linux/drivers/char/agp/isoch.c
<<
>>
Prefs
   1/*
   2 * Setup routines for AGP 3.5 compliant bridges.
   3 */
   4
   5#include <linux/list.h>
   6#include <linux/pci.h>
   7#include <linux/agp_backend.h>
   8#include <linux/module.h>
   9#include <linux/slab.h>
  10
  11#include "agp.h"
  12
  13/* Generic AGP 3.5 enabling routines */
  14
  15struct agp_3_5_dev {
  16        struct list_head list;
  17        u8 capndx;
  18        u32 maxbw;
  19        struct pci_dev *dev;
  20};
  21
  22static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
  23{
  24        struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
  25        struct list_head *pos;
  26
  27        list_for_each(pos, head) {
  28                cur = list_entry(pos, struct agp_3_5_dev, list);
  29                if (cur->maxbw > n->maxbw)
  30                        break;
  31        }
  32        list_add_tail(new, pos);
  33}
  34
  35static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
  36{
  37        struct agp_3_5_dev *cur;
  38        struct pci_dev *dev;
  39        struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
  40        u32 nistat;
  41
  42        INIT_LIST_HEAD(head);
  43
  44        for (pos=start; pos!=head; ) {
  45                cur = list_entry(pos, struct agp_3_5_dev, list);
  46                dev = cur->dev;
  47
  48                pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
  49                cur->maxbw = (nistat >> 16) & 0xff;
  50
  51                tmp = pos;
  52                pos = pos->next;
  53                agp_3_5_dev_list_insert(head, tmp);
  54        }
  55}
  56
  57/*
  58 * Initialize all isochronous transfer parameters for an AGP 3.0
  59 * node (i.e. a host bridge in combination with the adapters
  60 * lying behind it...)
  61 */
  62
  63static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
  64                struct agp_3_5_dev *dev_list, unsigned int ndevs)
  65{
  66        /*
  67         * Convenience structure to make the calculations clearer
  68         * here.  The field names come straight from the AGP 3.0 spec.
  69         */
  70        struct isoch_data {
  71                u32 maxbw;
  72                u32 n;
  73                u32 y;
  74                u32 l;
  75                u32 rq;
  76                struct agp_3_5_dev *dev;
  77        };
  78
  79        struct pci_dev *td = bridge->dev, *dev;
  80        struct list_head *head = &dev_list->list, *pos;
  81        struct agp_3_5_dev *cur;
  82        struct isoch_data *master, target;
  83        unsigned int cdev = 0;
  84        u32 mnistat, tnistat, tstatus, mcmd;
  85        u16 tnicmd, mnicmd;
  86        u8 mcapndx;
  87        u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
  88        u32 step, rem, rem_isoch, rem_async;
  89        int ret = 0;
  90
  91        /*
  92         * We'll work with an array of isoch_data's (one for each
  93         * device in dev_list) throughout this function.
  94         */
  95        if ((master = kmalloc(ndevs * sizeof(*master), GFP_KERNEL)) == NULL) {
  96                ret = -ENOMEM;
  97                goto get_out;
  98        }
  99
 100        /*
 101         * Sort the device list by maxbw.  We need to do this because the
 102         * spec suggests that the devices with the smallest requirements
 103         * have their resources allocated first, with all remaining resources
 104         * falling to the device with the largest requirement.
 105         *
 106         * We don't exactly do this, we divide target resources by ndevs
 107         * and split them amongst the AGP 3.0 devices.  The remainder of such
 108         * division operations are dropped on the last device, sort of like
 109         * the spec mentions it should be done.
 110         *
 111         * We can't do this sort when we initially construct the dev_list
 112         * because we don't know until this function whether isochronous
 113         * transfers are enabled and consequently whether maxbw will mean
 114         * anything.
 115         */
 116        agp_3_5_dev_list_sort(dev_list, ndevs);
 117
 118        pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
 119        pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
 120
 121        /* Extract power-on defaults from the target */
 122        target.maxbw = (tnistat >> 16) & 0xff;
 123        target.n     = (tnistat >> 8)  & 0xff;
 124        target.y     = (tnistat >> 6)  & 0x3;
 125        target.l     = (tnistat >> 3)  & 0x7;
 126        target.rq    = (tstatus >> 24) & 0xff;
 127
 128        y_max = target.y;
 129
 130        /*
 131         * Extract power-on defaults for each device in dev_list.  Along
 132         * the way, calculate the total isochronous bandwidth required
 133         * by these devices and the largest requested payload size.
 134         */
 135        list_for_each(pos, head) {
 136                cur = list_entry(pos, struct agp_3_5_dev, list);
 137                dev = cur->dev;
 138
 139                mcapndx = cur->capndx;
 140
 141                pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
 142
 143                master[cdev].maxbw = (mnistat >> 16) & 0xff;
 144                master[cdev].n     = (mnistat >> 8)  & 0xff;
 145                master[cdev].y     = (mnistat >> 6)  & 0x3;
 146                master[cdev].dev   = cur;
 147
 148                tot_bw += master[cdev].maxbw;
 149                y_max = max(y_max, master[cdev].y);
 150
 151                cdev++;
 152        }
 153
 154        /* Check if this configuration has any chance of working */
 155        if (tot_bw > target.maxbw) {
 156                dev_err(&td->dev, "isochronous bandwidth required "
 157                        "by AGP 3.0 devices exceeds that which is supported by "
 158                        "the AGP 3.0 bridge!\n");
 159                ret = -ENODEV;
 160                goto free_and_exit;
 161        }
 162
 163        target.y = y_max;
 164
 165        /*
 166         * Write the calculated payload size into the target's NICMD
 167         * register.  Doing this directly effects the ISOCH_N value
 168         * in the target's NISTAT register, so we need to do this now
 169         * to get an accurate value for ISOCH_N later.
 170         */
 171        pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
 172        tnicmd &= ~(0x3 << 6);
 173        tnicmd |= target.y << 6;
 174        pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
 175
 176        /* Reread the target's ISOCH_N */
 177        pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
 178        target.n = (tnistat >> 8) & 0xff;
 179
 180        /* Calculate the minimum ISOCH_N needed by each master */
 181        for (cdev=0; cdev<ndevs; cdev++) {
 182                master[cdev].y = target.y;
 183                master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
 184
 185                tot_n += master[cdev].n;
 186        }
 187
 188        /* Exit if the minimal ISOCH_N allocation among the masters is more
 189         * than the target can handle. */
 190        if (tot_n > target.n) {
 191                dev_err(&td->dev, "number of isochronous "
 192                        "transactions per period required by AGP 3.0 devices "
 193                        "exceeds that which is supported by the AGP 3.0 "
 194                        "bridge!\n");
 195                ret = -ENODEV;
 196                goto free_and_exit;
 197        }
 198
 199        /* Calculate left over ISOCH_N capability in the target.  We'll give
 200         * this to the hungriest device (as per the spec) */
 201        rem  = target.n - tot_n;
 202
 203        /*
 204         * Calculate the minimum isochronous RQ depth needed by each master.
 205         * Along the way, distribute the extra ISOCH_N capability calculated
 206         * above.
 207         */
 208        for (cdev=0; cdev<ndevs; cdev++) {
 209                /*
 210                 * This is a little subtle.  If ISOCH_Y > 64B, then ISOCH_Y
 211                 * byte isochronous writes will be broken into 64B pieces.
 212                 * This means we need to budget more RQ depth to account for
 213                 * these kind of writes (each isochronous write is actually
 214                 * many writes on the AGP bus).
 215                 */
 216                master[cdev].rq = master[cdev].n;
 217                if (master[cdev].y > 0x1)
 218                        master[cdev].rq *= (1 << (master[cdev].y - 1));
 219
 220                tot_rq += master[cdev].rq;
 221        }
 222        master[ndevs-1].n += rem;
 223
 224        /* Figure the number of isochronous and asynchronous RQ slots the
 225         * target is providing. */
 226        rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
 227        rq_async = target.rq - rq_isoch;
 228
 229        /* Exit if the minimal RQ needs of the masters exceeds what the target
 230         * can provide. */
 231        if (tot_rq > rq_isoch) {
 232                dev_err(&td->dev, "number of request queue slots "
 233                        "required by the isochronous bandwidth requested by "
 234                        "AGP 3.0 devices exceeds the number provided by the "
 235                        "AGP 3.0 bridge!\n");
 236                ret = -ENODEV;
 237                goto free_and_exit;
 238        }
 239
 240        /* Calculate asynchronous RQ capability in the target (per master) as
 241         * well as the total number of leftover isochronous RQ slots. */
 242        step      = rq_async / ndevs;
 243        rem_async = step + (rq_async % ndevs);
 244        rem_isoch = rq_isoch - tot_rq;
 245
 246        /* Distribute the extra RQ slots calculated above and write our
 247         * isochronous settings out to the actual devices. */
 248        for (cdev=0; cdev<ndevs; cdev++) {
 249                cur = master[cdev].dev;
 250                dev = cur->dev;
 251
 252                mcapndx = cur->capndx;
 253
 254                master[cdev].rq += (cdev == ndevs - 1)
 255                              ? (rem_async + rem_isoch) : step;
 256
 257                pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
 258                pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
 259
 260                mnicmd &= ~(0xff << 8);
 261                mnicmd &= ~(0x3  << 6);
 262                mcmd   &= ~(0xff << 24);
 263
 264                mnicmd |= master[cdev].n  << 8;
 265                mnicmd |= master[cdev].y  << 6;
 266                mcmd   |= master[cdev].rq << 24;
 267
 268                pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
 269                pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
 270        }
 271
 272free_and_exit:
 273        kfree(master);
 274
 275get_out:
 276        return ret;
 277}
 278
 279/*
 280 * This function basically allocates request queue slots among the
 281 * AGP 3.0 systems in nonisochronous nodes.  The algorithm is
 282 * pretty stupid, divide the total number of RQ slots provided by the
 283 * target by ndevs.  Distribute this many slots to each AGP 3.0 device,
 284 * giving any left over slots to the last device in dev_list.
 285 */
 286static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
 287                struct agp_3_5_dev *dev_list, unsigned int ndevs)
 288{
 289        struct agp_3_5_dev *cur;
 290        struct list_head *head = &dev_list->list, *pos;
 291        u32 tstatus, mcmd;
 292        u32 trq, mrq, rem;
 293        unsigned int cdev = 0;
 294
 295        pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
 296
 297        trq = (tstatus >> 24) & 0xff;
 298        mrq = trq / ndevs;
 299
 300        rem = mrq + (trq % ndevs);
 301
 302        for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
 303                cur = list_entry(pos, struct agp_3_5_dev, list);
 304
 305                pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
 306                mcmd &= ~(0xff << 24);
 307                mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
 308                pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
 309        }
 310}
 311
 312/*
 313 * Fully configure and enable an AGP 3.0 host bridge and all the devices
 314 * lying behind it.
 315 */
 316int agp_3_5_enable(struct agp_bridge_data *bridge)
 317{
 318        struct pci_dev *td = bridge->dev, *dev = NULL;
 319        u8 mcapndx;
 320        u32 isoch, arqsz;
 321        u32 tstatus, mstatus, ncapid;
 322        u32 mmajor;
 323        u16 mpstat;
 324        struct agp_3_5_dev *dev_list, *cur;
 325        struct list_head *head, *pos;
 326        unsigned int ndevs = 0;
 327        int ret = 0;
 328
 329        /* Extract some power-on defaults from the target */
 330        pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
 331        isoch     = (tstatus >> 17) & 0x1;
 332        if (isoch == 0) /* isoch xfers not available, bail out. */
 333                return -ENODEV;
 334
 335        arqsz     = (tstatus >> 13) & 0x7;
 336
 337        /*
 338         * Allocate a head for our AGP 3.5 device list
 339         * (multiple AGP v3 devices are allowed behind a single bridge).
 340         */
 341        if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
 342                ret = -ENOMEM;
 343                goto get_out;
 344        }
 345        head = &dev_list->list;
 346        INIT_LIST_HEAD(head);
 347
 348        /* Find all AGP devices, and add them to dev_list. */
 349        for_each_pci_dev(dev) {
 350                mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
 351                if (mcapndx == 0)
 352                        continue;
 353
 354                switch ((dev->class >>8) & 0xff00) {
 355                        case 0x0600:    /* Bridge */
 356                                /* Skip bridges. We should call this function for each one. */
 357                                continue;
 358
 359                        case 0x0001:    /* Unclassified device */
 360                                /* Don't know what this is, but log it for investigation. */
 361                                if (mcapndx != 0) {
 362                                        dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
 363                                                 pci_name(dev),
 364                                                 dev->vendor, dev->device);
 365                                }
 366                                continue;
 367
 368                        case 0x0300:    /* Display controller */
 369                        case 0x0400:    /* Multimedia controller */
 370                                if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
 371                                        ret = -ENOMEM;
 372                                        goto free_and_exit;
 373                                }
 374                                cur->dev = dev;
 375
 376                                pos = &cur->list;
 377                                list_add(pos, head);
 378                                ndevs++;
 379                                continue;
 380
 381                        default:
 382                                continue;
 383                }
 384        }
 385
 386        /*
 387         * Take an initial pass through the devices lying behind our host
 388         * bridge.  Make sure each one is actually an AGP 3.0 device, otherwise
 389         * exit with an error message.  Along the way store the AGP 3.0
 390         * cap_ptr for each device
 391         */
 392        list_for_each(pos, head) {
 393                cur = list_entry(pos, struct agp_3_5_dev, list);
 394                dev = cur->dev;
 395
 396                pci_read_config_word(dev, PCI_STATUS, &mpstat);
 397                if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
 398                        continue;
 399
 400                pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
 401                if (mcapndx != 0) {
 402                        do {
 403                                pci_read_config_dword(dev, mcapndx, &ncapid);
 404                                if ((ncapid & 0xff) != 2)
 405                                        mcapndx = (ncapid >> 8) & 0xff;
 406                        }
 407                        while (((ncapid & 0xff) != 2) && (mcapndx != 0));
 408                }
 409
 410                if (mcapndx == 0) {
 411                        dev_err(&td->dev, "woah!  Non-AGP device %s on "
 412                                "secondary bus of AGP 3.5 bridge!\n",
 413                                pci_name(dev));
 414                        ret = -ENODEV;
 415                        goto free_and_exit;
 416                }
 417
 418                mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
 419                if (mmajor < 3) {
 420                        dev_err(&td->dev, "woah!  AGP 2.0 device %s on "
 421                                "secondary bus of AGP 3.5 bridge operating "
 422                                "with AGP 3.0 electricals!\n", pci_name(dev));
 423                        ret = -ENODEV;
 424                        goto free_and_exit;
 425                }
 426
 427                cur->capndx = mcapndx;
 428
 429                pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
 430
 431                if (((mstatus >> 3) & 0x1) == 0) {
 432                        dev_err(&td->dev, "woah!  AGP 3.x device %s not "
 433                                "operating in AGP 3.x mode on secondary bus "
 434                                "of AGP 3.5 bridge operating with AGP 3.0 "
 435                                "electricals!\n", pci_name(dev));
 436                        ret = -ENODEV;
 437                        goto free_and_exit;
 438                }
 439        }               
 440
 441        /*
 442         * Call functions to divide target resources amongst the AGP 3.0
 443         * masters.  This process is dramatically different depending on
 444         * whether isochronous transfers are supported.
 445         */
 446        if (isoch) {
 447                ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
 448                if (ret) {
 449                        dev_info(&td->dev, "something bad happened setting "
 450                                 "up isochronous xfers; falling back to "
 451                                 "non-isochronous xfer mode\n");
 452                } else {
 453                        goto free_and_exit;
 454                }
 455        }
 456        agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
 457
 458free_and_exit:
 459        /* Be sure to free the dev_list */
 460        for (pos=head->next; pos!=head; ) {
 461                cur = list_entry(pos, struct agp_3_5_dev, list);
 462
 463                pos = pos->next;
 464                kfree(cur);
 465        }
 466        kfree(dev_list);
 467
 468get_out:
 469        return ret;
 470}
 471