linux/drivers/gpu/drm/i915/intel_lrc.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Ben Widawsky <ben@bwidawsk.net>
  25 *    Michel Thierry <michel.thierry@intel.com>
  26 *    Thomas Daniel <thomas.daniel@intel.com>
  27 *    Oscar Mateo <oscar.mateo@intel.com>
  28 *
  29 */
  30
  31/**
  32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
  33 *
  34 * Motivation:
  35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
  36 * These expanded contexts enable a number of new abilities, especially
  37 * "Execlists" (also implemented in this file).
  38 *
  39 * One of the main differences with the legacy HW contexts is that logical
  40 * ring contexts incorporate many more things to the context's state, like
  41 * PDPs or ringbuffer control registers:
  42 *
  43 * The reason why PDPs are included in the context is straightforward: as
  44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
  45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
  46 * instead, the GPU will do it for you on the context switch.
  47 *
  48 * But, what about the ringbuffer control registers (head, tail, etc..)?
  49 * shouldn't we just need a set of those per engine command streamer? This is
  50 * where the name "Logical Rings" starts to make sense: by virtualizing the
  51 * rings, the engine cs shifts to a new "ring buffer" with every context
  52 * switch. When you want to submit a workload to the GPU you: A) choose your
  53 * context, B) find its appropriate virtualized ring, C) write commands to it
  54 * and then, finally, D) tell the GPU to switch to that context.
  55 *
  56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
  57 * to a contexts is via a context execution list, ergo "Execlists".
  58 *
  59 * LRC implementation:
  60 * Regarding the creation of contexts, we have:
  61 *
  62 * - One global default context.
  63 * - One local default context for each opened fd.
  64 * - One local extra context for each context create ioctl call.
  65 *
  66 * Now that ringbuffers belong per-context (and not per-engine, like before)
  67 * and that contexts are uniquely tied to a given engine (and not reusable,
  68 * like before) we need:
  69 *
  70 * - One ringbuffer per-engine inside each context.
  71 * - One backing object per-engine inside each context.
  72 *
  73 * The global default context starts its life with these new objects fully
  74 * allocated and populated. The local default context for each opened fd is
  75 * more complex, because we don't know at creation time which engine is going
  76 * to use them. To handle this, we have implemented a deferred creation of LR
  77 * contexts:
  78 *
  79 * The local context starts its life as a hollow or blank holder, that only
  80 * gets populated for a given engine once we receive an execbuffer. If later
  81 * on we receive another execbuffer ioctl for the same context but a different
  82 * engine, we allocate/populate a new ringbuffer and context backing object and
  83 * so on.
  84 *
  85 * Finally, regarding local contexts created using the ioctl call: as they are
  86 * only allowed with the render ring, we can allocate & populate them right
  87 * away (no need to defer anything, at least for now).
  88 *
  89 * Execlists implementation:
  90 * Execlists are the new method by which, on gen8+ hardware, workloads are
  91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
  92 * This method works as follows:
  93 *
  94 * When a request is committed, its commands (the BB start and any leading or
  95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
  96 * for the appropriate context. The tail pointer in the hardware context is not
  97 * updated at this time, but instead, kept by the driver in the ringbuffer
  98 * structure. A structure representing this request is added to a request queue
  99 * for the appropriate engine: this structure contains a copy of the context's
 100 * tail after the request was written to the ring buffer and a pointer to the
 101 * context itself.
 102 *
 103 * If the engine's request queue was empty before the request was added, the
 104 * queue is processed immediately. Otherwise the queue will be processed during
 105 * a context switch interrupt. In any case, elements on the queue will get sent
 106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 107 * globally unique 20-bits submission ID.
 108 *
 109 * When execution of a request completes, the GPU updates the context status
 110 * buffer with a context complete event and generates a context switch interrupt.
 111 * During the interrupt handling, the driver examines the events in the buffer:
 112 * for each context complete event, if the announced ID matches that on the head
 113 * of the request queue, then that request is retired and removed from the queue.
 114 *
 115 * After processing, if any requests were retired and the queue is not empty
 116 * then a new execution list can be submitted. The two requests at the front of
 117 * the queue are next to be submitted but since a context may not occur twice in
 118 * an execution list, if subsequent requests have the same ID as the first then
 119 * the two requests must be combined. This is done simply by discarding requests
 120 * at the head of the queue until either only one requests is left (in which case
 121 * we use a NULL second context) or the first two requests have unique IDs.
 122 *
 123 * By always executing the first two requests in the queue the driver ensures
 124 * that the GPU is kept as busy as possible. In the case where a single context
 125 * completes but a second context is still executing, the request for this second
 126 * context will be at the head of the queue when we remove the first one. This
 127 * request will then be resubmitted along with a new request for a different context,
 128 * which will cause the hardware to continue executing the second request and queue
 129 * the new request (the GPU detects the condition of a context getting preempted
 130 * with the same context and optimizes the context switch flow by not doing
 131 * preemption, but just sampling the new tail pointer).
 132 *
 133 */
 134
 135#include <drm/drmP.h>
 136#include <drm/i915_drm.h>
 137#include "i915_drv.h"
 138
 139#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
 140#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
 141#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
 142
 143#define RING_EXECLIST_QFULL             (1 << 0x2)
 144#define RING_EXECLIST1_VALID            (1 << 0x3)
 145#define RING_EXECLIST0_VALID            (1 << 0x4)
 146#define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
 147#define RING_EXECLIST1_ACTIVE           (1 << 0x11)
 148#define RING_EXECLIST0_ACTIVE           (1 << 0x12)
 149
 150#define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
 151#define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
 152#define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
 153#define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
 154#define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
 155#define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
 156
 157#define CTX_LRI_HEADER_0                0x01
 158#define CTX_CONTEXT_CONTROL             0x02
 159#define CTX_RING_HEAD                   0x04
 160#define CTX_RING_TAIL                   0x06
 161#define CTX_RING_BUFFER_START           0x08
 162#define CTX_RING_BUFFER_CONTROL         0x0a
 163#define CTX_BB_HEAD_U                   0x0c
 164#define CTX_BB_HEAD_L                   0x0e
 165#define CTX_BB_STATE                    0x10
 166#define CTX_SECOND_BB_HEAD_U            0x12
 167#define CTX_SECOND_BB_HEAD_L            0x14
 168#define CTX_SECOND_BB_STATE             0x16
 169#define CTX_BB_PER_CTX_PTR              0x18
 170#define CTX_RCS_INDIRECT_CTX            0x1a
 171#define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
 172#define CTX_LRI_HEADER_1                0x21
 173#define CTX_CTX_TIMESTAMP               0x22
 174#define CTX_PDP3_UDW                    0x24
 175#define CTX_PDP3_LDW                    0x26
 176#define CTX_PDP2_UDW                    0x28
 177#define CTX_PDP2_LDW                    0x2a
 178#define CTX_PDP1_UDW                    0x2c
 179#define CTX_PDP1_LDW                    0x2e
 180#define CTX_PDP0_UDW                    0x30
 181#define CTX_PDP0_LDW                    0x32
 182#define CTX_LRI_HEADER_2                0x41
 183#define CTX_R_PWR_CLK_STATE             0x42
 184#define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
 185
 186#define GEN8_CTX_VALID (1<<0)
 187#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
 188#define GEN8_CTX_FORCE_RESTORE (1<<2)
 189#define GEN8_CTX_L3LLC_COHERENT (1<<5)
 190#define GEN8_CTX_PRIVILEGE (1<<8)
 191enum {
 192        ADVANCED_CONTEXT = 0,
 193        LEGACY_CONTEXT,
 194        ADVANCED_AD_CONTEXT,
 195        LEGACY_64B_CONTEXT
 196};
 197#define GEN8_CTX_MODE_SHIFT 3
 198enum {
 199        FAULT_AND_HANG = 0,
 200        FAULT_AND_HALT, /* Debug only */
 201        FAULT_AND_STREAM,
 202        FAULT_AND_CONTINUE /* Unsupported */
 203};
 204#define GEN8_CTX_ID_SHIFT 32
 205
 206static int intel_lr_context_pin(struct intel_engine_cs *ring,
 207                struct intel_context *ctx);
 208
 209/**
 210 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 211 * @dev: DRM device.
 212 * @enable_execlists: value of i915.enable_execlists module parameter.
 213 *
 214 * Only certain platforms support Execlists (the prerequisites being
 215 * support for Logical Ring Contexts and Aliasing PPGTT or better).
 216 *
 217 * Return: 1 if Execlists is supported and has to be enabled.
 218 */
 219int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
 220{
 221        WARN_ON(i915.enable_ppgtt == -1);
 222
 223        if (INTEL_INFO(dev)->gen >= 9)
 224                return 1;
 225
 226        if (enable_execlists == 0)
 227                return 0;
 228
 229        if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
 230            i915.use_mmio_flip >= 0)
 231                return 1;
 232
 233        return 0;
 234}
 235
 236/**
 237 * intel_execlists_ctx_id() - get the Execlists Context ID
 238 * @ctx_obj: Logical Ring Context backing object.
 239 *
 240 * Do not confuse with ctx->id! Unfortunately we have a name overload
 241 * here: the old context ID we pass to userspace as a handler so that
 242 * they can refer to a context, and the new context ID we pass to the
 243 * ELSP so that the GPU can inform us of the context status via
 244 * interrupts.
 245 *
 246 * Return: 20-bits globally unique context ID.
 247 */
 248u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
 249{
 250        u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
 251
 252        /* LRCA is required to be 4K aligned so the more significant 20 bits
 253         * are globally unique */
 254        return lrca >> 12;
 255}
 256
 257static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
 258                                         struct drm_i915_gem_object *ctx_obj)
 259{
 260        struct drm_device *dev = ring->dev;
 261        uint64_t desc;
 262        uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
 263
 264        WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
 265
 266        desc = GEN8_CTX_VALID;
 267        desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
 268        desc |= GEN8_CTX_L3LLC_COHERENT;
 269        desc |= GEN8_CTX_PRIVILEGE;
 270        desc |= lrca;
 271        desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
 272
 273        /* TODO: WaDisableLiteRestore when we start using semaphore
 274         * signalling between Command Streamers */
 275        /* desc |= GEN8_CTX_FORCE_RESTORE; */
 276
 277        /* WaEnableForceRestoreInCtxtDescForVCS:skl */
 278        if (IS_GEN9(dev) &&
 279            INTEL_REVID(dev) <= SKL_REVID_B0 &&
 280            (ring->id == BCS || ring->id == VCS ||
 281            ring->id == VECS || ring->id == VCS2))
 282                desc |= GEN8_CTX_FORCE_RESTORE;
 283
 284        return desc;
 285}
 286
 287static void execlists_elsp_write(struct intel_engine_cs *ring,
 288                                 struct drm_i915_gem_object *ctx_obj0,
 289                                 struct drm_i915_gem_object *ctx_obj1)
 290{
 291        struct drm_device *dev = ring->dev;
 292        struct drm_i915_private *dev_priv = dev->dev_private;
 293        uint64_t temp = 0;
 294        uint32_t desc[4];
 295
 296        /* XXX: You must always write both descriptors in the order below. */
 297        if (ctx_obj1)
 298                temp = execlists_ctx_descriptor(ring, ctx_obj1);
 299        else
 300                temp = 0;
 301        desc[1] = (u32)(temp >> 32);
 302        desc[0] = (u32)temp;
 303
 304        temp = execlists_ctx_descriptor(ring, ctx_obj0);
 305        desc[3] = (u32)(temp >> 32);
 306        desc[2] = (u32)temp;
 307
 308        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
 309        I915_WRITE(RING_ELSP(ring), desc[1]);
 310        I915_WRITE(RING_ELSP(ring), desc[0]);
 311        I915_WRITE(RING_ELSP(ring), desc[3]);
 312
 313        /* The context is automatically loaded after the following */
 314        I915_WRITE(RING_ELSP(ring), desc[2]);
 315
 316        /* ELSP is a wo register, so use another nearby reg for posting instead */
 317        POSTING_READ(RING_EXECLIST_STATUS(ring));
 318        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
 319}
 320
 321static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
 322                                    struct drm_i915_gem_object *ring_obj,
 323                                    u32 tail)
 324{
 325        struct page *page;
 326        uint32_t *reg_state;
 327
 328        page = i915_gem_object_get_page(ctx_obj, 1);
 329        reg_state = kmap_atomic(page);
 330
 331        reg_state[CTX_RING_TAIL+1] = tail;
 332        reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
 333
 334        kunmap_atomic(reg_state);
 335
 336        return 0;
 337}
 338
 339static void execlists_submit_contexts(struct intel_engine_cs *ring,
 340                                      struct intel_context *to0, u32 tail0,
 341                                      struct intel_context *to1, u32 tail1)
 342{
 343        struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
 344        struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
 345        struct drm_i915_gem_object *ctx_obj1 = NULL;
 346        struct intel_ringbuffer *ringbuf1 = NULL;
 347
 348        BUG_ON(!ctx_obj0);
 349        WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
 350        WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
 351
 352        execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
 353
 354        if (to1) {
 355                ringbuf1 = to1->engine[ring->id].ringbuf;
 356                ctx_obj1 = to1->engine[ring->id].state;
 357                BUG_ON(!ctx_obj1);
 358                WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
 359                WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
 360
 361                execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
 362        }
 363
 364        execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
 365}
 366
 367static void execlists_context_unqueue(struct intel_engine_cs *ring)
 368{
 369        struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
 370        struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
 371
 372        assert_spin_locked(&ring->execlist_lock);
 373
 374        if (list_empty(&ring->execlist_queue))
 375                return;
 376
 377        /* Try to read in pairs */
 378        list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
 379                                 execlist_link) {
 380                if (!req0) {
 381                        req0 = cursor;
 382                } else if (req0->ctx == cursor->ctx) {
 383                        /* Same ctx: ignore first request, as second request
 384                         * will update tail past first request's workload */
 385                        cursor->elsp_submitted = req0->elsp_submitted;
 386                        list_del(&req0->execlist_link);
 387                        list_add_tail(&req0->execlist_link,
 388                                &ring->execlist_retired_req_list);
 389                        req0 = cursor;
 390                } else {
 391                        req1 = cursor;
 392                        break;
 393                }
 394        }
 395
 396        if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
 397                /*
 398                 * WaIdleLiteRestore: make sure we never cause a lite
 399                 * restore with HEAD==TAIL
 400                 */
 401                if (req0 && req0->elsp_submitted) {
 402                        /*
 403                         * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
 404                         * as we resubmit the request. See gen8_emit_request()
 405                         * for where we prepare the padding after the end of the
 406                         * request.
 407                         */
 408                        struct intel_ringbuffer *ringbuf;
 409
 410                        ringbuf = req0->ctx->engine[ring->id].ringbuf;
 411                        req0->tail += 8;
 412                        req0->tail &= ringbuf->size - 1;
 413                }
 414        }
 415
 416        WARN_ON(req1 && req1->elsp_submitted);
 417
 418        execlists_submit_contexts(ring, req0->ctx, req0->tail,
 419                                  req1 ? req1->ctx : NULL,
 420                                  req1 ? req1->tail : 0);
 421
 422        req0->elsp_submitted++;
 423        if (req1)
 424                req1->elsp_submitted++;
 425}
 426
 427static bool execlists_check_remove_request(struct intel_engine_cs *ring,
 428                                           u32 request_id)
 429{
 430        struct drm_i915_gem_request *head_req;
 431
 432        assert_spin_locked(&ring->execlist_lock);
 433
 434        head_req = list_first_entry_or_null(&ring->execlist_queue,
 435                                            struct drm_i915_gem_request,
 436                                            execlist_link);
 437
 438        if (head_req != NULL) {
 439                struct drm_i915_gem_object *ctx_obj =
 440                                head_req->ctx->engine[ring->id].state;
 441                if (intel_execlists_ctx_id(ctx_obj) == request_id) {
 442                        WARN(head_req->elsp_submitted == 0,
 443                             "Never submitted head request\n");
 444
 445                        if (--head_req->elsp_submitted <= 0) {
 446                                list_del(&head_req->execlist_link);
 447                                list_add_tail(&head_req->execlist_link,
 448                                        &ring->execlist_retired_req_list);
 449                                return true;
 450                        }
 451                }
 452        }
 453
 454        return false;
 455}
 456
 457/**
 458 * intel_lrc_irq_handler() - handle Context Switch interrupts
 459 * @ring: Engine Command Streamer to handle.
 460 *
 461 * Check the unread Context Status Buffers and manage the submission of new
 462 * contexts to the ELSP accordingly.
 463 */
 464void intel_lrc_irq_handler(struct intel_engine_cs *ring)
 465{
 466        struct drm_i915_private *dev_priv = ring->dev->dev_private;
 467        u32 status_pointer;
 468        u8 read_pointer;
 469        u8 write_pointer;
 470        u32 status;
 471        u32 status_id;
 472        u32 submit_contexts = 0;
 473
 474        status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
 475
 476        read_pointer = ring->next_context_status_buffer;
 477        write_pointer = status_pointer & 0x07;
 478        if (read_pointer > write_pointer)
 479                write_pointer += 6;
 480
 481        spin_lock(&ring->execlist_lock);
 482
 483        while (read_pointer < write_pointer) {
 484                read_pointer++;
 485                status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
 486                                (read_pointer % 6) * 8);
 487                status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
 488                                (read_pointer % 6) * 8 + 4);
 489
 490                if (status & GEN8_CTX_STATUS_PREEMPTED) {
 491                        if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
 492                                if (execlists_check_remove_request(ring, status_id))
 493                                        WARN(1, "Lite Restored request removed from queue\n");
 494                        } else
 495                                WARN(1, "Preemption without Lite Restore\n");
 496                }
 497
 498                 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
 499                     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
 500                        if (execlists_check_remove_request(ring, status_id))
 501                                submit_contexts++;
 502                }
 503        }
 504
 505        if (submit_contexts != 0)
 506                execlists_context_unqueue(ring);
 507
 508        spin_unlock(&ring->execlist_lock);
 509
 510        WARN(submit_contexts > 2, "More than two context complete events?\n");
 511        ring->next_context_status_buffer = write_pointer % 6;
 512
 513        I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
 514                   ((u32)ring->next_context_status_buffer & 0x07) << 8);
 515}
 516
 517static int execlists_context_queue(struct intel_engine_cs *ring,
 518                                   struct intel_context *to,
 519                                   u32 tail,
 520                                   struct drm_i915_gem_request *request)
 521{
 522        struct drm_i915_gem_request *cursor;
 523        struct drm_i915_private *dev_priv = ring->dev->dev_private;
 524        unsigned long flags;
 525        int num_elements = 0;
 526
 527        if (to != ring->default_context)
 528                intel_lr_context_pin(ring, to);
 529
 530        if (!request) {
 531                /*
 532                 * If there isn't a request associated with this submission,
 533                 * create one as a temporary holder.
 534                 */
 535                request = kzalloc(sizeof(*request), GFP_KERNEL);
 536                if (request == NULL)
 537                        return -ENOMEM;
 538                request->ring = ring;
 539                request->ctx = to;
 540                kref_init(&request->ref);
 541                request->uniq = dev_priv->request_uniq++;
 542                i915_gem_context_reference(request->ctx);
 543        } else {
 544                i915_gem_request_reference(request);
 545                WARN_ON(to != request->ctx);
 546        }
 547        request->tail = tail;
 548
 549        intel_runtime_pm_get(dev_priv);
 550
 551        spin_lock_irqsave(&ring->execlist_lock, flags);
 552
 553        list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
 554                if (++num_elements > 2)
 555                        break;
 556
 557        if (num_elements > 2) {
 558                struct drm_i915_gem_request *tail_req;
 559
 560                tail_req = list_last_entry(&ring->execlist_queue,
 561                                           struct drm_i915_gem_request,
 562                                           execlist_link);
 563
 564                if (to == tail_req->ctx) {
 565                        WARN(tail_req->elsp_submitted != 0,
 566                                "More than 2 already-submitted reqs queued\n");
 567                        list_del(&tail_req->execlist_link);
 568                        list_add_tail(&tail_req->execlist_link,
 569                                &ring->execlist_retired_req_list);
 570                }
 571        }
 572
 573        list_add_tail(&request->execlist_link, &ring->execlist_queue);
 574        if (num_elements == 0)
 575                execlists_context_unqueue(ring);
 576
 577        spin_unlock_irqrestore(&ring->execlist_lock, flags);
 578
 579        return 0;
 580}
 581
 582static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
 583                                              struct intel_context *ctx)
 584{
 585        struct intel_engine_cs *ring = ringbuf->ring;
 586        uint32_t flush_domains;
 587        int ret;
 588
 589        flush_domains = 0;
 590        if (ring->gpu_caches_dirty)
 591                flush_domains = I915_GEM_GPU_DOMAINS;
 592
 593        ret = ring->emit_flush(ringbuf, ctx,
 594                               I915_GEM_GPU_DOMAINS, flush_domains);
 595        if (ret)
 596                return ret;
 597
 598        ring->gpu_caches_dirty = false;
 599        return 0;
 600}
 601
 602static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
 603                                 struct intel_context *ctx,
 604                                 struct list_head *vmas)
 605{
 606        struct intel_engine_cs *ring = ringbuf->ring;
 607        struct i915_vma *vma;
 608        uint32_t flush_domains = 0;
 609        bool flush_chipset = false;
 610        int ret;
 611
 612        list_for_each_entry(vma, vmas, exec_list) {
 613                struct drm_i915_gem_object *obj = vma->obj;
 614
 615                ret = i915_gem_object_sync(obj, ring);
 616                if (ret)
 617                        return ret;
 618
 619                if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
 620                        flush_chipset |= i915_gem_clflush_object(obj, false);
 621
 622                flush_domains |= obj->base.write_domain;
 623        }
 624
 625        if (flush_domains & I915_GEM_DOMAIN_GTT)
 626                wmb();
 627
 628        /* Unconditionally invalidate gpu caches and ensure that we do flush
 629         * any residual writes from the previous batch.
 630         */
 631        return logical_ring_invalidate_all_caches(ringbuf, ctx);
 632}
 633
 634/**
 635 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 636 * @dev: DRM device.
 637 * @file: DRM file.
 638 * @ring: Engine Command Streamer to submit to.
 639 * @ctx: Context to employ for this submission.
 640 * @args: execbuffer call arguments.
 641 * @vmas: list of vmas.
 642 * @batch_obj: the batchbuffer to submit.
 643 * @exec_start: batchbuffer start virtual address pointer.
 644 * @dispatch_flags: translated execbuffer call flags.
 645 *
 646 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 647 * away the submission details of the execbuffer ioctl call.
 648 *
 649 * Return: non-zero if the submission fails.
 650 */
 651int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
 652                               struct intel_engine_cs *ring,
 653                               struct intel_context *ctx,
 654                               struct drm_i915_gem_execbuffer2 *args,
 655                               struct list_head *vmas,
 656                               struct drm_i915_gem_object *batch_obj,
 657                               u64 exec_start, u32 dispatch_flags)
 658{
 659        struct drm_i915_private *dev_priv = dev->dev_private;
 660        struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
 661        int instp_mode;
 662        u32 instp_mask;
 663        int ret;
 664
 665        instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
 666        instp_mask = I915_EXEC_CONSTANTS_MASK;
 667        switch (instp_mode) {
 668        case I915_EXEC_CONSTANTS_REL_GENERAL:
 669        case I915_EXEC_CONSTANTS_ABSOLUTE:
 670        case I915_EXEC_CONSTANTS_REL_SURFACE:
 671                if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
 672                        DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
 673                        return -EINVAL;
 674                }
 675
 676                if (instp_mode != dev_priv->relative_constants_mode) {
 677                        if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
 678                                DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
 679                                return -EINVAL;
 680                        }
 681
 682                        /* The HW changed the meaning on this bit on gen6 */
 683                        instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
 684                }
 685                break;
 686        default:
 687                DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
 688                return -EINVAL;
 689        }
 690
 691        if (args->num_cliprects != 0) {
 692                DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
 693                return -EINVAL;
 694        } else {
 695                if (args->DR4 == 0xffffffff) {
 696                        DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
 697                        args->DR4 = 0;
 698                }
 699
 700                if (args->DR1 || args->DR4 || args->cliprects_ptr) {
 701                        DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
 702                        return -EINVAL;
 703                }
 704        }
 705
 706        if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
 707                DRM_DEBUG("sol reset is gen7 only\n");
 708                return -EINVAL;
 709        }
 710
 711        ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
 712        if (ret)
 713                return ret;
 714
 715        if (ring == &dev_priv->ring[RCS] &&
 716            instp_mode != dev_priv->relative_constants_mode) {
 717                ret = intel_logical_ring_begin(ringbuf, ctx, 4);
 718                if (ret)
 719                        return ret;
 720
 721                intel_logical_ring_emit(ringbuf, MI_NOOP);
 722                intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
 723                intel_logical_ring_emit(ringbuf, INSTPM);
 724                intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
 725                intel_logical_ring_advance(ringbuf);
 726
 727                dev_priv->relative_constants_mode = instp_mode;
 728        }
 729
 730        ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
 731        if (ret)
 732                return ret;
 733
 734        trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
 735
 736        i915_gem_execbuffer_move_to_active(vmas, ring);
 737        i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
 738
 739        return 0;
 740}
 741
 742void intel_execlists_retire_requests(struct intel_engine_cs *ring)
 743{
 744        struct drm_i915_gem_request *req, *tmp;
 745        struct drm_i915_private *dev_priv = ring->dev->dev_private;
 746        unsigned long flags;
 747        struct list_head retired_list;
 748
 749        WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
 750        if (list_empty(&ring->execlist_retired_req_list))
 751                return;
 752
 753        INIT_LIST_HEAD(&retired_list);
 754        spin_lock_irqsave(&ring->execlist_lock, flags);
 755        list_replace_init(&ring->execlist_retired_req_list, &retired_list);
 756        spin_unlock_irqrestore(&ring->execlist_lock, flags);
 757
 758        list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
 759                struct intel_context *ctx = req->ctx;
 760                struct drm_i915_gem_object *ctx_obj =
 761                                ctx->engine[ring->id].state;
 762
 763                if (ctx_obj && (ctx != ring->default_context))
 764                        intel_lr_context_unpin(ring, ctx);
 765                intel_runtime_pm_put(dev_priv);
 766                list_del(&req->execlist_link);
 767                i915_gem_request_unreference(req);
 768        }
 769}
 770
 771void intel_logical_ring_stop(struct intel_engine_cs *ring)
 772{
 773        struct drm_i915_private *dev_priv = ring->dev->dev_private;
 774        int ret;
 775
 776        if (!intel_ring_initialized(ring))
 777                return;
 778
 779        ret = intel_ring_idle(ring);
 780        if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
 781                DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
 782                          ring->name, ret);
 783
 784        /* TODO: Is this correct with Execlists enabled? */
 785        I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
 786        if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
 787                DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
 788                return;
 789        }
 790        I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
 791}
 792
 793int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
 794                                  struct intel_context *ctx)
 795{
 796        struct intel_engine_cs *ring = ringbuf->ring;
 797        int ret;
 798
 799        if (!ring->gpu_caches_dirty)
 800                return 0;
 801
 802        ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
 803        if (ret)
 804                return ret;
 805
 806        ring->gpu_caches_dirty = false;
 807        return 0;
 808}
 809
 810/*
 811 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
 812 * @ringbuf: Logical Ringbuffer to advance.
 813 *
 814 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 815 * really happens during submission is that the context and current tail will be placed
 816 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 817 * point, the tail *inside* the context is updated and the ELSP written to.
 818 */
 819static void
 820intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
 821                                      struct intel_context *ctx,
 822                                      struct drm_i915_gem_request *request)
 823{
 824        struct intel_engine_cs *ring = ringbuf->ring;
 825
 826        intel_logical_ring_advance(ringbuf);
 827
 828        if (intel_ring_stopped(ring))
 829                return;
 830
 831        execlists_context_queue(ring, ctx, ringbuf->tail, request);
 832}
 833
 834static int intel_lr_context_pin(struct intel_engine_cs *ring,
 835                struct intel_context *ctx)
 836{
 837        struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
 838        struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
 839        int ret = 0;
 840
 841        WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
 842        if (ctx->engine[ring->id].pin_count++ == 0) {
 843                ret = i915_gem_obj_ggtt_pin(ctx_obj,
 844                                GEN8_LR_CONTEXT_ALIGN, 0);
 845                if (ret)
 846                        goto reset_pin_count;
 847
 848                ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
 849                if (ret)
 850                        goto unpin_ctx_obj;
 851        }
 852
 853        return ret;
 854
 855unpin_ctx_obj:
 856        i915_gem_object_ggtt_unpin(ctx_obj);
 857reset_pin_count:
 858        ctx->engine[ring->id].pin_count = 0;
 859
 860        return ret;
 861}
 862
 863void intel_lr_context_unpin(struct intel_engine_cs *ring,
 864                struct intel_context *ctx)
 865{
 866        struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
 867        struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
 868
 869        if (ctx_obj) {
 870                WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
 871                if (--ctx->engine[ring->id].pin_count == 0) {
 872                        intel_unpin_ringbuffer_obj(ringbuf);
 873                        i915_gem_object_ggtt_unpin(ctx_obj);
 874                }
 875        }
 876}
 877
 878static int logical_ring_alloc_request(struct intel_engine_cs *ring,
 879                                      struct intel_context *ctx)
 880{
 881        struct drm_i915_gem_request *request;
 882        struct drm_i915_private *dev_private = ring->dev->dev_private;
 883        int ret;
 884
 885        if (ring->outstanding_lazy_request)
 886                return 0;
 887
 888        request = kzalloc(sizeof(*request), GFP_KERNEL);
 889        if (request == NULL)
 890                return -ENOMEM;
 891
 892        if (ctx != ring->default_context) {
 893                ret = intel_lr_context_pin(ring, ctx);
 894                if (ret) {
 895                        kfree(request);
 896                        return ret;
 897                }
 898        }
 899
 900        kref_init(&request->ref);
 901        request->ring = ring;
 902        request->uniq = dev_private->request_uniq++;
 903
 904        ret = i915_gem_get_seqno(ring->dev, &request->seqno);
 905        if (ret) {
 906                intel_lr_context_unpin(ring, ctx);
 907                kfree(request);
 908                return ret;
 909        }
 910
 911        request->ctx = ctx;
 912        i915_gem_context_reference(request->ctx);
 913        request->ringbuf = ctx->engine[ring->id].ringbuf;
 914
 915        ring->outstanding_lazy_request = request;
 916        return 0;
 917}
 918
 919static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
 920                                     int bytes)
 921{
 922        struct intel_engine_cs *ring = ringbuf->ring;
 923        struct drm_i915_gem_request *request;
 924        int ret;
 925
 926        if (intel_ring_space(ringbuf) >= bytes)
 927                return 0;
 928
 929        list_for_each_entry(request, &ring->request_list, list) {
 930                /*
 931                 * The request queue is per-engine, so can contain requests
 932                 * from multiple ringbuffers. Here, we must ignore any that
 933                 * aren't from the ringbuffer we're considering.
 934                 */
 935                struct intel_context *ctx = request->ctx;
 936                if (ctx->engine[ring->id].ringbuf != ringbuf)
 937                        continue;
 938
 939                /* Would completion of this request free enough space? */
 940                if (__intel_ring_space(request->tail, ringbuf->tail,
 941                                       ringbuf->size) >= bytes) {
 942                        break;
 943                }
 944        }
 945
 946        if (&request->list == &ring->request_list)
 947                return -ENOSPC;
 948
 949        ret = i915_wait_request(request);
 950        if (ret)
 951                return ret;
 952
 953        i915_gem_retire_requests_ring(ring);
 954
 955        return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
 956}
 957
 958static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
 959                                       struct intel_context *ctx,
 960                                       int bytes)
 961{
 962        struct intel_engine_cs *ring = ringbuf->ring;
 963        struct drm_device *dev = ring->dev;
 964        struct drm_i915_private *dev_priv = dev->dev_private;
 965        unsigned long end;
 966        int ret;
 967
 968        ret = logical_ring_wait_request(ringbuf, bytes);
 969        if (ret != -ENOSPC)
 970                return ret;
 971
 972        /* Force the context submission in case we have been skipping it */
 973        intel_logical_ring_advance_and_submit(ringbuf, ctx, NULL);
 974
 975        /* With GEM the hangcheck timer should kick us out of the loop,
 976         * leaving it early runs the risk of corrupting GEM state (due
 977         * to running on almost untested codepaths). But on resume
 978         * timers don't work yet, so prevent a complete hang in that
 979         * case by choosing an insanely large timeout. */
 980        end = jiffies + 60 * HZ;
 981
 982        ret = 0;
 983        do {
 984                if (intel_ring_space(ringbuf) >= bytes)
 985                        break;
 986
 987                msleep(1);
 988
 989                if (dev_priv->mm.interruptible && signal_pending(current)) {
 990                        ret = -ERESTARTSYS;
 991                        break;
 992                }
 993
 994                ret = i915_gem_check_wedge(&dev_priv->gpu_error,
 995                                           dev_priv->mm.interruptible);
 996                if (ret)
 997                        break;
 998
 999                if (time_after(jiffies, end)) {
1000                        ret = -EBUSY;
1001                        break;
1002                }
1003        } while (1);
1004
1005        return ret;
1006}
1007
1008static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
1009                                    struct intel_context *ctx)
1010{
1011        uint32_t __iomem *virt;
1012        int rem = ringbuf->size - ringbuf->tail;
1013
1014        if (ringbuf->space < rem) {
1015                int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
1016
1017                if (ret)
1018                        return ret;
1019        }
1020
1021        virt = ringbuf->virtual_start + ringbuf->tail;
1022        rem /= 4;
1023        while (rem--)
1024                iowrite32(MI_NOOP, virt++);
1025
1026        ringbuf->tail = 0;
1027        intel_ring_update_space(ringbuf);
1028
1029        return 0;
1030}
1031
1032static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
1033                                struct intel_context *ctx, int bytes)
1034{
1035        int ret;
1036
1037        if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1038                ret = logical_ring_wrap_buffer(ringbuf, ctx);
1039                if (unlikely(ret))
1040                        return ret;
1041        }
1042
1043        if (unlikely(ringbuf->space < bytes)) {
1044                ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
1045                if (unlikely(ret))
1046                        return ret;
1047        }
1048
1049        return 0;
1050}
1051
1052/**
1053 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
1054 *
1055 * @ringbuf: Logical ringbuffer.
1056 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
1057 *
1058 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
1059 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
1060 * and also preallocates a request (every workload submission is still mediated through
1061 * requests, same as it did with legacy ringbuffer submission).
1062 *
1063 * Return: non-zero if the ringbuffer is not ready to be written to.
1064 */
1065int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
1066                             struct intel_context *ctx, int num_dwords)
1067{
1068        struct intel_engine_cs *ring = ringbuf->ring;
1069        struct drm_device *dev = ring->dev;
1070        struct drm_i915_private *dev_priv = dev->dev_private;
1071        int ret;
1072
1073        ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1074                                   dev_priv->mm.interruptible);
1075        if (ret)
1076                return ret;
1077
1078        ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
1079        if (ret)
1080                return ret;
1081
1082        /* Preallocate the olr before touching the ring */
1083        ret = logical_ring_alloc_request(ring, ctx);
1084        if (ret)
1085                return ret;
1086
1087        ringbuf->space -= num_dwords * sizeof(uint32_t);
1088        return 0;
1089}
1090
1091static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1092                                               struct intel_context *ctx)
1093{
1094        int ret, i;
1095        struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1096        struct drm_device *dev = ring->dev;
1097        struct drm_i915_private *dev_priv = dev->dev_private;
1098        struct i915_workarounds *w = &dev_priv->workarounds;
1099
1100        if (WARN_ON_ONCE(w->count == 0))
1101                return 0;
1102
1103        ring->gpu_caches_dirty = true;
1104        ret = logical_ring_flush_all_caches(ringbuf, ctx);
1105        if (ret)
1106                return ret;
1107
1108        ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1109        if (ret)
1110                return ret;
1111
1112        intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1113        for (i = 0; i < w->count; i++) {
1114                intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1115                intel_logical_ring_emit(ringbuf, w->reg[i].value);
1116        }
1117        intel_logical_ring_emit(ringbuf, MI_NOOP);
1118
1119        intel_logical_ring_advance(ringbuf);
1120
1121        ring->gpu_caches_dirty = true;
1122        ret = logical_ring_flush_all_caches(ringbuf, ctx);
1123        if (ret)
1124                return ret;
1125
1126        return 0;
1127}
1128
1129static int gen8_init_common_ring(struct intel_engine_cs *ring)
1130{
1131        struct drm_device *dev = ring->dev;
1132        struct drm_i915_private *dev_priv = dev->dev_private;
1133
1134        I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1135        I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1136
1137        if (ring->status_page.obj) {
1138                I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1139                           (u32)ring->status_page.gfx_addr);
1140                POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1141        }
1142
1143        I915_WRITE(RING_MODE_GEN7(ring),
1144                   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1145                   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1146        POSTING_READ(RING_MODE_GEN7(ring));
1147        ring->next_context_status_buffer = 0;
1148        DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1149
1150        memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1151
1152        return 0;
1153}
1154
1155static int gen8_init_render_ring(struct intel_engine_cs *ring)
1156{
1157        struct drm_device *dev = ring->dev;
1158        struct drm_i915_private *dev_priv = dev->dev_private;
1159        int ret;
1160
1161        ret = gen8_init_common_ring(ring);
1162        if (ret)
1163                return ret;
1164
1165        /* We need to disable the AsyncFlip performance optimisations in order
1166         * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1167         * programmed to '1' on all products.
1168         *
1169         * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1170         */
1171        I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1172
1173        I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1174
1175        return init_workarounds_ring(ring);
1176}
1177
1178static int gen9_init_render_ring(struct intel_engine_cs *ring)
1179{
1180        int ret;
1181
1182        ret = gen8_init_common_ring(ring);
1183        if (ret)
1184                return ret;
1185
1186        return init_workarounds_ring(ring);
1187}
1188
1189static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1190                              struct intel_context *ctx,
1191                              u64 offset, unsigned dispatch_flags)
1192{
1193        bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1194        int ret;
1195
1196        ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1197        if (ret)
1198                return ret;
1199
1200        /* FIXME(BDW): Address space and security selectors. */
1201        intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1202        intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1203        intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1204        intel_logical_ring_emit(ringbuf, MI_NOOP);
1205        intel_logical_ring_advance(ringbuf);
1206
1207        return 0;
1208}
1209
1210static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1211{
1212        struct drm_device *dev = ring->dev;
1213        struct drm_i915_private *dev_priv = dev->dev_private;
1214        unsigned long flags;
1215
1216        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1217                return false;
1218
1219        spin_lock_irqsave(&dev_priv->irq_lock, flags);
1220        if (ring->irq_refcount++ == 0) {
1221                I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1222                POSTING_READ(RING_IMR(ring->mmio_base));
1223        }
1224        spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1225
1226        return true;
1227}
1228
1229static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1230{
1231        struct drm_device *dev = ring->dev;
1232        struct drm_i915_private *dev_priv = dev->dev_private;
1233        unsigned long flags;
1234
1235        spin_lock_irqsave(&dev_priv->irq_lock, flags);
1236        if (--ring->irq_refcount == 0) {
1237                I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1238                POSTING_READ(RING_IMR(ring->mmio_base));
1239        }
1240        spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1241}
1242
1243static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1244                           struct intel_context *ctx,
1245                           u32 invalidate_domains,
1246                           u32 unused)
1247{
1248        struct intel_engine_cs *ring = ringbuf->ring;
1249        struct drm_device *dev = ring->dev;
1250        struct drm_i915_private *dev_priv = dev->dev_private;
1251        uint32_t cmd;
1252        int ret;
1253
1254        ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1255        if (ret)
1256                return ret;
1257
1258        cmd = MI_FLUSH_DW + 1;
1259
1260        /* We always require a command barrier so that subsequent
1261         * commands, such as breadcrumb interrupts, are strictly ordered
1262         * wrt the contents of the write cache being flushed to memory
1263         * (and thus being coherent from the CPU).
1264         */
1265        cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1266
1267        if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1268                cmd |= MI_INVALIDATE_TLB;
1269                if (ring == &dev_priv->ring[VCS])
1270                        cmd |= MI_INVALIDATE_BSD;
1271        }
1272
1273        intel_logical_ring_emit(ringbuf, cmd);
1274        intel_logical_ring_emit(ringbuf,
1275                                I915_GEM_HWS_SCRATCH_ADDR |
1276                                MI_FLUSH_DW_USE_GTT);
1277        intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1278        intel_logical_ring_emit(ringbuf, 0); /* value */
1279        intel_logical_ring_advance(ringbuf);
1280
1281        return 0;
1282}
1283
1284static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1285                                  struct intel_context *ctx,
1286                                  u32 invalidate_domains,
1287                                  u32 flush_domains)
1288{
1289        struct intel_engine_cs *ring = ringbuf->ring;
1290        u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1291        u32 flags = 0;
1292        int ret;
1293
1294        flags |= PIPE_CONTROL_CS_STALL;
1295
1296        if (flush_domains) {
1297                flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1298                flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1299        }
1300
1301        if (invalidate_domains) {
1302                flags |= PIPE_CONTROL_TLB_INVALIDATE;
1303                flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1304                flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1305                flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1306                flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1307                flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1308                flags |= PIPE_CONTROL_QW_WRITE;
1309                flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1310        }
1311
1312        ret = intel_logical_ring_begin(ringbuf, ctx, 6);
1313        if (ret)
1314                return ret;
1315
1316        intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1317        intel_logical_ring_emit(ringbuf, flags);
1318        intel_logical_ring_emit(ringbuf, scratch_addr);
1319        intel_logical_ring_emit(ringbuf, 0);
1320        intel_logical_ring_emit(ringbuf, 0);
1321        intel_logical_ring_emit(ringbuf, 0);
1322        intel_logical_ring_advance(ringbuf);
1323
1324        return 0;
1325}
1326
1327static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1328{
1329        return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1330}
1331
1332static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1333{
1334        intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1335}
1336
1337static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1338                             struct drm_i915_gem_request *request)
1339{
1340        struct intel_engine_cs *ring = ringbuf->ring;
1341        u32 cmd;
1342        int ret;
1343
1344        /*
1345         * Reserve space for 2 NOOPs at the end of each request to be
1346         * used as a workaround for not being allowed to do lite
1347         * restore with HEAD==TAIL (WaIdleLiteRestore).
1348         */
1349        ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1350        if (ret)
1351                return ret;
1352
1353        cmd = MI_STORE_DWORD_IMM_GEN4;
1354        cmd |= MI_GLOBAL_GTT;
1355
1356        intel_logical_ring_emit(ringbuf, cmd);
1357        intel_logical_ring_emit(ringbuf,
1358                                (ring->status_page.gfx_addr +
1359                                (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1360        intel_logical_ring_emit(ringbuf, 0);
1361        intel_logical_ring_emit(ringbuf,
1362                i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1363        intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1364        intel_logical_ring_emit(ringbuf, MI_NOOP);
1365        intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1366
1367        /*
1368         * Here we add two extra NOOPs as padding to avoid
1369         * lite restore of a context with HEAD==TAIL.
1370         */
1371        intel_logical_ring_emit(ringbuf, MI_NOOP);
1372        intel_logical_ring_emit(ringbuf, MI_NOOP);
1373        intel_logical_ring_advance(ringbuf);
1374
1375        return 0;
1376}
1377
1378static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1379                                              struct intel_context *ctx)
1380{
1381        struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1382        struct render_state so;
1383        struct drm_i915_file_private *file_priv = ctx->file_priv;
1384        struct drm_file *file = file_priv ? file_priv->file : NULL;
1385        int ret;
1386
1387        ret = i915_gem_render_state_prepare(ring, &so);
1388        if (ret)
1389                return ret;
1390
1391        if (so.rodata == NULL)
1392                return 0;
1393
1394        ret = ring->emit_bb_start(ringbuf,
1395                        ctx,
1396                        so.ggtt_offset,
1397                        I915_DISPATCH_SECURE);
1398        if (ret)
1399                goto out;
1400
1401        i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1402
1403        ret = __i915_add_request(ring, file, so.obj);
1404        /* intel_logical_ring_add_request moves object to inactive if it
1405         * fails */
1406out:
1407        i915_gem_render_state_fini(&so);
1408        return ret;
1409}
1410
1411static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1412                       struct intel_context *ctx)
1413{
1414        int ret;
1415
1416        ret = intel_logical_ring_workarounds_emit(ring, ctx);
1417        if (ret)
1418                return ret;
1419
1420        return intel_lr_context_render_state_init(ring, ctx);
1421}
1422
1423/**
1424 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1425 *
1426 * @ring: Engine Command Streamer.
1427 *
1428 */
1429void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1430{
1431        struct drm_i915_private *dev_priv;
1432
1433        if (!intel_ring_initialized(ring))
1434                return;
1435
1436        dev_priv = ring->dev->dev_private;
1437
1438        intel_logical_ring_stop(ring);
1439        WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1440        i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1441
1442        if (ring->cleanup)
1443                ring->cleanup(ring);
1444
1445        i915_cmd_parser_fini_ring(ring);
1446
1447        if (ring->status_page.obj) {
1448                kunmap(sg_page(ring->status_page.obj->pages->sgl));
1449                ring->status_page.obj = NULL;
1450        }
1451}
1452
1453static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1454{
1455        int ret;
1456
1457        /* Intentionally left blank. */
1458        ring->buffer = NULL;
1459
1460        ring->dev = dev;
1461        INIT_LIST_HEAD(&ring->active_list);
1462        INIT_LIST_HEAD(&ring->request_list);
1463        init_waitqueue_head(&ring->irq_queue);
1464
1465        INIT_LIST_HEAD(&ring->execlist_queue);
1466        INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1467        spin_lock_init(&ring->execlist_lock);
1468
1469        ret = i915_cmd_parser_init_ring(ring);
1470        if (ret)
1471                return ret;
1472
1473        ret = intel_lr_context_deferred_create(ring->default_context, ring);
1474
1475        return ret;
1476}
1477
1478static int logical_render_ring_init(struct drm_device *dev)
1479{
1480        struct drm_i915_private *dev_priv = dev->dev_private;
1481        struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1482        int ret;
1483
1484        ring->name = "render ring";
1485        ring->id = RCS;
1486        ring->mmio_base = RENDER_RING_BASE;
1487        ring->irq_enable_mask =
1488                GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1489        ring->irq_keep_mask =
1490                GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1491        if (HAS_L3_DPF(dev))
1492                ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1493
1494        if (INTEL_INFO(dev)->gen >= 9)
1495                ring->init_hw = gen9_init_render_ring;
1496        else
1497                ring->init_hw = gen8_init_render_ring;
1498        ring->init_context = gen8_init_rcs_context;
1499        ring->cleanup = intel_fini_pipe_control;
1500        ring->get_seqno = gen8_get_seqno;
1501        ring->set_seqno = gen8_set_seqno;
1502        ring->emit_request = gen8_emit_request;
1503        ring->emit_flush = gen8_emit_flush_render;
1504        ring->irq_get = gen8_logical_ring_get_irq;
1505        ring->irq_put = gen8_logical_ring_put_irq;
1506        ring->emit_bb_start = gen8_emit_bb_start;
1507
1508        ring->dev = dev;
1509        ret = logical_ring_init(dev, ring);
1510        if (ret)
1511                return ret;
1512
1513        return intel_init_pipe_control(ring);
1514}
1515
1516static int logical_bsd_ring_init(struct drm_device *dev)
1517{
1518        struct drm_i915_private *dev_priv = dev->dev_private;
1519        struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1520
1521        ring->name = "bsd ring";
1522        ring->id = VCS;
1523        ring->mmio_base = GEN6_BSD_RING_BASE;
1524        ring->irq_enable_mask =
1525                GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1526        ring->irq_keep_mask =
1527                GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1528
1529        ring->init_hw = gen8_init_common_ring;
1530        ring->get_seqno = gen8_get_seqno;
1531        ring->set_seqno = gen8_set_seqno;
1532        ring->emit_request = gen8_emit_request;
1533        ring->emit_flush = gen8_emit_flush;
1534        ring->irq_get = gen8_logical_ring_get_irq;
1535        ring->irq_put = gen8_logical_ring_put_irq;
1536        ring->emit_bb_start = gen8_emit_bb_start;
1537
1538        return logical_ring_init(dev, ring);
1539}
1540
1541static int logical_bsd2_ring_init(struct drm_device *dev)
1542{
1543        struct drm_i915_private *dev_priv = dev->dev_private;
1544        struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1545
1546        ring->name = "bds2 ring";
1547        ring->id = VCS2;
1548        ring->mmio_base = GEN8_BSD2_RING_BASE;
1549        ring->irq_enable_mask =
1550                GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1551        ring->irq_keep_mask =
1552                GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1553
1554        ring->init_hw = gen8_init_common_ring;
1555        ring->get_seqno = gen8_get_seqno;
1556        ring->set_seqno = gen8_set_seqno;
1557        ring->emit_request = gen8_emit_request;
1558        ring->emit_flush = gen8_emit_flush;
1559        ring->irq_get = gen8_logical_ring_get_irq;
1560        ring->irq_put = gen8_logical_ring_put_irq;
1561        ring->emit_bb_start = gen8_emit_bb_start;
1562
1563        return logical_ring_init(dev, ring);
1564}
1565
1566static int logical_blt_ring_init(struct drm_device *dev)
1567{
1568        struct drm_i915_private *dev_priv = dev->dev_private;
1569        struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1570
1571        ring->name = "blitter ring";
1572        ring->id = BCS;
1573        ring->mmio_base = BLT_RING_BASE;
1574        ring->irq_enable_mask =
1575                GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1576        ring->irq_keep_mask =
1577                GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1578
1579        ring->init_hw = gen8_init_common_ring;
1580        ring->get_seqno = gen8_get_seqno;
1581        ring->set_seqno = gen8_set_seqno;
1582        ring->emit_request = gen8_emit_request;
1583        ring->emit_flush = gen8_emit_flush;
1584        ring->irq_get = gen8_logical_ring_get_irq;
1585        ring->irq_put = gen8_logical_ring_put_irq;
1586        ring->emit_bb_start = gen8_emit_bb_start;
1587
1588        return logical_ring_init(dev, ring);
1589}
1590
1591static int logical_vebox_ring_init(struct drm_device *dev)
1592{
1593        struct drm_i915_private *dev_priv = dev->dev_private;
1594        struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1595
1596        ring->name = "video enhancement ring";
1597        ring->id = VECS;
1598        ring->mmio_base = VEBOX_RING_BASE;
1599        ring->irq_enable_mask =
1600                GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1601        ring->irq_keep_mask =
1602                GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1603
1604        ring->init_hw = gen8_init_common_ring;
1605        ring->get_seqno = gen8_get_seqno;
1606        ring->set_seqno = gen8_set_seqno;
1607        ring->emit_request = gen8_emit_request;
1608        ring->emit_flush = gen8_emit_flush;
1609        ring->irq_get = gen8_logical_ring_get_irq;
1610        ring->irq_put = gen8_logical_ring_put_irq;
1611        ring->emit_bb_start = gen8_emit_bb_start;
1612
1613        return logical_ring_init(dev, ring);
1614}
1615
1616/**
1617 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1618 * @dev: DRM device.
1619 *
1620 * This function inits the engines for an Execlists submission style (the equivalent in the
1621 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1622 * those engines that are present in the hardware.
1623 *
1624 * Return: non-zero if the initialization failed.
1625 */
1626int intel_logical_rings_init(struct drm_device *dev)
1627{
1628        struct drm_i915_private *dev_priv = dev->dev_private;
1629        int ret;
1630
1631        ret = logical_render_ring_init(dev);
1632        if (ret)
1633                return ret;
1634
1635        if (HAS_BSD(dev)) {
1636                ret = logical_bsd_ring_init(dev);
1637                if (ret)
1638                        goto cleanup_render_ring;
1639        }
1640
1641        if (HAS_BLT(dev)) {
1642                ret = logical_blt_ring_init(dev);
1643                if (ret)
1644                        goto cleanup_bsd_ring;
1645        }
1646
1647        if (HAS_VEBOX(dev)) {
1648                ret = logical_vebox_ring_init(dev);
1649                if (ret)
1650                        goto cleanup_blt_ring;
1651        }
1652
1653        if (HAS_BSD2(dev)) {
1654                ret = logical_bsd2_ring_init(dev);
1655                if (ret)
1656                        goto cleanup_vebox_ring;
1657        }
1658
1659        ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1660        if (ret)
1661                goto cleanup_bsd2_ring;
1662
1663        return 0;
1664
1665cleanup_bsd2_ring:
1666        intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1667cleanup_vebox_ring:
1668        intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1669cleanup_blt_ring:
1670        intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1671cleanup_bsd_ring:
1672        intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1673cleanup_render_ring:
1674        intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1675
1676        return ret;
1677}
1678
1679static u32
1680make_rpcs(struct drm_device *dev)
1681{
1682        u32 rpcs = 0;
1683
1684        /*
1685         * No explicit RPCS request is needed to ensure full
1686         * slice/subslice/EU enablement prior to Gen9.
1687        */
1688        if (INTEL_INFO(dev)->gen < 9)
1689                return 0;
1690
1691        /*
1692         * Starting in Gen9, render power gating can leave
1693         * slice/subslice/EU in a partially enabled state. We
1694         * must make an explicit request through RPCS for full
1695         * enablement.
1696        */
1697        if (INTEL_INFO(dev)->has_slice_pg) {
1698                rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1699                rpcs |= INTEL_INFO(dev)->slice_total <<
1700                        GEN8_RPCS_S_CNT_SHIFT;
1701                rpcs |= GEN8_RPCS_ENABLE;
1702        }
1703
1704        if (INTEL_INFO(dev)->has_subslice_pg) {
1705                rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1706                rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1707                        GEN8_RPCS_SS_CNT_SHIFT;
1708                rpcs |= GEN8_RPCS_ENABLE;
1709        }
1710
1711        if (INTEL_INFO(dev)->has_eu_pg) {
1712                rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1713                        GEN8_RPCS_EU_MIN_SHIFT;
1714                rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1715                        GEN8_RPCS_EU_MAX_SHIFT;
1716                rpcs |= GEN8_RPCS_ENABLE;
1717        }
1718
1719        return rpcs;
1720}
1721
1722static int
1723populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1724                    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1725{
1726        struct drm_device *dev = ring->dev;
1727        struct drm_i915_private *dev_priv = dev->dev_private;
1728        struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1729        struct page *page;
1730        uint32_t *reg_state;
1731        int ret;
1732
1733        if (!ppgtt)
1734                ppgtt = dev_priv->mm.aliasing_ppgtt;
1735
1736        ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1737        if (ret) {
1738                DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1739                return ret;
1740        }
1741
1742        ret = i915_gem_object_get_pages(ctx_obj);
1743        if (ret) {
1744                DRM_DEBUG_DRIVER("Could not get object pages\n");
1745                return ret;
1746        }
1747
1748        i915_gem_object_pin_pages(ctx_obj);
1749
1750        /* The second page of the context object contains some fields which must
1751         * be set up prior to the first execution. */
1752        page = i915_gem_object_get_page(ctx_obj, 1);
1753        reg_state = kmap_atomic(page);
1754
1755        /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1756         * commands followed by (reg, value) pairs. The values we are setting here are
1757         * only for the first context restore: on a subsequent save, the GPU will
1758         * recreate this batchbuffer with new values (including all the missing
1759         * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1760        if (ring->id == RCS)
1761                reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1762        else
1763                reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1764        reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1765        reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1766        reg_state[CTX_CONTEXT_CONTROL+1] =
1767                _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1768                                CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1769        reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1770        reg_state[CTX_RING_HEAD+1] = 0;
1771        reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1772        reg_state[CTX_RING_TAIL+1] = 0;
1773        reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1774        /* Ring buffer start address is not known until the buffer is pinned.
1775         * It is written to the context image in execlists_update_context()
1776         */
1777        reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1778        reg_state[CTX_RING_BUFFER_CONTROL+1] =
1779                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1780        reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1781        reg_state[CTX_BB_HEAD_U+1] = 0;
1782        reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1783        reg_state[CTX_BB_HEAD_L+1] = 0;
1784        reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1785        reg_state[CTX_BB_STATE+1] = (1<<5);
1786        reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1787        reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1788        reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1789        reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1790        reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1791        reg_state[CTX_SECOND_BB_STATE+1] = 0;
1792        if (ring->id == RCS) {
1793                /* TODO: according to BSpec, the register state context
1794                 * for CHV does not have these. OTOH, these registers do
1795                 * exist in CHV. I'm waiting for a clarification */
1796                reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1797                reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1798                reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1799                reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1800                reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1801                reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1802        }
1803        reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1804        reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1805        reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1806        reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1807        reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1808        reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1809        reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1810        reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1811        reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1812        reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1813        reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1814        reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1815        reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1816        reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1817        reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1818        reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1819        reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1820        reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1821        reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1822        reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1823        if (ring->id == RCS) {
1824                reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1825                reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1826                reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1827        }
1828
1829        kunmap_atomic(reg_state);
1830
1831        ctx_obj->dirty = 1;
1832        set_page_dirty(page);
1833        i915_gem_object_unpin_pages(ctx_obj);
1834
1835        return 0;
1836}
1837
1838/**
1839 * intel_lr_context_free() - free the LRC specific bits of a context
1840 * @ctx: the LR context to free.
1841 *
1842 * The real context freeing is done in i915_gem_context_free: this only
1843 * takes care of the bits that are LRC related: the per-engine backing
1844 * objects and the logical ringbuffer.
1845 */
1846void intel_lr_context_free(struct intel_context *ctx)
1847{
1848        int i;
1849
1850        for (i = 0; i < I915_NUM_RINGS; i++) {
1851                struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1852
1853                if (ctx_obj) {
1854                        struct intel_ringbuffer *ringbuf =
1855                                        ctx->engine[i].ringbuf;
1856                        struct intel_engine_cs *ring = ringbuf->ring;
1857
1858                        if (ctx == ring->default_context) {
1859                                intel_unpin_ringbuffer_obj(ringbuf);
1860                                i915_gem_object_ggtt_unpin(ctx_obj);
1861                        }
1862                        WARN_ON(ctx->engine[ring->id].pin_count);
1863                        intel_destroy_ringbuffer_obj(ringbuf);
1864                        kfree(ringbuf);
1865                        drm_gem_object_unreference(&ctx_obj->base);
1866                }
1867        }
1868}
1869
1870static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1871{
1872        int ret = 0;
1873
1874        WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1875
1876        switch (ring->id) {
1877        case RCS:
1878                if (INTEL_INFO(ring->dev)->gen >= 9)
1879                        ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1880                else
1881                        ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1882                break;
1883        case VCS:
1884        case BCS:
1885        case VECS:
1886        case VCS2:
1887                ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1888                break;
1889        }
1890
1891        return ret;
1892}
1893
1894static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1895                struct drm_i915_gem_object *default_ctx_obj)
1896{
1897        struct drm_i915_private *dev_priv = ring->dev->dev_private;
1898
1899        /* The status page is offset 0 from the default context object
1900         * in LRC mode. */
1901        ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1902        ring->status_page.page_addr =
1903                        kmap(sg_page(default_ctx_obj->pages->sgl));
1904        ring->status_page.obj = default_ctx_obj;
1905
1906        I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1907                        (u32)ring->status_page.gfx_addr);
1908        POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1909}
1910
1911/**
1912 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1913 * @ctx: LR context to create.
1914 * @ring: engine to be used with the context.
1915 *
1916 * This function can be called more than once, with different engines, if we plan
1917 * to use the context with them. The context backing objects and the ringbuffers
1918 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1919 * the creation is a deferred call: it's better to make sure first that we need to use
1920 * a given ring with the context.
1921 *
1922 * Return: non-zero on error.
1923 */
1924int intel_lr_context_deferred_create(struct intel_context *ctx,
1925                                     struct intel_engine_cs *ring)
1926{
1927        const bool is_global_default_ctx = (ctx == ring->default_context);
1928        struct drm_device *dev = ring->dev;
1929        struct drm_i915_gem_object *ctx_obj;
1930        uint32_t context_size;
1931        struct intel_ringbuffer *ringbuf;
1932        int ret;
1933
1934        WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1935        WARN_ON(ctx->engine[ring->id].state);
1936
1937        context_size = round_up(get_lr_context_size(ring), 4096);
1938
1939        ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1940        if (IS_ERR(ctx_obj)) {
1941                ret = PTR_ERR(ctx_obj);
1942                DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1943                return ret;
1944        }
1945
1946        if (is_global_default_ctx) {
1947                ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1948                if (ret) {
1949                        DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1950                                        ret);
1951                        drm_gem_object_unreference(&ctx_obj->base);
1952                        return ret;
1953                }
1954        }
1955
1956        ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1957        if (!ringbuf) {
1958                DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1959                                ring->name);
1960                ret = -ENOMEM;
1961                goto error_unpin_ctx;
1962        }
1963
1964        ringbuf->ring = ring;
1965
1966        ringbuf->size = 32 * PAGE_SIZE;
1967        ringbuf->effective_size = ringbuf->size;
1968        ringbuf->head = 0;
1969        ringbuf->tail = 0;
1970        ringbuf->last_retired_head = -1;
1971        intel_ring_update_space(ringbuf);
1972
1973        if (ringbuf->obj == NULL) {
1974                ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1975                if (ret) {
1976                        DRM_DEBUG_DRIVER(
1977                                "Failed to allocate ringbuffer obj %s: %d\n",
1978                                ring->name, ret);
1979                        goto error_free_rbuf;
1980                }
1981
1982                if (is_global_default_ctx) {
1983                        ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1984                        if (ret) {
1985                                DRM_ERROR(
1986                                        "Failed to pin and map ringbuffer %s: %d\n",
1987                                        ring->name, ret);
1988                                goto error_destroy_rbuf;
1989                        }
1990                }
1991
1992        }
1993
1994        ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1995        if (ret) {
1996                DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1997                goto error;
1998        }
1999
2000        ctx->engine[ring->id].ringbuf = ringbuf;
2001        ctx->engine[ring->id].state = ctx_obj;
2002
2003        if (ctx == ring->default_context)
2004                lrc_setup_hardware_status_page(ring, ctx_obj);
2005        else if (ring->id == RCS && !ctx->rcs_initialized) {
2006                if (ring->init_context) {
2007                        ret = ring->init_context(ring, ctx);
2008                        if (ret) {
2009                                DRM_ERROR("ring init context: %d\n", ret);
2010                                ctx->engine[ring->id].ringbuf = NULL;
2011                                ctx->engine[ring->id].state = NULL;
2012                                goto error;
2013                        }
2014                }
2015
2016                ctx->rcs_initialized = true;
2017        }
2018
2019        return 0;
2020
2021error:
2022        if (is_global_default_ctx)
2023                intel_unpin_ringbuffer_obj(ringbuf);
2024error_destroy_rbuf:
2025        intel_destroy_ringbuffer_obj(ringbuf);
2026error_free_rbuf:
2027        kfree(ringbuf);
2028error_unpin_ctx:
2029        if (is_global_default_ctx)
2030                i915_gem_object_ggtt_unpin(ctx_obj);
2031        drm_gem_object_unreference(&ctx_obj->base);
2032        return ret;
2033}
2034
2035void intel_lr_context_reset(struct drm_device *dev,
2036                        struct intel_context *ctx)
2037{
2038        struct drm_i915_private *dev_priv = dev->dev_private;
2039        struct intel_engine_cs *ring;
2040        int i;
2041
2042        for_each_ring(ring, dev_priv, i) {
2043                struct drm_i915_gem_object *ctx_obj =
2044                                ctx->engine[ring->id].state;
2045                struct intel_ringbuffer *ringbuf =
2046                                ctx->engine[ring->id].ringbuf;
2047                uint32_t *reg_state;
2048                struct page *page;
2049
2050                if (!ctx_obj)
2051                        continue;
2052
2053                if (i915_gem_object_get_pages(ctx_obj)) {
2054                        WARN(1, "Failed get_pages for context obj\n");
2055                        continue;
2056                }
2057                page = i915_gem_object_get_page(ctx_obj, 1);
2058                reg_state = kmap_atomic(page);
2059
2060                reg_state[CTX_RING_HEAD+1] = 0;
2061                reg_state[CTX_RING_TAIL+1] = 0;
2062
2063                kunmap_atomic(reg_state);
2064
2065                ringbuf->head = 0;
2066                ringbuf->tail = 0;
2067        }
2068}
2069