linux/drivers/crypto/ccp/ccp-crypto-sha.c
<<
>>
Prefs
   1/*
   2 * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
   3 *
   4 * Copyright (C) 2013 Advanced Micro Devices, Inc.
   5 *
   6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/sched.h>
  15#include <linux/delay.h>
  16#include <linux/scatterlist.h>
  17#include <linux/crypto.h>
  18#include <crypto/algapi.h>
  19#include <crypto/hash.h>
  20#include <crypto/internal/hash.h>
  21#include <crypto/sha.h>
  22#include <crypto/scatterwalk.h>
  23
  24#include "ccp-crypto.h"
  25
  26static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
  27{
  28        struct ahash_request *req = ahash_request_cast(async_req);
  29        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  30        struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
  31        unsigned int digest_size = crypto_ahash_digestsize(tfm);
  32
  33        if (ret)
  34                goto e_free;
  35
  36        if (rctx->hash_rem) {
  37                /* Save remaining data to buffer */
  38                unsigned int offset = rctx->nbytes - rctx->hash_rem;
  39
  40                scatterwalk_map_and_copy(rctx->buf, rctx->src,
  41                                         offset, rctx->hash_rem, 0);
  42                rctx->buf_count = rctx->hash_rem;
  43        } else {
  44                rctx->buf_count = 0;
  45        }
  46
  47        /* Update result area if supplied */
  48        if (req->result)
  49                memcpy(req->result, rctx->ctx, digest_size);
  50
  51e_free:
  52        sg_free_table(&rctx->data_sg);
  53
  54        return ret;
  55}
  56
  57static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
  58                             unsigned int final)
  59{
  60        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  61        struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
  62        struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
  63        struct scatterlist *sg;
  64        unsigned int block_size =
  65                crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
  66        unsigned int sg_count;
  67        gfp_t gfp;
  68        u64 len;
  69        int ret;
  70
  71        len = (u64)rctx->buf_count + (u64)nbytes;
  72
  73        if (!final && (len <= block_size)) {
  74                scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
  75                                         0, nbytes, 0);
  76                rctx->buf_count += nbytes;
  77
  78                return 0;
  79        }
  80
  81        rctx->src = req->src;
  82        rctx->nbytes = nbytes;
  83
  84        rctx->final = final;
  85        rctx->hash_rem = final ? 0 : len & (block_size - 1);
  86        rctx->hash_cnt = len - rctx->hash_rem;
  87        if (!final && !rctx->hash_rem) {
  88                /* CCP can't do zero length final, so keep some data around */
  89                rctx->hash_cnt -= block_size;
  90                rctx->hash_rem = block_size;
  91        }
  92
  93        /* Initialize the context scatterlist */
  94        sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
  95
  96        sg = NULL;
  97        if (rctx->buf_count && nbytes) {
  98                /* Build the data scatterlist table - allocate enough entries
  99                 * for both data pieces (buffer and input data)
 100                 */
 101                gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
 102                        GFP_KERNEL : GFP_ATOMIC;
 103                sg_count = sg_nents(req->src) + 1;
 104                ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
 105                if (ret)
 106                        return ret;
 107
 108                sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
 109                sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
 110                sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
 111                sg_mark_end(sg);
 112
 113                sg = rctx->data_sg.sgl;
 114        } else if (rctx->buf_count) {
 115                sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
 116
 117                sg = &rctx->buf_sg;
 118        } else if (nbytes) {
 119                sg = req->src;
 120        }
 121
 122        rctx->msg_bits += (rctx->hash_cnt << 3);        /* Total in bits */
 123
 124        memset(&rctx->cmd, 0, sizeof(rctx->cmd));
 125        INIT_LIST_HEAD(&rctx->cmd.entry);
 126        rctx->cmd.engine = CCP_ENGINE_SHA;
 127        rctx->cmd.u.sha.type = rctx->type;
 128        rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
 129        rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
 130        rctx->cmd.u.sha.src = sg;
 131        rctx->cmd.u.sha.src_len = rctx->hash_cnt;
 132        rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
 133                &ctx->u.sha.opad_sg : NULL;
 134        rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
 135                ctx->u.sha.opad_count : 0;
 136        rctx->cmd.u.sha.first = rctx->first;
 137        rctx->cmd.u.sha.final = rctx->final;
 138        rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
 139
 140        rctx->first = 0;
 141
 142        ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
 143
 144        return ret;
 145}
 146
 147static int ccp_sha_init(struct ahash_request *req)
 148{
 149        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 150        struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
 151        struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
 152        struct ccp_crypto_ahash_alg *alg =
 153                ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
 154        unsigned int block_size =
 155                crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 156
 157        memset(rctx, 0, sizeof(*rctx));
 158
 159        rctx->type = alg->type;
 160        rctx->first = 1;
 161
 162        if (ctx->u.sha.key_len) {
 163                /* Buffer the HMAC key for first update */
 164                memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
 165                rctx->buf_count = block_size;
 166        }
 167
 168        return 0;
 169}
 170
 171static int ccp_sha_update(struct ahash_request *req)
 172{
 173        return ccp_do_sha_update(req, req->nbytes, 0);
 174}
 175
 176static int ccp_sha_final(struct ahash_request *req)
 177{
 178        return ccp_do_sha_update(req, 0, 1);
 179}
 180
 181static int ccp_sha_finup(struct ahash_request *req)
 182{
 183        return ccp_do_sha_update(req, req->nbytes, 1);
 184}
 185
 186static int ccp_sha_digest(struct ahash_request *req)
 187{
 188        int ret;
 189
 190        ret = ccp_sha_init(req);
 191        if (ret)
 192                return ret;
 193
 194        return ccp_sha_finup(req);
 195}
 196
 197static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
 198                          unsigned int key_len)
 199{
 200        struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
 201        struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
 202
 203        SHASH_DESC_ON_STACK(sdesc, shash);
 204
 205        unsigned int block_size = crypto_shash_blocksize(shash);
 206        unsigned int digest_size = crypto_shash_digestsize(shash);
 207        int i, ret;
 208
 209        /* Set to zero until complete */
 210        ctx->u.sha.key_len = 0;
 211
 212        /* Clear key area to provide zero padding for keys smaller
 213         * than the block size
 214         */
 215        memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
 216
 217        if (key_len > block_size) {
 218                /* Must hash the input key */
 219                sdesc->tfm = shash;
 220                sdesc->flags = crypto_ahash_get_flags(tfm) &
 221                        CRYPTO_TFM_REQ_MAY_SLEEP;
 222
 223                ret = crypto_shash_digest(sdesc, key, key_len,
 224                                          ctx->u.sha.key);
 225                if (ret) {
 226                        crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
 227                        return -EINVAL;
 228                }
 229
 230                key_len = digest_size;
 231        } else {
 232                memcpy(ctx->u.sha.key, key, key_len);
 233        }
 234
 235        for (i = 0; i < block_size; i++) {
 236                ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
 237                ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
 238        }
 239
 240        sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
 241        ctx->u.sha.opad_count = block_size;
 242
 243        ctx->u.sha.key_len = key_len;
 244
 245        return 0;
 246}
 247
 248static int ccp_sha_cra_init(struct crypto_tfm *tfm)
 249{
 250        struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 251        struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 252
 253        ctx->complete = ccp_sha_complete;
 254        ctx->u.sha.key_len = 0;
 255
 256        crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
 257
 258        return 0;
 259}
 260
 261static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
 262{
 263}
 264
 265static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
 266{
 267        struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 268        struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
 269        struct crypto_shash *hmac_tfm;
 270
 271        hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
 272        if (IS_ERR(hmac_tfm)) {
 273                pr_warn("could not load driver %s need for HMAC support\n",
 274                        alg->child_alg);
 275                return PTR_ERR(hmac_tfm);
 276        }
 277
 278        ctx->u.sha.hmac_tfm = hmac_tfm;
 279
 280        return ccp_sha_cra_init(tfm);
 281}
 282
 283static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
 284{
 285        struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 286
 287        if (ctx->u.sha.hmac_tfm)
 288                crypto_free_shash(ctx->u.sha.hmac_tfm);
 289
 290        ccp_sha_cra_exit(tfm);
 291}
 292
 293struct ccp_sha_def {
 294        const char *name;
 295        const char *drv_name;
 296        enum ccp_sha_type type;
 297        u32 digest_size;
 298        u32 block_size;
 299};
 300
 301static struct ccp_sha_def sha_algs[] = {
 302        {
 303                .name           = "sha1",
 304                .drv_name       = "sha1-ccp",
 305                .type           = CCP_SHA_TYPE_1,
 306                .digest_size    = SHA1_DIGEST_SIZE,
 307                .block_size     = SHA1_BLOCK_SIZE,
 308        },
 309        {
 310                .name           = "sha224",
 311                .drv_name       = "sha224-ccp",
 312                .type           = CCP_SHA_TYPE_224,
 313                .digest_size    = SHA224_DIGEST_SIZE,
 314                .block_size     = SHA224_BLOCK_SIZE,
 315        },
 316        {
 317                .name           = "sha256",
 318                .drv_name       = "sha256-ccp",
 319                .type           = CCP_SHA_TYPE_256,
 320                .digest_size    = SHA256_DIGEST_SIZE,
 321                .block_size     = SHA256_BLOCK_SIZE,
 322        },
 323};
 324
 325static int ccp_register_hmac_alg(struct list_head *head,
 326                                 const struct ccp_sha_def *def,
 327                                 const struct ccp_crypto_ahash_alg *base_alg)
 328{
 329        struct ccp_crypto_ahash_alg *ccp_alg;
 330        struct ahash_alg *alg;
 331        struct hash_alg_common *halg;
 332        struct crypto_alg *base;
 333        int ret;
 334
 335        ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
 336        if (!ccp_alg)
 337                return -ENOMEM;
 338
 339        /* Copy the base algorithm and only change what's necessary */
 340        *ccp_alg = *base_alg;
 341        INIT_LIST_HEAD(&ccp_alg->entry);
 342
 343        strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
 344
 345        alg = &ccp_alg->alg;
 346        alg->setkey = ccp_sha_setkey;
 347
 348        halg = &alg->halg;
 349
 350        base = &halg->base;
 351        snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
 352        snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
 353                 def->drv_name);
 354        base->cra_init = ccp_hmac_sha_cra_init;
 355        base->cra_exit = ccp_hmac_sha_cra_exit;
 356
 357        ret = crypto_register_ahash(alg);
 358        if (ret) {
 359                pr_err("%s ahash algorithm registration error (%d)\n",
 360                       base->cra_name, ret);
 361                kfree(ccp_alg);
 362                return ret;
 363        }
 364
 365        list_add(&ccp_alg->entry, head);
 366
 367        return ret;
 368}
 369
 370static int ccp_register_sha_alg(struct list_head *head,
 371                                const struct ccp_sha_def *def)
 372{
 373        struct ccp_crypto_ahash_alg *ccp_alg;
 374        struct ahash_alg *alg;
 375        struct hash_alg_common *halg;
 376        struct crypto_alg *base;
 377        int ret;
 378
 379        ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
 380        if (!ccp_alg)
 381                return -ENOMEM;
 382
 383        INIT_LIST_HEAD(&ccp_alg->entry);
 384
 385        ccp_alg->type = def->type;
 386
 387        alg = &ccp_alg->alg;
 388        alg->init = ccp_sha_init;
 389        alg->update = ccp_sha_update;
 390        alg->final = ccp_sha_final;
 391        alg->finup = ccp_sha_finup;
 392        alg->digest = ccp_sha_digest;
 393
 394        halg = &alg->halg;
 395        halg->digestsize = def->digest_size;
 396
 397        base = &halg->base;
 398        snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
 399        snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
 400                 def->drv_name);
 401        base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
 402                          CRYPTO_ALG_KERN_DRIVER_ONLY |
 403                          CRYPTO_ALG_NEED_FALLBACK;
 404        base->cra_blocksize = def->block_size;
 405        base->cra_ctxsize = sizeof(struct ccp_ctx);
 406        base->cra_priority = CCP_CRA_PRIORITY;
 407        base->cra_type = &crypto_ahash_type;
 408        base->cra_init = ccp_sha_cra_init;
 409        base->cra_exit = ccp_sha_cra_exit;
 410        base->cra_module = THIS_MODULE;
 411
 412        ret = crypto_register_ahash(alg);
 413        if (ret) {
 414                pr_err("%s ahash algorithm registration error (%d)\n",
 415                       base->cra_name, ret);
 416                kfree(ccp_alg);
 417                return ret;
 418        }
 419
 420        list_add(&ccp_alg->entry, head);
 421
 422        ret = ccp_register_hmac_alg(head, def, ccp_alg);
 423
 424        return ret;
 425}
 426
 427int ccp_register_sha_algs(struct list_head *head)
 428{
 429        int i, ret;
 430
 431        for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
 432                ret = ccp_register_sha_alg(head, &sha_algs[i]);
 433                if (ret)
 434                        return ret;
 435        }
 436
 437        return 0;
 438}
 439