linux/drivers/firmware/memmap.c
<<
>>
Prefs
   1/*
   2 * linux/drivers/firmware/memmap.c
   3 *  Copyright (C) 2008 SUSE LINUX Products GmbH
   4 *  by Bernhard Walle <bernhard.walle@gmx.de>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License v2.0 as published by
   8 * the Free Software Foundation
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 */
  16
  17#include <linux/string.h>
  18#include <linux/firmware-map.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/types.h>
  22#include <linux/bootmem.h>
  23#include <linux/slab.h>
  24#include <linux/mm.h>
  25
  26/*
  27 * Data types ------------------------------------------------------------------
  28 */
  29
  30/*
  31 * Firmware map entry. Because firmware memory maps are flat and not
  32 * hierarchical, it's ok to organise them in a linked list. No parent
  33 * information is necessary as for the resource tree.
  34 */
  35struct firmware_map_entry {
  36        /*
  37         * start and end must be u64 rather than resource_size_t, because e820
  38         * resources can lie at addresses above 4G.
  39         */
  40        u64                     start;  /* start of the memory range */
  41        u64                     end;    /* end of the memory range (incl.) */
  42        const char              *type;  /* type of the memory range */
  43        struct list_head        list;   /* entry for the linked list */
  44        struct kobject          kobj;   /* kobject for each entry */
  45};
  46
  47/*
  48 * Forward declarations --------------------------------------------------------
  49 */
  50static ssize_t memmap_attr_show(struct kobject *kobj,
  51                                struct attribute *attr, char *buf);
  52static ssize_t start_show(struct firmware_map_entry *entry, char *buf);
  53static ssize_t end_show(struct firmware_map_entry *entry, char *buf);
  54static ssize_t type_show(struct firmware_map_entry *entry, char *buf);
  55
  56static struct firmware_map_entry * __meminit
  57firmware_map_find_entry(u64 start, u64 end, const char *type);
  58
  59/*
  60 * Static data -----------------------------------------------------------------
  61 */
  62
  63struct memmap_attribute {
  64        struct attribute attr;
  65        ssize_t (*show)(struct firmware_map_entry *entry, char *buf);
  66};
  67
  68static struct memmap_attribute memmap_start_attr = __ATTR_RO(start);
  69static struct memmap_attribute memmap_end_attr   = __ATTR_RO(end);
  70static struct memmap_attribute memmap_type_attr  = __ATTR_RO(type);
  71
  72/*
  73 * These are default attributes that are added for every memmap entry.
  74 */
  75static struct attribute *def_attrs[] = {
  76        &memmap_start_attr.attr,
  77        &memmap_end_attr.attr,
  78        &memmap_type_attr.attr,
  79        NULL
  80};
  81
  82static const struct sysfs_ops memmap_attr_ops = {
  83        .show = memmap_attr_show,
  84};
  85
  86/* Firmware memory map entries. */
  87static LIST_HEAD(map_entries);
  88static DEFINE_SPINLOCK(map_entries_lock);
  89
  90/*
  91 * For memory hotplug, there is no way to free memory map entries allocated
  92 * by boot mem after the system is up. So when we hot-remove memory whose
  93 * map entry is allocated by bootmem, we need to remember the storage and
  94 * reuse it when the memory is hot-added again.
  95 */
  96static LIST_HEAD(map_entries_bootmem);
  97static DEFINE_SPINLOCK(map_entries_bootmem_lock);
  98
  99
 100static inline struct firmware_map_entry *
 101to_memmap_entry(struct kobject *kobj)
 102{
 103        return container_of(kobj, struct firmware_map_entry, kobj);
 104}
 105
 106static void __meminit release_firmware_map_entry(struct kobject *kobj)
 107{
 108        struct firmware_map_entry *entry = to_memmap_entry(kobj);
 109
 110        if (PageReserved(virt_to_page(entry))) {
 111                /*
 112                 * Remember the storage allocated by bootmem, and reuse it when
 113                 * the memory is hot-added again. The entry will be added to
 114                 * map_entries_bootmem here, and deleted from &map_entries in
 115                 * firmware_map_remove_entry().
 116                 */
 117                spin_lock(&map_entries_bootmem_lock);
 118                list_add(&entry->list, &map_entries_bootmem);
 119                spin_unlock(&map_entries_bootmem_lock);
 120
 121                return;
 122        }
 123
 124        kfree(entry);
 125}
 126
 127static struct kobj_type __refdata memmap_ktype = {
 128        .release        = release_firmware_map_entry,
 129        .sysfs_ops      = &memmap_attr_ops,
 130        .default_attrs  = def_attrs,
 131};
 132
 133/*
 134 * Registration functions ------------------------------------------------------
 135 */
 136
 137/**
 138 * firmware_map_add_entry() - Does the real work to add a firmware memmap entry.
 139 * @start: Start of the memory range.
 140 * @end:   End of the memory range (exclusive).
 141 * @type:  Type of the memory range.
 142 * @entry: Pre-allocated (either kmalloc() or bootmem allocator), uninitialised
 143 *         entry.
 144 *
 145 * Common implementation of firmware_map_add() and firmware_map_add_early()
 146 * which expects a pre-allocated struct firmware_map_entry.
 147 **/
 148static int firmware_map_add_entry(u64 start, u64 end,
 149                                  const char *type,
 150                                  struct firmware_map_entry *entry)
 151{
 152        BUG_ON(start > end);
 153
 154        entry->start = start;
 155        entry->end = end - 1;
 156        entry->type = type;
 157        INIT_LIST_HEAD(&entry->list);
 158        kobject_init(&entry->kobj, &memmap_ktype);
 159
 160        spin_lock(&map_entries_lock);
 161        list_add_tail(&entry->list, &map_entries);
 162        spin_unlock(&map_entries_lock);
 163
 164        return 0;
 165}
 166
 167/**
 168 * firmware_map_remove_entry() - Does the real work to remove a firmware
 169 * memmap entry.
 170 * @entry: removed entry.
 171 *
 172 * The caller must hold map_entries_lock, and release it properly.
 173 **/
 174static inline void firmware_map_remove_entry(struct firmware_map_entry *entry)
 175{
 176        list_del(&entry->list);
 177}
 178
 179/*
 180 * Add memmap entry on sysfs
 181 */
 182static int add_sysfs_fw_map_entry(struct firmware_map_entry *entry)
 183{
 184        static int map_entries_nr;
 185        static struct kset *mmap_kset;
 186
 187        if (entry->kobj.state_in_sysfs)
 188                return -EEXIST;
 189
 190        if (!mmap_kset) {
 191                mmap_kset = kset_create_and_add("memmap", NULL, firmware_kobj);
 192                if (!mmap_kset)
 193                        return -ENOMEM;
 194        }
 195
 196        entry->kobj.kset = mmap_kset;
 197        if (kobject_add(&entry->kobj, NULL, "%d", map_entries_nr++))
 198                kobject_put(&entry->kobj);
 199
 200        return 0;
 201}
 202
 203/*
 204 * Remove memmap entry on sysfs
 205 */
 206static inline void remove_sysfs_fw_map_entry(struct firmware_map_entry *entry)
 207{
 208        kobject_put(&entry->kobj);
 209}
 210
 211/*
 212 * firmware_map_find_entry_in_list() - Search memmap entry in a given list.
 213 * @start: Start of the memory range.
 214 * @end:   End of the memory range (exclusive).
 215 * @type:  Type of the memory range.
 216 * @list:  In which to find the entry.
 217 *
 218 * This function is to find the memmap entey of a given memory range in a
 219 * given list. The caller must hold map_entries_lock, and must not release
 220 * the lock until the processing of the returned entry has completed.
 221 *
 222 * Return: Pointer to the entry to be found on success, or NULL on failure.
 223 */
 224static struct firmware_map_entry * __meminit
 225firmware_map_find_entry_in_list(u64 start, u64 end, const char *type,
 226                                struct list_head *list)
 227{
 228        struct firmware_map_entry *entry;
 229
 230        list_for_each_entry(entry, list, list)
 231                if ((entry->start == start) && (entry->end == end) &&
 232                    (!strcmp(entry->type, type))) {
 233                        return entry;
 234                }
 235
 236        return NULL;
 237}
 238
 239/*
 240 * firmware_map_find_entry() - Search memmap entry in map_entries.
 241 * @start: Start of the memory range.
 242 * @end:   End of the memory range (exclusive).
 243 * @type:  Type of the memory range.
 244 *
 245 * This function is to find the memmap entey of a given memory range.
 246 * The caller must hold map_entries_lock, and must not release the lock
 247 * until the processing of the returned entry has completed.
 248 *
 249 * Return: Pointer to the entry to be found on success, or NULL on failure.
 250 */
 251static struct firmware_map_entry * __meminit
 252firmware_map_find_entry(u64 start, u64 end, const char *type)
 253{
 254        return firmware_map_find_entry_in_list(start, end, type, &map_entries);
 255}
 256
 257/*
 258 * firmware_map_find_entry_bootmem() - Search memmap entry in map_entries_bootmem.
 259 * @start: Start of the memory range.
 260 * @end:   End of the memory range (exclusive).
 261 * @type:  Type of the memory range.
 262 *
 263 * This function is similar to firmware_map_find_entry except that it find the
 264 * given entry in map_entries_bootmem.
 265 *
 266 * Return: Pointer to the entry to be found on success, or NULL on failure.
 267 */
 268static struct firmware_map_entry * __meminit
 269firmware_map_find_entry_bootmem(u64 start, u64 end, const char *type)
 270{
 271        return firmware_map_find_entry_in_list(start, end, type,
 272                                               &map_entries_bootmem);
 273}
 274
 275/**
 276 * firmware_map_add_hotplug() - Adds a firmware mapping entry when we do
 277 * memory hotplug.
 278 * @start: Start of the memory range.
 279 * @end:   End of the memory range (exclusive)
 280 * @type:  Type of the memory range.
 281 *
 282 * Adds a firmware mapping entry. This function is for memory hotplug, it is
 283 * similar to function firmware_map_add_early(). The only difference is that
 284 * it will create the syfs entry dynamically.
 285 *
 286 * Returns 0 on success, or -ENOMEM if no memory could be allocated.
 287 **/
 288int __meminit firmware_map_add_hotplug(u64 start, u64 end, const char *type)
 289{
 290        struct firmware_map_entry *entry;
 291
 292        entry = firmware_map_find_entry(start, end - 1, type);
 293        if (entry)
 294                return 0;
 295
 296        entry = firmware_map_find_entry_bootmem(start, end - 1, type);
 297        if (!entry) {
 298                entry = kzalloc(sizeof(struct firmware_map_entry), GFP_ATOMIC);
 299                if (!entry)
 300                        return -ENOMEM;
 301        } else {
 302                /* Reuse storage allocated by bootmem. */
 303                spin_lock(&map_entries_bootmem_lock);
 304                list_del(&entry->list);
 305                spin_unlock(&map_entries_bootmem_lock);
 306
 307                memset(entry, 0, sizeof(*entry));
 308        }
 309
 310        firmware_map_add_entry(start, end, type, entry);
 311        /* create the memmap entry */
 312        add_sysfs_fw_map_entry(entry);
 313
 314        return 0;
 315}
 316
 317/**
 318 * firmware_map_add_early() - Adds a firmware mapping entry.
 319 * @start: Start of the memory range.
 320 * @end:   End of the memory range.
 321 * @type:  Type of the memory range.
 322 *
 323 * Adds a firmware mapping entry. This function uses the bootmem allocator
 324 * for memory allocation.
 325 *
 326 * That function must be called before late_initcall.
 327 *
 328 * Returns 0 on success, or -ENOMEM if no memory could be allocated.
 329 **/
 330int __init firmware_map_add_early(u64 start, u64 end, const char *type)
 331{
 332        struct firmware_map_entry *entry;
 333
 334        entry = memblock_virt_alloc(sizeof(struct firmware_map_entry), 0);
 335        if (WARN_ON(!entry))
 336                return -ENOMEM;
 337
 338        return firmware_map_add_entry(start, end, type, entry);
 339}
 340
 341/**
 342 * firmware_map_remove() - remove a firmware mapping entry
 343 * @start: Start of the memory range.
 344 * @end:   End of the memory range.
 345 * @type:  Type of the memory range.
 346 *
 347 * removes a firmware mapping entry.
 348 *
 349 * Returns 0 on success, or -EINVAL if no entry.
 350 **/
 351int __meminit firmware_map_remove(u64 start, u64 end, const char *type)
 352{
 353        struct firmware_map_entry *entry;
 354
 355        spin_lock(&map_entries_lock);
 356        entry = firmware_map_find_entry(start, end - 1, type);
 357        if (!entry) {
 358                spin_unlock(&map_entries_lock);
 359                return -EINVAL;
 360        }
 361
 362        firmware_map_remove_entry(entry);
 363        spin_unlock(&map_entries_lock);
 364
 365        /* remove the memmap entry */
 366        remove_sysfs_fw_map_entry(entry);
 367
 368        return 0;
 369}
 370
 371/*
 372 * Sysfs functions -------------------------------------------------------------
 373 */
 374
 375static ssize_t start_show(struct firmware_map_entry *entry, char *buf)
 376{
 377        return snprintf(buf, PAGE_SIZE, "0x%llx\n",
 378                (unsigned long long)entry->start);
 379}
 380
 381static ssize_t end_show(struct firmware_map_entry *entry, char *buf)
 382{
 383        return snprintf(buf, PAGE_SIZE, "0x%llx\n",
 384                (unsigned long long)entry->end);
 385}
 386
 387static ssize_t type_show(struct firmware_map_entry *entry, char *buf)
 388{
 389        return snprintf(buf, PAGE_SIZE, "%s\n", entry->type);
 390}
 391
 392static inline struct memmap_attribute *to_memmap_attr(struct attribute *attr)
 393{
 394        return container_of(attr, struct memmap_attribute, attr);
 395}
 396
 397static ssize_t memmap_attr_show(struct kobject *kobj,
 398                                struct attribute *attr, char *buf)
 399{
 400        struct firmware_map_entry *entry = to_memmap_entry(kobj);
 401        struct memmap_attribute *memmap_attr = to_memmap_attr(attr);
 402
 403        return memmap_attr->show(entry, buf);
 404}
 405
 406/*
 407 * Initialises stuff and adds the entries in the map_entries list to
 408 * sysfs. Important is that firmware_map_add() and firmware_map_add_early()
 409 * must be called before late_initcall. That's just because that function
 410 * is called as late_initcall() function, which means that if you call
 411 * firmware_map_add() or firmware_map_add_early() afterwards, the entries
 412 * are not added to sysfs.
 413 */
 414static int __init firmware_memmap_init(void)
 415{
 416        struct firmware_map_entry *entry;
 417
 418        list_for_each_entry(entry, &map_entries, list)
 419                add_sysfs_fw_map_entry(entry);
 420
 421        return 0;
 422}
 423late_initcall(firmware_memmap_init);
 424
 425