_set_instance(struct nvme_dev *dev)
2682{
2683        int instance, error;
2684
2685        do {
2686                if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2687                        return -ENODEV;
2688
2689                spin_lock(&dev_list_lock);
2690                error = ida_get_new(&nvme_instance_ida, &instance);
2691                spin_unlock(&dev_list_lock);
2692        } while (error == -EAGAIN);
2693
2694        if (error)
2695                return -ENODEV;
2696
2697        dev->instance = instance;
2698        return 0;
2699}
2700
2701static void nvme_release_instance(struct nvme_dev *dev)
2702{
2703        spin_lock(&dev_list_lock);
2704        ida_remove(&nvme_instance_ida, dev->instance);
2705        spin_unlock(&dev_list_lock);
2706}
2707
2708static void nvme_free_namespaces(struct nvme_dev *dev)
2709{
2710        struct nvme_ns *ns, *next;
2711
2712        list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2713                list_del(&ns->list);
2714
2715                spin_lock(&dev_list_lock);
2716                ns->disk->private_data = NULL;
2717                spin_unlock(&dev_list_lock);
2718
2719                put_disk(ns->disk);
2720                kfree(ns);
2721        }
2722}
2723
2724static void nvme_free_dev(struct kref *kref)
2725{
2726        struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2727
2728        pci_dev_put(dev->pci_dev);
2729        put_device(dev->device);
2730        nvme_free_namespaces(dev);
2731        nvme_release_instance(dev);
2732        blk_mq_free_tag_set(&dev->tagset);
2733        blk_put_queue(dev->admin_q);
2734        kfree(dev->queues);
2735        kfree(dev->entry);
2736        kfree(dev);
2737}
2738
2739static int nvme_dev_open(struct inode *inode, struct file *f)
2740{
2741        struct nvme_dev *dev;
2742        int instance = iminor(inode);
2743        int ret = -ENODEV;
2744
2745        spin_lock(&dev_list_lock);
2746        list_for_each_entry(dev, &dev_list, node) {
2747                if (dev->instance == instance) {
2748                        if (!dev->admin_q) {
2749                                ret = -EWOULDBLOCK;
2750                                break;
2751                        }
2752                        if (!kref_get_unless_zero(&dev->kref))
2753                                break;
2754                        f->private_data = dev;
2755                        ret = 0;
2756                        break;
2757                }
2758        }
2759        spin_unlock(&dev_list_lock);
2760
2761        return ret;
2762}
2763
2764static int nvme_dev_release(struct inode *inode, struct file *f)
2765{
2766        struct nvme_dev *dev = f->private_data;
2767        kref_put(&dev->kref, nvme_free_dev);
2768        return 0;
2769}
2770
2771static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2772{
2773        struct nvme_dev *dev = f->private_data;
2774        struct nvme_ns *ns;
2775
2776        switch (cmd) {
2777        case NVME_IOCTL_ADMIN_CMD:
2778                return nvme_user_cmd(dev, NULL, (void __user *)arg);
2779        case NVME_IOCTL_IO_CMD:
2780                if (list_empty(&dev->namespaces))
2781                        return -ENOTTY;
2782                ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2783                return nvme_user_cmd(dev, ns, (void __user *)arg);
2784        default:
2785                return -ENOTTY;
2786        }
2787}
2788
2789static const struct file_operations nvme_dev_fops = {
2790        .owner          = THIS_MODULE,
2791        .open           = nvme_dev_open,
2792        .release        = nvme_dev_release,
2793        .unlocked_ioctl = nvme_dev_ioctl,
2794        .compat_ioctl   = nvme_dev_ioctl,
2795};
2796
2797static void nvme_set_irq_hints(struct nvme_dev *dev)
2798{
2799        struct nvme_queue *nvmeq;
2800        int i;
2801
2802        for (i = 0; i < dev->online_queues; i++) {
2803                nvmeq = dev->queues[i];
2804
2805                if (!nvmeq->hctx)
2806                        continue;
2807
2808                irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2809                                                        nvmeq->hctx->cpumask);
2810        }
2811}
2812
2813static int nvme_dev_start(struct nvme_dev *dev)
2814{
2815        int result;
2816        bool start_thread = false;
2817
2818        result = nvme_dev_map(dev);
2819        if (result)
2820                return result;
2821
2822        result = nvme_configure_admin_queue(dev);
2823        if (result)
2824                goto unmap;
2825
2826        spin_lock(&dev_list_lock);
2827        if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2828                start_thread = true;
2829                nvme_thread = NULL;
2830        }
2831        list_add(&dev->node, &dev_list);
2832        spin_unlock(&dev_list_lock);
2833
2834        if (start_thread) {
2835                nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2836                wake_up_all(&nvme_kthread_wait);
2837        } else
2838                wait_event_killable(nvme_kthread_wait, nvme_thread);
2839
2840        if (IS_ERR_OR_NULL(nvme_thread)) {
2841                result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2842                goto disable;
2843        }
2844
2845        nvme_init_queue(dev->queues[0], 0);
2846        result = nvme_alloc_admin_tags(dev);
2847        if (result)
2848                goto disable;
2849
2850        result = nvme_setup_io_queues(dev);
2851        if (result)
2852                goto free_tags;
2853
2854        nvme_set_irq_hints(dev);
2855
2856        dev->event_limit = 1;
2857        return result;
2858
2859 free_tags:
2860        nvme_dev_remove_admin(dev);
2861 disable:
2862        nvme_disable_queue(dev, 0);
2863        nvme_dev_list_remove(dev);
2864 unmap:
2865        nvme_dev_unmap(dev);
2866        return result;
2867}
2868
2869static int nvme_remove_dead_ctrl(void *arg)
2870{
2871        struct nvme_dev *dev = (struct nvme_dev *)arg;
2872        struct pci_dev *pdev = dev->pci_dev;
2873
2874        if (pci_get_drvdata(pdev))
2875                pci_stop_and_remove_bus_device_locked(pdev);
2876        kref_put(&dev->kref, nvme_free_dev);
2877        return 0;
2878}
2879
2880static void nvme_remove_disks(struct work_struct *ws)
2881{
2882        struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2883
2884        nvme_free_queues(dev, 1);
2885        nvme_dev_remove(dev);
2886}
2887
2888static int nvme_dev_resume(struct nvme_dev *dev)
2889{
2890        int ret;
2891
2892        ret = nvme_dev_start(dev);
2893        if (ret)
2894                return ret;
2895        if (dev->online_queues < 2) {
2896                spin_lock(&dev_list_lock);
2897                dev->reset_workfn = nvme_remove_disks;
2898                queue_work(nvme_workq, &dev->reset_work);
2899                spin_unlock(&dev_list_lock);
2900        } else {
2901                nvme_unfreeze_queues(dev);
2902                nvme_set_irq_hints(dev);
2903        }
2904        return 0;
2905}
2906
2907static void nvme_dev_reset(struct nvme_dev *dev)
2908{
2909        nvme_dev_shutdown(dev);
2910        if (nvme_dev_resume(dev)) {
2911                dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
2912                kref_get(&dev->kref);
2913                if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2914                                                        dev->instance))) {
2915                        dev_err(&dev->pci_dev->dev,
2916                                "Failed to start controller remove task\n");
2917                        kref_put(&dev->kref, nvme_free_dev);
2918                }
2919        }
2920}
2921
2922static void nvme_reset_failed_dev(struct work_struct *ws)
2923{
2924        struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2925        nvme_dev_reset(dev);
2926}
2927
2928static void nvme_reset_workfn(struct work_struct *work)
2929{
2930        struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2931        dev->reset_workfn(work);
2932}
2933
2934static void nvme_async_probe(struct work_struct *work);
2935static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2936{
2937        int node, result = -ENOMEM;
2938        struct nvme_dev *dev;
2939
2940        node = dev_to_node(&pdev->dev);
2941        if (node == NUMA_NO_NODE)
2942                set_dev_node(&pdev->dev, 0);
2943
2944        dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2945        if (!dev)
2946                return -ENOMEM;
2947        dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2948                                                        GFP_KERNEL, node);
2949        if (!dev->entry)
2950                goto free;
2951        dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2952                                                        GFP_KERNEL, node);
2953        if (!dev->queues)
2954                goto free;
2955
2956        INIT_LIST_HEAD(&dev->namespaces);
2957        dev->reset_workfn = nvme_reset_failed_dev;
2958        INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2959        dev->pci_dev = pci_dev_get(pdev);
2960        pci_set_drvdata(pdev, dev);
2961        result = nvme_set_instance(dev);
2962        if (result)
2963                goto put_pci;
2964
2965        result = nvme_setup_prp_pools(dev);
2966        if (result)
2967                goto release;
2968
2969        kref_init(&dev->kref);
2970        dev->device = device_create(nvme_class, &pdev->dev,
2971                                MKDEV(nvme_char_major, dev->instance),
2972                                dev, "nvme%d", dev->instance);
2973        if (IS_ERR(dev->device)) {
2974                result = PTR_ERR(dev->device);
2975                goto release_pools;
2976        }
2977        get_device(dev->device);
2978
2979        INIT_LIST_HEAD(&dev->node);
2980        INIT_WORK(&dev->probe_work, nvme_async_probe);
2981        schedule_work(&dev->probe_work);
2982        return 0;
2983
2984 release_pools:
2985        nvme_release_prp_pools(dev);
2986 release:
2987        nvme_release_instance(dev);
2988 put_pci:
2989        pci_dev_put(dev->pci_dev);
2990 free:
2991        kfree(dev->queues);
2992        kfree(dev->entry);
2993        kfree(dev);
2994        return result;
2995}
2996
2997static void nvme_async_probe(struct work_struct *work)
2998{
2999        struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3000        int result;
3001
3002        result = nvme_dev_start(dev);
3003        if (result)
3004                goto reset;
3005
3006        if (dev->online_queues > 1)
3007                result = nvme_dev_add(dev);
3008        if (result)
3009                goto reset;
3010
3011        nvme_set_irq_hints(dev);
3012        return;
3013 reset:
3014        if (!work_busy(&dev->reset_work)) {
3015                dev->reset_workfn = nvme_reset_failed_dev;
3016                queue_work(nvme_workq, &dev->reset_work);
3017        }
3018}
3019
3020static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3021{
3022        struct nvme_dev *dev = pci_get_drvdata(pdev);
3023
3024        if (prepare)
3025                nvme_dev_shutdown(dev);
3026        else
3027                nvme_dev_resume(dev);
3028}
3029
3030static void nvme_shutdown(struct pci_dev *pdev)
3031{
3032        struct nvme_dev *dev = pci_get_drvdata(pdev);
3033        nvme_dev_shutdown(dev);
3034}
3035
3036static void nvme_remove(struct pci_dev *pdev)
3037{
3038        struct nvme_dev *dev = pci_get_drvdata(pdev);
3039
3040        spin_lock(&dev_list_lock);
3041        list_del_init(&dev->node);
3042        spin_unlock(&dev_list_lock);
3043
3044        pci_set_drvdata(pdev, NULL);
3045        flush_work(&dev->probe_work);
3046        flush_work(&dev->reset_work);
3047        nvme_dev_shutdown(dev);
3048        nvme_dev_remove(dev);
3049        nvme_dev_remove_admin(dev);
3050        device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3051        nvme_free_queues(dev, 0);
3052        nvme_release_prp_pools(dev);
3053        kref_put(&dev->kref, nvme_free_dev);
3054}
3055
3056/* These functions are yet to be implemented */
3057#define nvme_error_detected NULL
3058#define nvme_dump_registers NULL
3059#define nvme_link_reset NULL
3060#define nvme_slot_reset NULL
3061#define nvme_error_resume NULL
3062
3063#ifdef CONFIG_PM_SLEEP
3064static int nvme_suspend(struct device *dev)
3065{
3066        struct pci_dev *pdev = to_pci_dev(dev);
3067        struct nvme_dev *ndev = pci_get_drvdata(pdev);
3068
3069        nvme_dev_shutdown(ndev);
3070        return 0;
3071}
3072
3073static int nvme_resume(struct device *dev)
3074{
3075        struct pci_dev *pdev = to_pci_dev(dev);
3076        struct nvme_dev *ndev = pci_get_drvdata(pdev);
3077
3078        if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3079                ndev->reset_workfn = nvme_reset_failed_dev;
3080                queue_work(nvme_workq, &ndev->reset_work);
3081        }
3082        return 0;
3083}
3084#endif
3085
3086static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3087
3088static const struct pci_error_handlers nvme_err_handler = {
3089        .error_detected = nvme_error_detected,
3090        .mmio_enabled   = nvme_dump_registers,
3091        .link_reset     = nvme_link_reset,
3092        .slot_reset     = nvme_slot_reset,
3093        .resume         = nvme_error_resume,
3094        .reset_notify   = nvme_reset_notify,
3095};
3096
3097/* Move to pci_ids.h later */
3098#define PCI_CLASS_STORAGE_EXPRESS       0x010802
3099
3100static const struct pci_device_id nvme_id_table[] = {
3101        { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3102        { 0, }
3103};
3104MODULE_DEVICE_TABLE(pci, nvme_id_table);
3105
3106static struct pci_driver nvme_driver = {
3107        .name           = "nvme",
3108        .id_table       = nvme_id_table,
3109        .probe          = nvme_probe,
3110        .remove         = nvme_remove,
3111        .shutdown       = nvme_shutdown,
3112        .driver         = {
3113                .pm     = &nvme_dev_pm_ops,
3114        },
3115        .err_handler    = &nvme_err_handler,
3116};
3117
3118static int __init nvme_init(void)
3119{
3120        int result;
3121
3122        init_waitqueue_head(&nvme_kthread_wait);
3123
3124        nvme_workq = create_singlethread_workqueue("nvme");
3125        if (!nvme_workq)
3126                return -ENOMEM;
3127
3128        result = register_blkdev(nvme_major, "nvme");
3129        if (result < 0)
3130                goto kill_workq;
3131        else if (result > 0)
3132                nvme_major = result;
3133
3134        result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3135                                                        &nvme_dev_fops);
3136        if (result < 0)
3137                goto unregister_blkdev;
3138        else if (result > 0)
3139                nvme_char_major = result;
3140
3141        nvme_class = class_create(THIS_MODULE, "nvme");
3142        if (IS_ERR(nvme_class)) {
3143                result = PTR_ERR(nvme_class);
3144                goto unregister_chrdev;
3145        }
3146
3147        result = pci_register_driver(&nvme_driver);
3148        if (result)
3149                goto destroy_class;
3150        return 0;
3151
3152 destroy_class:
3153        class_destroy(nvme_class);
3154 unregister_chrdev:
3155        __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3156 unregister_blkdev:
3157        unregister_blkdev(nvme_major, "nvme");
3158 kill_workq:
3159        destroy_workqueue(nvme_workq);
3160        return result;
3161}
3162
3163static void __exit nvme_exit(void)
3164{
3165        pci_unregister_driver(&nvme_driver);
3166        unregister_blkdev(nvme_major, "nvme");
3167        destroy_workqueue(nvme_workq);
3168        class_destroy(nvme_class);
3169        __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3170        BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3171        _nvme_check_size();
3172}
3173
3174MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3175MODULE_LICENSE("GPL");
3176MODULE_VERSION("1.0");
3177module_init(nvme_init);
3178module_exit(nvme_exit);
3179