linux/drivers/md/bcache/request.c
<<
>>
Prefs
   1/*
   2 * Main bcache entry point - handle a read or a write request and decide what to
   3 * do with it; the make_request functions are called by the block layer.
   4 *
   5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   6 * Copyright 2012 Google, Inc.
   7 */
   8
   9#include "bcache.h"
  10#include "btree.h"
  11#include "debug.h"
  12#include "request.h"
  13#include "writeback.h"
  14
  15#include <linux/module.h>
  16#include <linux/hash.h>
  17#include <linux/random.h>
  18
  19#include <trace/events/bcache.h>
  20
  21#define CUTOFF_CACHE_ADD        95
  22#define CUTOFF_CACHE_READA      90
  23
  24struct kmem_cache *bch_search_cache;
  25
  26static void bch_data_insert_start(struct closure *);
  27
  28static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
  29{
  30        return BDEV_CACHE_MODE(&dc->sb);
  31}
  32
  33static bool verify(struct cached_dev *dc, struct bio *bio)
  34{
  35        return dc->verify;
  36}
  37
  38static void bio_csum(struct bio *bio, struct bkey *k)
  39{
  40        struct bio_vec bv;
  41        struct bvec_iter iter;
  42        uint64_t csum = 0;
  43
  44        bio_for_each_segment(bv, bio, iter) {
  45                void *d = kmap(bv.bv_page) + bv.bv_offset;
  46                csum = bch_crc64_update(csum, d, bv.bv_len);
  47                kunmap(bv.bv_page);
  48        }
  49
  50        k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
  51}
  52
  53/* Insert data into cache */
  54
  55static void bch_data_insert_keys(struct closure *cl)
  56{
  57        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
  58        atomic_t *journal_ref = NULL;
  59        struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
  60        int ret;
  61
  62        /*
  63         * If we're looping, might already be waiting on
  64         * another journal write - can't wait on more than one journal write at
  65         * a time
  66         *
  67         * XXX: this looks wrong
  68         */
  69#if 0
  70        while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
  71                closure_sync(&s->cl);
  72#endif
  73
  74        if (!op->replace)
  75                journal_ref = bch_journal(op->c, &op->insert_keys,
  76                                          op->flush_journal ? cl : NULL);
  77
  78        ret = bch_btree_insert(op->c, &op->insert_keys,
  79                               journal_ref, replace_key);
  80        if (ret == -ESRCH) {
  81                op->replace_collision = true;
  82        } else if (ret) {
  83                op->error               = -ENOMEM;
  84                op->insert_data_done    = true;
  85        }
  86
  87        if (journal_ref)
  88                atomic_dec_bug(journal_ref);
  89
  90        if (!op->insert_data_done)
  91                continue_at(cl, bch_data_insert_start, op->wq);
  92
  93        bch_keylist_free(&op->insert_keys);
  94        closure_return(cl);
  95}
  96
  97static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
  98                               struct cache_set *c)
  99{
 100        size_t oldsize = bch_keylist_nkeys(l);
 101        size_t newsize = oldsize + u64s;
 102
 103        /*
 104         * The journalling code doesn't handle the case where the keys to insert
 105         * is bigger than an empty write: If we just return -ENOMEM here,
 106         * bio_insert() and bio_invalidate() will insert the keys created so far
 107         * and finish the rest when the keylist is empty.
 108         */
 109        if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
 110                return -ENOMEM;
 111
 112        return __bch_keylist_realloc(l, u64s);
 113}
 114
 115static void bch_data_invalidate(struct closure *cl)
 116{
 117        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 118        struct bio *bio = op->bio;
 119
 120        pr_debug("invalidating %i sectors from %llu",
 121                 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
 122
 123        while (bio_sectors(bio)) {
 124                unsigned sectors = min(bio_sectors(bio),
 125                                       1U << (KEY_SIZE_BITS - 1));
 126
 127                if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
 128                        goto out;
 129
 130                bio->bi_iter.bi_sector  += sectors;
 131                bio->bi_iter.bi_size    -= sectors << 9;
 132
 133                bch_keylist_add(&op->insert_keys,
 134                                &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
 135        }
 136
 137        op->insert_data_done = true;
 138        bio_put(bio);
 139out:
 140        continue_at(cl, bch_data_insert_keys, op->wq);
 141}
 142
 143static void bch_data_insert_error(struct closure *cl)
 144{
 145        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 146
 147        /*
 148         * Our data write just errored, which means we've got a bunch of keys to
 149         * insert that point to data that wasn't succesfully written.
 150         *
 151         * We don't have to insert those keys but we still have to invalidate
 152         * that region of the cache - so, if we just strip off all the pointers
 153         * from the keys we'll accomplish just that.
 154         */
 155
 156        struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
 157
 158        while (src != op->insert_keys.top) {
 159                struct bkey *n = bkey_next(src);
 160
 161                SET_KEY_PTRS(src, 0);
 162                memmove(dst, src, bkey_bytes(src));
 163
 164                dst = bkey_next(dst);
 165                src = n;
 166        }
 167
 168        op->insert_keys.top = dst;
 169
 170        bch_data_insert_keys(cl);
 171}
 172
 173static void bch_data_insert_endio(struct bio *bio, int error)
 174{
 175        struct closure *cl = bio->bi_private;
 176        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 177
 178        if (error) {
 179                /* TODO: We could try to recover from this. */
 180                if (op->writeback)
 181                        op->error = error;
 182                else if (!op->replace)
 183                        set_closure_fn(cl, bch_data_insert_error, op->wq);
 184                else
 185                        set_closure_fn(cl, NULL, NULL);
 186        }
 187
 188        bch_bbio_endio(op->c, bio, error, "writing data to cache");
 189}
 190
 191static void bch_data_insert_start(struct closure *cl)
 192{
 193        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 194        struct bio *bio = op->bio, *n;
 195
 196        if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
 197                set_gc_sectors(op->c);
 198                wake_up_gc(op->c);
 199        }
 200
 201        if (op->bypass)
 202                return bch_data_invalidate(cl);
 203
 204        /*
 205         * Journal writes are marked REQ_FLUSH; if the original write was a
 206         * flush, it'll wait on the journal write.
 207         */
 208        bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
 209
 210        do {
 211                unsigned i;
 212                struct bkey *k;
 213                struct bio_set *split = op->c->bio_split;
 214
 215                /* 1 for the device pointer and 1 for the chksum */
 216                if (bch_keylist_realloc(&op->insert_keys,
 217                                        3 + (op->csum ? 1 : 0),
 218                                        op->c))
 219                        continue_at(cl, bch_data_insert_keys, op->wq);
 220
 221                k = op->insert_keys.top;
 222                bkey_init(k);
 223                SET_KEY_INODE(k, op->inode);
 224                SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
 225
 226                if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
 227                                       op->write_point, op->write_prio,
 228                                       op->writeback))
 229                        goto err;
 230
 231                n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
 232
 233                n->bi_end_io    = bch_data_insert_endio;
 234                n->bi_private   = cl;
 235
 236                if (op->writeback) {
 237                        SET_KEY_DIRTY(k, true);
 238
 239                        for (i = 0; i < KEY_PTRS(k); i++)
 240                                SET_GC_MARK(PTR_BUCKET(op->c, k, i),
 241                                            GC_MARK_DIRTY);
 242                }
 243
 244                SET_KEY_CSUM(k, op->csum);
 245                if (KEY_CSUM(k))
 246                        bio_csum(n, k);
 247
 248                trace_bcache_cache_insert(k);
 249                bch_keylist_push(&op->insert_keys);
 250
 251                n->bi_rw |= REQ_WRITE;
 252                bch_submit_bbio(n, op->c, k, 0);
 253        } while (n != bio);
 254
 255        op->insert_data_done = true;
 256        continue_at(cl, bch_data_insert_keys, op->wq);
 257err:
 258        /* bch_alloc_sectors() blocks if s->writeback = true */
 259        BUG_ON(op->writeback);
 260
 261        /*
 262         * But if it's not a writeback write we'd rather just bail out if
 263         * there aren't any buckets ready to write to - it might take awhile and
 264         * we might be starving btree writes for gc or something.
 265         */
 266
 267        if (!op->replace) {
 268                /*
 269                 * Writethrough write: We can't complete the write until we've
 270                 * updated the index. But we don't want to delay the write while
 271                 * we wait for buckets to be freed up, so just invalidate the
 272                 * rest of the write.
 273                 */
 274                op->bypass = true;
 275                return bch_data_invalidate(cl);
 276        } else {
 277                /*
 278                 * From a cache miss, we can just insert the keys for the data
 279                 * we have written or bail out if we didn't do anything.
 280                 */
 281                op->insert_data_done = true;
 282                bio_put(bio);
 283
 284                if (!bch_keylist_empty(&op->insert_keys))
 285                        continue_at(cl, bch_data_insert_keys, op->wq);
 286                else
 287                        closure_return(cl);
 288        }
 289}
 290
 291/**
 292 * bch_data_insert - stick some data in the cache
 293 *
 294 * This is the starting point for any data to end up in a cache device; it could
 295 * be from a normal write, or a writeback write, or a write to a flash only
 296 * volume - it's also used by the moving garbage collector to compact data in
 297 * mostly empty buckets.
 298 *
 299 * It first writes the data to the cache, creating a list of keys to be inserted
 300 * (if the data had to be fragmented there will be multiple keys); after the
 301 * data is written it calls bch_journal, and after the keys have been added to
 302 * the next journal write they're inserted into the btree.
 303 *
 304 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
 305 * and op->inode is used for the key inode.
 306 *
 307 * If s->bypass is true, instead of inserting the data it invalidates the
 308 * region of the cache represented by s->cache_bio and op->inode.
 309 */
 310void bch_data_insert(struct closure *cl)
 311{
 312        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 313
 314        trace_bcache_write(op->c, op->inode, op->bio,
 315                           op->writeback, op->bypass);
 316
 317        bch_keylist_init(&op->insert_keys);
 318        bio_get(op->bio);
 319        bch_data_insert_start(cl);
 320}
 321
 322/* Congested? */
 323
 324unsigned bch_get_congested(struct cache_set *c)
 325{
 326        int i;
 327        long rand;
 328
 329        if (!c->congested_read_threshold_us &&
 330            !c->congested_write_threshold_us)
 331                return 0;
 332
 333        i = (local_clock_us() - c->congested_last_us) / 1024;
 334        if (i < 0)
 335                return 0;
 336
 337        i += atomic_read(&c->congested);
 338        if (i >= 0)
 339                return 0;
 340
 341        i += CONGESTED_MAX;
 342
 343        if (i > 0)
 344                i = fract_exp_two(i, 6);
 345
 346        rand = get_random_int();
 347        i -= bitmap_weight(&rand, BITS_PER_LONG);
 348
 349        return i > 0 ? i : 1;
 350}
 351
 352static void add_sequential(struct task_struct *t)
 353{
 354        ewma_add(t->sequential_io_avg,
 355                 t->sequential_io, 8, 0);
 356
 357        t->sequential_io = 0;
 358}
 359
 360static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
 361{
 362        return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
 363}
 364
 365static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
 366{
 367        struct cache_set *c = dc->disk.c;
 368        unsigned mode = cache_mode(dc, bio);
 369        unsigned sectors, congested = bch_get_congested(c);
 370        struct task_struct *task = current;
 371        struct io *i;
 372
 373        if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
 374            c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
 375            (bio->bi_rw & REQ_DISCARD))
 376                goto skip;
 377
 378        if (mode == CACHE_MODE_NONE ||
 379            (mode == CACHE_MODE_WRITEAROUND &&
 380             (bio->bi_rw & REQ_WRITE)))
 381                goto skip;
 382
 383        if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
 384            bio_sectors(bio) & (c->sb.block_size - 1)) {
 385                pr_debug("skipping unaligned io");
 386                goto skip;
 387        }
 388
 389        if (bypass_torture_test(dc)) {
 390                if ((get_random_int() & 3) == 3)
 391                        goto skip;
 392                else
 393                        goto rescale;
 394        }
 395
 396        if (!congested && !dc->sequential_cutoff)
 397                goto rescale;
 398
 399        if (!congested &&
 400            mode == CACHE_MODE_WRITEBACK &&
 401            (bio->bi_rw & REQ_WRITE) &&
 402            (bio->bi_rw & REQ_SYNC))
 403                goto rescale;
 404
 405        spin_lock(&dc->io_lock);
 406
 407        hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
 408                if (i->last == bio->bi_iter.bi_sector &&
 409                    time_before(jiffies, i->jiffies))
 410                        goto found;
 411
 412        i = list_first_entry(&dc->io_lru, struct io, lru);
 413
 414        add_sequential(task);
 415        i->sequential = 0;
 416found:
 417        if (i->sequential + bio->bi_iter.bi_size > i->sequential)
 418                i->sequential   += bio->bi_iter.bi_size;
 419
 420        i->last                  = bio_end_sector(bio);
 421        i->jiffies               = jiffies + msecs_to_jiffies(5000);
 422        task->sequential_io      = i->sequential;
 423
 424        hlist_del(&i->hash);
 425        hlist_add_head(&i->hash, iohash(dc, i->last));
 426        list_move_tail(&i->lru, &dc->io_lru);
 427
 428        spin_unlock(&dc->io_lock);
 429
 430        sectors = max(task->sequential_io,
 431                      task->sequential_io_avg) >> 9;
 432
 433        if (dc->sequential_cutoff &&
 434            sectors >= dc->sequential_cutoff >> 9) {
 435                trace_bcache_bypass_sequential(bio);
 436                goto skip;
 437        }
 438
 439        if (congested && sectors >= congested) {
 440                trace_bcache_bypass_congested(bio);
 441                goto skip;
 442        }
 443
 444rescale:
 445        bch_rescale_priorities(c, bio_sectors(bio));
 446        return false;
 447skip:
 448        bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
 449        return true;
 450}
 451
 452/* Cache lookup */
 453
 454struct search {
 455        /* Stack frame for bio_complete */
 456        struct closure          cl;
 457
 458        struct bbio             bio;
 459        struct bio              *orig_bio;
 460        struct bio              *cache_miss;
 461        struct bcache_device    *d;
 462
 463        unsigned                insert_bio_sectors;
 464        unsigned                recoverable:1;
 465        unsigned                write:1;
 466        unsigned                read_dirty_data:1;
 467
 468        unsigned long           start_time;
 469
 470        struct btree_op         op;
 471        struct data_insert_op   iop;
 472};
 473
 474static void bch_cache_read_endio(struct bio *bio, int error)
 475{
 476        struct bbio *b = container_of(bio, struct bbio, bio);
 477        struct closure *cl = bio->bi_private;
 478        struct search *s = container_of(cl, struct search, cl);
 479
 480        /*
 481         * If the bucket was reused while our bio was in flight, we might have
 482         * read the wrong data. Set s->error but not error so it doesn't get
 483         * counted against the cache device, but we'll still reread the data
 484         * from the backing device.
 485         */
 486
 487        if (error)
 488                s->iop.error = error;
 489        else if (!KEY_DIRTY(&b->key) &&
 490                 ptr_stale(s->iop.c, &b->key, 0)) {
 491                atomic_long_inc(&s->iop.c->cache_read_races);
 492                s->iop.error = -EINTR;
 493        }
 494
 495        bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
 496}
 497
 498/*
 499 * Read from a single key, handling the initial cache miss if the key starts in
 500 * the middle of the bio
 501 */
 502static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
 503{
 504        struct search *s = container_of(op, struct search, op);
 505        struct bio *n, *bio = &s->bio.bio;
 506        struct bkey *bio_key;
 507        unsigned ptr;
 508
 509        if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
 510                return MAP_CONTINUE;
 511
 512        if (KEY_INODE(k) != s->iop.inode ||
 513            KEY_START(k) > bio->bi_iter.bi_sector) {
 514                unsigned bio_sectors = bio_sectors(bio);
 515                unsigned sectors = KEY_INODE(k) == s->iop.inode
 516                        ? min_t(uint64_t, INT_MAX,
 517                                KEY_START(k) - bio->bi_iter.bi_sector)
 518                        : INT_MAX;
 519
 520                int ret = s->d->cache_miss(b, s, bio, sectors);
 521                if (ret != MAP_CONTINUE)
 522                        return ret;
 523
 524                /* if this was a complete miss we shouldn't get here */
 525                BUG_ON(bio_sectors <= sectors);
 526        }
 527
 528        if (!KEY_SIZE(k))
 529                return MAP_CONTINUE;
 530
 531        /* XXX: figure out best pointer - for multiple cache devices */
 532        ptr = 0;
 533
 534        PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
 535
 536        if (KEY_DIRTY(k))
 537                s->read_dirty_data = true;
 538
 539        n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
 540                                      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
 541                           GFP_NOIO, s->d->bio_split);
 542
 543        bio_key = &container_of(n, struct bbio, bio)->key;
 544        bch_bkey_copy_single_ptr(bio_key, k, ptr);
 545
 546        bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
 547        bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
 548
 549        n->bi_end_io    = bch_cache_read_endio;
 550        n->bi_private   = &s->cl;
 551
 552        /*
 553         * The bucket we're reading from might be reused while our bio
 554         * is in flight, and we could then end up reading the wrong
 555         * data.
 556         *
 557         * We guard against this by checking (in cache_read_endio()) if
 558         * the pointer is stale again; if so, we treat it as an error
 559         * and reread from the backing device (but we don't pass that
 560         * error up anywhere).
 561         */
 562
 563        __bch_submit_bbio(n, b->c);
 564        return n == bio ? MAP_DONE : MAP_CONTINUE;
 565}
 566
 567static void cache_lookup(struct closure *cl)
 568{
 569        struct search *s = container_of(cl, struct search, iop.cl);
 570        struct bio *bio = &s->bio.bio;
 571        int ret;
 572
 573        bch_btree_op_init(&s->op, -1);
 574
 575        ret = bch_btree_map_keys(&s->op, s->iop.c,
 576                                 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
 577                                 cache_lookup_fn, MAP_END_KEY);
 578        if (ret == -EAGAIN)
 579                continue_at(cl, cache_lookup, bcache_wq);
 580
 581        closure_return(cl);
 582}
 583
 584/* Common code for the make_request functions */
 585
 586static void request_endio(struct bio *bio, int error)
 587{
 588        struct closure *cl = bio->bi_private;
 589
 590        if (error) {
 591                struct search *s = container_of(cl, struct search, cl);
 592                s->iop.error = error;
 593                /* Only cache read errors are recoverable */
 594                s->recoverable = false;
 595        }
 596
 597        bio_put(bio);
 598        closure_put(cl);
 599}
 600
 601static void bio_complete(struct search *s)
 602{
 603        if (s->orig_bio) {
 604                generic_end_io_acct(bio_data_dir(s->orig_bio),
 605                                    &s->d->disk->part0, s->start_time);
 606
 607                trace_bcache_request_end(s->d, s->orig_bio);
 608                bio_endio(s->orig_bio, s->iop.error);
 609                s->orig_bio = NULL;
 610        }
 611}
 612
 613static void do_bio_hook(struct search *s, struct bio *orig_bio)
 614{
 615        struct bio *bio = &s->bio.bio;
 616
 617        bio_init(bio);
 618        __bio_clone_fast(bio, orig_bio);
 619        bio->bi_end_io          = request_endio;
 620        bio->bi_private         = &s->cl;
 621
 622        atomic_set(&bio->bi_cnt, 3);
 623}
 624
 625static void search_free(struct closure *cl)
 626{
 627        struct search *s = container_of(cl, struct search, cl);
 628        bio_complete(s);
 629
 630        if (s->iop.bio)
 631                bio_put(s->iop.bio);
 632
 633        closure_debug_destroy(cl);
 634        mempool_free(s, s->d->c->search);
 635}
 636
 637static inline struct search *search_alloc(struct bio *bio,
 638                                          struct bcache_device *d)
 639{
 640        struct search *s;
 641
 642        s = mempool_alloc(d->c->search, GFP_NOIO);
 643
 644        closure_init(&s->cl, NULL);
 645        do_bio_hook(s, bio);
 646
 647        s->orig_bio             = bio;
 648        s->cache_miss           = NULL;
 649        s->d                    = d;
 650        s->recoverable          = 1;
 651        s->write                = (bio->bi_rw & REQ_WRITE) != 0;
 652        s->read_dirty_data      = 0;
 653        s->start_time           = jiffies;
 654
 655        s->iop.c                = d->c;
 656        s->iop.bio              = NULL;
 657        s->iop.inode            = d->id;
 658        s->iop.write_point      = hash_long((unsigned long) current, 16);
 659        s->iop.write_prio       = 0;
 660        s->iop.error            = 0;
 661        s->iop.flags            = 0;
 662        s->iop.flush_journal    = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
 663        s->iop.wq               = bcache_wq;
 664
 665        return s;
 666}
 667
 668/* Cached devices */
 669
 670static void cached_dev_bio_complete(struct closure *cl)
 671{
 672        struct search *s = container_of(cl, struct search, cl);
 673        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 674
 675        search_free(cl);
 676        cached_dev_put(dc);
 677}
 678
 679/* Process reads */
 680
 681static void cached_dev_cache_miss_done(struct closure *cl)
 682{
 683        struct search *s = container_of(cl, struct search, cl);
 684
 685        if (s->iop.replace_collision)
 686                bch_mark_cache_miss_collision(s->iop.c, s->d);
 687
 688        if (s->iop.bio) {
 689                int i;
 690                struct bio_vec *bv;
 691
 692                bio_for_each_segment_all(bv, s->iop.bio, i)
 693                        __free_page(bv->bv_page);
 694        }
 695
 696        cached_dev_bio_complete(cl);
 697}
 698
 699static void cached_dev_read_error(struct closure *cl)
 700{
 701        struct search *s = container_of(cl, struct search, cl);
 702        struct bio *bio = &s->bio.bio;
 703
 704        if (s->recoverable) {
 705                /* Retry from the backing device: */
 706                trace_bcache_read_retry(s->orig_bio);
 707
 708                s->iop.error = 0;
 709                do_bio_hook(s, s->orig_bio);
 710
 711                /* XXX: invalidate cache */
 712
 713                closure_bio_submit(bio, cl, s->d);
 714        }
 715
 716        continue_at(cl, cached_dev_cache_miss_done, NULL);
 717}
 718
 719static void cached_dev_read_done(struct closure *cl)
 720{
 721        struct search *s = container_of(cl, struct search, cl);
 722        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 723
 724        /*
 725         * We had a cache miss; cache_bio now contains data ready to be inserted
 726         * into the cache.
 727         *
 728         * First, we copy the data we just read from cache_bio's bounce buffers
 729         * to the buffers the original bio pointed to:
 730         */
 731
 732        if (s->iop.bio) {
 733                bio_reset(s->iop.bio);
 734                s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
 735                s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
 736                s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
 737                bch_bio_map(s->iop.bio, NULL);
 738
 739                bio_copy_data(s->cache_miss, s->iop.bio);
 740
 741                bio_put(s->cache_miss);
 742                s->cache_miss = NULL;
 743        }
 744
 745        if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
 746                bch_data_verify(dc, s->orig_bio);
 747
 748        bio_complete(s);
 749
 750        if (s->iop.bio &&
 751            !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
 752                BUG_ON(!s->iop.replace);
 753                closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
 754        }
 755
 756        continue_at(cl, cached_dev_cache_miss_done, NULL);
 757}
 758
 759static void cached_dev_read_done_bh(struct closure *cl)
 760{
 761        struct search *s = container_of(cl, struct search, cl);
 762        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 763
 764        bch_mark_cache_accounting(s->iop.c, s->d,
 765                                  !s->cache_miss, s->iop.bypass);
 766        trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
 767
 768        if (s->iop.error)
 769                continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
 770        else if (s->iop.bio || verify(dc, &s->bio.bio))
 771                continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
 772        else
 773                continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
 774}
 775
 776static int cached_dev_cache_miss(struct btree *b, struct search *s,
 777                                 struct bio *bio, unsigned sectors)
 778{
 779        int ret = MAP_CONTINUE;
 780        unsigned reada = 0;
 781        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 782        struct bio *miss, *cache_bio;
 783
 784        if (s->cache_miss || s->iop.bypass) {
 785                miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
 786                ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
 787                goto out_submit;
 788        }
 789
 790        if (!(bio->bi_rw & REQ_RAHEAD) &&
 791            !(bio->bi_rw & REQ_META) &&
 792            s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
 793                reada = min_t(sector_t, dc->readahead >> 9,
 794                              bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
 795
 796        s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
 797
 798        s->iop.replace_key = KEY(s->iop.inode,
 799                                 bio->bi_iter.bi_sector + s->insert_bio_sectors,
 800                                 s->insert_bio_sectors);
 801
 802        ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
 803        if (ret)
 804                return ret;
 805
 806        s->iop.replace = true;
 807
 808        miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
 809
 810        /* btree_search_recurse()'s btree iterator is no good anymore */
 811        ret = miss == bio ? MAP_DONE : -EINTR;
 812
 813        cache_bio = bio_alloc_bioset(GFP_NOWAIT,
 814                        DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
 815                        dc->disk.bio_split);
 816        if (!cache_bio)
 817                goto out_submit;
 818
 819        cache_bio->bi_iter.bi_sector    = miss->bi_iter.bi_sector;
 820        cache_bio->bi_bdev              = miss->bi_bdev;
 821        cache_bio->bi_iter.bi_size      = s->insert_bio_sectors << 9;
 822
 823        cache_bio->bi_end_io    = request_endio;
 824        cache_bio->bi_private   = &s->cl;
 825
 826        bch_bio_map(cache_bio, NULL);
 827        if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
 828                goto out_put;
 829
 830        if (reada)
 831                bch_mark_cache_readahead(s->iop.c, s->d);
 832
 833        s->cache_miss   = miss;
 834        s->iop.bio      = cache_bio;
 835        bio_get(cache_bio);
 836        closure_bio_submit(cache_bio, &s->cl, s->d);
 837
 838        return ret;
 839out_put:
 840        bio_put(cache_bio);
 841out_submit:
 842        miss->bi_end_io         = request_endio;
 843        miss->bi_private        = &s->cl;
 844        closure_bio_submit(miss, &s->cl, s->d);
 845        return ret;
 846}
 847
 848static void cached_dev_read(struct cached_dev *dc, struct search *s)
 849{
 850        struct closure *cl = &s->cl;
 851
 852        closure_call(&s->iop.cl, cache_lookup, NULL, cl);
 853        continue_at(cl, cached_dev_read_done_bh, NULL);
 854}
 855
 856/* Process writes */
 857
 858static void cached_dev_write_complete(struct closure *cl)
 859{
 860        struct search *s = container_of(cl, struct search, cl);
 861        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 862
 863        up_read_non_owner(&dc->writeback_lock);
 864        cached_dev_bio_complete(cl);
 865}
 866
 867static void cached_dev_write(struct cached_dev *dc, struct search *s)
 868{
 869        struct closure *cl = &s->cl;
 870        struct bio *bio = &s->bio.bio;
 871        struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
 872        struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
 873
 874        bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
 875
 876        down_read_non_owner(&dc->writeback_lock);
 877        if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
 878                /*
 879                 * We overlap with some dirty data undergoing background
 880                 * writeback, force this write to writeback
 881                 */
 882                s->iop.bypass = false;
 883                s->iop.writeback = true;
 884        }
 885
 886        /*
 887         * Discards aren't _required_ to do anything, so skipping if
 888         * check_overlapping returned true is ok
 889         *
 890         * But check_overlapping drops dirty keys for which io hasn't started,
 891         * so we still want to call it.
 892         */
 893        if (bio->bi_rw & REQ_DISCARD)
 894                s->iop.bypass = true;
 895
 896        if (should_writeback(dc, s->orig_bio,
 897                             cache_mode(dc, bio),
 898                             s->iop.bypass)) {
 899                s->iop.bypass = false;
 900                s->iop.writeback = true;
 901        }
 902
 903        if (s->iop.bypass) {
 904                s->iop.bio = s->orig_bio;
 905                bio_get(s->iop.bio);
 906
 907                if (!(bio->bi_rw & REQ_DISCARD) ||
 908                    blk_queue_discard(bdev_get_queue(dc->bdev)))
 909                        closure_bio_submit(bio, cl, s->d);
 910        } else if (s->iop.writeback) {
 911                bch_writeback_add(dc);
 912                s->iop.bio = bio;
 913
 914                if (bio->bi_rw & REQ_FLUSH) {
 915                        /* Also need to send a flush to the backing device */
 916                        struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
 917                                                             dc->disk.bio_split);
 918
 919                        flush->bi_rw    = WRITE_FLUSH;
 920                        flush->bi_bdev  = bio->bi_bdev;
 921                        flush->bi_end_io = request_endio;
 922                        flush->bi_private = cl;
 923
 924                        closure_bio_submit(flush, cl, s->d);
 925                }
 926        } else {
 927                s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
 928
 929                closure_bio_submit(bio, cl, s->d);
 930        }
 931
 932        closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
 933        continue_at(cl, cached_dev_write_complete, NULL);
 934}
 935
 936static void cached_dev_nodata(struct closure *cl)
 937{
 938        struct search *s = container_of(cl, struct search, cl);
 939        struct bio *bio = &s->bio.bio;
 940
 941        if (s->iop.flush_journal)
 942                bch_journal_meta(s->iop.c, cl);
 943
 944        /* If it's a flush, we send the flush to the backing device too */
 945        closure_bio_submit(bio, cl, s->d);
 946
 947        continue_at(cl, cached_dev_bio_complete, NULL);
 948}
 949
 950/* Cached devices - read & write stuff */
 951
 952static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
 953{
 954        struct search *s;
 955        struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
 956        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
 957        int rw = bio_data_dir(bio);
 958
 959        generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
 960
 961        bio->bi_bdev = dc->bdev;
 962        bio->bi_iter.bi_sector += dc->sb.data_offset;
 963
 964        if (cached_dev_get(dc)) {
 965                s = search_alloc(bio, d);
 966                trace_bcache_request_start(s->d, bio);
 967
 968                if (!bio->bi_iter.bi_size) {
 969                        /*
 970                         * can't call bch_journal_meta from under
 971                         * generic_make_request
 972                         */
 973                        continue_at_nobarrier(&s->cl,
 974                                              cached_dev_nodata,
 975                                              bcache_wq);
 976                } else {
 977                        s->iop.bypass = check_should_bypass(dc, bio);
 978
 979                        if (rw)
 980                                cached_dev_write(dc, s);
 981                        else
 982                                cached_dev_read(dc, s);
 983                }
 984        } else {
 985                if ((bio->bi_rw & REQ_DISCARD) &&
 986                    !blk_queue_discard(bdev_get_queue(dc->bdev)))
 987                        bio_endio(bio, 0);
 988                else
 989                        bch_generic_make_request(bio, &d->bio_split_hook);
 990        }
 991}
 992
 993static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
 994                            unsigned int cmd, unsigned long arg)
 995{
 996        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
 997        return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
 998}
 999
1000static int cached_dev_congested(void *data, int bits)
1001{
1002        struct bcache_device *d = data;
1003        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1004        struct request_queue *q = bdev_get_queue(dc->bdev);
1005        int ret = 0;
1006
1007        if (bdi_congested(&q->backing_dev_info, bits))
1008                return 1;
1009
1010        if (cached_dev_get(dc)) {
1011                unsigned i;
1012                struct cache *ca;
1013
1014                for_each_cache(ca, d->c, i) {
1015                        q = bdev_get_queue(ca->bdev);
1016                        ret |= bdi_congested(&q->backing_dev_info, bits);
1017                }
1018
1019                cached_dev_put(dc);
1020        }
1021
1022        return ret;
1023}
1024
1025void bch_cached_dev_request_init(struct cached_dev *dc)
1026{
1027        struct gendisk *g = dc->disk.disk;
1028
1029        g->queue->make_request_fn               = cached_dev_make_request;
1030        g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1031        dc->disk.cache_miss                     = cached_dev_cache_miss;
1032        dc->disk.ioctl                          = cached_dev_ioctl;
1033}
1034
1035/* Flash backed devices */
1036
1037static int flash_dev_cache_miss(struct btree *b, struct search *s,
1038                                struct bio *bio, unsigned sectors)
1039{
1040        unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1041
1042        swap(bio->bi_iter.bi_size, bytes);
1043        zero_fill_bio(bio);
1044        swap(bio->bi_iter.bi_size, bytes);
1045
1046        bio_advance(bio, bytes);
1047
1048        if (!bio->bi_iter.bi_size)
1049                return MAP_DONE;
1050
1051        return MAP_CONTINUE;
1052}
1053
1054static void flash_dev_nodata(struct closure *cl)
1055{
1056        struct search *s = container_of(cl, struct search, cl);
1057
1058        if (s->iop.flush_journal)
1059                bch_journal_meta(s->iop.c, cl);
1060
1061        continue_at(cl, search_free, NULL);
1062}
1063
1064static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1065{
1066        struct search *s;
1067        struct closure *cl;
1068        struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1069        int rw = bio_data_dir(bio);
1070
1071        generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
1072
1073        s = search_alloc(bio, d);
1074        cl = &s->cl;
1075        bio = &s->bio.bio;
1076
1077        trace_bcache_request_start(s->d, bio);
1078
1079        if (!bio->bi_iter.bi_size) {
1080                /*
1081                 * can't call bch_journal_meta from under
1082                 * generic_make_request
1083                 */
1084                continue_at_nobarrier(&s->cl,
1085                                      flash_dev_nodata,
1086                                      bcache_wq);
1087        } else if (rw) {
1088                bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1089                                        &KEY(d->id, bio->bi_iter.bi_sector, 0),
1090                                        &KEY(d->id, bio_end_sector(bio), 0));
1091
1092                s->iop.bypass           = (bio->bi_rw & REQ_DISCARD) != 0;
1093                s->iop.writeback        = true;
1094                s->iop.bio              = bio;
1095
1096                closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1097        } else {
1098                closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1099        }
1100
1101        continue_at(cl, search_free, NULL);
1102}
1103
1104static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1105                           unsigned int cmd, unsigned long arg)
1106{
1107        return -ENOTTY;
1108}
1109
1110static int flash_dev_congested(void *data, int bits)
1111{
1112        struct bcache_device *d = data;
1113        struct request_queue *q;
1114        struct cache *ca;
1115        unsigned i;
1116        int ret = 0;
1117
1118        for_each_cache(ca, d->c, i) {
1119                q = bdev_get_queue(ca->bdev);
1120                ret |= bdi_congested(&q->backing_dev_info, bits);
1121        }
1122
1123        return ret;
1124}
1125
1126void bch_flash_dev_request_init(struct bcache_device *d)
1127{
1128        struct gendisk *g = d->disk;
1129
1130        g->queue->make_request_fn               = flash_dev_make_request;
1131        g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1132        d->cache_miss                           = flash_dev_cache_miss;
1133        d->ioctl                                = flash_dev_ioctl;
1134}
1135
1136void bch_request_exit(void)
1137{
1138        if (bch_search_cache)
1139                kmem_cache_destroy(bch_search_cache);
1140}
1141
1142int __init bch_request_init(void)
1143{
1144        bch_search_cache = KMEM_CACHE(search, 0);
1145        if (!bch_search_cache)
1146                return -ENOMEM;
1147
1148        return 0;
1149}
1150