linux/drivers/dma/edma.c
<<
>>
Prefs
   1/*
   2 * TI EDMA DMA engine driver
   3 *
   4 * Copyright 2012 Texas Instruments
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation version 2.
   9 *
  10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  11 * kind, whether express or implied; without even the implied warranty
  12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/dmaengine.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/edma.h>
  19#include <linux/err.h>
  20#include <linux/init.h>
  21#include <linux/interrupt.h>
  22#include <linux/list.h>
  23#include <linux/module.h>
  24#include <linux/platform_device.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27#include <linux/of.h>
  28
  29#include <linux/platform_data/edma.h>
  30
  31#include "dmaengine.h"
  32#include "virt-dma.h"
  33
  34/*
  35 * This will go away when the private EDMA API is folded
  36 * into this driver and the platform device(s) are
  37 * instantiated in the arch code. We can only get away
  38 * with this simplification because DA8XX may not be built
  39 * in the same kernel image with other DaVinci parts. This
  40 * avoids having to sprinkle dmaengine driver platform devices
  41 * and data throughout all the existing board files.
  42 */
  43#ifdef CONFIG_ARCH_DAVINCI_DA8XX
  44#define EDMA_CTLRS      2
  45#define EDMA_CHANS      32
  46#else
  47#define EDMA_CTLRS      1
  48#define EDMA_CHANS      64
  49#endif /* CONFIG_ARCH_DAVINCI_DA8XX */
  50
  51/*
  52 * Max of 20 segments per channel to conserve PaRAM slots
  53 * Also note that MAX_NR_SG should be atleast the no.of periods
  54 * that are required for ASoC, otherwise DMA prep calls will
  55 * fail. Today davinci-pcm is the only user of this driver and
  56 * requires atleast 17 slots, so we setup the default to 20.
  57 */
  58#define MAX_NR_SG               20
  59#define EDMA_MAX_SLOTS          MAX_NR_SG
  60#define EDMA_DESCRIPTORS        16
  61
  62struct edma_pset {
  63        u32                             len;
  64        dma_addr_t                      addr;
  65        struct edmacc_param             param;
  66};
  67
  68struct edma_desc {
  69        struct virt_dma_desc            vdesc;
  70        struct list_head                node;
  71        enum dma_transfer_direction     direction;
  72        int                             cyclic;
  73        int                             absync;
  74        int                             pset_nr;
  75        struct edma_chan                *echan;
  76        int                             processed;
  77
  78        /*
  79         * The following 4 elements are used for residue accounting.
  80         *
  81         * - processed_stat: the number of SG elements we have traversed
  82         * so far to cover accounting. This is updated directly to processed
  83         * during edma_callback and is always <= processed, because processed
  84         * refers to the number of pending transfer (programmed to EDMA
  85         * controller), where as processed_stat tracks number of transfers
  86         * accounted for so far.
  87         *
  88         * - residue: The amount of bytes we have left to transfer for this desc
  89         *
  90         * - residue_stat: The residue in bytes of data we have covered
  91         * so far for accounting. This is updated directly to residue
  92         * during callbacks to keep it current.
  93         *
  94         * - sg_len: Tracks the length of the current intermediate transfer,
  95         * this is required to update the residue during intermediate transfer
  96         * completion callback.
  97         */
  98        int                             processed_stat;
  99        u32                             sg_len;
 100        u32                             residue;
 101        u32                             residue_stat;
 102
 103        struct edma_pset                pset[0];
 104};
 105
 106struct edma_cc;
 107
 108struct edma_chan {
 109        struct virt_dma_chan            vchan;
 110        struct list_head                node;
 111        struct edma_desc                *edesc;
 112        struct edma_cc                  *ecc;
 113        int                             ch_num;
 114        bool                            alloced;
 115        int                             slot[EDMA_MAX_SLOTS];
 116        int                             missed;
 117        struct dma_slave_config         cfg;
 118};
 119
 120struct edma_cc {
 121        int                             ctlr;
 122        struct dma_device               dma_slave;
 123        struct edma_chan                slave_chans[EDMA_CHANS];
 124        int                             num_slave_chans;
 125        int                             dummy_slot;
 126};
 127
 128static inline struct edma_cc *to_edma_cc(struct dma_device *d)
 129{
 130        return container_of(d, struct edma_cc, dma_slave);
 131}
 132
 133static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
 134{
 135        return container_of(c, struct edma_chan, vchan.chan);
 136}
 137
 138static inline struct edma_desc
 139*to_edma_desc(struct dma_async_tx_descriptor *tx)
 140{
 141        return container_of(tx, struct edma_desc, vdesc.tx);
 142}
 143
 144static void edma_desc_free(struct virt_dma_desc *vdesc)
 145{
 146        kfree(container_of(vdesc, struct edma_desc, vdesc));
 147}
 148
 149/* Dispatch a queued descriptor to the controller (caller holds lock) */
 150static void edma_execute(struct edma_chan *echan)
 151{
 152        struct virt_dma_desc *vdesc;
 153        struct edma_desc *edesc;
 154        struct device *dev = echan->vchan.chan.device->dev;
 155        int i, j, left, nslots;
 156
 157        /* If either we processed all psets or we're still not started */
 158        if (!echan->edesc ||
 159            echan->edesc->pset_nr == echan->edesc->processed) {
 160                /* Get next vdesc */
 161                vdesc = vchan_next_desc(&echan->vchan);
 162                if (!vdesc) {
 163                        echan->edesc = NULL;
 164                        return;
 165                }
 166                list_del(&vdesc->node);
 167                echan->edesc = to_edma_desc(&vdesc->tx);
 168        }
 169
 170        edesc = echan->edesc;
 171
 172        /* Find out how many left */
 173        left = edesc->pset_nr - edesc->processed;
 174        nslots = min(MAX_NR_SG, left);
 175        edesc->sg_len = 0;
 176
 177        /* Write descriptor PaRAM set(s) */
 178        for (i = 0; i < nslots; i++) {
 179                j = i + edesc->processed;
 180                edma_write_slot(echan->slot[i], &edesc->pset[j].param);
 181                edesc->sg_len += edesc->pset[j].len;
 182                dev_vdbg(echan->vchan.chan.device->dev,
 183                        "\n pset[%d]:\n"
 184                        "  chnum\t%d\n"
 185                        "  slot\t%d\n"
 186                        "  opt\t%08x\n"
 187                        "  src\t%08x\n"
 188                        "  dst\t%08x\n"
 189                        "  abcnt\t%08x\n"
 190                        "  ccnt\t%08x\n"
 191                        "  bidx\t%08x\n"
 192                        "  cidx\t%08x\n"
 193                        "  lkrld\t%08x\n",
 194                        j, echan->ch_num, echan->slot[i],
 195                        edesc->pset[j].param.opt,
 196                        edesc->pset[j].param.src,
 197                        edesc->pset[j].param.dst,
 198                        edesc->pset[j].param.a_b_cnt,
 199                        edesc->pset[j].param.ccnt,
 200                        edesc->pset[j].param.src_dst_bidx,
 201                        edesc->pset[j].param.src_dst_cidx,
 202                        edesc->pset[j].param.link_bcntrld);
 203                /* Link to the previous slot if not the last set */
 204                if (i != (nslots - 1))
 205                        edma_link(echan->slot[i], echan->slot[i+1]);
 206        }
 207
 208        edesc->processed += nslots;
 209
 210        /*
 211         * If this is either the last set in a set of SG-list transactions
 212         * then setup a link to the dummy slot, this results in all future
 213         * events being absorbed and that's OK because we're done
 214         */
 215        if (edesc->processed == edesc->pset_nr) {
 216                if (edesc->cyclic)
 217                        edma_link(echan->slot[nslots-1], echan->slot[1]);
 218                else
 219                        edma_link(echan->slot[nslots-1],
 220                                  echan->ecc->dummy_slot);
 221        }
 222
 223        if (edesc->processed <= MAX_NR_SG) {
 224                dev_dbg(dev, "first transfer starting on channel %d\n",
 225                        echan->ch_num);
 226                edma_start(echan->ch_num);
 227        } else {
 228                dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
 229                        echan->ch_num, edesc->processed);
 230                edma_resume(echan->ch_num);
 231        }
 232
 233        /*
 234         * This happens due to setup times between intermediate transfers
 235         * in long SG lists which have to be broken up into transfers of
 236         * MAX_NR_SG
 237         */
 238        if (echan->missed) {
 239                dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
 240                edma_clean_channel(echan->ch_num);
 241                edma_stop(echan->ch_num);
 242                edma_start(echan->ch_num);
 243                edma_trigger_channel(echan->ch_num);
 244                echan->missed = 0;
 245        }
 246}
 247
 248static int edma_terminate_all(struct dma_chan *chan)
 249{
 250        struct edma_chan *echan = to_edma_chan(chan);
 251        unsigned long flags;
 252        LIST_HEAD(head);
 253
 254        spin_lock_irqsave(&echan->vchan.lock, flags);
 255
 256        /*
 257         * Stop DMA activity: we assume the callback will not be called
 258         * after edma_dma() returns (even if it does, it will see
 259         * echan->edesc is NULL and exit.)
 260         */
 261        if (echan->edesc) {
 262                int cyclic = echan->edesc->cyclic;
 263
 264                /*
 265                 * free the running request descriptor
 266                 * since it is not in any of the vdesc lists
 267                 */
 268                edma_desc_free(&echan->edesc->vdesc);
 269
 270                echan->edesc = NULL;
 271                edma_stop(echan->ch_num);
 272                /* Move the cyclic channel back to default queue */
 273                if (cyclic)
 274                        edma_assign_channel_eventq(echan->ch_num,
 275                                                   EVENTQ_DEFAULT);
 276        }
 277
 278        vchan_get_all_descriptors(&echan->vchan, &head);
 279        spin_unlock_irqrestore(&echan->vchan.lock, flags);
 280        vchan_dma_desc_free_list(&echan->vchan, &head);
 281
 282        return 0;
 283}
 284
 285static int edma_slave_config(struct dma_chan *chan,
 286        struct dma_slave_config *cfg)
 287{
 288        struct edma_chan *echan = to_edma_chan(chan);
 289
 290        if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
 291            cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
 292                return -EINVAL;
 293
 294        memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
 295
 296        return 0;
 297}
 298
 299static int edma_dma_pause(struct dma_chan *chan)
 300{
 301        struct edma_chan *echan = to_edma_chan(chan);
 302
 303        /* Pause/Resume only allowed with cyclic mode */
 304        if (!echan->edesc || !echan->edesc->cyclic)
 305                return -EINVAL;
 306
 307        edma_pause(echan->ch_num);
 308        return 0;
 309}
 310
 311static int edma_dma_resume(struct dma_chan *chan)
 312{
 313        struct edma_chan *echan = to_edma_chan(chan);
 314
 315        /* Pause/Resume only allowed with cyclic mode */
 316        if (!echan->edesc->cyclic)
 317                return -EINVAL;
 318
 319        edma_resume(echan->ch_num);
 320        return 0;
 321}
 322
 323/*
 324 * A PaRAM set configuration abstraction used by other modes
 325 * @chan: Channel who's PaRAM set we're configuring
 326 * @pset: PaRAM set to initialize and setup.
 327 * @src_addr: Source address of the DMA
 328 * @dst_addr: Destination address of the DMA
 329 * @burst: In units of dev_width, how much to send
 330 * @dev_width: How much is the dev_width
 331 * @dma_length: Total length of the DMA transfer
 332 * @direction: Direction of the transfer
 333 */
 334static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
 335        dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
 336        enum dma_slave_buswidth dev_width, unsigned int dma_length,
 337        enum dma_transfer_direction direction)
 338{
 339        struct edma_chan *echan = to_edma_chan(chan);
 340        struct device *dev = chan->device->dev;
 341        struct edmacc_param *param = &epset->param;
 342        int acnt, bcnt, ccnt, cidx;
 343        int src_bidx, dst_bidx, src_cidx, dst_cidx;
 344        int absync;
 345
 346        acnt = dev_width;
 347
 348        /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
 349        if (!burst)
 350                burst = 1;
 351        /*
 352         * If the maxburst is equal to the fifo width, use
 353         * A-synced transfers. This allows for large contiguous
 354         * buffer transfers using only one PaRAM set.
 355         */
 356        if (burst == 1) {
 357                /*
 358                 * For the A-sync case, bcnt and ccnt are the remainder
 359                 * and quotient respectively of the division of:
 360                 * (dma_length / acnt) by (SZ_64K -1). This is so
 361                 * that in case bcnt over flows, we have ccnt to use.
 362                 * Note: In A-sync tranfer only, bcntrld is used, but it
 363                 * only applies for sg_dma_len(sg) >= SZ_64K.
 364                 * In this case, the best way adopted is- bccnt for the
 365                 * first frame will be the remainder below. Then for
 366                 * every successive frame, bcnt will be SZ_64K-1. This
 367                 * is assured as bcntrld = 0xffff in end of function.
 368                 */
 369                absync = false;
 370                ccnt = dma_length / acnt / (SZ_64K - 1);
 371                bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
 372                /*
 373                 * If bcnt is non-zero, we have a remainder and hence an
 374                 * extra frame to transfer, so increment ccnt.
 375                 */
 376                if (bcnt)
 377                        ccnt++;
 378                else
 379                        bcnt = SZ_64K - 1;
 380                cidx = acnt;
 381        } else {
 382                /*
 383                 * If maxburst is greater than the fifo address_width,
 384                 * use AB-synced transfers where A count is the fifo
 385                 * address_width and B count is the maxburst. In this
 386                 * case, we are limited to transfers of C count frames
 387                 * of (address_width * maxburst) where C count is limited
 388                 * to SZ_64K-1. This places an upper bound on the length
 389                 * of an SG segment that can be handled.
 390                 */
 391                absync = true;
 392                bcnt = burst;
 393                ccnt = dma_length / (acnt * bcnt);
 394                if (ccnt > (SZ_64K - 1)) {
 395                        dev_err(dev, "Exceeded max SG segment size\n");
 396                        return -EINVAL;
 397                }
 398                cidx = acnt * bcnt;
 399        }
 400
 401        epset->len = dma_length;
 402
 403        if (direction == DMA_MEM_TO_DEV) {
 404                src_bidx = acnt;
 405                src_cidx = cidx;
 406                dst_bidx = 0;
 407                dst_cidx = 0;
 408                epset->addr = src_addr;
 409        } else if (direction == DMA_DEV_TO_MEM)  {
 410                src_bidx = 0;
 411                src_cidx = 0;
 412                dst_bidx = acnt;
 413                dst_cidx = cidx;
 414                epset->addr = dst_addr;
 415        } else if (direction == DMA_MEM_TO_MEM)  {
 416                src_bidx = acnt;
 417                src_cidx = cidx;
 418                dst_bidx = acnt;
 419                dst_cidx = cidx;
 420        } else {
 421                dev_err(dev, "%s: direction not implemented yet\n", __func__);
 422                return -EINVAL;
 423        }
 424
 425        param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
 426        /* Configure A or AB synchronized transfers */
 427        if (absync)
 428                param->opt |= SYNCDIM;
 429
 430        param->src = src_addr;
 431        param->dst = dst_addr;
 432
 433        param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
 434        param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
 435
 436        param->a_b_cnt = bcnt << 16 | acnt;
 437        param->ccnt = ccnt;
 438        /*
 439         * Only time when (bcntrld) auto reload is required is for
 440         * A-sync case, and in this case, a requirement of reload value
 441         * of SZ_64K-1 only is assured. 'link' is initially set to NULL
 442         * and then later will be populated by edma_execute.
 443         */
 444        param->link_bcntrld = 0xffffffff;
 445        return absync;
 446}
 447
 448static struct dma_async_tx_descriptor *edma_prep_slave_sg(
 449        struct dma_chan *chan, struct scatterlist *sgl,
 450        unsigned int sg_len, enum dma_transfer_direction direction,
 451        unsigned long tx_flags, void *context)
 452{
 453        struct edma_chan *echan = to_edma_chan(chan);
 454        struct device *dev = chan->device->dev;
 455        struct edma_desc *edesc;
 456        dma_addr_t src_addr = 0, dst_addr = 0;
 457        enum dma_slave_buswidth dev_width;
 458        u32 burst;
 459        struct scatterlist *sg;
 460        int i, nslots, ret;
 461
 462        if (unlikely(!echan || !sgl || !sg_len))
 463                return NULL;
 464
 465        if (direction == DMA_DEV_TO_MEM) {
 466                src_addr = echan->cfg.src_addr;
 467                dev_width = echan->cfg.src_addr_width;
 468                burst = echan->cfg.src_maxburst;
 469        } else if (direction == DMA_MEM_TO_DEV) {
 470                dst_addr = echan->cfg.dst_addr;
 471                dev_width = echan->cfg.dst_addr_width;
 472                burst = echan->cfg.dst_maxburst;
 473        } else {
 474                dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
 475                return NULL;
 476        }
 477
 478        if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
 479                dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
 480                return NULL;
 481        }
 482
 483        edesc = kzalloc(sizeof(*edesc) + sg_len *
 484                sizeof(edesc->pset[0]), GFP_ATOMIC);
 485        if (!edesc) {
 486                dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
 487                return NULL;
 488        }
 489
 490        edesc->pset_nr = sg_len;
 491        edesc->residue = 0;
 492        edesc->direction = direction;
 493        edesc->echan = echan;
 494
 495        /* Allocate a PaRAM slot, if needed */
 496        nslots = min_t(unsigned, MAX_NR_SG, sg_len);
 497
 498        for (i = 0; i < nslots; i++) {
 499                if (echan->slot[i] < 0) {
 500                        echan->slot[i] =
 501                                edma_alloc_slot(EDMA_CTLR(echan->ch_num),
 502                                                EDMA_SLOT_ANY);
 503                        if (echan->slot[i] < 0) {
 504                                kfree(edesc);
 505                                dev_err(dev, "%s: Failed to allocate slot\n",
 506                                        __func__);
 507                                return NULL;
 508                        }
 509                }
 510        }
 511
 512        /* Configure PaRAM sets for each SG */
 513        for_each_sg(sgl, sg, sg_len, i) {
 514                /* Get address for each SG */
 515                if (direction == DMA_DEV_TO_MEM)
 516                        dst_addr = sg_dma_address(sg);
 517                else
 518                        src_addr = sg_dma_address(sg);
 519
 520                ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
 521                                       dst_addr, burst, dev_width,
 522                                       sg_dma_len(sg), direction);
 523                if (ret < 0) {
 524                        kfree(edesc);
 525                        return NULL;
 526                }
 527
 528                edesc->absync = ret;
 529                edesc->residue += sg_dma_len(sg);
 530
 531                /* If this is the last in a current SG set of transactions,
 532                   enable interrupts so that next set is processed */
 533                if (!((i+1) % MAX_NR_SG))
 534                        edesc->pset[i].param.opt |= TCINTEN;
 535
 536                /* If this is the last set, enable completion interrupt flag */
 537                if (i == sg_len - 1)
 538                        edesc->pset[i].param.opt |= TCINTEN;
 539        }
 540        edesc->residue_stat = edesc->residue;
 541
 542        return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
 543}
 544
 545static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
 546        struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 547        size_t len, unsigned long tx_flags)
 548{
 549        int ret;
 550        struct edma_desc *edesc;
 551        struct device *dev = chan->device->dev;
 552        struct edma_chan *echan = to_edma_chan(chan);
 553
 554        if (unlikely(!echan || !len))
 555                return NULL;
 556
 557        edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC);
 558        if (!edesc) {
 559                dev_dbg(dev, "Failed to allocate a descriptor\n");
 560                return NULL;
 561        }
 562
 563        edesc->pset_nr = 1;
 564
 565        ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
 566                               DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM);
 567        if (ret < 0)
 568                return NULL;
 569
 570        edesc->absync = ret;
 571
 572        /*
 573         * Enable intermediate transfer chaining to re-trigger channel
 574         * on completion of every TR, and enable transfer-completion
 575         * interrupt on completion of the whole transfer.
 576         */
 577        edesc->pset[0].param.opt |= ITCCHEN;
 578        edesc->pset[0].param.opt |= TCINTEN;
 579
 580        return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
 581}
 582
 583static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
 584        struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 585        size_t period_len, enum dma_transfer_direction direction,
 586        unsigned long tx_flags)
 587{
 588        struct edma_chan *echan = to_edma_chan(chan);
 589        struct device *dev = chan->device->dev;
 590        struct edma_desc *edesc;
 591        dma_addr_t src_addr, dst_addr;
 592        enum dma_slave_buswidth dev_width;
 593        u32 burst;
 594        int i, ret, nslots;
 595
 596        if (unlikely(!echan || !buf_len || !period_len))
 597                return NULL;
 598
 599        if (direction == DMA_DEV_TO_MEM) {
 600                src_addr = echan->cfg.src_addr;
 601                dst_addr = buf_addr;
 602                dev_width = echan->cfg.src_addr_width;
 603                burst = echan->cfg.src_maxburst;
 604        } else if (direction == DMA_MEM_TO_DEV) {
 605                src_addr = buf_addr;
 606                dst_addr = echan->cfg.dst_addr;
 607                dev_width = echan->cfg.dst_addr_width;
 608                burst = echan->cfg.dst_maxburst;
 609        } else {
 610                dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
 611                return NULL;
 612        }
 613
 614        if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
 615                dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
 616                return NULL;
 617        }
 618
 619        if (unlikely(buf_len % period_len)) {
 620                dev_err(dev, "Period should be multiple of Buffer length\n");
 621                return NULL;
 622        }
 623
 624        nslots = (buf_len / period_len) + 1;
 625
 626        /*
 627         * Cyclic DMA users such as audio cannot tolerate delays introduced
 628         * by cases where the number of periods is more than the maximum
 629         * number of SGs the EDMA driver can handle at a time. For DMA types
 630         * such as Slave SGs, such delays are tolerable and synchronized,
 631         * but the synchronization is difficult to achieve with Cyclic and
 632         * cannot be guaranteed, so we error out early.
 633         */
 634        if (nslots > MAX_NR_SG)
 635                return NULL;
 636
 637        edesc = kzalloc(sizeof(*edesc) + nslots *
 638                sizeof(edesc->pset[0]), GFP_ATOMIC);
 639        if (!edesc) {
 640                dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
 641                return NULL;
 642        }
 643
 644        edesc->cyclic = 1;
 645        edesc->pset_nr = nslots;
 646        edesc->residue = edesc->residue_stat = buf_len;
 647        edesc->direction = direction;
 648        edesc->echan = echan;
 649
 650        dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
 651                __func__, echan->ch_num, nslots, period_len, buf_len);
 652
 653        for (i = 0; i < nslots; i++) {
 654                /* Allocate a PaRAM slot, if needed */
 655                if (echan->slot[i] < 0) {
 656                        echan->slot[i] =
 657                                edma_alloc_slot(EDMA_CTLR(echan->ch_num),
 658                                                EDMA_SLOT_ANY);
 659                        if (echan->slot[i] < 0) {
 660                                kfree(edesc);
 661                                dev_err(dev, "%s: Failed to allocate slot\n",
 662                                        __func__);
 663                                return NULL;
 664                        }
 665                }
 666
 667                if (i == nslots - 1) {
 668                        memcpy(&edesc->pset[i], &edesc->pset[0],
 669                               sizeof(edesc->pset[0]));
 670                        break;
 671                }
 672
 673                ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
 674                                       dst_addr, burst, dev_width, period_len,
 675                                       direction);
 676                if (ret < 0) {
 677                        kfree(edesc);
 678                        return NULL;
 679                }
 680
 681                if (direction == DMA_DEV_TO_MEM)
 682                        dst_addr += period_len;
 683                else
 684                        src_addr += period_len;
 685
 686                dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
 687                dev_vdbg(dev,
 688                        "\n pset[%d]:\n"
 689                        "  chnum\t%d\n"
 690                        "  slot\t%d\n"
 691                        "  opt\t%08x\n"
 692                        "  src\t%08x\n"
 693                        "  dst\t%08x\n"
 694                        "  abcnt\t%08x\n"
 695                        "  ccnt\t%08x\n"
 696                        "  bidx\t%08x\n"
 697                        "  cidx\t%08x\n"
 698                        "  lkrld\t%08x\n",
 699                        i, echan->ch_num, echan->slot[i],
 700                        edesc->pset[i].param.opt,
 701                        edesc->pset[i].param.src,
 702                        edesc->pset[i].param.dst,
 703                        edesc->pset[i].param.a_b_cnt,
 704                        edesc->pset[i].param.ccnt,
 705                        edesc->pset[i].param.src_dst_bidx,
 706                        edesc->pset[i].param.src_dst_cidx,
 707                        edesc->pset[i].param.link_bcntrld);
 708
 709                edesc->absync = ret;
 710
 711                /*
 712                 * Enable period interrupt only if it is requested
 713                 */
 714                if (tx_flags & DMA_PREP_INTERRUPT)
 715                        edesc->pset[i].param.opt |= TCINTEN;
 716        }
 717
 718        /* Place the cyclic channel to highest priority queue */
 719        edma_assign_channel_eventq(echan->ch_num, EVENTQ_0);
 720
 721        return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
 722}
 723
 724static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
 725{
 726        struct edma_chan *echan = data;
 727        struct device *dev = echan->vchan.chan.device->dev;
 728        struct edma_desc *edesc;
 729        struct edmacc_param p;
 730
 731        edesc = echan->edesc;
 732
 733        /* Pause the channel for non-cyclic */
 734        if (!edesc || (edesc && !edesc->cyclic))
 735                edma_pause(echan->ch_num);
 736
 737        switch (ch_status) {
 738        case EDMA_DMA_COMPLETE:
 739                spin_lock(&echan->vchan.lock);
 740
 741                if (edesc) {
 742                        if (edesc->cyclic) {
 743                                vchan_cyclic_callback(&edesc->vdesc);
 744                        } else if (edesc->processed == edesc->pset_nr) {
 745                                dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
 746                                edesc->residue = 0;
 747                                edma_stop(echan->ch_num);
 748                                vchan_cookie_complete(&edesc->vdesc);
 749                                edma_execute(echan);
 750                        } else {
 751                                dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
 752
 753                                /* Update statistics for tx_status */
 754                                edesc->residue -= edesc->sg_len;
 755                                edesc->residue_stat = edesc->residue;
 756                                edesc->processed_stat = edesc->processed;
 757
 758                                edma_execute(echan);
 759                        }
 760                }
 761
 762                spin_unlock(&echan->vchan.lock);
 763
 764                break;
 765        case EDMA_DMA_CC_ERROR:
 766                spin_lock(&echan->vchan.lock);
 767
 768                edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p);
 769
 770                /*
 771                 * Issue later based on missed flag which will be sure
 772                 * to happen as:
 773                 * (1) we finished transmitting an intermediate slot and
 774                 *     edma_execute is coming up.
 775                 * (2) or we finished current transfer and issue will
 776                 *     call edma_execute.
 777                 *
 778                 * Important note: issuing can be dangerous here and
 779                 * lead to some nasty recursion when we are in a NULL
 780                 * slot. So we avoid doing so and set the missed flag.
 781                 */
 782                if (p.a_b_cnt == 0 && p.ccnt == 0) {
 783                        dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
 784                        echan->missed = 1;
 785                } else {
 786                        /*
 787                         * The slot is already programmed but the event got
 788                         * missed, so its safe to issue it here.
 789                         */
 790                        dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
 791                        edma_clean_channel(echan->ch_num);
 792                        edma_stop(echan->ch_num);
 793                        edma_start(echan->ch_num);
 794                        edma_trigger_channel(echan->ch_num);
 795                }
 796
 797                spin_unlock(&echan->vchan.lock);
 798
 799                break;
 800        default:
 801                break;
 802        }
 803}
 804
 805/* Alloc channel resources */
 806static int edma_alloc_chan_resources(struct dma_chan *chan)
 807{
 808        struct edma_chan *echan = to_edma_chan(chan);
 809        struct device *dev = chan->device->dev;
 810        int ret;
 811        int a_ch_num;
 812        LIST_HEAD(descs);
 813
 814        a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
 815                                        echan, EVENTQ_DEFAULT);
 816
 817        if (a_ch_num < 0) {
 818                ret = -ENODEV;
 819                goto err_no_chan;
 820        }
 821
 822        if (a_ch_num != echan->ch_num) {
 823                dev_err(dev, "failed to allocate requested channel %u:%u\n",
 824                        EDMA_CTLR(echan->ch_num),
 825                        EDMA_CHAN_SLOT(echan->ch_num));
 826                ret = -ENODEV;
 827                goto err_wrong_chan;
 828        }
 829
 830        echan->alloced = true;
 831        echan->slot[0] = echan->ch_num;
 832
 833        dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num,
 834                EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
 835
 836        return 0;
 837
 838err_wrong_chan:
 839        edma_free_channel(a_ch_num);
 840err_no_chan:
 841        return ret;
 842}
 843
 844/* Free channel resources */
 845static void edma_free_chan_resources(struct dma_chan *chan)
 846{
 847        struct edma_chan *echan = to_edma_chan(chan);
 848        struct device *dev = chan->device->dev;
 849        int i;
 850
 851        /* Terminate transfers */
 852        edma_stop(echan->ch_num);
 853
 854        vchan_free_chan_resources(&echan->vchan);
 855
 856        /* Free EDMA PaRAM slots */
 857        for (i = 1; i < EDMA_MAX_SLOTS; i++) {
 858                if (echan->slot[i] >= 0) {
 859                        edma_free_slot(echan->slot[i]);
 860                        echan->slot[i] = -1;
 861                }
 862        }
 863
 864        /* Free EDMA channel */
 865        if (echan->alloced) {
 866                edma_free_channel(echan->ch_num);
 867                echan->alloced = false;
 868        }
 869
 870        dev_dbg(dev, "freeing channel for %u\n", echan->ch_num);
 871}
 872
 873/* Send pending descriptor to hardware */
 874static void edma_issue_pending(struct dma_chan *chan)
 875{
 876        struct edma_chan *echan = to_edma_chan(chan);
 877        unsigned long flags;
 878
 879        spin_lock_irqsave(&echan->vchan.lock, flags);
 880        if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
 881                edma_execute(echan);
 882        spin_unlock_irqrestore(&echan->vchan.lock, flags);
 883}
 884
 885static u32 edma_residue(struct edma_desc *edesc)
 886{
 887        bool dst = edesc->direction == DMA_DEV_TO_MEM;
 888        struct edma_pset *pset = edesc->pset;
 889        dma_addr_t done, pos;
 890        int i;
 891
 892        /*
 893         * We always read the dst/src position from the first RamPar
 894         * pset. That's the one which is active now.
 895         */
 896        pos = edma_get_position(edesc->echan->slot[0], dst);
 897
 898        /*
 899         * Cyclic is simple. Just subtract pset[0].addr from pos.
 900         *
 901         * We never update edesc->residue in the cyclic case, so we
 902         * can tell the remaining room to the end of the circular
 903         * buffer.
 904         */
 905        if (edesc->cyclic) {
 906                done = pos - pset->addr;
 907                edesc->residue_stat = edesc->residue - done;
 908                return edesc->residue_stat;
 909        }
 910
 911        /*
 912         * For SG operation we catch up with the last processed
 913         * status.
 914         */
 915        pset += edesc->processed_stat;
 916
 917        for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
 918                /*
 919                 * If we are inside this pset address range, we know
 920                 * this is the active one. Get the current delta and
 921                 * stop walking the psets.
 922                 */
 923                if (pos >= pset->addr && pos < pset->addr + pset->len)
 924                        return edesc->residue_stat - (pos - pset->addr);
 925
 926                /* Otherwise mark it done and update residue_stat. */
 927                edesc->processed_stat++;
 928                edesc->residue_stat -= pset->len;
 929        }
 930        return edesc->residue_stat;
 931}
 932
 933/* Check request completion status */
 934static enum dma_status edma_tx_status(struct dma_chan *chan,
 935                                      dma_cookie_t cookie,
 936                                      struct dma_tx_state *txstate)
 937{
 938        struct edma_chan *echan = to_edma_chan(chan);
 939        struct virt_dma_desc *vdesc;
 940        enum dma_status ret;
 941        unsigned long flags;
 942
 943        ret = dma_cookie_status(chan, cookie, txstate);
 944        if (ret == DMA_COMPLETE || !txstate)
 945                return ret;
 946
 947        spin_lock_irqsave(&echan->vchan.lock, flags);
 948        if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
 949                txstate->residue = edma_residue(echan->edesc);
 950        else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
 951                txstate->residue = to_edma_desc(&vdesc->tx)->residue;
 952        spin_unlock_irqrestore(&echan->vchan.lock, flags);
 953
 954        return ret;
 955}
 956
 957static void __init edma_chan_init(struct edma_cc *ecc,
 958                                  struct dma_device *dma,
 959                                  struct edma_chan *echans)
 960{
 961        int i, j;
 962
 963        for (i = 0; i < EDMA_CHANS; i++) {
 964                struct edma_chan *echan = &echans[i];
 965                echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
 966                echan->ecc = ecc;
 967                echan->vchan.desc_free = edma_desc_free;
 968
 969                vchan_init(&echan->vchan, dma);
 970
 971                INIT_LIST_HEAD(&echan->node);
 972                for (j = 0; j < EDMA_MAX_SLOTS; j++)
 973                        echan->slot[j] = -1;
 974        }
 975}
 976
 977#define EDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 978                                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
 979                                 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
 980                                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
 981
 982static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
 983                          struct device *dev)
 984{
 985        dma->device_prep_slave_sg = edma_prep_slave_sg;
 986        dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
 987        dma->device_prep_dma_memcpy = edma_prep_dma_memcpy;
 988        dma->device_alloc_chan_resources = edma_alloc_chan_resources;
 989        dma->device_free_chan_resources = edma_free_chan_resources;
 990        dma->device_issue_pending = edma_issue_pending;
 991        dma->device_tx_status = edma_tx_status;
 992        dma->device_config = edma_slave_config;
 993        dma->device_pause = edma_dma_pause;
 994        dma->device_resume = edma_dma_resume;
 995        dma->device_terminate_all = edma_terminate_all;
 996
 997        dma->src_addr_widths = EDMA_DMA_BUSWIDTHS;
 998        dma->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
 999        dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1000        dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1001
1002        dma->dev = dev;
1003
1004        /*
1005         * code using dma memcpy must make sure alignment of
1006         * length is at dma->copy_align boundary.
1007         */
1008        dma->copy_align = DMA_SLAVE_BUSWIDTH_4_BYTES;
1009
1010        INIT_LIST_HEAD(&dma->channels);
1011}
1012
1013static int edma_probe(struct platform_device *pdev)
1014{
1015        struct edma_cc *ecc;
1016        int ret;
1017
1018        ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1019        if (ret)
1020                return ret;
1021
1022        ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
1023        if (!ecc) {
1024                dev_err(&pdev->dev, "Can't allocate controller\n");
1025                return -ENOMEM;
1026        }
1027
1028        ecc->ctlr = pdev->id;
1029        ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
1030        if (ecc->dummy_slot < 0) {
1031                dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
1032                return ecc->dummy_slot;
1033        }
1034
1035        dma_cap_zero(ecc->dma_slave.cap_mask);
1036        dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
1037        dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask);
1038        dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask);
1039
1040        edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);
1041
1042        edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);
1043
1044        ret = dma_async_device_register(&ecc->dma_slave);
1045        if (ret)
1046                goto err_reg1;
1047
1048        platform_set_drvdata(pdev, ecc);
1049
1050        dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");
1051
1052        return 0;
1053
1054err_reg1:
1055        edma_free_slot(ecc->dummy_slot);
1056        return ret;
1057}
1058
1059static int edma_remove(struct platform_device *pdev)
1060{
1061        struct device *dev = &pdev->dev;
1062        struct edma_cc *ecc = dev_get_drvdata(dev);
1063
1064        dma_async_device_unregister(&ecc->dma_slave);
1065        edma_free_slot(ecc->dummy_slot);
1066
1067        return 0;
1068}
1069
1070static struct platform_driver edma_driver = {
1071        .probe          = edma_probe,
1072        .remove         = edma_remove,
1073        .driver = {
1074                .name = "edma-dma-engine",
1075        },
1076};
1077
1078bool edma_filter_fn(struct dma_chan *chan, void *param)
1079{
1080        if (chan->device->dev->driver == &edma_driver.driver) {
1081                struct edma_chan *echan = to_edma_chan(chan);
1082                unsigned ch_req = *(unsigned *)param;
1083                return ch_req == echan->ch_num;
1084        }
1085        return false;
1086}
1087EXPORT_SYMBOL(edma_filter_fn);
1088
1089static int edma_init(void)
1090{
1091        return platform_driver_register(&edma_driver);
1092}
1093subsys_initcall(edma_init);
1094
1095static void __exit edma_exit(void)
1096{
1097        platform_driver_unregister(&edma_driver);
1098}
1099module_exit(edma_exit);
1100
1101MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
1102MODULE_DESCRIPTION("TI EDMA DMA engine driver");
1103MODULE_LICENSE("GPL v2");
1104