linux/drivers/gpu/drm/tegra/dc.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 Avionic Design GmbH
   3 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/debugfs.h>
  12#include <linux/iommu.h>
  13#include <linux/reset.h>
  14
  15#include <soc/tegra/pmc.h>
  16
  17#include "dc.h"
  18#include "drm.h"
  19#include "gem.h"
  20
  21#include <drm/drm_atomic.h>
  22#include <drm/drm_atomic_helper.h>
  23#include <drm/drm_plane_helper.h>
  24
  25struct tegra_dc_soc_info {
  26        bool supports_border_color;
  27        bool supports_interlacing;
  28        bool supports_cursor;
  29        bool supports_block_linear;
  30        unsigned int pitch_align;
  31        bool has_powergate;
  32};
  33
  34struct tegra_plane {
  35        struct drm_plane base;
  36        unsigned int index;
  37};
  38
  39static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
  40{
  41        return container_of(plane, struct tegra_plane, base);
  42}
  43
  44struct tegra_dc_state {
  45        struct drm_crtc_state base;
  46
  47        struct clk *clk;
  48        unsigned long pclk;
  49        unsigned int div;
  50
  51        u32 planes;
  52};
  53
  54static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
  55{
  56        if (state)
  57                return container_of(state, struct tegra_dc_state, base);
  58
  59        return NULL;
  60}
  61
  62struct tegra_plane_state {
  63        struct drm_plane_state base;
  64
  65        struct tegra_bo_tiling tiling;
  66        u32 format;
  67        u32 swap;
  68};
  69
  70static inline struct tegra_plane_state *
  71to_tegra_plane_state(struct drm_plane_state *state)
  72{
  73        if (state)
  74                return container_of(state, struct tegra_plane_state, base);
  75
  76        return NULL;
  77}
  78
  79/*
  80 * Reads the active copy of a register. This takes the dc->lock spinlock to
  81 * prevent races with the VBLANK processing which also needs access to the
  82 * active copy of some registers.
  83 */
  84static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  85{
  86        unsigned long flags;
  87        u32 value;
  88
  89        spin_lock_irqsave(&dc->lock, flags);
  90
  91        tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  92        value = tegra_dc_readl(dc, offset);
  93        tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  94
  95        spin_unlock_irqrestore(&dc->lock, flags);
  96        return value;
  97}
  98
  99/*
 100 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
 101 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 102 * Latching happens mmediately if the display controller is in STOP mode or
 103 * on the next frame boundary otherwise.
 104 *
 105 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 106 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 107 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 108 * into the ACTIVE copy, either immediately if the display controller is in
 109 * STOP mode, or at the next frame boundary otherwise.
 110 */
 111void tegra_dc_commit(struct tegra_dc *dc)
 112{
 113        tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 114        tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 115}
 116
 117static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
 118{
 119        /* assume no swapping of fetched data */
 120        if (swap)
 121                *swap = BYTE_SWAP_NOSWAP;
 122
 123        switch (fourcc) {
 124        case DRM_FORMAT_XBGR8888:
 125                *format = WIN_COLOR_DEPTH_R8G8B8A8;
 126                break;
 127
 128        case DRM_FORMAT_XRGB8888:
 129                *format = WIN_COLOR_DEPTH_B8G8R8A8;
 130                break;
 131
 132        case DRM_FORMAT_RGB565:
 133                *format = WIN_COLOR_DEPTH_B5G6R5;
 134                break;
 135
 136        case DRM_FORMAT_UYVY:
 137                *format = WIN_COLOR_DEPTH_YCbCr422;
 138                break;
 139
 140        case DRM_FORMAT_YUYV:
 141                if (swap)
 142                        *swap = BYTE_SWAP_SWAP2;
 143
 144                *format = WIN_COLOR_DEPTH_YCbCr422;
 145                break;
 146
 147        case DRM_FORMAT_YUV420:
 148                *format = WIN_COLOR_DEPTH_YCbCr420P;
 149                break;
 150
 151        case DRM_FORMAT_YUV422:
 152                *format = WIN_COLOR_DEPTH_YCbCr422P;
 153                break;
 154
 155        default:
 156                return -EINVAL;
 157        }
 158
 159        return 0;
 160}
 161
 162static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
 163{
 164        switch (format) {
 165        case WIN_COLOR_DEPTH_YCbCr422:
 166        case WIN_COLOR_DEPTH_YUV422:
 167                if (planar)
 168                        *planar = false;
 169
 170                return true;
 171
 172        case WIN_COLOR_DEPTH_YCbCr420P:
 173        case WIN_COLOR_DEPTH_YUV420P:
 174        case WIN_COLOR_DEPTH_YCbCr422P:
 175        case WIN_COLOR_DEPTH_YUV422P:
 176        case WIN_COLOR_DEPTH_YCbCr422R:
 177        case WIN_COLOR_DEPTH_YUV422R:
 178        case WIN_COLOR_DEPTH_YCbCr422RA:
 179        case WIN_COLOR_DEPTH_YUV422RA:
 180                if (planar)
 181                        *planar = true;
 182
 183                return true;
 184        }
 185
 186        if (planar)
 187                *planar = false;
 188
 189        return false;
 190}
 191
 192static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 193                                  unsigned int bpp)
 194{
 195        fixed20_12 outf = dfixed_init(out);
 196        fixed20_12 inf = dfixed_init(in);
 197        u32 dda_inc;
 198        int max;
 199
 200        if (v)
 201                max = 15;
 202        else {
 203                switch (bpp) {
 204                case 2:
 205                        max = 8;
 206                        break;
 207
 208                default:
 209                        WARN_ON_ONCE(1);
 210                        /* fallthrough */
 211                case 4:
 212                        max = 4;
 213                        break;
 214                }
 215        }
 216
 217        outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 218        inf.full -= dfixed_const(1);
 219
 220        dda_inc = dfixed_div(inf, outf);
 221        dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 222
 223        return dda_inc;
 224}
 225
 226static inline u32 compute_initial_dda(unsigned int in)
 227{
 228        fixed20_12 inf = dfixed_init(in);
 229        return dfixed_frac(inf);
 230}
 231
 232static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
 233                                  const struct tegra_dc_window *window)
 234{
 235        unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 236        unsigned long value, flags;
 237        bool yuv, planar;
 238
 239        /*
 240         * For YUV planar modes, the number of bytes per pixel takes into
 241         * account only the luma component and therefore is 1.
 242         */
 243        yuv = tegra_dc_format_is_yuv(window->format, &planar);
 244        if (!yuv)
 245                bpp = window->bits_per_pixel / 8;
 246        else
 247                bpp = planar ? 1 : 2;
 248
 249        spin_lock_irqsave(&dc->lock, flags);
 250
 251        value = WINDOW_A_SELECT << index;
 252        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
 253
 254        tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
 255        tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
 256
 257        value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 258        tegra_dc_writel(dc, value, DC_WIN_POSITION);
 259
 260        value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 261        tegra_dc_writel(dc, value, DC_WIN_SIZE);
 262
 263        h_offset = window->src.x * bpp;
 264        v_offset = window->src.y;
 265        h_size = window->src.w * bpp;
 266        v_size = window->src.h;
 267
 268        value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 269        tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
 270
 271        /*
 272         * For DDA computations the number of bytes per pixel for YUV planar
 273         * modes needs to take into account all Y, U and V components.
 274         */
 275        if (yuv && planar)
 276                bpp = 2;
 277
 278        h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 279        v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 280
 281        value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 282        tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
 283
 284        h_dda = compute_initial_dda(window->src.x);
 285        v_dda = compute_initial_dda(window->src.y);
 286
 287        tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
 288        tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
 289
 290        tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
 291        tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
 292
 293        tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
 294
 295        if (yuv && planar) {
 296                tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
 297                tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
 298                value = window->stride[1] << 16 | window->stride[0];
 299                tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
 300        } else {
 301                tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
 302        }
 303
 304        if (window->bottom_up)
 305                v_offset += window->src.h - 1;
 306
 307        tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 308        tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 309
 310        if (dc->soc->supports_block_linear) {
 311                unsigned long height = window->tiling.value;
 312
 313                switch (window->tiling.mode) {
 314                case TEGRA_BO_TILING_MODE_PITCH:
 315                        value = DC_WINBUF_SURFACE_KIND_PITCH;
 316                        break;
 317
 318                case TEGRA_BO_TILING_MODE_TILED:
 319                        value = DC_WINBUF_SURFACE_KIND_TILED;
 320                        break;
 321
 322                case TEGRA_BO_TILING_MODE_BLOCK:
 323                        value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 324                                DC_WINBUF_SURFACE_KIND_BLOCK;
 325                        break;
 326                }
 327
 328                tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
 329        } else {
 330                switch (window->tiling.mode) {
 331                case TEGRA_BO_TILING_MODE_PITCH:
 332                        value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 333                                DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 334                        break;
 335
 336                case TEGRA_BO_TILING_MODE_TILED:
 337                        value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 338                                DC_WIN_BUFFER_ADDR_MODE_TILE;
 339                        break;
 340
 341                case TEGRA_BO_TILING_MODE_BLOCK:
 342                        /*
 343                         * No need to handle this here because ->atomic_check
 344                         * will already have filtered it out.
 345                         */
 346                        break;
 347                }
 348
 349                tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
 350        }
 351
 352        value = WIN_ENABLE;
 353
 354        if (yuv) {
 355                /* setup default colorspace conversion coefficients */
 356                tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
 357                tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
 358                tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
 359                tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
 360                tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
 361                tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
 362                tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
 363                tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
 364
 365                value |= CSC_ENABLE;
 366        } else if (window->bits_per_pixel < 24) {
 367                value |= COLOR_EXPAND;
 368        }
 369
 370        if (window->bottom_up)
 371                value |= V_DIRECTION;
 372
 373        tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 374
 375        /*
 376         * Disable blending and assume Window A is the bottom-most window,
 377         * Window C is the top-most window and Window B is in the middle.
 378         */
 379        tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
 380        tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
 381
 382        switch (index) {
 383        case 0:
 384                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
 385                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 386                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 387                break;
 388
 389        case 1:
 390                tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 391                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 392                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 393                break;
 394
 395        case 2:
 396                tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 397                tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
 398                tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
 399                break;
 400        }
 401
 402        spin_unlock_irqrestore(&dc->lock, flags);
 403}
 404
 405static void tegra_plane_destroy(struct drm_plane *plane)
 406{
 407        struct tegra_plane *p = to_tegra_plane(plane);
 408
 409        drm_plane_cleanup(plane);
 410        kfree(p);
 411}
 412
 413static const u32 tegra_primary_plane_formats[] = {
 414        DRM_FORMAT_XBGR8888,
 415        DRM_FORMAT_XRGB8888,
 416        DRM_FORMAT_RGB565,
 417};
 418
 419static void tegra_primary_plane_destroy(struct drm_plane *plane)
 420{
 421        tegra_plane_destroy(plane);
 422}
 423
 424static void tegra_plane_reset(struct drm_plane *plane)
 425{
 426        struct tegra_plane_state *state;
 427
 428        if (plane->state)
 429                __drm_atomic_helper_plane_destroy_state(plane, plane->state);
 430
 431        kfree(plane->state);
 432        plane->state = NULL;
 433
 434        state = kzalloc(sizeof(*state), GFP_KERNEL);
 435        if (state) {
 436                plane->state = &state->base;
 437                plane->state->plane = plane;
 438        }
 439}
 440
 441static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
 442{
 443        struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 444        struct tegra_plane_state *copy;
 445
 446        copy = kmalloc(sizeof(*copy), GFP_KERNEL);
 447        if (!copy)
 448                return NULL;
 449
 450        __drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
 451        copy->tiling = state->tiling;
 452        copy->format = state->format;
 453        copy->swap = state->swap;
 454
 455        return &copy->base;
 456}
 457
 458static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
 459                                             struct drm_plane_state *state)
 460{
 461        __drm_atomic_helper_plane_destroy_state(plane, state);
 462        kfree(state);
 463}
 464
 465static const struct drm_plane_funcs tegra_primary_plane_funcs = {
 466        .update_plane = drm_atomic_helper_update_plane,
 467        .disable_plane = drm_atomic_helper_disable_plane,
 468        .destroy = tegra_primary_plane_destroy,
 469        .reset = tegra_plane_reset,
 470        .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 471        .atomic_destroy_state = tegra_plane_atomic_destroy_state,
 472};
 473
 474static int tegra_plane_prepare_fb(struct drm_plane *plane,
 475                                  struct drm_framebuffer *fb,
 476                                  const struct drm_plane_state *new_state)
 477{
 478        return 0;
 479}
 480
 481static void tegra_plane_cleanup_fb(struct drm_plane *plane,
 482                                   struct drm_framebuffer *fb,
 483                                   const struct drm_plane_state *old_fb)
 484{
 485}
 486
 487static int tegra_plane_state_add(struct tegra_plane *plane,
 488                                 struct drm_plane_state *state)
 489{
 490        struct drm_crtc_state *crtc_state;
 491        struct tegra_dc_state *tegra;
 492
 493        /* Propagate errors from allocation or locking failures. */
 494        crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
 495        if (IS_ERR(crtc_state))
 496                return PTR_ERR(crtc_state);
 497
 498        tegra = to_dc_state(crtc_state);
 499
 500        tegra->planes |= WIN_A_ACT_REQ << plane->index;
 501
 502        return 0;
 503}
 504
 505static int tegra_plane_atomic_check(struct drm_plane *plane,
 506                                    struct drm_plane_state *state)
 507{
 508        struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
 509        struct tegra_bo_tiling *tiling = &plane_state->tiling;
 510        struct tegra_plane *tegra = to_tegra_plane(plane);
 511        struct tegra_dc *dc = to_tegra_dc(state->crtc);
 512        int err;
 513
 514        /* no need for further checks if the plane is being disabled */
 515        if (!state->crtc)
 516                return 0;
 517
 518        err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
 519                              &plane_state->swap);
 520        if (err < 0)
 521                return err;
 522
 523        err = tegra_fb_get_tiling(state->fb, tiling);
 524        if (err < 0)
 525                return err;
 526
 527        if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 528            !dc->soc->supports_block_linear) {
 529                DRM_ERROR("hardware doesn't support block linear mode\n");
 530                return -EINVAL;
 531        }
 532
 533        /*
 534         * Tegra doesn't support different strides for U and V planes so we
 535         * error out if the user tries to display a framebuffer with such a
 536         * configuration.
 537         */
 538        if (drm_format_num_planes(state->fb->pixel_format) > 2) {
 539                if (state->fb->pitches[2] != state->fb->pitches[1]) {
 540                        DRM_ERROR("unsupported UV-plane configuration\n");
 541                        return -EINVAL;
 542                }
 543        }
 544
 545        err = tegra_plane_state_add(tegra, state);
 546        if (err < 0)
 547                return err;
 548
 549        return 0;
 550}
 551
 552static void tegra_plane_atomic_update(struct drm_plane *plane,
 553                                      struct drm_plane_state *old_state)
 554{
 555        struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 556        struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 557        struct drm_framebuffer *fb = plane->state->fb;
 558        struct tegra_plane *p = to_tegra_plane(plane);
 559        struct tegra_dc_window window;
 560        unsigned int i;
 561
 562        /* rien ne va plus */
 563        if (!plane->state->crtc || !plane->state->fb)
 564                return;
 565
 566        memset(&window, 0, sizeof(window));
 567        window.src.x = plane->state->src_x >> 16;
 568        window.src.y = plane->state->src_y >> 16;
 569        window.src.w = plane->state->src_w >> 16;
 570        window.src.h = plane->state->src_h >> 16;
 571        window.dst.x = plane->state->crtc_x;
 572        window.dst.y = plane->state->crtc_y;
 573        window.dst.w = plane->state->crtc_w;
 574        window.dst.h = plane->state->crtc_h;
 575        window.bits_per_pixel = fb->bits_per_pixel;
 576        window.bottom_up = tegra_fb_is_bottom_up(fb);
 577
 578        /* copy from state */
 579        window.tiling = state->tiling;
 580        window.format = state->format;
 581        window.swap = state->swap;
 582
 583        for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
 584                struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
 585
 586                window.base[i] = bo->paddr + fb->offsets[i];
 587                window.stride[i] = fb->pitches[i];
 588        }
 589
 590        tegra_dc_setup_window(dc, p->index, &window);
 591}
 592
 593static void tegra_plane_atomic_disable(struct drm_plane *plane,
 594                                       struct drm_plane_state *old_state)
 595{
 596        struct tegra_plane *p = to_tegra_plane(plane);
 597        struct tegra_dc *dc;
 598        unsigned long flags;
 599        u32 value;
 600
 601        /* rien ne va plus */
 602        if (!old_state || !old_state->crtc)
 603                return;
 604
 605        dc = to_tegra_dc(old_state->crtc);
 606
 607        spin_lock_irqsave(&dc->lock, flags);
 608
 609        value = WINDOW_A_SELECT << p->index;
 610        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
 611
 612        value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
 613        value &= ~WIN_ENABLE;
 614        tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 615
 616        spin_unlock_irqrestore(&dc->lock, flags);
 617}
 618
 619static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
 620        .prepare_fb = tegra_plane_prepare_fb,
 621        .cleanup_fb = tegra_plane_cleanup_fb,
 622        .atomic_check = tegra_plane_atomic_check,
 623        .atomic_update = tegra_plane_atomic_update,
 624        .atomic_disable = tegra_plane_atomic_disable,
 625};
 626
 627static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
 628                                                       struct tegra_dc *dc)
 629{
 630        /*
 631         * Ideally this would use drm_crtc_mask(), but that would require the
 632         * CRTC to already be in the mode_config's list of CRTCs. However, it
 633         * will only be added to that list in the drm_crtc_init_with_planes()
 634         * (in tegra_dc_init()), which in turn requires registration of these
 635         * planes. So we have ourselves a nice little chicken and egg problem
 636         * here.
 637         *
 638         * We work around this by manually creating the mask from the number
 639         * of CRTCs that have been registered, and should therefore always be
 640         * the same as drm_crtc_index() after registration.
 641         */
 642        unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
 643        struct tegra_plane *plane;
 644        unsigned int num_formats;
 645        const u32 *formats;
 646        int err;
 647
 648        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 649        if (!plane)
 650                return ERR_PTR(-ENOMEM);
 651
 652        num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
 653        formats = tegra_primary_plane_formats;
 654
 655        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 656                                       &tegra_primary_plane_funcs, formats,
 657                                       num_formats, DRM_PLANE_TYPE_PRIMARY);
 658        if (err < 0) {
 659                kfree(plane);
 660                return ERR_PTR(err);
 661        }
 662
 663        drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
 664
 665        return &plane->base;
 666}
 667
 668static const u32 tegra_cursor_plane_formats[] = {
 669        DRM_FORMAT_RGBA8888,
 670};
 671
 672static int tegra_cursor_atomic_check(struct drm_plane *plane,
 673                                     struct drm_plane_state *state)
 674{
 675        struct tegra_plane *tegra = to_tegra_plane(plane);
 676        int err;
 677
 678        /* no need for further checks if the plane is being disabled */
 679        if (!state->crtc)
 680                return 0;
 681
 682        /* scaling not supported for cursor */
 683        if ((state->src_w >> 16 != state->crtc_w) ||
 684            (state->src_h >> 16 != state->crtc_h))
 685                return -EINVAL;
 686
 687        /* only square cursors supported */
 688        if (state->src_w != state->src_h)
 689                return -EINVAL;
 690
 691        if (state->crtc_w != 32 && state->crtc_w != 64 &&
 692            state->crtc_w != 128 && state->crtc_w != 256)
 693                return -EINVAL;
 694
 695        err = tegra_plane_state_add(tegra, state);
 696        if (err < 0)
 697                return err;
 698
 699        return 0;
 700}
 701
 702static void tegra_cursor_atomic_update(struct drm_plane *plane,
 703                                       struct drm_plane_state *old_state)
 704{
 705        struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
 706        struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 707        struct drm_plane_state *state = plane->state;
 708        u32 value = CURSOR_CLIP_DISPLAY;
 709
 710        /* rien ne va plus */
 711        if (!plane->state->crtc || !plane->state->fb)
 712                return;
 713
 714        switch (state->crtc_w) {
 715        case 32:
 716                value |= CURSOR_SIZE_32x32;
 717                break;
 718
 719        case 64:
 720                value |= CURSOR_SIZE_64x64;
 721                break;
 722
 723        case 128:
 724                value |= CURSOR_SIZE_128x128;
 725                break;
 726
 727        case 256:
 728                value |= CURSOR_SIZE_256x256;
 729                break;
 730
 731        default:
 732                WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
 733                     state->crtc_h);
 734                return;
 735        }
 736
 737        value |= (bo->paddr >> 10) & 0x3fffff;
 738        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 739
 740#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 741        value = (bo->paddr >> 32) & 0x3;
 742        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 743#endif
 744
 745        /* enable cursor and set blend mode */
 746        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 747        value |= CURSOR_ENABLE;
 748        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 749
 750        value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 751        value &= ~CURSOR_DST_BLEND_MASK;
 752        value &= ~CURSOR_SRC_BLEND_MASK;
 753        value |= CURSOR_MODE_NORMAL;
 754        value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 755        value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 756        value |= CURSOR_ALPHA;
 757        tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 758
 759        /* position the cursor */
 760        value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
 761        tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 762
 763}
 764
 765static void tegra_cursor_atomic_disable(struct drm_plane *plane,
 766                                        struct drm_plane_state *old_state)
 767{
 768        struct tegra_dc *dc;
 769        u32 value;
 770
 771        /* rien ne va plus */
 772        if (!old_state || !old_state->crtc)
 773                return;
 774
 775        dc = to_tegra_dc(old_state->crtc);
 776
 777        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 778        value &= ~CURSOR_ENABLE;
 779        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 780}
 781
 782static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
 783        .update_plane = drm_atomic_helper_update_plane,
 784        .disable_plane = drm_atomic_helper_disable_plane,
 785        .destroy = tegra_plane_destroy,
 786        .reset = tegra_plane_reset,
 787        .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 788        .atomic_destroy_state = tegra_plane_atomic_destroy_state,
 789};
 790
 791static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
 792        .prepare_fb = tegra_plane_prepare_fb,
 793        .cleanup_fb = tegra_plane_cleanup_fb,
 794        .atomic_check = tegra_cursor_atomic_check,
 795        .atomic_update = tegra_cursor_atomic_update,
 796        .atomic_disable = tegra_cursor_atomic_disable,
 797};
 798
 799static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
 800                                                      struct tegra_dc *dc)
 801{
 802        struct tegra_plane *plane;
 803        unsigned int num_formats;
 804        const u32 *formats;
 805        int err;
 806
 807        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 808        if (!plane)
 809                return ERR_PTR(-ENOMEM);
 810
 811        /*
 812         * We'll treat the cursor as an overlay plane with index 6 here so
 813         * that the update and activation request bits in DC_CMD_STATE_CONTROL
 814         * match up.
 815         */
 816        plane->index = 6;
 817
 818        num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
 819        formats = tegra_cursor_plane_formats;
 820
 821        err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
 822                                       &tegra_cursor_plane_funcs, formats,
 823                                       num_formats, DRM_PLANE_TYPE_CURSOR);
 824        if (err < 0) {
 825                kfree(plane);
 826                return ERR_PTR(err);
 827        }
 828
 829        drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
 830
 831        return &plane->base;
 832}
 833
 834static void tegra_overlay_plane_destroy(struct drm_plane *plane)
 835{
 836        tegra_plane_destroy(plane);
 837}
 838
 839static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
 840        .update_plane = drm_atomic_helper_update_plane,
 841        .disable_plane = drm_atomic_helper_disable_plane,
 842        .destroy = tegra_overlay_plane_destroy,
 843        .reset = tegra_plane_reset,
 844        .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 845        .atomic_destroy_state = tegra_plane_atomic_destroy_state,
 846};
 847
 848static const uint32_t tegra_overlay_plane_formats[] = {
 849        DRM_FORMAT_XBGR8888,
 850        DRM_FORMAT_XRGB8888,
 851        DRM_FORMAT_RGB565,
 852        DRM_FORMAT_UYVY,
 853        DRM_FORMAT_YUYV,
 854        DRM_FORMAT_YUV420,
 855        DRM_FORMAT_YUV422,
 856};
 857
 858static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
 859        .prepare_fb = tegra_plane_prepare_fb,
 860        .cleanup_fb = tegra_plane_cleanup_fb,
 861        .atomic_check = tegra_plane_atomic_check,
 862        .atomic_update = tegra_plane_atomic_update,
 863        .atomic_disable = tegra_plane_atomic_disable,
 864};
 865
 866static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
 867                                                       struct tegra_dc *dc,
 868                                                       unsigned int index)
 869{
 870        struct tegra_plane *plane;
 871        unsigned int num_formats;
 872        const u32 *formats;
 873        int err;
 874
 875        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 876        if (!plane)
 877                return ERR_PTR(-ENOMEM);
 878
 879        plane->index = index;
 880
 881        num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
 882        formats = tegra_overlay_plane_formats;
 883
 884        err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
 885                                       &tegra_overlay_plane_funcs, formats,
 886                                       num_formats, DRM_PLANE_TYPE_OVERLAY);
 887        if (err < 0) {
 888                kfree(plane);
 889                return ERR_PTR(err);
 890        }
 891
 892        drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
 893
 894        return &plane->base;
 895}
 896
 897static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
 898{
 899        struct drm_plane *plane;
 900        unsigned int i;
 901
 902        for (i = 0; i < 2; i++) {
 903                plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
 904                if (IS_ERR(plane))
 905                        return PTR_ERR(plane);
 906        }
 907
 908        return 0;
 909}
 910
 911u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
 912{
 913        if (dc->syncpt)
 914                return host1x_syncpt_read(dc->syncpt);
 915
 916        /* fallback to software emulated VBLANK counter */
 917        return drm_crtc_vblank_count(&dc->base);
 918}
 919
 920void tegra_dc_enable_vblank(struct tegra_dc *dc)
 921{
 922        unsigned long value, flags;
 923
 924        spin_lock_irqsave(&dc->lock, flags);
 925
 926        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 927        value |= VBLANK_INT;
 928        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 929
 930        spin_unlock_irqrestore(&dc->lock, flags);
 931}
 932
 933void tegra_dc_disable_vblank(struct tegra_dc *dc)
 934{
 935        unsigned long value, flags;
 936
 937        spin_lock_irqsave(&dc->lock, flags);
 938
 939        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 940        value &= ~VBLANK_INT;
 941        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 942
 943        spin_unlock_irqrestore(&dc->lock, flags);
 944}
 945
 946static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
 947{
 948        struct drm_device *drm = dc->base.dev;
 949        struct drm_crtc *crtc = &dc->base;
 950        unsigned long flags, base;
 951        struct tegra_bo *bo;
 952
 953        spin_lock_irqsave(&drm->event_lock, flags);
 954
 955        if (!dc->event) {
 956                spin_unlock_irqrestore(&drm->event_lock, flags);
 957                return;
 958        }
 959
 960        bo = tegra_fb_get_plane(crtc->primary->fb, 0);
 961
 962        spin_lock(&dc->lock);
 963
 964        /* check if new start address has been latched */
 965        tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
 966        tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
 967        base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
 968        tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
 969
 970        spin_unlock(&dc->lock);
 971
 972        if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
 973                drm_crtc_send_vblank_event(crtc, dc->event);
 974                drm_crtc_vblank_put(crtc);
 975                dc->event = NULL;
 976        }
 977
 978        spin_unlock_irqrestore(&drm->event_lock, flags);
 979}
 980
 981void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
 982{
 983        struct tegra_dc *dc = to_tegra_dc(crtc);
 984        struct drm_device *drm = crtc->dev;
 985        unsigned long flags;
 986
 987        spin_lock_irqsave(&drm->event_lock, flags);
 988
 989        if (dc->event && dc->event->base.file_priv == file) {
 990                dc->event->base.destroy(&dc->event->base);
 991                drm_crtc_vblank_put(crtc);
 992                dc->event = NULL;
 993        }
 994
 995        spin_unlock_irqrestore(&drm->event_lock, flags);
 996}
 997
 998static void tegra_dc_destroy(struct drm_crtc *crtc)
 999{
1000        drm_crtc_cleanup(crtc);
1001}
1002
1003static void tegra_crtc_reset(struct drm_crtc *crtc)
1004{
1005        struct tegra_dc_state *state;
1006
1007        if (crtc->state)
1008                __drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1009
1010        kfree(crtc->state);
1011        crtc->state = NULL;
1012
1013        state = kzalloc(sizeof(*state), GFP_KERNEL);
1014        if (state) {
1015                crtc->state = &state->base;
1016                crtc->state->crtc = crtc;
1017        }
1018}
1019
1020static struct drm_crtc_state *
1021tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1022{
1023        struct tegra_dc_state *state = to_dc_state(crtc->state);
1024        struct tegra_dc_state *copy;
1025
1026        copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1027        if (!copy)
1028                return NULL;
1029
1030        __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1031        copy->clk = state->clk;
1032        copy->pclk = state->pclk;
1033        copy->div = state->div;
1034        copy->planes = state->planes;
1035
1036        return &copy->base;
1037}
1038
1039static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1040                                            struct drm_crtc_state *state)
1041{
1042        __drm_atomic_helper_crtc_destroy_state(crtc, state);
1043        kfree(state);
1044}
1045
1046static const struct drm_crtc_funcs tegra_crtc_funcs = {
1047        .page_flip = drm_atomic_helper_page_flip,
1048        .set_config = drm_atomic_helper_set_config,
1049        .destroy = tegra_dc_destroy,
1050        .reset = tegra_crtc_reset,
1051        .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1052        .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1053};
1054
1055static void tegra_dc_stop(struct tegra_dc *dc)
1056{
1057        u32 value;
1058
1059        /* stop the display controller */
1060        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1061        value &= ~DISP_CTRL_MODE_MASK;
1062        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1063
1064        tegra_dc_commit(dc);
1065}
1066
1067static bool tegra_dc_idle(struct tegra_dc *dc)
1068{
1069        u32 value;
1070
1071        value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1072
1073        return (value & DISP_CTRL_MODE_MASK) == 0;
1074}
1075
1076static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1077{
1078        timeout = jiffies + msecs_to_jiffies(timeout);
1079
1080        while (time_before(jiffies, timeout)) {
1081                if (tegra_dc_idle(dc))
1082                        return 0;
1083
1084                usleep_range(1000, 2000);
1085        }
1086
1087        dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1088        return -ETIMEDOUT;
1089}
1090
1091static void tegra_crtc_disable(struct drm_crtc *crtc)
1092{
1093        struct tegra_dc *dc = to_tegra_dc(crtc);
1094        u32 value;
1095
1096        if (!tegra_dc_idle(dc)) {
1097                tegra_dc_stop(dc);
1098
1099                /*
1100                 * Ignore the return value, there isn't anything useful to do
1101                 * in case this fails.
1102                 */
1103                tegra_dc_wait_idle(dc, 100);
1104        }
1105
1106        /*
1107         * This should really be part of the RGB encoder driver, but clearing
1108         * these bits has the side-effect of stopping the display controller.
1109         * When that happens no VBLANK interrupts will be raised. At the same
1110         * time the encoder is disabled before the display controller, so the
1111         * above code is always going to timeout waiting for the controller
1112         * to go idle.
1113         *
1114         * Given the close coupling between the RGB encoder and the display
1115         * controller doing it here is still kind of okay. None of the other
1116         * encoder drivers require these bits to be cleared.
1117         *
1118         * XXX: Perhaps given that the display controller is switched off at
1119         * this point anyway maybe clearing these bits isn't even useful for
1120         * the RGB encoder?
1121         */
1122        if (dc->rgb) {
1123                value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1124                value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1125                           PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1126                tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1127        }
1128
1129        drm_crtc_vblank_off(crtc);
1130}
1131
1132static bool tegra_crtc_mode_fixup(struct drm_crtc *crtc,
1133                                  const struct drm_display_mode *mode,
1134                                  struct drm_display_mode *adjusted)
1135{
1136        return true;
1137}
1138
1139static int tegra_dc_set_timings(struct tegra_dc *dc,
1140                                struct drm_display_mode *mode)
1141{
1142        unsigned int h_ref_to_sync = 1;
1143        unsigned int v_ref_to_sync = 1;
1144        unsigned long value;
1145
1146        tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1147
1148        value = (v_ref_to_sync << 16) | h_ref_to_sync;
1149        tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1150
1151        value = ((mode->vsync_end - mode->vsync_start) << 16) |
1152                ((mode->hsync_end - mode->hsync_start) <<  0);
1153        tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1154
1155        value = ((mode->vtotal - mode->vsync_end) << 16) |
1156                ((mode->htotal - mode->hsync_end) <<  0);
1157        tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1158
1159        value = ((mode->vsync_start - mode->vdisplay) << 16) |
1160                ((mode->hsync_start - mode->hdisplay) <<  0);
1161        tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1162
1163        value = (mode->vdisplay << 16) | mode->hdisplay;
1164        tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1165
1166        return 0;
1167}
1168
1169/**
1170 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1171 *     state
1172 * @dc: display controller
1173 * @crtc_state: CRTC atomic state
1174 * @clk: parent clock for display controller
1175 * @pclk: pixel clock
1176 * @div: shift clock divider
1177 *
1178 * Returns:
1179 * 0 on success or a negative error-code on failure.
1180 */
1181int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1182                               struct drm_crtc_state *crtc_state,
1183                               struct clk *clk, unsigned long pclk,
1184                               unsigned int div)
1185{
1186        struct tegra_dc_state *state = to_dc_state(crtc_state);
1187
1188        if (!clk_has_parent(dc->clk, clk))
1189                return -EINVAL;
1190
1191        state->clk = clk;
1192        state->pclk = pclk;
1193        state->div = div;
1194
1195        return 0;
1196}
1197
1198static void tegra_dc_commit_state(struct tegra_dc *dc,
1199                                  struct tegra_dc_state *state)
1200{
1201        u32 value;
1202        int err;
1203
1204        err = clk_set_parent(dc->clk, state->clk);
1205        if (err < 0)
1206                dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1207
1208        /*
1209         * Outputs may not want to change the parent clock rate. This is only
1210         * relevant to Tegra20 where only a single display PLL is available.
1211         * Since that PLL would typically be used for HDMI, an internal LVDS
1212         * panel would need to be driven by some other clock such as PLL_P
1213         * which is shared with other peripherals. Changing the clock rate
1214         * should therefore be avoided.
1215         */
1216        if (state->pclk > 0) {
1217                err = clk_set_rate(state->clk, state->pclk);
1218                if (err < 0)
1219                        dev_err(dc->dev,
1220                                "failed to set clock rate to %lu Hz\n",
1221                                state->pclk);
1222        }
1223
1224        DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1225                      state->div);
1226        DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1227
1228        value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1229        tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1230}
1231
1232static void tegra_crtc_mode_set_nofb(struct drm_crtc *crtc)
1233{
1234        struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1235        struct tegra_dc_state *state = to_dc_state(crtc->state);
1236        struct tegra_dc *dc = to_tegra_dc(crtc);
1237        u32 value;
1238
1239        tegra_dc_commit_state(dc, state);
1240
1241        /* program display mode */
1242        tegra_dc_set_timings(dc, mode);
1243
1244        /* interlacing isn't supported yet, so disable it */
1245        if (dc->soc->supports_interlacing) {
1246                value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1247                value &= ~INTERLACE_ENABLE;
1248                tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1249        }
1250
1251        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1252        value &= ~DISP_CTRL_MODE_MASK;
1253        value |= DISP_CTRL_MODE_C_DISPLAY;
1254        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1255
1256        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1257        value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1258                 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1259        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1260
1261        tegra_dc_commit(dc);
1262}
1263
1264static void tegra_crtc_prepare(struct drm_crtc *crtc)
1265{
1266        drm_crtc_vblank_off(crtc);
1267}
1268
1269static void tegra_crtc_commit(struct drm_crtc *crtc)
1270{
1271        drm_crtc_vblank_on(crtc);
1272}
1273
1274static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1275                                   struct drm_crtc_state *state)
1276{
1277        return 0;
1278}
1279
1280static void tegra_crtc_atomic_begin(struct drm_crtc *crtc)
1281{
1282        struct tegra_dc *dc = to_tegra_dc(crtc);
1283
1284        if (crtc->state->event) {
1285                crtc->state->event->pipe = drm_crtc_index(crtc);
1286
1287                WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1288
1289                dc->event = crtc->state->event;
1290                crtc->state->event = NULL;
1291        }
1292}
1293
1294static void tegra_crtc_atomic_flush(struct drm_crtc *crtc)
1295{
1296        struct tegra_dc_state *state = to_dc_state(crtc->state);
1297        struct tegra_dc *dc = to_tegra_dc(crtc);
1298
1299        tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1300        tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1301}
1302
1303static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1304        .disable = tegra_crtc_disable,
1305        .mode_fixup = tegra_crtc_mode_fixup,
1306        .mode_set_nofb = tegra_crtc_mode_set_nofb,
1307        .prepare = tegra_crtc_prepare,
1308        .commit = tegra_crtc_commit,
1309        .atomic_check = tegra_crtc_atomic_check,
1310        .atomic_begin = tegra_crtc_atomic_begin,
1311        .atomic_flush = tegra_crtc_atomic_flush,
1312};
1313
1314static irqreturn_t tegra_dc_irq(int irq, void *data)
1315{
1316        struct tegra_dc *dc = data;
1317        unsigned long status;
1318
1319        status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1320        tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1321
1322        if (status & FRAME_END_INT) {
1323                /*
1324                dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1325                */
1326        }
1327
1328        if (status & VBLANK_INT) {
1329                /*
1330                dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1331                */
1332                drm_crtc_handle_vblank(&dc->base);
1333                tegra_dc_finish_page_flip(dc);
1334        }
1335
1336        if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1337                /*
1338                dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1339                */
1340        }
1341
1342        return IRQ_HANDLED;
1343}
1344
1345static int tegra_dc_show_regs(struct seq_file *s, void *data)
1346{
1347        struct drm_info_node *node = s->private;
1348        struct tegra_dc *dc = node->info_ent->data;
1349
1350#define DUMP_REG(name)                                          \
1351        seq_printf(s, "%-40s %#05x %08x\n", #name, name,        \
1352                   tegra_dc_readl(dc, name))
1353
1354        DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1355        DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1356        DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1357        DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1358        DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1359        DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1360        DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1361        DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1362        DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1363        DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1364        DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1365        DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1366        DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1367        DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1368        DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1369        DUMP_REG(DC_CMD_SIGNAL_RAISE);
1370        DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1371        DUMP_REG(DC_CMD_INT_STATUS);
1372        DUMP_REG(DC_CMD_INT_MASK);
1373        DUMP_REG(DC_CMD_INT_ENABLE);
1374        DUMP_REG(DC_CMD_INT_TYPE);
1375        DUMP_REG(DC_CMD_INT_POLARITY);
1376        DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1377        DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1378        DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1379        DUMP_REG(DC_CMD_STATE_ACCESS);
1380        DUMP_REG(DC_CMD_STATE_CONTROL);
1381        DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1382        DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1383        DUMP_REG(DC_COM_CRC_CONTROL);
1384        DUMP_REG(DC_COM_CRC_CHECKSUM);
1385        DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1386        DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1387        DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1388        DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1389        DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1390        DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1391        DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1392        DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1393        DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1394        DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1395        DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1396        DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1397        DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1398        DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1399        DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1400        DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1401        DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1402        DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1403        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1404        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1405        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1406        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1407        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1408        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1409        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1410        DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1411        DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1412        DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1413        DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1414        DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1415        DUMP_REG(DC_COM_SPI_CONTROL);
1416        DUMP_REG(DC_COM_SPI_START_BYTE);
1417        DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1418        DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1419        DUMP_REG(DC_COM_HSPI_CS_DC);
1420        DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1421        DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1422        DUMP_REG(DC_COM_GPIO_CTRL);
1423        DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1424        DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1425        DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1426        DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1427        DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1428        DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1429        DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1430        DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1431        DUMP_REG(DC_DISP_REF_TO_SYNC);
1432        DUMP_REG(DC_DISP_SYNC_WIDTH);
1433        DUMP_REG(DC_DISP_BACK_PORCH);
1434        DUMP_REG(DC_DISP_ACTIVE);
1435        DUMP_REG(DC_DISP_FRONT_PORCH);
1436        DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1437        DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1438        DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1439        DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1440        DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1441        DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1442        DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1443        DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1444        DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1445        DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1446        DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1447        DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1448        DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1449        DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1450        DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1451        DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1452        DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1453        DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1454        DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1455        DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1456        DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1457        DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1458        DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1459        DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1460        DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1461        DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1462        DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1463        DUMP_REG(DC_DISP_M0_CONTROL);
1464        DUMP_REG(DC_DISP_M1_CONTROL);
1465        DUMP_REG(DC_DISP_DI_CONTROL);
1466        DUMP_REG(DC_DISP_PP_CONTROL);
1467        DUMP_REG(DC_DISP_PP_SELECT_A);
1468        DUMP_REG(DC_DISP_PP_SELECT_B);
1469        DUMP_REG(DC_DISP_PP_SELECT_C);
1470        DUMP_REG(DC_DISP_PP_SELECT_D);
1471        DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1472        DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1473        DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1474        DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1475        DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1476        DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1477        DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1478        DUMP_REG(DC_DISP_BORDER_COLOR);
1479        DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1480        DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1481        DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1482        DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1483        DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1484        DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1485        DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1486        DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1487        DUMP_REG(DC_DISP_CURSOR_POSITION);
1488        DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1489        DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1490        DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1491        DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1492        DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1493        DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1494        DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1495        DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1496        DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1497        DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1498        DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1499        DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1500        DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1501        DUMP_REG(DC_DISP_SD_CONTROL);
1502        DUMP_REG(DC_DISP_SD_CSC_COEFF);
1503        DUMP_REG(DC_DISP_SD_LUT(0));
1504        DUMP_REG(DC_DISP_SD_LUT(1));
1505        DUMP_REG(DC_DISP_SD_LUT(2));
1506        DUMP_REG(DC_DISP_SD_LUT(3));
1507        DUMP_REG(DC_DISP_SD_LUT(4));
1508        DUMP_REG(DC_DISP_SD_LUT(5));
1509        DUMP_REG(DC_DISP_SD_LUT(6));
1510        DUMP_REG(DC_DISP_SD_LUT(7));
1511        DUMP_REG(DC_DISP_SD_LUT(8));
1512        DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1513        DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1514        DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1515        DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1516        DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1517        DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1518        DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1519        DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1520        DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1521        DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1522        DUMP_REG(DC_DISP_SD_BL_TF(0));
1523        DUMP_REG(DC_DISP_SD_BL_TF(1));
1524        DUMP_REG(DC_DISP_SD_BL_TF(2));
1525        DUMP_REG(DC_DISP_SD_BL_TF(3));
1526        DUMP_REG(DC_DISP_SD_BL_CONTROL);
1527        DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1528        DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1529        DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1530        DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1531        DUMP_REG(DC_WIN_WIN_OPTIONS);
1532        DUMP_REG(DC_WIN_BYTE_SWAP);
1533        DUMP_REG(DC_WIN_BUFFER_CONTROL);
1534        DUMP_REG(DC_WIN_COLOR_DEPTH);
1535        DUMP_REG(DC_WIN_POSITION);
1536        DUMP_REG(DC_WIN_SIZE);
1537        DUMP_REG(DC_WIN_PRESCALED_SIZE);
1538        DUMP_REG(DC_WIN_H_INITIAL_DDA);
1539        DUMP_REG(DC_WIN_V_INITIAL_DDA);
1540        DUMP_REG(DC_WIN_DDA_INC);
1541        DUMP_REG(DC_WIN_LINE_STRIDE);
1542        DUMP_REG(DC_WIN_BUF_STRIDE);
1543        DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1544        DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1545        DUMP_REG(DC_WIN_DV_CONTROL);
1546        DUMP_REG(DC_WIN_BLEND_NOKEY);
1547        DUMP_REG(DC_WIN_BLEND_1WIN);
1548        DUMP_REG(DC_WIN_BLEND_2WIN_X);
1549        DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1550        DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1551        DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1552        DUMP_REG(DC_WINBUF_START_ADDR);
1553        DUMP_REG(DC_WINBUF_START_ADDR_NS);
1554        DUMP_REG(DC_WINBUF_START_ADDR_U);
1555        DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1556        DUMP_REG(DC_WINBUF_START_ADDR_V);
1557        DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1558        DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1559        DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1560        DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1561        DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1562        DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1563        DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1564        DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1565        DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1566
1567#undef DUMP_REG
1568
1569        return 0;
1570}
1571
1572static struct drm_info_list debugfs_files[] = {
1573        { "regs", tegra_dc_show_regs, 0, NULL },
1574};
1575
1576static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1577{
1578        unsigned int i;
1579        char *name;
1580        int err;
1581
1582        name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1583        dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1584        kfree(name);
1585
1586        if (!dc->debugfs)
1587                return -ENOMEM;
1588
1589        dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1590                                    GFP_KERNEL);
1591        if (!dc->debugfs_files) {
1592                err = -ENOMEM;
1593                goto remove;
1594        }
1595
1596        for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1597                dc->debugfs_files[i].data = dc;
1598
1599        err = drm_debugfs_create_files(dc->debugfs_files,
1600                                       ARRAY_SIZE(debugfs_files),
1601                                       dc->debugfs, minor);
1602        if (err < 0)
1603                goto free;
1604
1605        dc->minor = minor;
1606
1607        return 0;
1608
1609free:
1610        kfree(dc->debugfs_files);
1611        dc->debugfs_files = NULL;
1612remove:
1613        debugfs_remove(dc->debugfs);
1614        dc->debugfs = NULL;
1615
1616        return err;
1617}
1618
1619static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1620{
1621        drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1622                                 dc->minor);
1623        dc->minor = NULL;
1624
1625        kfree(dc->debugfs_files);
1626        dc->debugfs_files = NULL;
1627
1628        debugfs_remove(dc->debugfs);
1629        dc->debugfs = NULL;
1630
1631        return 0;
1632}
1633
1634static int tegra_dc_init(struct host1x_client *client)
1635{
1636        struct drm_device *drm = dev_get_drvdata(client->parent);
1637        struct tegra_dc *dc = host1x_client_to_dc(client);
1638        struct tegra_drm *tegra = drm->dev_private;
1639        struct drm_plane *primary = NULL;
1640        struct drm_plane *cursor = NULL;
1641        u32 value;
1642        int err;
1643
1644        if (tegra->domain) {
1645                err = iommu_attach_device(tegra->domain, dc->dev);
1646                if (err < 0) {
1647                        dev_err(dc->dev, "failed to attach to domain: %d\n",
1648                                err);
1649                        return err;
1650                }
1651
1652                dc->domain = tegra->domain;
1653        }
1654
1655        primary = tegra_dc_primary_plane_create(drm, dc);
1656        if (IS_ERR(primary)) {
1657                err = PTR_ERR(primary);
1658                goto cleanup;
1659        }
1660
1661        if (dc->soc->supports_cursor) {
1662                cursor = tegra_dc_cursor_plane_create(drm, dc);
1663                if (IS_ERR(cursor)) {
1664                        err = PTR_ERR(cursor);
1665                        goto cleanup;
1666                }
1667        }
1668
1669        err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1670                                        &tegra_crtc_funcs);
1671        if (err < 0)
1672                goto cleanup;
1673
1674        drm_mode_crtc_set_gamma_size(&dc->base, 256);
1675        drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1676
1677        /*
1678         * Keep track of the minimum pitch alignment across all display
1679         * controllers.
1680         */
1681        if (dc->soc->pitch_align > tegra->pitch_align)
1682                tegra->pitch_align = dc->soc->pitch_align;
1683
1684        err = tegra_dc_rgb_init(drm, dc);
1685        if (err < 0 && err != -ENODEV) {
1686                dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1687                goto cleanup;
1688        }
1689
1690        err = tegra_dc_add_planes(drm, dc);
1691        if (err < 0)
1692                goto cleanup;
1693
1694        if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1695                err = tegra_dc_debugfs_init(dc, drm->primary);
1696                if (err < 0)
1697                        dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1698        }
1699
1700        err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1701                               dev_name(dc->dev), dc);
1702        if (err < 0) {
1703                dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1704                        err);
1705                goto cleanup;
1706        }
1707
1708        /* initialize display controller */
1709        if (dc->syncpt) {
1710                u32 syncpt = host1x_syncpt_id(dc->syncpt);
1711
1712                value = SYNCPT_CNTRL_NO_STALL;
1713                tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1714
1715                value = SYNCPT_VSYNC_ENABLE | syncpt;
1716                tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1717        }
1718
1719        value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT;
1720        tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1721
1722        value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1723                WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1724        tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1725
1726        /* initialize timer */
1727        value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1728                WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1729        tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1730
1731        value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1732                WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1733        tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1734
1735        value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1736        tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1737
1738        value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1739        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1740
1741        if (dc->soc->supports_border_color)
1742                tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1743
1744        return 0;
1745
1746cleanup:
1747        if (cursor)
1748                drm_plane_cleanup(cursor);
1749
1750        if (primary)
1751                drm_plane_cleanup(primary);
1752
1753        if (tegra->domain) {
1754                iommu_detach_device(tegra->domain, dc->dev);
1755                dc->domain = NULL;
1756        }
1757
1758        return err;
1759}
1760
1761static int tegra_dc_exit(struct host1x_client *client)
1762{
1763        struct tegra_dc *dc = host1x_client_to_dc(client);
1764        int err;
1765
1766        devm_free_irq(dc->dev, dc->irq, dc);
1767
1768        if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1769                err = tegra_dc_debugfs_exit(dc);
1770                if (err < 0)
1771                        dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1772        }
1773
1774        err = tegra_dc_rgb_exit(dc);
1775        if (err) {
1776                dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1777                return err;
1778        }
1779
1780        if (dc->domain) {
1781                iommu_detach_device(dc->domain, dc->dev);
1782                dc->domain = NULL;
1783        }
1784
1785        return 0;
1786}
1787
1788static const struct host1x_client_ops dc_client_ops = {
1789        .init = tegra_dc_init,
1790        .exit = tegra_dc_exit,
1791};
1792
1793static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1794        .supports_border_color = true,
1795        .supports_interlacing = false,
1796        .supports_cursor = false,
1797        .supports_block_linear = false,
1798        .pitch_align = 8,
1799        .has_powergate = false,
1800};
1801
1802static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1803        .supports_border_color = true,
1804        .supports_interlacing = false,
1805        .supports_cursor = false,
1806        .supports_block_linear = false,
1807        .pitch_align = 8,
1808        .has_powergate = false,
1809};
1810
1811static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1812        .supports_border_color = true,
1813        .supports_interlacing = false,
1814        .supports_cursor = false,
1815        .supports_block_linear = false,
1816        .pitch_align = 64,
1817        .has_powergate = true,
1818};
1819
1820static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1821        .supports_border_color = false,
1822        .supports_interlacing = true,
1823        .supports_cursor = true,
1824        .supports_block_linear = true,
1825        .pitch_align = 64,
1826        .has_powergate = true,
1827};
1828
1829static const struct of_device_id tegra_dc_of_match[] = {
1830        {
1831                .compatible = "nvidia,tegra124-dc",
1832                .data = &tegra124_dc_soc_info,
1833        }, {
1834                .compatible = "nvidia,tegra114-dc",
1835                .data = &tegra114_dc_soc_info,
1836        }, {
1837                .compatible = "nvidia,tegra30-dc",
1838                .data = &tegra30_dc_soc_info,
1839        }, {
1840                .compatible = "nvidia,tegra20-dc",
1841                .data = &tegra20_dc_soc_info,
1842        }, {
1843                /* sentinel */
1844        }
1845};
1846MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1847
1848static int tegra_dc_parse_dt(struct tegra_dc *dc)
1849{
1850        struct device_node *np;
1851        u32 value = 0;
1852        int err;
1853
1854        err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1855        if (err < 0) {
1856                dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1857
1858                /*
1859                 * If the nvidia,head property isn't present, try to find the
1860                 * correct head number by looking up the position of this
1861                 * display controller's node within the device tree. Assuming
1862                 * that the nodes are ordered properly in the DTS file and
1863                 * that the translation into a flattened device tree blob
1864                 * preserves that ordering this will actually yield the right
1865                 * head number.
1866                 *
1867                 * If those assumptions don't hold, this will still work for
1868                 * cases where only a single display controller is used.
1869                 */
1870                for_each_matching_node(np, tegra_dc_of_match) {
1871                        if (np == dc->dev->of_node)
1872                                break;
1873
1874                        value++;
1875                }
1876        }
1877
1878        dc->pipe = value;
1879
1880        return 0;
1881}
1882
1883static int tegra_dc_probe(struct platform_device *pdev)
1884{
1885        unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1886        const struct of_device_id *id;
1887        struct resource *regs;
1888        struct tegra_dc *dc;
1889        int err;
1890
1891        dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1892        if (!dc)
1893                return -ENOMEM;
1894
1895        id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1896        if (!id)
1897                return -ENODEV;
1898
1899        spin_lock_init(&dc->lock);
1900        INIT_LIST_HEAD(&dc->list);
1901        dc->dev = &pdev->dev;
1902        dc->soc = id->data;
1903
1904        err = tegra_dc_parse_dt(dc);
1905        if (err < 0)
1906                return err;
1907
1908        dc->clk = devm_clk_get(&pdev->dev, NULL);
1909        if (IS_ERR(dc->clk)) {
1910                dev_err(&pdev->dev, "failed to get clock\n");
1911                return PTR_ERR(dc->clk);
1912        }
1913
1914        dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1915        if (IS_ERR(dc->rst)) {
1916                dev_err(&pdev->dev, "failed to get reset\n");
1917                return PTR_ERR(dc->rst);
1918        }
1919
1920        if (dc->soc->has_powergate) {
1921                if (dc->pipe == 0)
1922                        dc->powergate = TEGRA_POWERGATE_DIS;
1923                else
1924                        dc->powergate = TEGRA_POWERGATE_DISB;
1925
1926                err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
1927                                                        dc->rst);
1928                if (err < 0) {
1929                        dev_err(&pdev->dev, "failed to power partition: %d\n",
1930                                err);
1931                        return err;
1932                }
1933        } else {
1934                err = clk_prepare_enable(dc->clk);
1935                if (err < 0) {
1936                        dev_err(&pdev->dev, "failed to enable clock: %d\n",
1937                                err);
1938                        return err;
1939                }
1940
1941                err = reset_control_deassert(dc->rst);
1942                if (err < 0) {
1943                        dev_err(&pdev->dev, "failed to deassert reset: %d\n",
1944                                err);
1945                        return err;
1946                }
1947        }
1948
1949        regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1950        dc->regs = devm_ioremap_resource(&pdev->dev, regs);
1951        if (IS_ERR(dc->regs))
1952                return PTR_ERR(dc->regs);
1953
1954        dc->irq = platform_get_irq(pdev, 0);
1955        if (dc->irq < 0) {
1956                dev_err(&pdev->dev, "failed to get IRQ\n");
1957                return -ENXIO;
1958        }
1959
1960        INIT_LIST_HEAD(&dc->client.list);
1961        dc->client.ops = &dc_client_ops;
1962        dc->client.dev = &pdev->dev;
1963
1964        err = tegra_dc_rgb_probe(dc);
1965        if (err < 0 && err != -ENODEV) {
1966                dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
1967                return err;
1968        }
1969
1970        err = host1x_client_register(&dc->client);
1971        if (err < 0) {
1972                dev_err(&pdev->dev, "failed to register host1x client: %d\n",
1973                        err);
1974                return err;
1975        }
1976
1977        dc->syncpt = host1x_syncpt_request(&pdev->dev, flags);
1978        if (!dc->syncpt)
1979                dev_warn(&pdev->dev, "failed to allocate syncpoint\n");
1980
1981        platform_set_drvdata(pdev, dc);
1982
1983        return 0;
1984}
1985
1986static int tegra_dc_remove(struct platform_device *pdev)
1987{
1988        struct tegra_dc *dc = platform_get_drvdata(pdev);
1989        int err;
1990
1991        host1x_syncpt_free(dc->syncpt);
1992
1993        err = host1x_client_unregister(&dc->client);
1994        if (err < 0) {
1995                dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
1996                        err);
1997                return err;
1998        }
1999
2000        err = tegra_dc_rgb_remove(dc);
2001        if (err < 0) {
2002                dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2003                return err;
2004        }
2005
2006        reset_control_assert(dc->rst);
2007
2008        if (dc->soc->has_powergate)
2009                tegra_powergate_power_off(dc->powergate);
2010
2011        clk_disable_unprepare(dc->clk);
2012
2013        return 0;
2014}
2015
2016struct platform_driver tegra_dc_driver = {
2017        .driver = {
2018                .name = "tegra-dc",
2019                .owner = THIS_MODULE,
2020                .of_match_table = tegra_dc_of_match,
2021        },
2022        .probe = tegra_dc_probe,
2023        .remove = tegra_dc_remove,
2024};
2025