linux/drivers/iio/accel/bmc150-accel.c
<<
>>
Prefs
   1/*
   2 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
   3 *  - BMC150
   4 *  - BMI055
   5 *  - BMA255
   6 *  - BMA250E
   7 *  - BMA222E
   8 *  - BMA280
   9 *
  10 * Copyright (c) 2014, Intel Corporation.
  11 *
  12 * This program is free software; you can redistribute it and/or modify it
  13 * under the terms and conditions of the GNU General Public License,
  14 * version 2, as published by the Free Software Foundation.
  15 *
  16 * This program is distributed in the hope it will be useful, but WITHOUT
  17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  18 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  19 * more details.
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/i2c.h>
  24#include <linux/interrupt.h>
  25#include <linux/delay.h>
  26#include <linux/slab.h>
  27#include <linux/acpi.h>
  28#include <linux/gpio/consumer.h>
  29#include <linux/pm.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/iio/iio.h>
  32#include <linux/iio/sysfs.h>
  33#include <linux/iio/buffer.h>
  34#include <linux/iio/events.h>
  35#include <linux/iio/trigger.h>
  36#include <linux/iio/trigger_consumer.h>
  37#include <linux/iio/triggered_buffer.h>
  38
  39#define BMC150_ACCEL_DRV_NAME                   "bmc150_accel"
  40#define BMC150_ACCEL_IRQ_NAME                   "bmc150_accel_event"
  41#define BMC150_ACCEL_GPIO_NAME                  "bmc150_accel_int"
  42
  43#define BMC150_ACCEL_REG_CHIP_ID                0x00
  44
  45#define BMC150_ACCEL_REG_INT_STATUS_2           0x0B
  46#define BMC150_ACCEL_ANY_MOTION_MASK            0x07
  47#define BMC150_ACCEL_ANY_MOTION_BIT_X           BIT(0)
  48#define BMC150_ACCEL_ANY_MOTION_BIT_Y           BIT(1)
  49#define BMC150_ACCEL_ANY_MOTION_BIT_Z           BIT(2)
  50#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN        BIT(3)
  51
  52#define BMC150_ACCEL_REG_PMU_LPW                0x11
  53#define BMC150_ACCEL_PMU_MODE_MASK              0xE0
  54#define BMC150_ACCEL_PMU_MODE_SHIFT             5
  55#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK     0x17
  56#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT    1
  57
  58#define BMC150_ACCEL_REG_PMU_RANGE              0x0F
  59
  60#define BMC150_ACCEL_DEF_RANGE_2G               0x03
  61#define BMC150_ACCEL_DEF_RANGE_4G               0x05
  62#define BMC150_ACCEL_DEF_RANGE_8G               0x08
  63#define BMC150_ACCEL_DEF_RANGE_16G              0x0C
  64
  65/* Default BW: 125Hz */
  66#define BMC150_ACCEL_REG_PMU_BW         0x10
  67#define BMC150_ACCEL_DEF_BW                     125
  68
  69#define BMC150_ACCEL_REG_INT_MAP_0              0x19
  70#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE        BIT(2)
  71
  72#define BMC150_ACCEL_REG_INT_MAP_1              0x1A
  73#define BMC150_ACCEL_INT_MAP_1_BIT_DATA         BIT(0)
  74#define BMC150_ACCEL_INT_MAP_1_BIT_FWM          BIT(1)
  75#define BMC150_ACCEL_INT_MAP_1_BIT_FFULL        BIT(2)
  76
  77#define BMC150_ACCEL_REG_INT_RST_LATCH          0x21
  78#define BMC150_ACCEL_INT_MODE_LATCH_RESET       0x80
  79#define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
  80#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT     0x00
  81
  82#define BMC150_ACCEL_REG_INT_EN_0               0x16
  83#define BMC150_ACCEL_INT_EN_BIT_SLP_X           BIT(0)
  84#define BMC150_ACCEL_INT_EN_BIT_SLP_Y           BIT(1)
  85#define BMC150_ACCEL_INT_EN_BIT_SLP_Z           BIT(2)
  86
  87#define BMC150_ACCEL_REG_INT_EN_1               0x17
  88#define BMC150_ACCEL_INT_EN_BIT_DATA_EN         BIT(4)
  89#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN        BIT(5)
  90#define BMC150_ACCEL_INT_EN_BIT_FWM_EN          BIT(6)
  91
  92#define BMC150_ACCEL_REG_INT_OUT_CTRL           0x20
  93#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL      BIT(0)
  94
  95#define BMC150_ACCEL_REG_INT_5                  0x27
  96#define BMC150_ACCEL_SLOPE_DUR_MASK             0x03
  97
  98#define BMC150_ACCEL_REG_INT_6                  0x28
  99#define BMC150_ACCEL_SLOPE_THRES_MASK           0xFF
 100
 101/* Slope duration in terms of number of samples */
 102#define BMC150_ACCEL_DEF_SLOPE_DURATION         1
 103/* in terms of multiples of g's/LSB, based on range */
 104#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD        1
 105
 106#define BMC150_ACCEL_REG_XOUT_L         0x02
 107
 108#define BMC150_ACCEL_MAX_STARTUP_TIME_MS        100
 109
 110/* Sleep Duration values */
 111#define BMC150_ACCEL_SLEEP_500_MICRO            0x05
 112#define BMC150_ACCEL_SLEEP_1_MS         0x06
 113#define BMC150_ACCEL_SLEEP_2_MS         0x07
 114#define BMC150_ACCEL_SLEEP_4_MS         0x08
 115#define BMC150_ACCEL_SLEEP_6_MS         0x09
 116#define BMC150_ACCEL_SLEEP_10_MS                0x0A
 117#define BMC150_ACCEL_SLEEP_25_MS                0x0B
 118#define BMC150_ACCEL_SLEEP_50_MS                0x0C
 119#define BMC150_ACCEL_SLEEP_100_MS               0x0D
 120#define BMC150_ACCEL_SLEEP_500_MS               0x0E
 121#define BMC150_ACCEL_SLEEP_1_SEC                0x0F
 122
 123#define BMC150_ACCEL_REG_TEMP                   0x08
 124#define BMC150_ACCEL_TEMP_CENTER_VAL            24
 125
 126#define BMC150_ACCEL_AXIS_TO_REG(axis)  (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
 127#define BMC150_AUTO_SUSPEND_DELAY_MS            2000
 128
 129#define BMC150_ACCEL_REG_FIFO_STATUS            0x0E
 130#define BMC150_ACCEL_REG_FIFO_CONFIG0           0x30
 131#define BMC150_ACCEL_REG_FIFO_CONFIG1           0x3E
 132#define BMC150_ACCEL_REG_FIFO_DATA              0x3F
 133#define BMC150_ACCEL_FIFO_LENGTH                32
 134
 135enum bmc150_accel_axis {
 136        AXIS_X,
 137        AXIS_Y,
 138        AXIS_Z,
 139};
 140
 141enum bmc150_power_modes {
 142        BMC150_ACCEL_SLEEP_MODE_NORMAL,
 143        BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
 144        BMC150_ACCEL_SLEEP_MODE_LPM,
 145        BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
 146};
 147
 148struct bmc150_scale_info {
 149        int scale;
 150        u8 reg_range;
 151};
 152
 153struct bmc150_accel_chip_info {
 154        u8 chip_id;
 155        const struct iio_chan_spec *channels;
 156        int num_channels;
 157        const struct bmc150_scale_info scale_table[4];
 158};
 159
 160struct bmc150_accel_interrupt {
 161        const struct bmc150_accel_interrupt_info *info;
 162        atomic_t users;
 163};
 164
 165struct bmc150_accel_trigger {
 166        struct bmc150_accel_data *data;
 167        struct iio_trigger *indio_trig;
 168        int (*setup)(struct bmc150_accel_trigger *t, bool state);
 169        int intr;
 170        bool enabled;
 171};
 172
 173enum bmc150_accel_interrupt_id {
 174        BMC150_ACCEL_INT_DATA_READY,
 175        BMC150_ACCEL_INT_ANY_MOTION,
 176        BMC150_ACCEL_INT_WATERMARK,
 177        BMC150_ACCEL_INTERRUPTS,
 178};
 179
 180enum bmc150_accel_trigger_id {
 181        BMC150_ACCEL_TRIGGER_DATA_READY,
 182        BMC150_ACCEL_TRIGGER_ANY_MOTION,
 183        BMC150_ACCEL_TRIGGERS,
 184};
 185
 186struct bmc150_accel_data {
 187        struct i2c_client *client;
 188        struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
 189        atomic_t active_intr;
 190        struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
 191        struct mutex mutex;
 192        u8 fifo_mode, watermark;
 193        s16 buffer[8];
 194        u8 bw_bits;
 195        u32 slope_dur;
 196        u32 slope_thres;
 197        u32 range;
 198        int ev_enable_state;
 199        int64_t timestamp, old_timestamp;
 200        const struct bmc150_accel_chip_info *chip_info;
 201};
 202
 203static const struct {
 204        int val;
 205        int val2;
 206        u8 bw_bits;
 207} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
 208                                     {31, 260000, 0x09},
 209                                     {62, 500000, 0x0A},
 210                                     {125, 0, 0x0B},
 211                                     {250, 0, 0x0C},
 212                                     {500, 0, 0x0D},
 213                                     {1000, 0, 0x0E},
 214                                     {2000, 0, 0x0F} };
 215
 216static const struct {
 217        int bw_bits;
 218        int msec;
 219} bmc150_accel_sample_upd_time[] = { {0x08, 64},
 220                                     {0x09, 32},
 221                                     {0x0A, 16},
 222                                     {0x0B, 8},
 223                                     {0x0C, 4},
 224                                     {0x0D, 2},
 225                                     {0x0E, 1},
 226                                     {0x0F, 1} };
 227
 228static const struct {
 229        int sleep_dur;
 230        u8 reg_value;
 231} bmc150_accel_sleep_value_table[] = { {0, 0},
 232                                       {500, BMC150_ACCEL_SLEEP_500_MICRO},
 233                                       {1000, BMC150_ACCEL_SLEEP_1_MS},
 234                                       {2000, BMC150_ACCEL_SLEEP_2_MS},
 235                                       {4000, BMC150_ACCEL_SLEEP_4_MS},
 236                                       {6000, BMC150_ACCEL_SLEEP_6_MS},
 237                                       {10000, BMC150_ACCEL_SLEEP_10_MS},
 238                                       {25000, BMC150_ACCEL_SLEEP_25_MS},
 239                                       {50000, BMC150_ACCEL_SLEEP_50_MS},
 240                                       {100000, BMC150_ACCEL_SLEEP_100_MS},
 241                                       {500000, BMC150_ACCEL_SLEEP_500_MS},
 242                                       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
 243
 244
 245static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
 246                                 enum bmc150_power_modes mode,
 247                                 int dur_us)
 248{
 249        int i;
 250        int ret;
 251        u8 lpw_bits;
 252        int dur_val = -1;
 253
 254        if (dur_us > 0) {
 255                for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
 256                                                                         ++i) {
 257                        if (bmc150_accel_sleep_value_table[i].sleep_dur ==
 258                                                                        dur_us)
 259                                dur_val =
 260                                bmc150_accel_sleep_value_table[i].reg_value;
 261                }
 262        } else
 263                dur_val = 0;
 264
 265        if (dur_val < 0)
 266                return -EINVAL;
 267
 268        lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
 269        lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
 270
 271        dev_dbg(&data->client->dev, "Set Mode bits %x\n", lpw_bits);
 272
 273        ret = i2c_smbus_write_byte_data(data->client,
 274                                        BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
 275        if (ret < 0) {
 276                dev_err(&data->client->dev, "Error writing reg_pmu_lpw\n");
 277                return ret;
 278        }
 279
 280        return 0;
 281}
 282
 283static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
 284                               int val2)
 285{
 286        int i;
 287        int ret;
 288
 289        for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
 290                if (bmc150_accel_samp_freq_table[i].val == val &&
 291                                bmc150_accel_samp_freq_table[i].val2 == val2) {
 292                        ret = i2c_smbus_write_byte_data(
 293                                data->client,
 294                                BMC150_ACCEL_REG_PMU_BW,
 295                                bmc150_accel_samp_freq_table[i].bw_bits);
 296                        if (ret < 0)
 297                                return ret;
 298
 299                        data->bw_bits =
 300                                bmc150_accel_samp_freq_table[i].bw_bits;
 301                        return 0;
 302                }
 303        }
 304
 305        return -EINVAL;
 306}
 307
 308static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
 309{
 310        int ret, val;
 311
 312        ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_6,
 313                                        data->slope_thres);
 314        if (ret < 0) {
 315                dev_err(&data->client->dev, "Error writing reg_int_6\n");
 316                return ret;
 317        }
 318
 319        ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_INT_5);
 320        if (ret < 0) {
 321                dev_err(&data->client->dev, "Error reading reg_int_5\n");
 322                return ret;
 323        }
 324
 325        val = (ret & ~BMC150_ACCEL_SLOPE_DUR_MASK) | data->slope_dur;
 326        ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_5,
 327                                        val);
 328        if (ret < 0) {
 329                dev_err(&data->client->dev, "Error write reg_int_5\n");
 330                return ret;
 331        }
 332
 333        dev_dbg(&data->client->dev, "%s: %x %x\n", __func__, data->slope_thres,
 334                data->slope_dur);
 335
 336        return ret;
 337}
 338
 339static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
 340                                         bool state)
 341{
 342        if (state)
 343                return bmc150_accel_update_slope(t->data);
 344
 345        return 0;
 346}
 347
 348static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
 349{
 350        int ret;
 351
 352        ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_CHIP_ID);
 353        if (ret < 0) {
 354                dev_err(&data->client->dev,
 355                        "Error: Reading chip id\n");
 356                return ret;
 357        }
 358
 359        dev_dbg(&data->client->dev, "Chip Id %x\n", ret);
 360        if (ret != data->chip_info->chip_id) {
 361                dev_err(&data->client->dev, "Invalid chip %x\n", ret);
 362                return -ENODEV;
 363        }
 364
 365        ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
 366        if (ret < 0)
 367                return ret;
 368
 369        /* Set Bandwidth */
 370        ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
 371        if (ret < 0)
 372                return ret;
 373
 374        /* Set Default Range */
 375        ret = i2c_smbus_write_byte_data(data->client,
 376                                        BMC150_ACCEL_REG_PMU_RANGE,
 377                                        BMC150_ACCEL_DEF_RANGE_4G);
 378        if (ret < 0) {
 379                dev_err(&data->client->dev,
 380                                        "Error writing reg_pmu_range\n");
 381                return ret;
 382        }
 383
 384        data->range = BMC150_ACCEL_DEF_RANGE_4G;
 385
 386        /* Set default slope duration and thresholds */
 387        data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
 388        data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
 389        ret = bmc150_accel_update_slope(data);
 390        if (ret < 0)
 391                return ret;
 392
 393        /* Set default as latched interrupts */
 394        ret = i2c_smbus_write_byte_data(data->client,
 395                                        BMC150_ACCEL_REG_INT_RST_LATCH,
 396                                        BMC150_ACCEL_INT_MODE_LATCH_INT |
 397                                        BMC150_ACCEL_INT_MODE_LATCH_RESET);
 398        if (ret < 0) {
 399                dev_err(&data->client->dev,
 400                        "Error writing reg_int_rst_latch\n");
 401                return ret;
 402        }
 403
 404        return 0;
 405}
 406
 407static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
 408                               int *val2)
 409{
 410        int i;
 411
 412        for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
 413                if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
 414                        *val = bmc150_accel_samp_freq_table[i].val;
 415                        *val2 = bmc150_accel_samp_freq_table[i].val2;
 416                        return IIO_VAL_INT_PLUS_MICRO;
 417                }
 418        }
 419
 420        return -EINVAL;
 421}
 422
 423#ifdef CONFIG_PM
 424static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
 425{
 426        int i;
 427
 428        for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
 429                if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
 430                        return bmc150_accel_sample_upd_time[i].msec;
 431        }
 432
 433        return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
 434}
 435
 436static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
 437{
 438        int ret;
 439
 440        if (on)
 441                ret = pm_runtime_get_sync(&data->client->dev);
 442        else {
 443                pm_runtime_mark_last_busy(&data->client->dev);
 444                ret = pm_runtime_put_autosuspend(&data->client->dev);
 445        }
 446        if (ret < 0) {
 447                dev_err(&data->client->dev,
 448                        "Failed: bmc150_accel_set_power_state for %d\n", on);
 449                if (on)
 450                        pm_runtime_put_noidle(&data->client->dev);
 451
 452                return ret;
 453        }
 454
 455        return 0;
 456}
 457#else
 458static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
 459{
 460        return 0;
 461}
 462#endif
 463
 464static const struct bmc150_accel_interrupt_info {
 465        u8 map_reg;
 466        u8 map_bitmask;
 467        u8 en_reg;
 468        u8 en_bitmask;
 469} bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
 470        { /* data ready interrupt */
 471                .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
 472                .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
 473                .en_reg = BMC150_ACCEL_REG_INT_EN_1,
 474                .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
 475        },
 476        {  /* motion interrupt */
 477                .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
 478                .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
 479                .en_reg = BMC150_ACCEL_REG_INT_EN_0,
 480                .en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
 481                        BMC150_ACCEL_INT_EN_BIT_SLP_Y |
 482                        BMC150_ACCEL_INT_EN_BIT_SLP_Z
 483        },
 484        { /* fifo watermark interrupt */
 485                .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
 486                .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
 487                .en_reg = BMC150_ACCEL_REG_INT_EN_1,
 488                .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
 489        },
 490};
 491
 492static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
 493                                          struct bmc150_accel_data *data)
 494{
 495        int i;
 496
 497        for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
 498                data->interrupts[i].info = &bmc150_accel_interrupts[i];
 499}
 500
 501static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
 502                                      bool state)
 503{
 504        struct bmc150_accel_interrupt *intr = &data->interrupts[i];
 505        const struct bmc150_accel_interrupt_info *info = intr->info;
 506        int ret;
 507
 508        if (state) {
 509                if (atomic_inc_return(&intr->users) > 1)
 510                        return 0;
 511        } else {
 512                if (atomic_dec_return(&intr->users) > 0)
 513                        return 0;
 514        }
 515
 516        /*
 517         * We will expect the enable and disable to do operation in
 518         * in reverse order. This will happen here anyway as our
 519         * resume operation uses sync mode runtime pm calls, the
 520         * suspend operation will be delayed by autosuspend delay
 521         * So the disable operation will still happen in reverse of
 522         * enable operation. When runtime pm is disabled the mode
 523         * is always on so sequence doesn't matter
 524         */
 525        ret = bmc150_accel_set_power_state(data, state);
 526        if (ret < 0)
 527                return ret;
 528
 529        /* map the interrupt to the appropriate pins */
 530        ret = i2c_smbus_read_byte_data(data->client, info->map_reg);
 531        if (ret < 0) {
 532                dev_err(&data->client->dev, "Error reading reg_int_map\n");
 533                goto out_fix_power_state;
 534        }
 535        if (state)
 536                ret |= info->map_bitmask;
 537        else
 538                ret &= ~info->map_bitmask;
 539
 540        ret = i2c_smbus_write_byte_data(data->client, info->map_reg,
 541                                        ret);
 542        if (ret < 0) {
 543                dev_err(&data->client->dev, "Error writing reg_int_map\n");
 544                goto out_fix_power_state;
 545        }
 546
 547        /* enable/disable the interrupt */
 548        ret = i2c_smbus_read_byte_data(data->client, info->en_reg);
 549        if (ret < 0) {
 550                dev_err(&data->client->dev, "Error reading reg_int_en\n");
 551                goto out_fix_power_state;
 552        }
 553
 554        if (state)
 555                ret |= info->en_bitmask;
 556        else
 557                ret &= ~info->en_bitmask;
 558
 559        ret = i2c_smbus_write_byte_data(data->client, info->en_reg, ret);
 560        if (ret < 0) {
 561                dev_err(&data->client->dev, "Error writing reg_int_en\n");
 562                goto out_fix_power_state;
 563        }
 564
 565        if (state)
 566                atomic_inc(&data->active_intr);
 567        else
 568                atomic_dec(&data->active_intr);
 569
 570        return 0;
 571
 572out_fix_power_state:
 573        bmc150_accel_set_power_state(data, false);
 574        return ret;
 575}
 576
 577
 578static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
 579{
 580        int ret, i;
 581
 582        for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
 583                if (data->chip_info->scale_table[i].scale == val) {
 584                        ret = i2c_smbus_write_byte_data(
 585                                     data->client,
 586                                     BMC150_ACCEL_REG_PMU_RANGE,
 587                                     data->chip_info->scale_table[i].reg_range);
 588                        if (ret < 0) {
 589                                dev_err(&data->client->dev,
 590                                        "Error writing pmu_range\n");
 591                                return ret;
 592                        }
 593
 594                        data->range = data->chip_info->scale_table[i].reg_range;
 595                        return 0;
 596                }
 597        }
 598
 599        return -EINVAL;
 600}
 601
 602static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
 603{
 604        int ret;
 605
 606        mutex_lock(&data->mutex);
 607
 608        ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_TEMP);
 609        if (ret < 0) {
 610                dev_err(&data->client->dev, "Error reading reg_temp\n");
 611                mutex_unlock(&data->mutex);
 612                return ret;
 613        }
 614        *val = sign_extend32(ret, 7);
 615
 616        mutex_unlock(&data->mutex);
 617
 618        return IIO_VAL_INT;
 619}
 620
 621static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
 622                                 struct iio_chan_spec const *chan,
 623                                 int *val)
 624{
 625        int ret;
 626        int axis = chan->scan_index;
 627
 628        mutex_lock(&data->mutex);
 629        ret = bmc150_accel_set_power_state(data, true);
 630        if (ret < 0) {
 631                mutex_unlock(&data->mutex);
 632                return ret;
 633        }
 634
 635        ret = i2c_smbus_read_word_data(data->client,
 636                                       BMC150_ACCEL_AXIS_TO_REG(axis));
 637        if (ret < 0) {
 638                dev_err(&data->client->dev, "Error reading axis %d\n", axis);
 639                bmc150_accel_set_power_state(data, false);
 640                mutex_unlock(&data->mutex);
 641                return ret;
 642        }
 643        *val = sign_extend32(ret >> chan->scan_type.shift,
 644                             chan->scan_type.realbits - 1);
 645        ret = bmc150_accel_set_power_state(data, false);
 646        mutex_unlock(&data->mutex);
 647        if (ret < 0)
 648                return ret;
 649
 650        return IIO_VAL_INT;
 651}
 652
 653static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
 654                                 struct iio_chan_spec const *chan,
 655                                 int *val, int *val2, long mask)
 656{
 657        struct bmc150_accel_data *data = iio_priv(indio_dev);
 658        int ret;
 659
 660        switch (mask) {
 661        case IIO_CHAN_INFO_RAW:
 662                switch (chan->type) {
 663                case IIO_TEMP:
 664                        return bmc150_accel_get_temp(data, val);
 665                case IIO_ACCEL:
 666                        if (iio_buffer_enabled(indio_dev))
 667                                return -EBUSY;
 668                        else
 669                                return bmc150_accel_get_axis(data, chan, val);
 670                default:
 671                        return -EINVAL;
 672                }
 673        case IIO_CHAN_INFO_OFFSET:
 674                if (chan->type == IIO_TEMP) {
 675                        *val = BMC150_ACCEL_TEMP_CENTER_VAL;
 676                        return IIO_VAL_INT;
 677                } else
 678                        return -EINVAL;
 679        case IIO_CHAN_INFO_SCALE:
 680                *val = 0;
 681                switch (chan->type) {
 682                case IIO_TEMP:
 683                        *val2 = 500000;
 684                        return IIO_VAL_INT_PLUS_MICRO;
 685                case IIO_ACCEL:
 686                {
 687                        int i;
 688                        const struct bmc150_scale_info *si;
 689                        int st_size = ARRAY_SIZE(data->chip_info->scale_table);
 690
 691                        for (i = 0; i < st_size; ++i) {
 692                                si = &data->chip_info->scale_table[i];
 693                                if (si->reg_range == data->range) {
 694                                        *val2 = si->scale;
 695                                        return IIO_VAL_INT_PLUS_MICRO;
 696                                }
 697                        }
 698                        return -EINVAL;
 699                }
 700                default:
 701                        return -EINVAL;
 702                }
 703        case IIO_CHAN_INFO_SAMP_FREQ:
 704                mutex_lock(&data->mutex);
 705                ret = bmc150_accel_get_bw(data, val, val2);
 706                mutex_unlock(&data->mutex);
 707                return ret;
 708        default:
 709                return -EINVAL;
 710        }
 711}
 712
 713static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
 714                                  struct iio_chan_spec const *chan,
 715                                  int val, int val2, long mask)
 716{
 717        struct bmc150_accel_data *data = iio_priv(indio_dev);
 718        int ret;
 719
 720        switch (mask) {
 721        case IIO_CHAN_INFO_SAMP_FREQ:
 722                mutex_lock(&data->mutex);
 723                ret = bmc150_accel_set_bw(data, val, val2);
 724                mutex_unlock(&data->mutex);
 725                break;
 726        case IIO_CHAN_INFO_SCALE:
 727                if (val)
 728                        return -EINVAL;
 729
 730                mutex_lock(&data->mutex);
 731                ret = bmc150_accel_set_scale(data, val2);
 732                mutex_unlock(&data->mutex);
 733                return ret;
 734        default:
 735                ret = -EINVAL;
 736        }
 737
 738        return ret;
 739}
 740
 741static int bmc150_accel_read_event(struct iio_dev *indio_dev,
 742                                   const struct iio_chan_spec *chan,
 743                                   enum iio_event_type type,
 744                                   enum iio_event_direction dir,
 745                                   enum iio_event_info info,
 746                                   int *val, int *val2)
 747{
 748        struct bmc150_accel_data *data = iio_priv(indio_dev);
 749
 750        *val2 = 0;
 751        switch (info) {
 752        case IIO_EV_INFO_VALUE:
 753                *val = data->slope_thres;
 754                break;
 755        case IIO_EV_INFO_PERIOD:
 756                *val = data->slope_dur;
 757                break;
 758        default:
 759                return -EINVAL;
 760        }
 761
 762        return IIO_VAL_INT;
 763}
 764
 765static int bmc150_accel_write_event(struct iio_dev *indio_dev,
 766                                    const struct iio_chan_spec *chan,
 767                                    enum iio_event_type type,
 768                                    enum iio_event_direction dir,
 769                                    enum iio_event_info info,
 770                                    int val, int val2)
 771{
 772        struct bmc150_accel_data *data = iio_priv(indio_dev);
 773
 774        if (data->ev_enable_state)
 775                return -EBUSY;
 776
 777        switch (info) {
 778        case IIO_EV_INFO_VALUE:
 779                data->slope_thres = val & 0xFF;
 780                break;
 781        case IIO_EV_INFO_PERIOD:
 782                data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
 783                break;
 784        default:
 785                return -EINVAL;
 786        }
 787
 788        return 0;
 789}
 790
 791static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
 792                                          const struct iio_chan_spec *chan,
 793                                          enum iio_event_type type,
 794                                          enum iio_event_direction dir)
 795{
 796
 797        struct bmc150_accel_data *data = iio_priv(indio_dev);
 798
 799        return data->ev_enable_state;
 800}
 801
 802static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
 803                                           const struct iio_chan_spec *chan,
 804                                           enum iio_event_type type,
 805                                           enum iio_event_direction dir,
 806                                           int state)
 807{
 808        struct bmc150_accel_data *data = iio_priv(indio_dev);
 809        int ret;
 810
 811        if (state == data->ev_enable_state)
 812                return 0;
 813
 814        mutex_lock(&data->mutex);
 815
 816        ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
 817                                         state);
 818        if (ret < 0) {
 819                mutex_unlock(&data->mutex);
 820                return ret;
 821        }
 822
 823        data->ev_enable_state = state;
 824        mutex_unlock(&data->mutex);
 825
 826        return 0;
 827}
 828
 829static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
 830                                   struct iio_trigger *trig)
 831{
 832        struct bmc150_accel_data *data = iio_priv(indio_dev);
 833        int i;
 834
 835        for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
 836                if (data->triggers[i].indio_trig == trig)
 837                        return 0;
 838        }
 839
 840        return -EINVAL;
 841}
 842
 843static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
 844                                               struct device_attribute *attr,
 845                                               char *buf)
 846{
 847        struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 848        struct bmc150_accel_data *data = iio_priv(indio_dev);
 849        int wm;
 850
 851        mutex_lock(&data->mutex);
 852        wm = data->watermark;
 853        mutex_unlock(&data->mutex);
 854
 855        return sprintf(buf, "%d\n", wm);
 856}
 857
 858static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
 859                                           struct device_attribute *attr,
 860                                           char *buf)
 861{
 862        struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 863        struct bmc150_accel_data *data = iio_priv(indio_dev);
 864        bool state;
 865
 866        mutex_lock(&data->mutex);
 867        state = data->fifo_mode;
 868        mutex_unlock(&data->mutex);
 869
 870        return sprintf(buf, "%d\n", state);
 871}
 872
 873static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
 874static IIO_CONST_ATTR(hwfifo_watermark_max,
 875                      __stringify(BMC150_ACCEL_FIFO_LENGTH));
 876static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
 877                       bmc150_accel_get_fifo_state, NULL, 0);
 878static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
 879                       bmc150_accel_get_fifo_watermark, NULL, 0);
 880
 881static const struct attribute *bmc150_accel_fifo_attributes[] = {
 882        &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
 883        &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
 884        &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
 885        &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
 886        NULL,
 887};
 888
 889static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
 890{
 891        struct bmc150_accel_data *data = iio_priv(indio_dev);
 892
 893        if (val > BMC150_ACCEL_FIFO_LENGTH)
 894                val = BMC150_ACCEL_FIFO_LENGTH;
 895
 896        mutex_lock(&data->mutex);
 897        data->watermark = val;
 898        mutex_unlock(&data->mutex);
 899
 900        return 0;
 901}
 902
 903/*
 904 * We must read at least one full frame in one burst, otherwise the rest of the
 905 * frame data is discarded.
 906 */
 907static int bmc150_accel_fifo_transfer(const struct i2c_client *client,
 908                                      char *buffer, int samples)
 909{
 910        int sample_length = 3 * 2;
 911        u8 reg_fifo_data = BMC150_ACCEL_REG_FIFO_DATA;
 912        int ret = -EIO;
 913
 914        if (i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
 915                struct i2c_msg msg[2] = {
 916                        {
 917                                .addr = client->addr,
 918                                .flags = 0,
 919                                .buf = &reg_fifo_data,
 920                                .len = sizeof(reg_fifo_data),
 921                        },
 922                        {
 923                                .addr = client->addr,
 924                                .flags = I2C_M_RD,
 925                                .buf = (u8 *)buffer,
 926                                .len = samples * sample_length,
 927                        }
 928                };
 929
 930                ret = i2c_transfer(client->adapter, msg, 2);
 931                if (ret != 2)
 932                        ret = -EIO;
 933                else
 934                        ret = 0;
 935        } else {
 936                int i, step = I2C_SMBUS_BLOCK_MAX / sample_length;
 937
 938                for (i = 0; i < samples * sample_length; i += step) {
 939                        ret = i2c_smbus_read_i2c_block_data(client,
 940                                                            reg_fifo_data, step,
 941                                                            &buffer[i]);
 942                        if (ret != step) {
 943                                ret = -EIO;
 944                                break;
 945                        }
 946
 947                        ret = 0;
 948                }
 949        }
 950
 951        if (ret)
 952                dev_err(&client->dev, "Error transferring data from fifo\n");
 953
 954        return ret;
 955}
 956
 957static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
 958                                     unsigned samples, bool irq)
 959{
 960        struct bmc150_accel_data *data = iio_priv(indio_dev);
 961        int ret, i;
 962        u8 count;
 963        u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
 964        int64_t tstamp;
 965        uint64_t sample_period;
 966        ret = i2c_smbus_read_byte_data(data->client,
 967                                       BMC150_ACCEL_REG_FIFO_STATUS);
 968        if (ret < 0) {
 969                dev_err(&data->client->dev, "Error reading reg_fifo_status\n");
 970                return ret;
 971        }
 972
 973        count = ret & 0x7F;
 974
 975        if (!count)
 976                return 0;
 977
 978        /*
 979         * If we getting called from IRQ handler we know the stored timestamp is
 980         * fairly accurate for the last stored sample. Otherwise, if we are
 981         * called as a result of a read operation from userspace and hence
 982         * before the watermark interrupt was triggered, take a timestamp
 983         * now. We can fall anywhere in between two samples so the error in this
 984         * case is at most one sample period.
 985         */
 986        if (!irq) {
 987                data->old_timestamp = data->timestamp;
 988                data->timestamp = iio_get_time_ns();
 989        }
 990
 991        /*
 992         * Approximate timestamps for each of the sample based on the sampling
 993         * frequency, timestamp for last sample and number of samples.
 994         *
 995         * Note that we can't use the current bandwidth settings to compute the
 996         * sample period because the sample rate varies with the device
 997         * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
 998         * small variation adds when we store a large number of samples and
 999         * creates significant jitter between the last and first samples in
1000         * different batches (e.g. 32ms vs 21ms).
1001         *
1002         * To avoid this issue we compute the actual sample period ourselves
1003         * based on the timestamp delta between the last two flush operations.
1004         */
1005        sample_period = (data->timestamp - data->old_timestamp);
1006        do_div(sample_period, count);
1007        tstamp = data->timestamp - (count - 1) * sample_period;
1008
1009        if (samples && count > samples)
1010                count = samples;
1011
1012        ret = bmc150_accel_fifo_transfer(data->client, (u8 *)buffer, count);
1013        if (ret)
1014                return ret;
1015
1016        /*
1017         * Ideally we want the IIO core to handle the demux when running in fifo
1018         * mode but not when running in triggered buffer mode. Unfortunately
1019         * this does not seem to be possible, so stick with driver demux for
1020         * now.
1021         */
1022        for (i = 0; i < count; i++) {
1023                u16 sample[8];
1024                int j, bit;
1025
1026                j = 0;
1027                for_each_set_bit(bit, indio_dev->active_scan_mask,
1028                                 indio_dev->masklength)
1029                        memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
1030
1031                iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
1032
1033                tstamp += sample_period;
1034        }
1035
1036        return count;
1037}
1038
1039static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
1040{
1041        struct bmc150_accel_data *data = iio_priv(indio_dev);
1042        int ret;
1043
1044        mutex_lock(&data->mutex);
1045        ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
1046        mutex_unlock(&data->mutex);
1047
1048        return ret;
1049}
1050
1051static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
1052                "15.620000 31.260000 62.50000 125 250 500 1000 2000");
1053
1054static struct attribute *bmc150_accel_attributes[] = {
1055        &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1056        NULL,
1057};
1058
1059static const struct attribute_group bmc150_accel_attrs_group = {
1060        .attrs = bmc150_accel_attributes,
1061};
1062
1063static const struct iio_event_spec bmc150_accel_event = {
1064                .type = IIO_EV_TYPE_ROC,
1065                .dir = IIO_EV_DIR_EITHER,
1066                .mask_separate = BIT(IIO_EV_INFO_VALUE) |
1067                                 BIT(IIO_EV_INFO_ENABLE) |
1068                                 BIT(IIO_EV_INFO_PERIOD)
1069};
1070
1071#define BMC150_ACCEL_CHANNEL(_axis, bits) {                             \
1072        .type = IIO_ACCEL,                                              \
1073        .modified = 1,                                                  \
1074        .channel2 = IIO_MOD_##_axis,                                    \
1075        .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),                   \
1076        .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |          \
1077                                BIT(IIO_CHAN_INFO_SAMP_FREQ),           \
1078        .scan_index = AXIS_##_axis,                                     \
1079        .scan_type = {                                                  \
1080                .sign = 's',                                            \
1081                .realbits = (bits),                                     \
1082                .storagebits = 16,                                      \
1083                .shift = 16 - (bits),                                   \
1084        },                                                              \
1085        .event_spec = &bmc150_accel_event,                              \
1086        .num_event_specs = 1                                            \
1087}
1088
1089#define BMC150_ACCEL_CHANNELS(bits) {                                   \
1090        {                                                               \
1091                .type = IIO_TEMP,                                       \
1092                .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |          \
1093                                      BIT(IIO_CHAN_INFO_SCALE) |        \
1094                                      BIT(IIO_CHAN_INFO_OFFSET),        \
1095                .scan_index = -1,                                       \
1096        },                                                              \
1097        BMC150_ACCEL_CHANNEL(X, bits),                                  \
1098        BMC150_ACCEL_CHANNEL(Y, bits),                                  \
1099        BMC150_ACCEL_CHANNEL(Z, bits),                                  \
1100        IIO_CHAN_SOFT_TIMESTAMP(3),                                     \
1101}
1102
1103static const struct iio_chan_spec bma222e_accel_channels[] =
1104        BMC150_ACCEL_CHANNELS(8);
1105static const struct iio_chan_spec bma250e_accel_channels[] =
1106        BMC150_ACCEL_CHANNELS(10);
1107static const struct iio_chan_spec bmc150_accel_channels[] =
1108        BMC150_ACCEL_CHANNELS(12);
1109static const struct iio_chan_spec bma280_accel_channels[] =
1110        BMC150_ACCEL_CHANNELS(14);
1111
1112enum {
1113        bmc150,
1114        bmi055,
1115        bma255,
1116        bma250e,
1117        bma222e,
1118        bma280,
1119};
1120
1121static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1122        [bmc150] = {
1123                .chip_id = 0xFA,
1124                .channels = bmc150_accel_channels,
1125                .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1126                .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1127                                 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1128                                 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1129                                 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1130        },
1131        [bmi055] = {
1132                .chip_id = 0xFA,
1133                .channels = bmc150_accel_channels,
1134                .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1135                .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1136                                 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1137                                 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1138                                 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1139        },
1140        [bma255] = {
1141                .chip_id = 0xFA,
1142                .channels = bmc150_accel_channels,
1143                .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1144                .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1145                                 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1146                                 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1147                                 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1148        },
1149        [bma250e] = {
1150                .chip_id = 0xF9,
1151                .channels = bma250e_accel_channels,
1152                .num_channels = ARRAY_SIZE(bma250e_accel_channels),
1153                .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1154                                 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1155                                 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1156                                 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1157        },
1158        [bma222e] = {
1159                .chip_id = 0xF8,
1160                .channels = bma222e_accel_channels,
1161                .num_channels = ARRAY_SIZE(bma222e_accel_channels),
1162                .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1163                                 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1164                                 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1165                                 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1166        },
1167        [bma280] = {
1168                .chip_id = 0xFB,
1169                .channels = bma280_accel_channels,
1170                .num_channels = ARRAY_SIZE(bma280_accel_channels),
1171                .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1172                                 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1173                                 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1174                                 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1175        },
1176};
1177
1178static const struct iio_info bmc150_accel_info = {
1179        .attrs                  = &bmc150_accel_attrs_group,
1180        .read_raw               = bmc150_accel_read_raw,
1181        .write_raw              = bmc150_accel_write_raw,
1182        .read_event_value       = bmc150_accel_read_event,
1183        .write_event_value      = bmc150_accel_write_event,
1184        .write_event_config     = bmc150_accel_write_event_config,
1185        .read_event_config      = bmc150_accel_read_event_config,
1186        .validate_trigger       = bmc150_accel_validate_trigger,
1187        .driver_module          = THIS_MODULE,
1188};
1189
1190static const struct iio_info bmc150_accel_info_fifo = {
1191        .attrs                  = &bmc150_accel_attrs_group,
1192        .read_raw               = bmc150_accel_read_raw,
1193        .write_raw              = bmc150_accel_write_raw,
1194        .read_event_value       = bmc150_accel_read_event,
1195        .write_event_value      = bmc150_accel_write_event,
1196        .write_event_config     = bmc150_accel_write_event_config,
1197        .read_event_config      = bmc150_accel_read_event_config,
1198        .validate_trigger       = bmc150_accel_validate_trigger,
1199        .hwfifo_set_watermark   = bmc150_accel_set_watermark,
1200        .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
1201        .driver_module          = THIS_MODULE,
1202};
1203
1204static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1205{
1206        struct iio_poll_func *pf = p;
1207        struct iio_dev *indio_dev = pf->indio_dev;
1208        struct bmc150_accel_data *data = iio_priv(indio_dev);
1209        int bit, ret, i = 0;
1210
1211        mutex_lock(&data->mutex);
1212        for_each_set_bit(bit, indio_dev->active_scan_mask,
1213                         indio_dev->masklength) {
1214                ret = i2c_smbus_read_word_data(data->client,
1215                                               BMC150_ACCEL_AXIS_TO_REG(bit));
1216                if (ret < 0) {
1217                        mutex_unlock(&data->mutex);
1218                        goto err_read;
1219                }
1220                data->buffer[i++] = ret;
1221        }
1222        mutex_unlock(&data->mutex);
1223
1224        iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1225                                           data->timestamp);
1226err_read:
1227        iio_trigger_notify_done(indio_dev->trig);
1228
1229        return IRQ_HANDLED;
1230}
1231
1232static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1233{
1234        struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1235        struct bmc150_accel_data *data = t->data;
1236        int ret;
1237
1238        /* new data interrupts don't need ack */
1239        if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1240                return 0;
1241
1242        mutex_lock(&data->mutex);
1243        /* clear any latched interrupt */
1244        ret = i2c_smbus_write_byte_data(data->client,
1245                                        BMC150_ACCEL_REG_INT_RST_LATCH,
1246                                        BMC150_ACCEL_INT_MODE_LATCH_INT |
1247                                        BMC150_ACCEL_INT_MODE_LATCH_RESET);
1248        mutex_unlock(&data->mutex);
1249        if (ret < 0) {
1250                dev_err(&data->client->dev,
1251                        "Error writing reg_int_rst_latch\n");
1252                return ret;
1253        }
1254
1255        return 0;
1256}
1257
1258static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1259                                                   bool state)
1260{
1261        struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1262        struct bmc150_accel_data *data = t->data;
1263        int ret;
1264
1265        mutex_lock(&data->mutex);
1266
1267        if (t->enabled == state) {
1268                mutex_unlock(&data->mutex);
1269                return 0;
1270        }
1271
1272        if (t->setup) {
1273                ret = t->setup(t, state);
1274                if (ret < 0) {
1275                        mutex_unlock(&data->mutex);
1276                        return ret;
1277                }
1278        }
1279
1280        ret = bmc150_accel_set_interrupt(data, t->intr, state);
1281        if (ret < 0) {
1282                mutex_unlock(&data->mutex);
1283                return ret;
1284        }
1285
1286        t->enabled = state;
1287
1288        mutex_unlock(&data->mutex);
1289
1290        return ret;
1291}
1292
1293static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1294        .set_trigger_state = bmc150_accel_trigger_set_state,
1295        .try_reenable = bmc150_accel_trig_try_reen,
1296        .owner = THIS_MODULE,
1297};
1298
1299static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1300{
1301        struct bmc150_accel_data *data = iio_priv(indio_dev);
1302        int dir;
1303        int ret;
1304
1305        ret = i2c_smbus_read_byte_data(data->client,
1306                                       BMC150_ACCEL_REG_INT_STATUS_2);
1307        if (ret < 0) {
1308                dev_err(&data->client->dev, "Error reading reg_int_status_2\n");
1309                return ret;
1310        }
1311
1312        if (ret & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1313                dir = IIO_EV_DIR_FALLING;
1314        else
1315                dir = IIO_EV_DIR_RISING;
1316
1317        if (ret & BMC150_ACCEL_ANY_MOTION_BIT_X)
1318                iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL,
1319                                                        0,
1320                                                        IIO_MOD_X,
1321                                                        IIO_EV_TYPE_ROC,
1322                                                        dir),
1323                                                        data->timestamp);
1324        if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1325                iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL,
1326                                                        0,
1327                                                        IIO_MOD_Y,
1328                                                        IIO_EV_TYPE_ROC,
1329                                                        dir),
1330                                                        data->timestamp);
1331        if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1332                iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL,
1333                                                        0,
1334                                                        IIO_MOD_Z,
1335                                                        IIO_EV_TYPE_ROC,
1336                                                        dir),
1337                                                        data->timestamp);
1338        return ret;
1339}
1340
1341static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1342{
1343        struct iio_dev *indio_dev = private;
1344        struct bmc150_accel_data *data = iio_priv(indio_dev);
1345        bool ack = false;
1346        int ret;
1347
1348        mutex_lock(&data->mutex);
1349
1350        if (data->fifo_mode) {
1351                ret = __bmc150_accel_fifo_flush(indio_dev,
1352                                                BMC150_ACCEL_FIFO_LENGTH, true);
1353                if (ret > 0)
1354                        ack = true;
1355        }
1356
1357        if (data->ev_enable_state) {
1358                ret = bmc150_accel_handle_roc_event(indio_dev);
1359                if (ret > 0)
1360                        ack = true;
1361        }
1362
1363        if (ack) {
1364                ret = i2c_smbus_write_byte_data(data->client,
1365                                        BMC150_ACCEL_REG_INT_RST_LATCH,
1366                                        BMC150_ACCEL_INT_MODE_LATCH_INT |
1367                                        BMC150_ACCEL_INT_MODE_LATCH_RESET);
1368                if (ret)
1369                        dev_err(&data->client->dev, "Error writing reg_int_rst_latch\n");
1370                ret = IRQ_HANDLED;
1371        } else {
1372                ret = IRQ_NONE;
1373        }
1374
1375        mutex_unlock(&data->mutex);
1376
1377        return ret;
1378}
1379
1380static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1381{
1382        struct iio_dev *indio_dev = private;
1383        struct bmc150_accel_data *data = iio_priv(indio_dev);
1384        bool ack = false;
1385        int i;
1386
1387        data->old_timestamp = data->timestamp;
1388        data->timestamp = iio_get_time_ns();
1389
1390        for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1391                if (data->triggers[i].enabled) {
1392                        iio_trigger_poll(data->triggers[i].indio_trig);
1393                        ack = true;
1394                        break;
1395                }
1396        }
1397
1398        if (data->ev_enable_state || data->fifo_mode)
1399                return IRQ_WAKE_THREAD;
1400
1401        if (ack)
1402                return IRQ_HANDLED;
1403
1404        return IRQ_NONE;
1405}
1406
1407static const char *bmc150_accel_match_acpi_device(struct device *dev, int *data)
1408{
1409        const struct acpi_device_id *id;
1410
1411        id = acpi_match_device(dev->driver->acpi_match_table, dev);
1412
1413        if (!id)
1414                return NULL;
1415
1416        *data = (int) id->driver_data;
1417
1418        return dev_name(dev);
1419}
1420
1421static int bmc150_accel_gpio_probe(struct i2c_client *client,
1422                                        struct bmc150_accel_data *data)
1423{
1424        struct device *dev;
1425        struct gpio_desc *gpio;
1426        int ret;
1427
1428        if (!client)
1429                return -EINVAL;
1430
1431        dev = &client->dev;
1432
1433        /* data ready gpio interrupt pin */
1434        gpio = devm_gpiod_get_index(dev, BMC150_ACCEL_GPIO_NAME, 0, GPIOD_IN);
1435        if (IS_ERR(gpio)) {
1436                dev_err(dev, "Failed: gpio get index\n");
1437                return PTR_ERR(gpio);
1438        }
1439
1440        ret = gpiod_to_irq(gpio);
1441
1442        dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret);
1443
1444        return ret;
1445}
1446
1447static const struct {
1448        int intr;
1449        const char *name;
1450        int (*setup)(struct bmc150_accel_trigger *t, bool state);
1451} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1452        {
1453                .intr = 0,
1454                .name = "%s-dev%d",
1455        },
1456        {
1457                .intr = 1,
1458                .name = "%s-any-motion-dev%d",
1459                .setup = bmc150_accel_any_motion_setup,
1460        },
1461};
1462
1463static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1464                                             int from)
1465{
1466        int i;
1467
1468        for (i = from; i >= 0; i++) {
1469                if (data->triggers[i].indio_trig) {
1470                        iio_trigger_unregister(data->triggers[i].indio_trig);
1471                        data->triggers[i].indio_trig = NULL;
1472                }
1473        }
1474}
1475
1476static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1477                                       struct bmc150_accel_data *data)
1478{
1479        int i, ret;
1480
1481        for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1482                struct bmc150_accel_trigger *t = &data->triggers[i];
1483
1484                t->indio_trig = devm_iio_trigger_alloc(&data->client->dev,
1485                                               bmc150_accel_triggers[i].name,
1486                                                       indio_dev->name,
1487                                                       indio_dev->id);
1488                if (!t->indio_trig) {
1489                        ret = -ENOMEM;
1490                        break;
1491                }
1492
1493                t->indio_trig->dev.parent = &data->client->dev;
1494                t->indio_trig->ops = &bmc150_accel_trigger_ops;
1495                t->intr = bmc150_accel_triggers[i].intr;
1496                t->data = data;
1497                t->setup = bmc150_accel_triggers[i].setup;
1498                iio_trigger_set_drvdata(t->indio_trig, t);
1499
1500                ret = iio_trigger_register(t->indio_trig);
1501                if (ret)
1502                        break;
1503        }
1504
1505        if (ret)
1506                bmc150_accel_unregister_triggers(data, i - 1);
1507
1508        return ret;
1509}
1510
1511#define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1512#define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1513#define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1514
1515static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1516{
1517        u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1518        int ret;
1519
1520        ret = i2c_smbus_write_byte_data(data->client, reg, data->fifo_mode);
1521        if (ret < 0) {
1522                dev_err(&data->client->dev, "Error writing reg_fifo_config1\n");
1523                return ret;
1524        }
1525
1526        if (!data->fifo_mode)
1527                return 0;
1528
1529        ret = i2c_smbus_write_byte_data(data->client,
1530                                        BMC150_ACCEL_REG_FIFO_CONFIG0,
1531                                        data->watermark);
1532        if (ret < 0)
1533                dev_err(&data->client->dev, "Error writing reg_fifo_config0\n");
1534
1535        return ret;
1536}
1537
1538static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1539{
1540        struct bmc150_accel_data *data = iio_priv(indio_dev);
1541        int ret = 0;
1542
1543        if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1544                return iio_triggered_buffer_postenable(indio_dev);
1545
1546        mutex_lock(&data->mutex);
1547
1548        if (!data->watermark)
1549                goto out;
1550
1551        ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1552                                         true);
1553        if (ret)
1554                goto out;
1555
1556        data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1557
1558        ret = bmc150_accel_fifo_set_mode(data);
1559        if (ret) {
1560                data->fifo_mode = 0;
1561                bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1562                                           false);
1563        }
1564
1565out:
1566        mutex_unlock(&data->mutex);
1567
1568        return ret;
1569}
1570
1571static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1572{
1573        struct bmc150_accel_data *data = iio_priv(indio_dev);
1574
1575        if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1576                return iio_triggered_buffer_predisable(indio_dev);
1577
1578        mutex_lock(&data->mutex);
1579
1580        if (!data->fifo_mode)
1581                goto out;
1582
1583        bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1584        __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1585        data->fifo_mode = 0;
1586        bmc150_accel_fifo_set_mode(data);
1587
1588out:
1589        mutex_unlock(&data->mutex);
1590
1591        return 0;
1592}
1593
1594static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1595        .postenable = bmc150_accel_buffer_postenable,
1596        .predisable = bmc150_accel_buffer_predisable,
1597};
1598
1599static int bmc150_accel_probe(struct i2c_client *client,
1600                              const struct i2c_device_id *id)
1601{
1602        struct bmc150_accel_data *data;
1603        struct iio_dev *indio_dev;
1604        int ret;
1605        const char *name = NULL;
1606        int chip_id = 0;
1607
1608        indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1609        if (!indio_dev)
1610                return -ENOMEM;
1611
1612        data = iio_priv(indio_dev);
1613        i2c_set_clientdata(client, indio_dev);
1614        data->client = client;
1615
1616        if (id) {
1617                name = id->name;
1618                chip_id = id->driver_data;
1619        }
1620
1621        if (ACPI_HANDLE(&client->dev))
1622                name = bmc150_accel_match_acpi_device(&client->dev, &chip_id);
1623
1624        data->chip_info = &bmc150_accel_chip_info_tbl[chip_id];
1625
1626        ret = bmc150_accel_chip_init(data);
1627        if (ret < 0)
1628                return ret;
1629
1630        mutex_init(&data->mutex);
1631
1632        indio_dev->dev.parent = &client->dev;
1633        indio_dev->channels = data->chip_info->channels;
1634        indio_dev->num_channels = data->chip_info->num_channels;
1635        indio_dev->name = name;
1636        indio_dev->modes = INDIO_DIRECT_MODE;
1637        indio_dev->info = &bmc150_accel_info;
1638
1639        if (client->irq < 0)
1640                client->irq = bmc150_accel_gpio_probe(client, data);
1641
1642        if (client->irq >= 0) {
1643                ret = devm_request_threaded_irq(
1644                                                &client->dev, client->irq,
1645                                                bmc150_accel_irq_handler,
1646                                                bmc150_accel_irq_thread_handler,
1647                                                IRQF_TRIGGER_RISING,
1648                                                BMC150_ACCEL_IRQ_NAME,
1649                                                indio_dev);
1650                if (ret)
1651                        return ret;
1652
1653                /*
1654                 * Set latched mode interrupt. While certain interrupts are
1655                 * non-latched regardless of this settings (e.g. new data) we
1656                 * want to use latch mode when we can to prevent interrupt
1657                 * flooding.
1658                 */
1659                ret = i2c_smbus_write_byte_data(data->client,
1660                                                BMC150_ACCEL_REG_INT_RST_LATCH,
1661                                             BMC150_ACCEL_INT_MODE_LATCH_RESET);
1662                if (ret < 0) {
1663                        dev_err(&data->client->dev, "Error writing reg_int_rst_latch\n");
1664                        return ret;
1665                }
1666
1667                bmc150_accel_interrupts_setup(indio_dev, data);
1668
1669                ret = bmc150_accel_triggers_setup(indio_dev, data);
1670                if (ret)
1671                        return ret;
1672
1673                ret = iio_triggered_buffer_setup(indio_dev,
1674                                                 &iio_pollfunc_store_time,
1675                                                 bmc150_accel_trigger_handler,
1676                                                 &bmc150_accel_buffer_ops);
1677                if (ret < 0) {
1678                        dev_err(&client->dev,
1679                                "Failed: iio triggered buffer setup\n");
1680                        goto err_trigger_unregister;
1681                }
1682
1683                if (i2c_check_functionality(client->adapter, I2C_FUNC_I2C) ||
1684                    i2c_check_functionality(client->adapter,
1685                                            I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
1686                        indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1687                        indio_dev->info = &bmc150_accel_info_fifo;
1688                        indio_dev->buffer->attrs = bmc150_accel_fifo_attributes;
1689                }
1690        }
1691
1692        ret = iio_device_register(indio_dev);
1693        if (ret < 0) {
1694                dev_err(&client->dev, "Unable to register iio device\n");
1695                goto err_buffer_cleanup;
1696        }
1697
1698        ret = pm_runtime_set_active(&client->dev);
1699        if (ret)
1700                goto err_iio_unregister;
1701
1702        pm_runtime_enable(&client->dev);
1703        pm_runtime_set_autosuspend_delay(&client->dev,
1704                                         BMC150_AUTO_SUSPEND_DELAY_MS);
1705        pm_runtime_use_autosuspend(&client->dev);
1706
1707        return 0;
1708
1709err_iio_unregister:
1710        iio_device_unregister(indio_dev);
1711err_buffer_cleanup:
1712        if (indio_dev->pollfunc)
1713                iio_triggered_buffer_cleanup(indio_dev);
1714err_trigger_unregister:
1715        bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1716
1717        return ret;
1718}
1719
1720static int bmc150_accel_remove(struct i2c_client *client)
1721{
1722        struct iio_dev *indio_dev = i2c_get_clientdata(client);
1723        struct bmc150_accel_data *data = iio_priv(indio_dev);
1724
1725        pm_runtime_disable(&client->dev);
1726        pm_runtime_set_suspended(&client->dev);
1727        pm_runtime_put_noidle(&client->dev);
1728
1729        iio_device_unregister(indio_dev);
1730
1731        bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1732
1733        mutex_lock(&data->mutex);
1734        bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1735        mutex_unlock(&data->mutex);
1736
1737        return 0;
1738}
1739
1740#ifdef CONFIG_PM_SLEEP
1741static int bmc150_accel_suspend(struct device *dev)
1742{
1743        struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1744        struct bmc150_accel_data *data = iio_priv(indio_dev);
1745
1746        mutex_lock(&data->mutex);
1747        bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1748        mutex_unlock(&data->mutex);
1749
1750        return 0;
1751}
1752
1753static int bmc150_accel_resume(struct device *dev)
1754{
1755        struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1756        struct bmc150_accel_data *data = iio_priv(indio_dev);
1757
1758        mutex_lock(&data->mutex);
1759        if (atomic_read(&data->active_intr))
1760                bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1761        bmc150_accel_fifo_set_mode(data);
1762        mutex_unlock(&data->mutex);
1763
1764        return 0;
1765}
1766#endif
1767
1768#ifdef CONFIG_PM
1769static int bmc150_accel_runtime_suspend(struct device *dev)
1770{
1771        struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1772        struct bmc150_accel_data *data = iio_priv(indio_dev);
1773        int ret;
1774
1775        dev_dbg(&data->client->dev,  __func__);
1776        ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1777        if (ret < 0)
1778                return -EAGAIN;
1779
1780        return 0;
1781}
1782
1783static int bmc150_accel_runtime_resume(struct device *dev)
1784{
1785        struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1786        struct bmc150_accel_data *data = iio_priv(indio_dev);
1787        int ret;
1788        int sleep_val;
1789
1790        dev_dbg(&data->client->dev,  __func__);
1791
1792        ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1793        if (ret < 0)
1794                return ret;
1795        ret = bmc150_accel_fifo_set_mode(data);
1796        if (ret < 0)
1797                return ret;
1798
1799        sleep_val = bmc150_accel_get_startup_times(data);
1800        if (sleep_val < 20)
1801                usleep_range(sleep_val * 1000, 20000);
1802        else
1803                msleep_interruptible(sleep_val);
1804
1805        return 0;
1806}
1807#endif
1808
1809static const struct dev_pm_ops bmc150_accel_pm_ops = {
1810        SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1811        SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1812                           bmc150_accel_runtime_resume, NULL)
1813};
1814
1815static const struct acpi_device_id bmc150_accel_acpi_match[] = {
1816        {"BSBA0150",    bmc150},
1817        {"BMC150A",     bmc150},
1818        {"BMI055A",     bmi055},
1819        {"BMA0255",     bma255},
1820        {"BMA250E",     bma250e},
1821        {"BMA222E",     bma222e},
1822        {"BMA0280",     bma280},
1823        { },
1824};
1825MODULE_DEVICE_TABLE(acpi, bmc150_accel_acpi_match);
1826
1827static const struct i2c_device_id bmc150_accel_id[] = {
1828        {"bmc150_accel",        bmc150},
1829        {"bmi055_accel",        bmi055},
1830        {"bma255",              bma255},
1831        {"bma250e",             bma250e},
1832        {"bma222e",             bma222e},
1833        {"bma280",              bma280},
1834        {}
1835};
1836
1837MODULE_DEVICE_TABLE(i2c, bmc150_accel_id);
1838
1839static struct i2c_driver bmc150_accel_driver = {
1840        .driver = {
1841                .name   = BMC150_ACCEL_DRV_NAME,
1842                .acpi_match_table = ACPI_PTR(bmc150_accel_acpi_match),
1843                .pm     = &bmc150_accel_pm_ops,
1844        },
1845        .probe          = bmc150_accel_probe,
1846        .remove         = bmc150_accel_remove,
1847        .id_table       = bmc150_accel_id,
1848};
1849module_i2c_driver(bmc150_accel_driver);
1850
1851MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1852MODULE_LICENSE("GPL v2");
1853MODULE_DESCRIPTION("BMC150 accelerometer driver");
1854