linux/drivers/md/dm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
   9#include "dm-uevent.h"
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/moduleparam.h>
  15#include <linux/blkpg.h>
  16#include <linux/bio.h>
  17#include <linux/mempool.h>
  18#include <linux/slab.h>
  19#include <linux/idr.h>
  20#include <linux/hdreg.h>
  21#include <linux/delay.h>
  22#include <linux/wait.h>
  23#include <linux/kthread.h>
  24#include <linux/ktime.h>
  25#include <linux/elevator.h> /* for rq_end_sector() */
  26#include <linux/blk-mq.h>
  27
  28#include <trace/events/block.h>
  29
  30#define DM_MSG_PREFIX "core"
  31
  32#ifdef CONFIG_PRINTK
  33/*
  34 * ratelimit state to be used in DMXXX_LIMIT().
  35 */
  36DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
  37                       DEFAULT_RATELIMIT_INTERVAL,
  38                       DEFAULT_RATELIMIT_BURST);
  39EXPORT_SYMBOL(dm_ratelimit_state);
  40#endif
  41
  42/*
  43 * Cookies are numeric values sent with CHANGE and REMOVE
  44 * uevents while resuming, removing or renaming the device.
  45 */
  46#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  47#define DM_COOKIE_LENGTH 24
  48
  49static const char *_name = DM_NAME;
  50
  51static unsigned int major = 0;
  52static unsigned int _major = 0;
  53
  54static DEFINE_IDR(_minor_idr);
  55
  56static DEFINE_SPINLOCK(_minor_lock);
  57
  58static void do_deferred_remove(struct work_struct *w);
  59
  60static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  61
  62static struct workqueue_struct *deferred_remove_workqueue;
  63
  64/*
  65 * For bio-based dm.
  66 * One of these is allocated per bio.
  67 */
  68struct dm_io {
  69        struct mapped_device *md;
  70        int error;
  71        atomic_t io_count;
  72        struct bio *bio;
  73        unsigned long start_time;
  74        spinlock_t endio_lock;
  75        struct dm_stats_aux stats_aux;
  76};
  77
  78/*
  79 * For request-based dm.
  80 * One of these is allocated per request.
  81 */
  82struct dm_rq_target_io {
  83        struct mapped_device *md;
  84        struct dm_target *ti;
  85        struct request *orig, *clone;
  86        struct kthread_work work;
  87        int error;
  88        union map_info info;
  89};
  90
  91/*
  92 * For request-based dm - the bio clones we allocate are embedded in these
  93 * structs.
  94 *
  95 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
  96 * the bioset is created - this means the bio has to come at the end of the
  97 * struct.
  98 */
  99struct dm_rq_clone_bio_info {
 100        struct bio *orig;
 101        struct dm_rq_target_io *tio;
 102        struct bio clone;
 103};
 104
 105union map_info *dm_get_rq_mapinfo(struct request *rq)
 106{
 107        if (rq && rq->end_io_data)
 108                return &((struct dm_rq_target_io *)rq->end_io_data)->info;
 109        return NULL;
 110}
 111EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
 112
 113#define MINOR_ALLOCED ((void *)-1)
 114
 115/*
 116 * Bits for the md->flags field.
 117 */
 118#define DMF_BLOCK_IO_FOR_SUSPEND 0
 119#define DMF_SUSPENDED 1
 120#define DMF_FROZEN 2
 121#define DMF_FREEING 3
 122#define DMF_DELETING 4
 123#define DMF_NOFLUSH_SUSPENDING 5
 124#define DMF_MERGE_IS_OPTIONAL 6
 125#define DMF_DEFERRED_REMOVE 7
 126#define DMF_SUSPENDED_INTERNALLY 8
 127
 128/*
 129 * A dummy definition to make RCU happy.
 130 * struct dm_table should never be dereferenced in this file.
 131 */
 132struct dm_table {
 133        int undefined__;
 134};
 135
 136/*
 137 * Work processed by per-device workqueue.
 138 */
 139struct mapped_device {
 140        struct srcu_struct io_barrier;
 141        struct mutex suspend_lock;
 142        atomic_t holders;
 143        atomic_t open_count;
 144
 145        /*
 146         * The current mapping.
 147         * Use dm_get_live_table{_fast} or take suspend_lock for
 148         * dereference.
 149         */
 150        struct dm_table __rcu *map;
 151
 152        struct list_head table_devices;
 153        struct mutex table_devices_lock;
 154
 155        unsigned long flags;
 156
 157        struct request_queue *queue;
 158        unsigned type;
 159        /* Protect queue and type against concurrent access. */
 160        struct mutex type_lock;
 161
 162        struct target_type *immutable_target_type;
 163
 164        struct gendisk *disk;
 165        char name[16];
 166
 167        void *interface_ptr;
 168
 169        /*
 170         * A list of ios that arrived while we were suspended.
 171         */
 172        atomic_t pending[2];
 173        wait_queue_head_t wait;
 174        struct work_struct work;
 175        struct bio_list deferred;
 176        spinlock_t deferred_lock;
 177
 178        /*
 179         * Processing queue (flush)
 180         */
 181        struct workqueue_struct *wq;
 182
 183        /*
 184         * io objects are allocated from here.
 185         */
 186        mempool_t *io_pool;
 187        mempool_t *rq_pool;
 188
 189        struct bio_set *bs;
 190
 191        /*
 192         * Event handling.
 193         */
 194        atomic_t event_nr;
 195        wait_queue_head_t eventq;
 196        atomic_t uevent_seq;
 197        struct list_head uevent_list;
 198        spinlock_t uevent_lock; /* Protect access to uevent_list */
 199
 200        /*
 201         * freeze/thaw support require holding onto a super block
 202         */
 203        struct super_block *frozen_sb;
 204        struct block_device *bdev;
 205
 206        /* forced geometry settings */
 207        struct hd_geometry geometry;
 208
 209        /* kobject and completion */
 210        struct dm_kobject_holder kobj_holder;
 211
 212        /* zero-length flush that will be cloned and submitted to targets */
 213        struct bio flush_bio;
 214
 215        /* the number of internal suspends */
 216        unsigned internal_suspend_count;
 217
 218        struct dm_stats stats;
 219
 220        struct kthread_worker kworker;
 221        struct task_struct *kworker_task;
 222
 223        /* for request-based merge heuristic in dm_request_fn() */
 224        unsigned seq_rq_merge_deadline_usecs;
 225        int last_rq_rw;
 226        sector_t last_rq_pos;
 227        ktime_t last_rq_start_time;
 228
 229        /* for blk-mq request-based DM support */
 230        struct blk_mq_tag_set tag_set;
 231        bool use_blk_mq;
 232};
 233
 234#ifdef CONFIG_DM_MQ_DEFAULT
 235static bool use_blk_mq = true;
 236#else
 237static bool use_blk_mq = false;
 238#endif
 239
 240bool dm_use_blk_mq(struct mapped_device *md)
 241{
 242        return md->use_blk_mq;
 243}
 244
 245/*
 246 * For mempools pre-allocation at the table loading time.
 247 */
 248struct dm_md_mempools {
 249        mempool_t *io_pool;
 250        mempool_t *rq_pool;
 251        struct bio_set *bs;
 252};
 253
 254struct table_device {
 255        struct list_head list;
 256        atomic_t count;
 257        struct dm_dev dm_dev;
 258};
 259
 260#define RESERVED_BIO_BASED_IOS          16
 261#define RESERVED_REQUEST_BASED_IOS      256
 262#define RESERVED_MAX_IOS                1024
 263static struct kmem_cache *_io_cache;
 264static struct kmem_cache *_rq_tio_cache;
 265static struct kmem_cache *_rq_cache;
 266
 267/*
 268 * Bio-based DM's mempools' reserved IOs set by the user.
 269 */
 270static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 271
 272/*
 273 * Request-based DM's mempools' reserved IOs set by the user.
 274 */
 275static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
 276
 277static unsigned __dm_get_module_param(unsigned *module_param,
 278                                      unsigned def, unsigned max)
 279{
 280        unsigned param = ACCESS_ONCE(*module_param);
 281        unsigned modified_param = 0;
 282
 283        if (!param)
 284                modified_param = def;
 285        else if (param > max)
 286                modified_param = max;
 287
 288        if (modified_param) {
 289                (void)cmpxchg(module_param, param, modified_param);
 290                param = modified_param;
 291        }
 292
 293        return param;
 294}
 295
 296unsigned dm_get_reserved_bio_based_ios(void)
 297{
 298        return __dm_get_module_param(&reserved_bio_based_ios,
 299                                     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
 300}
 301EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 302
 303unsigned dm_get_reserved_rq_based_ios(void)
 304{
 305        return __dm_get_module_param(&reserved_rq_based_ios,
 306                                     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
 307}
 308EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
 309
 310static int __init local_init(void)
 311{
 312        int r = -ENOMEM;
 313
 314        /* allocate a slab for the dm_ios */
 315        _io_cache = KMEM_CACHE(dm_io, 0);
 316        if (!_io_cache)
 317                return r;
 318
 319        _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 320        if (!_rq_tio_cache)
 321                goto out_free_io_cache;
 322
 323        _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
 324                                      __alignof__(struct request), 0, NULL);
 325        if (!_rq_cache)
 326                goto out_free_rq_tio_cache;
 327
 328        r = dm_uevent_init();
 329        if (r)
 330                goto out_free_rq_cache;
 331
 332        deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 333        if (!deferred_remove_workqueue) {
 334                r = -ENOMEM;
 335                goto out_uevent_exit;
 336        }
 337
 338        _major = major;
 339        r = register_blkdev(_major, _name);
 340        if (r < 0)
 341                goto out_free_workqueue;
 342
 343        if (!_major)
 344                _major = r;
 345
 346        return 0;
 347
 348out_free_workqueue:
 349        destroy_workqueue(deferred_remove_workqueue);
 350out_uevent_exit:
 351        dm_uevent_exit();
 352out_free_rq_cache:
 353        kmem_cache_destroy(_rq_cache);
 354out_free_rq_tio_cache:
 355        kmem_cache_destroy(_rq_tio_cache);
 356out_free_io_cache:
 357        kmem_cache_destroy(_io_cache);
 358
 359        return r;
 360}
 361
 362static void local_exit(void)
 363{
 364        flush_scheduled_work();
 365        destroy_workqueue(deferred_remove_workqueue);
 366
 367        kmem_cache_destroy(_rq_cache);
 368        kmem_cache_destroy(_rq_tio_cache);
 369        kmem_cache_destroy(_io_cache);
 370        unregister_blkdev(_major, _name);
 371        dm_uevent_exit();
 372
 373        _major = 0;
 374
 375        DMINFO("cleaned up");
 376}
 377
 378static int (*_inits[])(void) __initdata = {
 379        local_init,
 380        dm_target_init,
 381        dm_linear_init,
 382        dm_stripe_init,
 383        dm_io_init,
 384        dm_kcopyd_init,
 385        dm_interface_init,
 386        dm_statistics_init,
 387};
 388
 389static void (*_exits[])(void) = {
 390        local_exit,
 391        dm_target_exit,
 392        dm_linear_exit,
 393        dm_stripe_exit,
 394        dm_io_exit,
 395        dm_kcopyd_exit,
 396        dm_interface_exit,
 397        dm_statistics_exit,
 398};
 399
 400static int __init dm_init(void)
 401{
 402        const int count = ARRAY_SIZE(_inits);
 403
 404        int r, i;
 405
 406        for (i = 0; i < count; i++) {
 407                r = _inits[i]();
 408                if (r)
 409                        goto bad;
 410        }
 411
 412        return 0;
 413
 414      bad:
 415        while (i--)
 416                _exits[i]();
 417
 418        return r;
 419}
 420
 421static void __exit dm_exit(void)
 422{
 423        int i = ARRAY_SIZE(_exits);
 424
 425        while (i--)
 426                _exits[i]();
 427
 428        /*
 429         * Should be empty by this point.
 430         */
 431        idr_destroy(&_minor_idr);
 432}
 433
 434/*
 435 * Block device functions
 436 */
 437int dm_deleting_md(struct mapped_device *md)
 438{
 439        return test_bit(DMF_DELETING, &md->flags);
 440}
 441
 442static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 443{
 444        struct mapped_device *md;
 445
 446        spin_lock(&_minor_lock);
 447
 448        md = bdev->bd_disk->private_data;
 449        if (!md)
 450                goto out;
 451
 452        if (test_bit(DMF_FREEING, &md->flags) ||
 453            dm_deleting_md(md)) {
 454                md = NULL;
 455                goto out;
 456        }
 457
 458        dm_get(md);
 459        atomic_inc(&md->open_count);
 460out:
 461        spin_unlock(&_minor_lock);
 462
 463        return md ? 0 : -ENXIO;
 464}
 465
 466static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 467{
 468        struct mapped_device *md;
 469
 470        spin_lock(&_minor_lock);
 471
 472        md = disk->private_data;
 473        if (WARN_ON(!md))
 474                goto out;
 475
 476        if (atomic_dec_and_test(&md->open_count) &&
 477            (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 478                queue_work(deferred_remove_workqueue, &deferred_remove_work);
 479
 480        dm_put(md);
 481out:
 482        spin_unlock(&_minor_lock);
 483}
 484
 485int dm_open_count(struct mapped_device *md)
 486{
 487        return atomic_read(&md->open_count);
 488}
 489
 490/*
 491 * Guarantees nothing is using the device before it's deleted.
 492 */
 493int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 494{
 495        int r = 0;
 496
 497        spin_lock(&_minor_lock);
 498
 499        if (dm_open_count(md)) {
 500                r = -EBUSY;
 501                if (mark_deferred)
 502                        set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 503        } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 504                r = -EEXIST;
 505        else
 506                set_bit(DMF_DELETING, &md->flags);
 507
 508        spin_unlock(&_minor_lock);
 509
 510        return r;
 511}
 512
 513int dm_cancel_deferred_remove(struct mapped_device *md)
 514{
 515        int r = 0;
 516
 517        spin_lock(&_minor_lock);
 518
 519        if (test_bit(DMF_DELETING, &md->flags))
 520                r = -EBUSY;
 521        else
 522                clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 523
 524        spin_unlock(&_minor_lock);
 525
 526        return r;
 527}
 528
 529static void do_deferred_remove(struct work_struct *w)
 530{
 531        dm_deferred_remove();
 532}
 533
 534sector_t dm_get_size(struct mapped_device *md)
 535{
 536        return get_capacity(md->disk);
 537}
 538
 539struct request_queue *dm_get_md_queue(struct mapped_device *md)
 540{
 541        return md->queue;
 542}
 543
 544struct dm_stats *dm_get_stats(struct mapped_device *md)
 545{
 546        return &md->stats;
 547}
 548
 549static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 550{
 551        struct mapped_device *md = bdev->bd_disk->private_data;
 552
 553        return dm_get_geometry(md, geo);
 554}
 555
 556static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 557                        unsigned int cmd, unsigned long arg)
 558{
 559        struct mapped_device *md = bdev->bd_disk->private_data;
 560        int srcu_idx;
 561        struct dm_table *map;
 562        struct dm_target *tgt;
 563        int r = -ENOTTY;
 564
 565retry:
 566        map = dm_get_live_table(md, &srcu_idx);
 567
 568        if (!map || !dm_table_get_size(map))
 569                goto out;
 570
 571        /* We only support devices that have a single target */
 572        if (dm_table_get_num_targets(map) != 1)
 573                goto out;
 574
 575        tgt = dm_table_get_target(map, 0);
 576        if (!tgt->type->ioctl)
 577                goto out;
 578
 579        if (dm_suspended_md(md)) {
 580                r = -EAGAIN;
 581                goto out;
 582        }
 583
 584        r = tgt->type->ioctl(tgt, cmd, arg);
 585
 586out:
 587        dm_put_live_table(md, srcu_idx);
 588
 589        if (r == -ENOTCONN) {
 590                msleep(10);
 591                goto retry;
 592        }
 593
 594        return r;
 595}
 596
 597static struct dm_io *alloc_io(struct mapped_device *md)
 598{
 599        return mempool_alloc(md->io_pool, GFP_NOIO);
 600}
 601
 602static void free_io(struct mapped_device *md, struct dm_io *io)
 603{
 604        mempool_free(io, md->io_pool);
 605}
 606
 607static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
 608{
 609        bio_put(&tio->clone);
 610}
 611
 612static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
 613                                            gfp_t gfp_mask)
 614{
 615        return mempool_alloc(md->io_pool, gfp_mask);
 616}
 617
 618static void free_rq_tio(struct dm_rq_target_io *tio)
 619{
 620        mempool_free(tio, tio->md->io_pool);
 621}
 622
 623static struct request *alloc_clone_request(struct mapped_device *md,
 624                                           gfp_t gfp_mask)
 625{
 626        return mempool_alloc(md->rq_pool, gfp_mask);
 627}
 628
 629static void free_clone_request(struct mapped_device *md, struct request *rq)
 630{
 631        mempool_free(rq, md->rq_pool);
 632}
 633
 634static int md_in_flight(struct mapped_device *md)
 635{
 636        return atomic_read(&md->pending[READ]) +
 637               atomic_read(&md->pending[WRITE]);
 638}
 639
 640static void start_io_acct(struct dm_io *io)
 641{
 642        struct mapped_device *md = io->md;
 643        struct bio *bio = io->bio;
 644        int cpu;
 645        int rw = bio_data_dir(bio);
 646
 647        io->start_time = jiffies;
 648
 649        cpu = part_stat_lock();
 650        part_round_stats(cpu, &dm_disk(md)->part0);
 651        part_stat_unlock();
 652        atomic_set(&dm_disk(md)->part0.in_flight[rw],
 653                atomic_inc_return(&md->pending[rw]));
 654
 655        if (unlikely(dm_stats_used(&md->stats)))
 656                dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
 657                                    bio_sectors(bio), false, 0, &io->stats_aux);
 658}
 659
 660static void end_io_acct(struct dm_io *io)
 661{
 662        struct mapped_device *md = io->md;
 663        struct bio *bio = io->bio;
 664        unsigned long duration = jiffies - io->start_time;
 665        int pending;
 666        int rw = bio_data_dir(bio);
 667
 668        generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
 669
 670        if (unlikely(dm_stats_used(&md->stats)))
 671                dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
 672                                    bio_sectors(bio), true, duration, &io->stats_aux);
 673
 674        /*
 675         * After this is decremented the bio must not be touched if it is
 676         * a flush.
 677         */
 678        pending = atomic_dec_return(&md->pending[rw]);
 679        atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 680        pending += atomic_read(&md->pending[rw^0x1]);
 681
 682        /* nudge anyone waiting on suspend queue */
 683        if (!pending)
 684                wake_up(&md->wait);
 685}
 686
 687/*
 688 * Add the bio to the list of deferred io.
 689 */
 690static void queue_io(struct mapped_device *md, struct bio *bio)
 691{
 692        unsigned long flags;
 693
 694        spin_lock_irqsave(&md->deferred_lock, flags);
 695        bio_list_add(&md->deferred, bio);
 696        spin_unlock_irqrestore(&md->deferred_lock, flags);
 697        queue_work(md->wq, &md->work);
 698}
 699
 700/*
 701 * Everyone (including functions in this file), should use this
 702 * function to access the md->map field, and make sure they call
 703 * dm_put_live_table() when finished.
 704 */
 705struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 706{
 707        *srcu_idx = srcu_read_lock(&md->io_barrier);
 708
 709        return srcu_dereference(md->map, &md->io_barrier);
 710}
 711
 712void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 713{
 714        srcu_read_unlock(&md->io_barrier, srcu_idx);
 715}
 716
 717void dm_sync_table(struct mapped_device *md)
 718{
 719        synchronize_srcu(&md->io_barrier);
 720        synchronize_rcu_expedited();
 721}
 722
 723/*
 724 * A fast alternative to dm_get_live_table/dm_put_live_table.
 725 * The caller must not block between these two functions.
 726 */
 727static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 728{
 729        rcu_read_lock();
 730        return rcu_dereference(md->map);
 731}
 732
 733static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 734{
 735        rcu_read_unlock();
 736}
 737
 738/*
 739 * Open a table device so we can use it as a map destination.
 740 */
 741static int open_table_device(struct table_device *td, dev_t dev,
 742                             struct mapped_device *md)
 743{
 744        static char *_claim_ptr = "I belong to device-mapper";
 745        struct block_device *bdev;
 746
 747        int r;
 748
 749        BUG_ON(td->dm_dev.bdev);
 750
 751        bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 752        if (IS_ERR(bdev))
 753                return PTR_ERR(bdev);
 754
 755        r = bd_link_disk_holder(bdev, dm_disk(md));
 756        if (r) {
 757                blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 758                return r;
 759        }
 760
 761        td->dm_dev.bdev = bdev;
 762        return 0;
 763}
 764
 765/*
 766 * Close a table device that we've been using.
 767 */
 768static void close_table_device(struct table_device *td, struct mapped_device *md)
 769{
 770        if (!td->dm_dev.bdev)
 771                return;
 772
 773        bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 774        blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 775        td->dm_dev.bdev = NULL;
 776}
 777
 778static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 779                                              fmode_t mode) {
 780        struct table_device *td;
 781
 782        list_for_each_entry(td, l, list)
 783                if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 784                        return td;
 785
 786        return NULL;
 787}
 788
 789int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 790                        struct dm_dev **result) {
 791        int r;
 792        struct table_device *td;
 793
 794        mutex_lock(&md->table_devices_lock);
 795        td = find_table_device(&md->table_devices, dev, mode);
 796        if (!td) {
 797                td = kmalloc(sizeof(*td), GFP_KERNEL);
 798                if (!td) {
 799                        mutex_unlock(&md->table_devices_lock);
 800                        return -ENOMEM;
 801                }
 802
 803                td->dm_dev.mode = mode;
 804                td->dm_dev.bdev = NULL;
 805
 806                if ((r = open_table_device(td, dev, md))) {
 807                        mutex_unlock(&md->table_devices_lock);
 808                        kfree(td);
 809                        return r;
 810                }
 811
 812                format_dev_t(td->dm_dev.name, dev);
 813
 814                atomic_set(&td->count, 0);
 815                list_add(&td->list, &md->table_devices);
 816        }
 817        atomic_inc(&td->count);
 818        mutex_unlock(&md->table_devices_lock);
 819
 820        *result = &td->dm_dev;
 821        return 0;
 822}
 823EXPORT_SYMBOL_GPL(dm_get_table_device);
 824
 825void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 826{
 827        struct table_device *td = container_of(d, struct table_device, dm_dev);
 828
 829        mutex_lock(&md->table_devices_lock);
 830        if (atomic_dec_and_test(&td->count)) {
 831                close_table_device(td, md);
 832                list_del(&td->list);
 833                kfree(td);
 834        }
 835        mutex_unlock(&md->table_devices_lock);
 836}
 837EXPORT_SYMBOL(dm_put_table_device);
 838
 839static void free_table_devices(struct list_head *devices)
 840{
 841        struct list_head *tmp, *next;
 842
 843        list_for_each_safe(tmp, next, devices) {
 844                struct table_device *td = list_entry(tmp, struct table_device, list);
 845
 846                DMWARN("dm_destroy: %s still exists with %d references",
 847                       td->dm_dev.name, atomic_read(&td->count));
 848                kfree(td);
 849        }
 850}
 851
 852/*
 853 * Get the geometry associated with a dm device
 854 */
 855int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 856{
 857        *geo = md->geometry;
 858
 859        return 0;
 860}
 861
 862/*
 863 * Set the geometry of a device.
 864 */
 865int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 866{
 867        sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 868
 869        if (geo->start > sz) {
 870                DMWARN("Start sector is beyond the geometry limits.");
 871                return -EINVAL;
 872        }
 873
 874        md->geometry = *geo;
 875
 876        return 0;
 877}
 878
 879/*-----------------------------------------------------------------
 880 * CRUD START:
 881 *   A more elegant soln is in the works that uses the queue
 882 *   merge fn, unfortunately there are a couple of changes to
 883 *   the block layer that I want to make for this.  So in the
 884 *   interests of getting something for people to use I give
 885 *   you this clearly demarcated crap.
 886 *---------------------------------------------------------------*/
 887
 888static int __noflush_suspending(struct mapped_device *md)
 889{
 890        return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 891}
 892
 893/*
 894 * Decrements the number of outstanding ios that a bio has been
 895 * cloned into, completing the original io if necc.
 896 */
 897static void dec_pending(struct dm_io *io, int error)
 898{
 899        unsigned long flags;
 900        int io_error;
 901        struct bio *bio;
 902        struct mapped_device *md = io->md;
 903
 904        /* Push-back supersedes any I/O errors */
 905        if (unlikely(error)) {
 906                spin_lock_irqsave(&io->endio_lock, flags);
 907                if (!(io->error > 0 && __noflush_suspending(md)))
 908                        io->error = error;
 909                spin_unlock_irqrestore(&io->endio_lock, flags);
 910        }
 911
 912        if (atomic_dec_and_test(&io->io_count)) {
 913                if (io->error == DM_ENDIO_REQUEUE) {
 914                        /*
 915                         * Target requested pushing back the I/O.
 916                         */
 917                        spin_lock_irqsave(&md->deferred_lock, flags);
 918                        if (__noflush_suspending(md))
 919                                bio_list_add_head(&md->deferred, io->bio);
 920                        else
 921                                /* noflush suspend was interrupted. */
 922                                io->error = -EIO;
 923                        spin_unlock_irqrestore(&md->deferred_lock, flags);
 924                }
 925
 926                io_error = io->error;
 927                bio = io->bio;
 928                end_io_acct(io);
 929                free_io(md, io);
 930
 931                if (io_error == DM_ENDIO_REQUEUE)
 932                        return;
 933
 934                if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
 935                        /*
 936                         * Preflush done for flush with data, reissue
 937                         * without REQ_FLUSH.
 938                         */
 939                        bio->bi_rw &= ~REQ_FLUSH;
 940                        queue_io(md, bio);
 941                } else {
 942                        /* done with normal IO or empty flush */
 943                        trace_block_bio_complete(md->queue, bio, io_error);
 944                        bio_endio(bio, io_error);
 945                }
 946        }
 947}
 948
 949static void disable_write_same(struct mapped_device *md)
 950{
 951        struct queue_limits *limits = dm_get_queue_limits(md);
 952
 953        /* device doesn't really support WRITE SAME, disable it */
 954        limits->max_write_same_sectors = 0;
 955}
 956
 957static void clone_endio(struct bio *bio, int error)
 958{
 959        int r = error;
 960        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 961        struct dm_io *io = tio->io;
 962        struct mapped_device *md = tio->io->md;
 963        dm_endio_fn endio = tio->ti->type->end_io;
 964
 965        if (!bio_flagged(bio, BIO_UPTODATE) && !error)
 966                error = -EIO;
 967
 968        if (endio) {
 969                r = endio(tio->ti, bio, error);
 970                if (r < 0 || r == DM_ENDIO_REQUEUE)
 971                        /*
 972                         * error and requeue request are handled
 973                         * in dec_pending().
 974                         */
 975                        error = r;
 976                else if (r == DM_ENDIO_INCOMPLETE)
 977                        /* The target will handle the io */
 978                        return;
 979                else if (r) {
 980                        DMWARN("unimplemented target endio return value: %d", r);
 981                        BUG();
 982                }
 983        }
 984
 985        if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
 986                     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
 987                disable_write_same(md);
 988
 989        free_tio(md, tio);
 990        dec_pending(io, error);
 991}
 992
 993/*
 994 * Partial completion handling for request-based dm
 995 */
 996static void end_clone_bio(struct bio *clone, int error)
 997{
 998        struct dm_rq_clone_bio_info *info =
 999                container_of(clone, struct dm_rq_clone_bio_info, clone);
1000        struct dm_rq_target_io *tio = info->tio;
1001        struct bio *bio = info->orig;
1002        unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1003
1004        bio_put(clone);
1005
1006        if (tio->error)
1007                /*
1008                 * An error has already been detected on the request.
1009                 * Once error occurred, just let clone->end_io() handle
1010                 * the remainder.
1011                 */
1012                return;
1013        else if (error) {
1014                /*
1015                 * Don't notice the error to the upper layer yet.
1016                 * The error handling decision is made by the target driver,
1017                 * when the request is completed.
1018                 */
1019                tio->error = error;
1020                return;
1021        }
1022
1023        /*
1024         * I/O for the bio successfully completed.
1025         * Notice the data completion to the upper layer.
1026         */
1027
1028        /*
1029         * bios are processed from the head of the list.
1030         * So the completing bio should always be rq->bio.
1031         * If it's not, something wrong is happening.
1032         */
1033        if (tio->orig->bio != bio)
1034                DMERR("bio completion is going in the middle of the request");
1035
1036        /*
1037         * Update the original request.
1038         * Do not use blk_end_request() here, because it may complete
1039         * the original request before the clone, and break the ordering.
1040         */
1041        blk_update_request(tio->orig, 0, nr_bytes);
1042}
1043
1044static struct dm_rq_target_io *tio_from_request(struct request *rq)
1045{
1046        return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1047}
1048
1049/*
1050 * Don't touch any member of the md after calling this function because
1051 * the md may be freed in dm_put() at the end of this function.
1052 * Or do dm_get() before calling this function and dm_put() later.
1053 */
1054static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1055{
1056        int nr_requests_pending;
1057
1058        atomic_dec(&md->pending[rw]);
1059
1060        /* nudge anyone waiting on suspend queue */
1061        nr_requests_pending = md_in_flight(md);
1062        if (!nr_requests_pending)
1063                wake_up(&md->wait);
1064
1065        /*
1066         * Run this off this callpath, as drivers could invoke end_io while
1067         * inside their request_fn (and holding the queue lock). Calling
1068         * back into ->request_fn() could deadlock attempting to grab the
1069         * queue lock again.
1070         */
1071        if (run_queue) {
1072                if (md->queue->mq_ops)
1073                        blk_mq_run_hw_queues(md->queue, true);
1074                else if (!nr_requests_pending ||
1075                         (nr_requests_pending >= md->queue->nr_congestion_on))
1076                        blk_run_queue_async(md->queue);
1077        }
1078
1079        /*
1080         * dm_put() must be at the end of this function. See the comment above
1081         */
1082        dm_put(md);
1083}
1084
1085static void free_rq_clone(struct request *clone)
1086{
1087        struct dm_rq_target_io *tio = clone->end_io_data;
1088        struct mapped_device *md = tio->md;
1089
1090        blk_rq_unprep_clone(clone);
1091
1092        if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1093                /* stacked on blk-mq queue(s) */
1094                tio->ti->type->release_clone_rq(clone);
1095        else if (!md->queue->mq_ops)
1096                /* request_fn queue stacked on request_fn queue(s) */
1097                free_clone_request(md, clone);
1098        /*
1099         * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1100         * no need to call free_clone_request() because we leverage blk-mq by
1101         * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1102         */
1103
1104        if (!md->queue->mq_ops)
1105                free_rq_tio(tio);
1106}
1107
1108/*
1109 * Complete the clone and the original request.
1110 * Must be called without clone's queue lock held,
1111 * see end_clone_request() for more details.
1112 */
1113static void dm_end_request(struct request *clone, int error)
1114{
1115        int rw = rq_data_dir(clone);
1116        struct dm_rq_target_io *tio = clone->end_io_data;
1117        struct mapped_device *md = tio->md;
1118        struct request *rq = tio->orig;
1119
1120        if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1121                rq->errors = clone->errors;
1122                rq->resid_len = clone->resid_len;
1123
1124                if (rq->sense)
1125                        /*
1126                         * We are using the sense buffer of the original
1127                         * request.
1128                         * So setting the length of the sense data is enough.
1129                         */
1130                        rq->sense_len = clone->sense_len;
1131        }
1132
1133        free_rq_clone(clone);
1134        if (!rq->q->mq_ops)
1135                blk_end_request_all(rq, error);
1136        else
1137                blk_mq_end_request(rq, error);
1138        rq_completed(md, rw, true);
1139}
1140
1141static void dm_unprep_request(struct request *rq)
1142{
1143        struct dm_rq_target_io *tio = tio_from_request(rq);
1144        struct request *clone = tio->clone;
1145
1146        if (!rq->q->mq_ops) {
1147                rq->special = NULL;
1148                rq->cmd_flags &= ~REQ_DONTPREP;
1149        }
1150
1151        if (clone)
1152                free_rq_clone(clone);
1153}
1154
1155/*
1156 * Requeue the original request of a clone.
1157 */
1158static void old_requeue_request(struct request *rq)
1159{
1160        struct request_queue *q = rq->q;
1161        unsigned long flags;
1162
1163        spin_lock_irqsave(q->queue_lock, flags);
1164        blk_requeue_request(q, rq);
1165        blk_run_queue_async(q);
1166        spin_unlock_irqrestore(q->queue_lock, flags);
1167}
1168
1169static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1170                                                 struct request *rq)
1171{
1172        int rw = rq_data_dir(rq);
1173
1174        dm_unprep_request(rq);
1175
1176        if (!rq->q->mq_ops)
1177                old_requeue_request(rq);
1178        else {
1179                blk_mq_requeue_request(rq);
1180                blk_mq_kick_requeue_list(rq->q);
1181        }
1182
1183        rq_completed(md, rw, false);
1184}
1185
1186static void dm_requeue_unmapped_request(struct request *clone)
1187{
1188        struct dm_rq_target_io *tio = clone->end_io_data;
1189
1190        dm_requeue_unmapped_original_request(tio->md, tio->orig);
1191}
1192
1193static void old_stop_queue(struct request_queue *q)
1194{
1195        unsigned long flags;
1196
1197        if (blk_queue_stopped(q))
1198                return;
1199
1200        spin_lock_irqsave(q->queue_lock, flags);
1201        blk_stop_queue(q);
1202        spin_unlock_irqrestore(q->queue_lock, flags);
1203}
1204
1205static void stop_queue(struct request_queue *q)
1206{
1207        if (!q->mq_ops)
1208                old_stop_queue(q);
1209        else
1210                blk_mq_stop_hw_queues(q);
1211}
1212
1213static void old_start_queue(struct request_queue *q)
1214{
1215        unsigned long flags;
1216
1217        spin_lock_irqsave(q->queue_lock, flags);
1218        if (blk_queue_stopped(q))
1219                blk_start_queue(q);
1220        spin_unlock_irqrestore(q->queue_lock, flags);
1221}
1222
1223static void start_queue(struct request_queue *q)
1224{
1225        if (!q->mq_ops)
1226                old_start_queue(q);
1227        else
1228                blk_mq_start_stopped_hw_queues(q, true);
1229}
1230
1231static void dm_done(struct request *clone, int error, bool mapped)
1232{
1233        int r = error;
1234        struct dm_rq_target_io *tio = clone->end_io_data;
1235        dm_request_endio_fn rq_end_io = NULL;
1236
1237        if (tio->ti) {
1238                rq_end_io = tio->ti->type->rq_end_io;
1239
1240                if (mapped && rq_end_io)
1241                        r = rq_end_io(tio->ti, clone, error, &tio->info);
1242        }
1243
1244        if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1245                     !clone->q->limits.max_write_same_sectors))
1246                disable_write_same(tio->md);
1247
1248        if (r <= 0)
1249                /* The target wants to complete the I/O */
1250                dm_end_request(clone, r);
1251        else if (r == DM_ENDIO_INCOMPLETE)
1252                /* The target will handle the I/O */
1253                return;
1254        else if (r == DM_ENDIO_REQUEUE)
1255                /* The target wants to requeue the I/O */
1256                dm_requeue_unmapped_request(clone);
1257        else {
1258                DMWARN("unimplemented target endio return value: %d", r);
1259                BUG();
1260        }
1261}
1262
1263/*
1264 * Request completion handler for request-based dm
1265 */
1266static void dm_softirq_done(struct request *rq)
1267{
1268        bool mapped = true;
1269        struct dm_rq_target_io *tio = tio_from_request(rq);
1270        struct request *clone = tio->clone;
1271        int rw;
1272
1273        if (!clone) {
1274                rw = rq_data_dir(rq);
1275                if (!rq->q->mq_ops) {
1276                        blk_end_request_all(rq, tio->error);
1277                        rq_completed(tio->md, rw, false);
1278                        free_rq_tio(tio);
1279                } else {
1280                        blk_mq_end_request(rq, tio->error);
1281                        rq_completed(tio->md, rw, false);
1282                }
1283                return;
1284        }
1285
1286        if (rq->cmd_flags & REQ_FAILED)
1287                mapped = false;
1288
1289        dm_done(clone, tio->error, mapped);
1290}
1291
1292/*
1293 * Complete the clone and the original request with the error status
1294 * through softirq context.
1295 */
1296static void dm_complete_request(struct request *rq, int error)
1297{
1298        struct dm_rq_target_io *tio = tio_from_request(rq);
1299
1300        tio->error = error;
1301        blk_complete_request(rq);
1302}
1303
1304/*
1305 * Complete the not-mapped clone and the original request with the error status
1306 * through softirq context.
1307 * Target's rq_end_io() function isn't called.
1308 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1309 */
1310static void dm_kill_unmapped_request(struct request *rq, int error)
1311{
1312        rq->cmd_flags |= REQ_FAILED;
1313        dm_complete_request(rq, error);
1314}
1315
1316/*
1317 * Called with the clone's queue lock held (for non-blk-mq)
1318 */
1319static void end_clone_request(struct request *clone, int error)
1320{
1321        struct dm_rq_target_io *tio = clone->end_io_data;
1322
1323        if (!clone->q->mq_ops) {
1324                /*
1325                 * For just cleaning up the information of the queue in which
1326                 * the clone was dispatched.
1327                 * The clone is *NOT* freed actually here because it is alloced
1328                 * from dm own mempool (REQ_ALLOCED isn't set).
1329                 */
1330                __blk_put_request(clone->q, clone);
1331        }
1332
1333        /*
1334         * Actual request completion is done in a softirq context which doesn't
1335         * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1336         *     - another request may be submitted by the upper level driver
1337         *       of the stacking during the completion
1338         *     - the submission which requires queue lock may be done
1339         *       against this clone's queue
1340         */
1341        dm_complete_request(tio->orig, error);
1342}
1343
1344/*
1345 * Return maximum size of I/O possible at the supplied sector up to the current
1346 * target boundary.
1347 */
1348static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1349{
1350        sector_t target_offset = dm_target_offset(ti, sector);
1351
1352        return ti->len - target_offset;
1353}
1354
1355static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1356{
1357        sector_t len = max_io_len_target_boundary(sector, ti);
1358        sector_t offset, max_len;
1359
1360        /*
1361         * Does the target need to split even further?
1362         */
1363        if (ti->max_io_len) {
1364                offset = dm_target_offset(ti, sector);
1365                if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1366                        max_len = sector_div(offset, ti->max_io_len);
1367                else
1368                        max_len = offset & (ti->max_io_len - 1);
1369                max_len = ti->max_io_len - max_len;
1370
1371                if (len > max_len)
1372                        len = max_len;
1373        }
1374
1375        return len;
1376}
1377
1378int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1379{
1380        if (len > UINT_MAX) {
1381                DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1382                      (unsigned long long)len, UINT_MAX);
1383                ti->error = "Maximum size of target IO is too large";
1384                return -EINVAL;
1385        }
1386
1387        ti->max_io_len = (uint32_t) len;
1388
1389        return 0;
1390}
1391EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1392
1393/*
1394 * A target may call dm_accept_partial_bio only from the map routine.  It is
1395 * allowed for all bio types except REQ_FLUSH.
1396 *
1397 * dm_accept_partial_bio informs the dm that the target only wants to process
1398 * additional n_sectors sectors of the bio and the rest of the data should be
1399 * sent in a next bio.
1400 *
1401 * A diagram that explains the arithmetics:
1402 * +--------------------+---------------+-------+
1403 * |         1          |       2       |   3   |
1404 * +--------------------+---------------+-------+
1405 *
1406 * <-------------- *tio->len_ptr --------------->
1407 *                      <------- bi_size ------->
1408 *                      <-- n_sectors -->
1409 *
1410 * Region 1 was already iterated over with bio_advance or similar function.
1411 *      (it may be empty if the target doesn't use bio_advance)
1412 * Region 2 is the remaining bio size that the target wants to process.
1413 *      (it may be empty if region 1 is non-empty, although there is no reason
1414 *       to make it empty)
1415 * The target requires that region 3 is to be sent in the next bio.
1416 *
1417 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1418 * the partially processed part (the sum of regions 1+2) must be the same for all
1419 * copies of the bio.
1420 */
1421void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1422{
1423        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1424        unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1425        BUG_ON(bio->bi_rw & REQ_FLUSH);
1426        BUG_ON(bi_size > *tio->len_ptr);
1427        BUG_ON(n_sectors > bi_size);
1428        *tio->len_ptr -= bi_size - n_sectors;
1429        bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1430}
1431EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1432
1433static void __map_bio(struct dm_target_io *tio)
1434{
1435        int r;
1436        sector_t sector;
1437        struct mapped_device *md;
1438        struct bio *clone = &tio->clone;
1439        struct dm_target *ti = tio->ti;
1440
1441        clone->bi_end_io = clone_endio;
1442
1443        /*
1444         * Map the clone.  If r == 0 we don't need to do
1445         * anything, the target has assumed ownership of
1446         * this io.
1447         */
1448        atomic_inc(&tio->io->io_count);
1449        sector = clone->bi_iter.bi_sector;
1450        r = ti->type->map(ti, clone);
1451        if (r == DM_MAPIO_REMAPPED) {
1452                /* the bio has been remapped so dispatch it */
1453
1454                trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1455                                      tio->io->bio->bi_bdev->bd_dev, sector);
1456
1457                generic_make_request(clone);
1458        } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1459                /* error the io and bail out, or requeue it if needed */
1460                md = tio->io->md;
1461                dec_pending(tio->io, r);
1462                free_tio(md, tio);
1463        } else if (r) {
1464                DMWARN("unimplemented target map return value: %d", r);
1465                BUG();
1466        }
1467}
1468
1469struct clone_info {
1470        struct mapped_device *md;
1471        struct dm_table *map;
1472        struct bio *bio;
1473        struct dm_io *io;
1474        sector_t sector;
1475        unsigned sector_count;
1476};
1477
1478static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1479{
1480        bio->bi_iter.bi_sector = sector;
1481        bio->bi_iter.bi_size = to_bytes(len);
1482}
1483
1484/*
1485 * Creates a bio that consists of range of complete bvecs.
1486 */
1487static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1488                      sector_t sector, unsigned len)
1489{
1490        struct bio *clone = &tio->clone;
1491
1492        __bio_clone_fast(clone, bio);
1493
1494        if (bio_integrity(bio))
1495                bio_integrity_clone(clone, bio, GFP_NOIO);
1496
1497        bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1498        clone->bi_iter.bi_size = to_bytes(len);
1499
1500        if (bio_integrity(bio))
1501                bio_integrity_trim(clone, 0, len);
1502}
1503
1504static struct dm_target_io *alloc_tio(struct clone_info *ci,
1505                                      struct dm_target *ti,
1506                                      unsigned target_bio_nr)
1507{
1508        struct dm_target_io *tio;
1509        struct bio *clone;
1510
1511        clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1512        tio = container_of(clone, struct dm_target_io, clone);
1513
1514        tio->io = ci->io;
1515        tio->ti = ti;
1516        tio->target_bio_nr = target_bio_nr;
1517
1518        return tio;
1519}
1520
1521static void __clone_and_map_simple_bio(struct clone_info *ci,
1522                                       struct dm_target *ti,
1523                                       unsigned target_bio_nr, unsigned *len)
1524{
1525        struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1526        struct bio *clone = &tio->clone;
1527
1528        tio->len_ptr = len;
1529
1530        __bio_clone_fast(clone, ci->bio);
1531        if (len)
1532                bio_setup_sector(clone, ci->sector, *len);
1533
1534        __map_bio(tio);
1535}
1536
1537static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1538                                  unsigned num_bios, unsigned *len)
1539{
1540        unsigned target_bio_nr;
1541
1542        for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1543                __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1544}
1545
1546static int __send_empty_flush(struct clone_info *ci)
1547{
1548        unsigned target_nr = 0;
1549        struct dm_target *ti;
1550
1551        BUG_ON(bio_has_data(ci->bio));
1552        while ((ti = dm_table_get_target(ci->map, target_nr++)))
1553                __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1554
1555        return 0;
1556}
1557
1558static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1559                                     sector_t sector, unsigned *len)
1560{
1561        struct bio *bio = ci->bio;
1562        struct dm_target_io *tio;
1563        unsigned target_bio_nr;
1564        unsigned num_target_bios = 1;
1565
1566        /*
1567         * Does the target want to receive duplicate copies of the bio?
1568         */
1569        if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1570                num_target_bios = ti->num_write_bios(ti, bio);
1571
1572        for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1573                tio = alloc_tio(ci, ti, target_bio_nr);
1574                tio->len_ptr = len;
1575                clone_bio(tio, bio, sector, *len);
1576                __map_bio(tio);
1577        }
1578}
1579
1580typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1581
1582static unsigned get_num_discard_bios(struct dm_target *ti)
1583{
1584        return ti->num_discard_bios;
1585}
1586
1587static unsigned get_num_write_same_bios(struct dm_target *ti)
1588{
1589        return ti->num_write_same_bios;
1590}
1591
1592typedef bool (*is_split_required_fn)(struct dm_target *ti);
1593
1594static bool is_split_required_for_discard(struct dm_target *ti)
1595{
1596        return ti->split_discard_bios;
1597}
1598
1599static int __send_changing_extent_only(struct clone_info *ci,
1600                                       get_num_bios_fn get_num_bios,
1601                                       is_split_required_fn is_split_required)
1602{
1603        struct dm_target *ti;
1604        unsigned len;
1605        unsigned num_bios;
1606
1607        do {
1608                ti = dm_table_find_target(ci->map, ci->sector);
1609                if (!dm_target_is_valid(ti))
1610                        return -EIO;
1611
1612                /*
1613                 * Even though the device advertised support for this type of
1614                 * request, that does not mean every target supports it, and
1615                 * reconfiguration might also have changed that since the
1616                 * check was performed.
1617                 */
1618                num_bios = get_num_bios ? get_num_bios(ti) : 0;
1619                if (!num_bios)
1620                        return -EOPNOTSUPP;
1621
1622                if (is_split_required && !is_split_required(ti))
1623                        len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1624                else
1625                        len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1626
1627                __send_duplicate_bios(ci, ti, num_bios, &len);
1628
1629                ci->sector += len;
1630        } while (ci->sector_count -= len);
1631
1632        return 0;
1633}
1634
1635static int __send_discard(struct clone_info *ci)
1636{
1637        return __send_changing_extent_only(ci, get_num_discard_bios,
1638                                           is_split_required_for_discard);
1639}
1640
1641static int __send_write_same(struct clone_info *ci)
1642{
1643        return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1644}
1645
1646/*
1647 * Select the correct strategy for processing a non-flush bio.
1648 */
1649static int __split_and_process_non_flush(struct clone_info *ci)
1650{
1651        struct bio *bio = ci->bio;
1652        struct dm_target *ti;
1653        unsigned len;
1654
1655        if (unlikely(bio->bi_rw & REQ_DISCARD))
1656                return __send_discard(ci);
1657        else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1658                return __send_write_same(ci);
1659
1660        ti = dm_table_find_target(ci->map, ci->sector);
1661        if (!dm_target_is_valid(ti))
1662                return -EIO;
1663
1664        len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1665
1666        __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1667
1668        ci->sector += len;
1669        ci->sector_count -= len;
1670
1671        return 0;
1672}
1673
1674/*
1675 * Entry point to split a bio into clones and submit them to the targets.
1676 */
1677static void __split_and_process_bio(struct mapped_device *md,
1678                                    struct dm_table *map, struct bio *bio)
1679{
1680        struct clone_info ci;
1681        int error = 0;
1682
1683        if (unlikely(!map)) {
1684                bio_io_error(bio);
1685                return;
1686        }
1687
1688        ci.map = map;
1689        ci.md = md;
1690        ci.io = alloc_io(md);
1691        ci.io->error = 0;
1692        atomic_set(&ci.io->io_count, 1);
1693        ci.io->bio = bio;
1694        ci.io->md = md;
1695        spin_lock_init(&ci.io->endio_lock);
1696        ci.sector = bio->bi_iter.bi_sector;
1697
1698        start_io_acct(ci.io);
1699
1700        if (bio->bi_rw & REQ_FLUSH) {
1701                ci.bio = &ci.md->flush_bio;
1702                ci.sector_count = 0;
1703                error = __send_empty_flush(&ci);
1704                /* dec_pending submits any data associated with flush */
1705        } else {
1706                ci.bio = bio;
1707                ci.sector_count = bio_sectors(bio);
1708                while (ci.sector_count && !error)
1709                        error = __split_and_process_non_flush(&ci);
1710        }
1711
1712        /* drop the extra reference count */
1713        dec_pending(ci.io, error);
1714}
1715/*-----------------------------------------------------------------
1716 * CRUD END
1717 *---------------------------------------------------------------*/
1718
1719static int dm_merge_bvec(struct request_queue *q,
1720                         struct bvec_merge_data *bvm,
1721                         struct bio_vec *biovec)
1722{
1723        struct mapped_device *md = q->queuedata;
1724        struct dm_table *map = dm_get_live_table_fast(md);
1725        struct dm_target *ti;
1726        sector_t max_sectors, max_size = 0;
1727
1728        if (unlikely(!map))
1729                goto out;
1730
1731        ti = dm_table_find_target(map, bvm->bi_sector);
1732        if (!dm_target_is_valid(ti))
1733                goto out;
1734
1735        /*
1736         * Find maximum amount of I/O that won't need splitting
1737         */
1738        max_sectors = min(max_io_len(bvm->bi_sector, ti),
1739                          (sector_t) queue_max_sectors(q));
1740        max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1741
1742        /*
1743         * FIXME: this stop-gap fix _must_ be cleaned up (by passing a sector_t
1744         * to the targets' merge function since it holds sectors not bytes).
1745         * Just doing this as an interim fix for stable@ because the more
1746         * comprehensive cleanup of switching to sector_t will impact every
1747         * DM target that implements a ->merge hook.
1748         */
1749        if (max_size > INT_MAX)
1750                max_size = INT_MAX;
1751
1752        /*
1753         * merge_bvec_fn() returns number of bytes
1754         * it can accept at this offset
1755         * max is precomputed maximal io size
1756         */
1757        if (max_size && ti->type->merge)
1758                max_size = ti->type->merge(ti, bvm, biovec, (int) max_size);
1759        /*
1760         * If the target doesn't support merge method and some of the devices
1761         * provided their merge_bvec method (we know this by looking for the
1762         * max_hw_sectors that dm_set_device_limits may set), then we can't
1763         * allow bios with multiple vector entries.  So always set max_size
1764         * to 0, and the code below allows just one page.
1765         */
1766        else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1767                max_size = 0;
1768
1769out:
1770        dm_put_live_table_fast(md);
1771        /*
1772         * Always allow an entire first page
1773         */
1774        if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1775                max_size = biovec->bv_len;
1776
1777        return max_size;
1778}
1779
1780/*
1781 * The request function that just remaps the bio built up by
1782 * dm_merge_bvec.
1783 */
1784static void dm_make_request(struct request_queue *q, struct bio *bio)
1785{
1786        int rw = bio_data_dir(bio);
1787        struct mapped_device *md = q->queuedata;
1788        int srcu_idx;
1789        struct dm_table *map;
1790
1791        map = dm_get_live_table(md, &srcu_idx);
1792
1793        generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1794
1795        /* if we're suspended, we have to queue this io for later */
1796        if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1797                dm_put_live_table(md, srcu_idx);
1798
1799                if (bio_rw(bio) != READA)
1800                        queue_io(md, bio);
1801                else
1802                        bio_io_error(bio);
1803                return;
1804        }
1805
1806        __split_and_process_bio(md, map, bio);
1807        dm_put_live_table(md, srcu_idx);
1808        return;
1809}
1810
1811int dm_request_based(struct mapped_device *md)
1812{
1813        return blk_queue_stackable(md->queue);
1814}
1815
1816static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1817{
1818        int r;
1819
1820        if (blk_queue_io_stat(clone->q))
1821                clone->cmd_flags |= REQ_IO_STAT;
1822
1823        clone->start_time = jiffies;
1824        r = blk_insert_cloned_request(clone->q, clone);
1825        if (r)
1826                /* must complete clone in terms of original request */
1827                dm_complete_request(rq, r);
1828}
1829
1830static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1831                                 void *data)
1832{
1833        struct dm_rq_target_io *tio = data;
1834        struct dm_rq_clone_bio_info *info =
1835                container_of(bio, struct dm_rq_clone_bio_info, clone);
1836
1837        info->orig = bio_orig;
1838        info->tio = tio;
1839        bio->bi_end_io = end_clone_bio;
1840
1841        return 0;
1842}
1843
1844static int setup_clone(struct request *clone, struct request *rq,
1845                       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1846{
1847        int r;
1848
1849        r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1850                              dm_rq_bio_constructor, tio);
1851        if (r)
1852                return r;
1853
1854        clone->cmd = rq->cmd;
1855        clone->cmd_len = rq->cmd_len;
1856        clone->sense = rq->sense;
1857        clone->end_io = end_clone_request;
1858        clone->end_io_data = tio;
1859
1860        tio->clone = clone;
1861
1862        return 0;
1863}
1864
1865static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1866                                struct dm_rq_target_io *tio, gfp_t gfp_mask)
1867{
1868        /*
1869         * Do not allocate a clone if tio->clone was already set
1870         * (see: dm_mq_queue_rq).
1871         */
1872        bool alloc_clone = !tio->clone;
1873        struct request *clone;
1874
1875        if (alloc_clone) {
1876                clone = alloc_clone_request(md, gfp_mask);
1877                if (!clone)
1878                        return NULL;
1879        } else
1880                clone = tio->clone;
1881
1882        blk_rq_init(NULL, clone);
1883        if (setup_clone(clone, rq, tio, gfp_mask)) {
1884                /* -ENOMEM */
1885                if (alloc_clone)
1886                        free_clone_request(md, clone);
1887                return NULL;
1888        }
1889
1890        return clone;
1891}
1892
1893static void map_tio_request(struct kthread_work *work);
1894
1895static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1896                     struct mapped_device *md)
1897{
1898        tio->md = md;
1899        tio->ti = NULL;
1900        tio->clone = NULL;
1901        tio->orig = rq;
1902        tio->error = 0;
1903        memset(&tio->info, 0, sizeof(tio->info));
1904        if (md->kworker_task)
1905                init_kthread_work(&tio->work, map_tio_request);
1906}
1907
1908static struct dm_rq_target_io *prep_tio(struct request *rq,
1909                                        struct mapped_device *md, gfp_t gfp_mask)
1910{
1911        struct dm_rq_target_io *tio;
1912        int srcu_idx;
1913        struct dm_table *table;
1914
1915        tio = alloc_rq_tio(md, gfp_mask);
1916        if (!tio)
1917                return NULL;
1918
1919        init_tio(tio, rq, md);
1920
1921        table = dm_get_live_table(md, &srcu_idx);
1922        if (!dm_table_mq_request_based(table)) {
1923                if (!clone_rq(rq, md, tio, gfp_mask)) {
1924                        dm_put_live_table(md, srcu_idx);
1925                        free_rq_tio(tio);
1926                        return NULL;
1927                }
1928        }
1929        dm_put_live_table(md, srcu_idx);
1930
1931        return tio;
1932}
1933
1934/*
1935 * Called with the queue lock held.
1936 */
1937static int dm_prep_fn(struct request_queue *q, struct request *rq)
1938{
1939        struct mapped_device *md = q->queuedata;
1940        struct dm_rq_target_io *tio;
1941
1942        if (unlikely(rq->special)) {
1943                DMWARN("Already has something in rq->special.");
1944                return BLKPREP_KILL;
1945        }
1946
1947        tio = prep_tio(rq, md, GFP_ATOMIC);
1948        if (!tio)
1949                return BLKPREP_DEFER;
1950
1951        rq->special = tio;
1952        rq->cmd_flags |= REQ_DONTPREP;
1953
1954        return BLKPREP_OK;
1955}
1956
1957/*
1958 * Returns:
1959 * 0                : the request has been processed
1960 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1961 * < 0              : the request was completed due to failure
1962 */
1963static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1964                       struct mapped_device *md)
1965{
1966        int r;
1967        struct dm_target *ti = tio->ti;
1968        struct request *clone = NULL;
1969
1970        if (tio->clone) {
1971                clone = tio->clone;
1972                r = ti->type->map_rq(ti, clone, &tio->info);
1973        } else {
1974                r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1975                if (r < 0) {
1976                        /* The target wants to complete the I/O */
1977                        dm_kill_unmapped_request(rq, r);
1978                        return r;
1979                }
1980                if (r != DM_MAPIO_REMAPPED)
1981                        return r;
1982                if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1983                        /* -ENOMEM */
1984                        ti->type->release_clone_rq(clone);
1985                        return DM_MAPIO_REQUEUE;
1986                }
1987        }
1988
1989        switch (r) {
1990        case DM_MAPIO_SUBMITTED:
1991                /* The target has taken the I/O to submit by itself later */
1992                break;
1993        case DM_MAPIO_REMAPPED:
1994                /* The target has remapped the I/O so dispatch it */
1995                trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1996                                     blk_rq_pos(rq));
1997                dm_dispatch_clone_request(clone, rq);
1998                break;
1999        case DM_MAPIO_REQUEUE:
2000                /* The target wants to requeue the I/O */
2001                dm_requeue_unmapped_request(clone);
2002                break;
2003        default:
2004                if (r > 0) {
2005                        DMWARN("unimplemented target map return value: %d", r);
2006                        BUG();
2007                }
2008
2009                /* The target wants to complete the I/O */
2010                dm_kill_unmapped_request(rq, r);
2011                return r;
2012        }
2013
2014        return 0;
2015}
2016
2017static void map_tio_request(struct kthread_work *work)
2018{
2019        struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2020        struct request *rq = tio->orig;
2021        struct mapped_device *md = tio->md;
2022
2023        if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2024                dm_requeue_unmapped_original_request(md, rq);
2025}
2026
2027static void dm_start_request(struct mapped_device *md, struct request *orig)
2028{
2029        if (!orig->q->mq_ops)
2030                blk_start_request(orig);
2031        else
2032                blk_mq_start_request(orig);
2033        atomic_inc(&md->pending[rq_data_dir(orig)]);
2034
2035        if (md->seq_rq_merge_deadline_usecs) {
2036                md->last_rq_pos = rq_end_sector(orig);
2037                md->last_rq_rw = rq_data_dir(orig);
2038                md->last_rq_start_time = ktime_get();
2039        }
2040
2041        /*
2042         * Hold the md reference here for the in-flight I/O.
2043         * We can't rely on the reference count by device opener,
2044         * because the device may be closed during the request completion
2045         * when all bios are completed.
2046         * See the comment in rq_completed() too.
2047         */
2048        dm_get(md);
2049}
2050
2051#define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2052
2053ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2054{
2055        return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2056}
2057
2058ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2059                                                     const char *buf, size_t count)
2060{
2061        unsigned deadline;
2062
2063        if (!dm_request_based(md) || md->use_blk_mq)
2064                return count;
2065
2066        if (kstrtouint(buf, 10, &deadline))
2067                return -EINVAL;
2068
2069        if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2070                deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2071
2072        md->seq_rq_merge_deadline_usecs = deadline;
2073
2074        return count;
2075}
2076
2077static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2078{
2079        ktime_t kt_deadline;
2080
2081        if (!md->seq_rq_merge_deadline_usecs)
2082                return false;
2083
2084        kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2085        kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2086
2087        return !ktime_after(ktime_get(), kt_deadline);
2088}
2089
2090/*
2091 * q->request_fn for request-based dm.
2092 * Called with the queue lock held.
2093 */
2094static void dm_request_fn(struct request_queue *q)
2095{
2096        struct mapped_device *md = q->queuedata;
2097        int srcu_idx;
2098        struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2099        struct dm_target *ti;
2100        struct request *rq;
2101        struct dm_rq_target_io *tio;
2102        sector_t pos;
2103
2104        /*
2105         * For suspend, check blk_queue_stopped() and increment
2106         * ->pending within a single queue_lock not to increment the
2107         * number of in-flight I/Os after the queue is stopped in
2108         * dm_suspend().
2109         */
2110        while (!blk_queue_stopped(q)) {
2111                rq = blk_peek_request(q);
2112                if (!rq)
2113                        goto out;
2114
2115                /* always use block 0 to find the target for flushes for now */
2116                pos = 0;
2117                if (!(rq->cmd_flags & REQ_FLUSH))
2118                        pos = blk_rq_pos(rq);
2119
2120                ti = dm_table_find_target(map, pos);
2121                if (!dm_target_is_valid(ti)) {
2122                        /*
2123                         * Must perform setup, that rq_completed() requires,
2124                         * before calling dm_kill_unmapped_request
2125                         */
2126                        DMERR_LIMIT("request attempted access beyond the end of device");
2127                        dm_start_request(md, rq);
2128                        dm_kill_unmapped_request(rq, -EIO);
2129                        continue;
2130                }
2131
2132                if (dm_request_peeked_before_merge_deadline(md) &&
2133                    md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2134                    md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2135                        goto delay_and_out;
2136
2137                if (ti->type->busy && ti->type->busy(ti))
2138                        goto delay_and_out;
2139
2140                dm_start_request(md, rq);
2141
2142                tio = tio_from_request(rq);
2143                /* Establish tio->ti before queuing work (map_tio_request) */
2144                tio->ti = ti;
2145                queue_kthread_work(&md->kworker, &tio->work);
2146                BUG_ON(!irqs_disabled());
2147        }
2148
2149        goto out;
2150
2151delay_and_out:
2152        blk_delay_queue(q, HZ / 100);
2153out:
2154        dm_put_live_table(md, srcu_idx);
2155}
2156
2157static int dm_any_congested(void *congested_data, int bdi_bits)
2158{
2159        int r = bdi_bits;
2160        struct mapped_device *md = congested_data;
2161        struct dm_table *map;
2162
2163        if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2164                map = dm_get_live_table_fast(md);
2165                if (map) {
2166                        /*
2167                         * Request-based dm cares about only own queue for
2168                         * the query about congestion status of request_queue
2169                         */
2170                        if (dm_request_based(md))
2171                                r = md->queue->backing_dev_info.state &
2172                                    bdi_bits;
2173                        else
2174                                r = dm_table_any_congested(map, bdi_bits);
2175                }
2176                dm_put_live_table_fast(md);
2177        }
2178
2179        return r;
2180}
2181
2182/*-----------------------------------------------------------------
2183 * An IDR is used to keep track of allocated minor numbers.
2184 *---------------------------------------------------------------*/
2185static void free_minor(int minor)
2186{
2187        spin_lock(&_minor_lock);
2188        idr_remove(&_minor_idr, minor);
2189        spin_unlock(&_minor_lock);
2190}
2191
2192/*
2193 * See if the device with a specific minor # is free.
2194 */
2195static int specific_minor(int minor)
2196{
2197        int r;
2198
2199        if (minor >= (1 << MINORBITS))
2200                return -EINVAL;
2201
2202        idr_preload(GFP_KERNEL);
2203        spin_lock(&_minor_lock);
2204
2205        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2206
2207        spin_unlock(&_minor_lock);
2208        idr_preload_end();
2209        if (r < 0)
2210                return r == -ENOSPC ? -EBUSY : r;
2211        return 0;
2212}
2213
2214static int next_free_minor(int *minor)
2215{
2216        int r;
2217
2218        idr_preload(GFP_KERNEL);
2219        spin_lock(&_minor_lock);
2220
2221        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2222
2223        spin_unlock(&_minor_lock);
2224        idr_preload_end();
2225        if (r < 0)
2226                return r;
2227        *minor = r;
2228        return 0;
2229}
2230
2231static const struct block_device_operations dm_blk_dops;
2232
2233static void dm_wq_work(struct work_struct *work);
2234
2235static void dm_init_md_queue(struct mapped_device *md)
2236{
2237        /*
2238         * Request-based dm devices cannot be stacked on top of bio-based dm
2239         * devices.  The type of this dm device may not have been decided yet.
2240         * The type is decided at the first table loading time.
2241         * To prevent problematic device stacking, clear the queue flag
2242         * for request stacking support until then.
2243         *
2244         * This queue is new, so no concurrency on the queue_flags.
2245         */
2246        queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2247}
2248
2249static void dm_init_old_md_queue(struct mapped_device *md)
2250{
2251        md->use_blk_mq = false;
2252        dm_init_md_queue(md);
2253
2254        /*
2255         * Initialize aspects of queue that aren't relevant for blk-mq
2256         */
2257        md->queue->queuedata = md;
2258        md->queue->backing_dev_info.congested_fn = dm_any_congested;
2259        md->queue->backing_dev_info.congested_data = md;
2260
2261        blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2262}
2263
2264/*
2265 * Allocate and initialise a blank device with a given minor.
2266 */
2267static struct mapped_device *alloc_dev(int minor)
2268{
2269        int r;
2270        struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2271        void *old_md;
2272
2273        if (!md) {
2274                DMWARN("unable to allocate device, out of memory.");
2275                return NULL;
2276        }
2277
2278        if (!try_module_get(THIS_MODULE))
2279                goto bad_module_get;
2280
2281        /* get a minor number for the dev */
2282        if (minor == DM_ANY_MINOR)
2283                r = next_free_minor(&minor);
2284        else
2285                r = specific_minor(minor);
2286        if (r < 0)
2287                goto bad_minor;
2288
2289        r = init_srcu_struct(&md->io_barrier);
2290        if (r < 0)
2291                goto bad_io_barrier;
2292
2293        md->use_blk_mq = use_blk_mq;
2294        md->type = DM_TYPE_NONE;
2295        mutex_init(&md->suspend_lock);
2296        mutex_init(&md->type_lock);
2297        mutex_init(&md->table_devices_lock);
2298        spin_lock_init(&md->deferred_lock);
2299        atomic_set(&md->holders, 1);
2300        atomic_set(&md->open_count, 0);
2301        atomic_set(&md->event_nr, 0);
2302        atomic_set(&md->uevent_seq, 0);
2303        INIT_LIST_HEAD(&md->uevent_list);
2304        INIT_LIST_HEAD(&md->table_devices);
2305        spin_lock_init(&md->uevent_lock);
2306
2307        md->queue = blk_alloc_queue(GFP_KERNEL);
2308        if (!md->queue)
2309                goto bad_queue;
2310
2311        dm_init_md_queue(md);
2312
2313        md->disk = alloc_disk(1);
2314        if (!md->disk)
2315                goto bad_disk;
2316
2317        atomic_set(&md->pending[0], 0);
2318        atomic_set(&md->pending[1], 0);
2319        init_waitqueue_head(&md->wait);
2320        INIT_WORK(&md->work, dm_wq_work);
2321        init_waitqueue_head(&md->eventq);
2322        init_completion(&md->kobj_holder.completion);
2323        md->kworker_task = NULL;
2324
2325        md->disk->major = _major;
2326        md->disk->first_minor = minor;
2327        md->disk->fops = &dm_blk_dops;
2328        md->disk->queue = md->queue;
2329        md->disk->private_data = md;
2330        sprintf(md->disk->disk_name, "dm-%d", minor);
2331        add_disk(md->disk);
2332        format_dev_t(md->name, MKDEV(_major, minor));
2333
2334        md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2335        if (!md->wq)
2336                goto bad_thread;
2337
2338        md->bdev = bdget_disk(md->disk, 0);
2339        if (!md->bdev)
2340                goto bad_bdev;
2341
2342        bio_init(&md->flush_bio);
2343        md->flush_bio.bi_bdev = md->bdev;
2344        md->flush_bio.bi_rw = WRITE_FLUSH;
2345
2346        dm_stats_init(&md->stats);
2347
2348        /* Populate the mapping, nobody knows we exist yet */
2349        spin_lock(&_minor_lock);
2350        old_md = idr_replace(&_minor_idr, md, minor);
2351        spin_unlock(&_minor_lock);
2352
2353        BUG_ON(old_md != MINOR_ALLOCED);
2354
2355        return md;
2356
2357bad_bdev:
2358        destroy_workqueue(md->wq);
2359bad_thread:
2360        del_gendisk(md->disk);
2361        put_disk(md->disk);
2362bad_disk:
2363        blk_cleanup_queue(md->queue);
2364bad_queue:
2365        cleanup_srcu_struct(&md->io_barrier);
2366bad_io_barrier:
2367        free_minor(minor);
2368bad_minor:
2369        module_put(THIS_MODULE);
2370bad_module_get:
2371        kfree(md);
2372        return NULL;
2373}
2374
2375static void unlock_fs(struct mapped_device *md);
2376
2377static void free_dev(struct mapped_device *md)
2378{
2379        int minor = MINOR(disk_devt(md->disk));
2380
2381        unlock_fs(md);
2382        destroy_workqueue(md->wq);
2383
2384        if (md->kworker_task)
2385                kthread_stop(md->kworker_task);
2386        if (md->io_pool)
2387                mempool_destroy(md->io_pool);
2388        if (md->rq_pool)
2389                mempool_destroy(md->rq_pool);
2390        if (md->bs)
2391                bioset_free(md->bs);
2392
2393        cleanup_srcu_struct(&md->io_barrier);
2394        free_table_devices(&md->table_devices);
2395        dm_stats_cleanup(&md->stats);
2396
2397        spin_lock(&_minor_lock);
2398        md->disk->private_data = NULL;
2399        spin_unlock(&_minor_lock);
2400        if (blk_get_integrity(md->disk))
2401                blk_integrity_unregister(md->disk);
2402        del_gendisk(md->disk);
2403        put_disk(md->disk);
2404        blk_cleanup_queue(md->queue);
2405        if (md->use_blk_mq)
2406                blk_mq_free_tag_set(&md->tag_set);
2407        bdput(md->bdev);
2408        free_minor(minor);
2409
2410        module_put(THIS_MODULE);
2411        kfree(md);
2412}
2413
2414static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2415{
2416        struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2417
2418        if (md->bs) {
2419                /* The md already has necessary mempools. */
2420                if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2421                        /*
2422                         * Reload bioset because front_pad may have changed
2423                         * because a different table was loaded.
2424                         */
2425                        bioset_free(md->bs);
2426                        md->bs = p->bs;
2427                        p->bs = NULL;
2428                }
2429                /*
2430                 * There's no need to reload with request-based dm
2431                 * because the size of front_pad doesn't change.
2432                 * Note for future: If you are to reload bioset,
2433                 * prep-ed requests in the queue may refer
2434                 * to bio from the old bioset, so you must walk
2435                 * through the queue to unprep.
2436                 */
2437                goto out;
2438        }
2439
2440        BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2441
2442        md->io_pool = p->io_pool;
2443        p->io_pool = NULL;
2444        md->rq_pool = p->rq_pool;
2445        p->rq_pool = NULL;
2446        md->bs = p->bs;
2447        p->bs = NULL;
2448
2449out:
2450        /* mempool bind completed, no longer need any mempools in the table */
2451        dm_table_free_md_mempools(t);
2452}
2453
2454/*
2455 * Bind a table to the device.
2456 */
2457static void event_callback(void *context)
2458{
2459        unsigned long flags;
2460        LIST_HEAD(uevents);
2461        struct mapped_device *md = (struct mapped_device *) context;
2462
2463        spin_lock_irqsave(&md->uevent_lock, flags);
2464        list_splice_init(&md->uevent_list, &uevents);
2465        spin_unlock_irqrestore(&md->uevent_lock, flags);
2466
2467        dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2468
2469        atomic_inc(&md->event_nr);
2470        wake_up(&md->eventq);
2471}
2472
2473/*
2474 * Protected by md->suspend_lock obtained by dm_swap_table().
2475 */
2476static void __set_size(struct mapped_device *md, sector_t size)
2477{
2478        set_capacity(md->disk, size);
2479
2480        i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2481}
2482
2483/*
2484 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2485 *
2486 * If this function returns 0, then the device is either a non-dm
2487 * device without a merge_bvec_fn, or it is a dm device that is
2488 * able to split any bios it receives that are too big.
2489 */
2490int dm_queue_merge_is_compulsory(struct request_queue *q)
2491{
2492        struct mapped_device *dev_md;
2493
2494        if (!q->merge_bvec_fn)
2495                return 0;
2496
2497        if (q->make_request_fn == dm_make_request) {
2498                dev_md = q->queuedata;
2499                if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2500                        return 0;
2501        }
2502
2503        return 1;
2504}
2505
2506static int dm_device_merge_is_compulsory(struct dm_target *ti,
2507                                         struct dm_dev *dev, sector_t start,
2508                                         sector_t len, void *data)
2509{
2510        struct block_device *bdev = dev->bdev;
2511        struct request_queue *q = bdev_get_queue(bdev);
2512
2513        return dm_queue_merge_is_compulsory(q);
2514}
2515
2516/*
2517 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2518 * on the properties of the underlying devices.
2519 */
2520static int dm_table_merge_is_optional(struct dm_table *table)
2521{
2522        unsigned i = 0;
2523        struct dm_target *ti;
2524
2525        while (i < dm_table_get_num_targets(table)) {
2526                ti = dm_table_get_target(table, i++);
2527
2528                if (ti->type->iterate_devices &&
2529                    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2530                        return 0;
2531        }
2532
2533        return 1;
2534}
2535
2536/*
2537 * Returns old map, which caller must destroy.
2538 */
2539static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2540                               struct queue_limits *limits)
2541{
2542        struct dm_table *old_map;
2543        struct request_queue *q = md->queue;
2544        sector_t size;
2545        int merge_is_optional;
2546
2547        size = dm_table_get_size(t);
2548
2549        /*
2550         * Wipe any geometry if the size of the table changed.
2551         */
2552        if (size != dm_get_size(md))
2553                memset(&md->geometry, 0, sizeof(md->geometry));
2554
2555        __set_size(md, size);
2556
2557        dm_table_event_callback(t, event_callback, md);
2558
2559        /*
2560         * The queue hasn't been stopped yet, if the old table type wasn't
2561         * for request-based during suspension.  So stop it to prevent
2562         * I/O mapping before resume.
2563         * This must be done before setting the queue restrictions,
2564         * because request-based dm may be run just after the setting.
2565         */
2566        if (dm_table_request_based(t))
2567                stop_queue(q);
2568
2569        __bind_mempools(md, t);
2570
2571        merge_is_optional = dm_table_merge_is_optional(t);
2572
2573        old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2574        rcu_assign_pointer(md->map, t);
2575        md->immutable_target_type = dm_table_get_immutable_target_type(t);
2576
2577        dm_table_set_restrictions(t, q, limits);
2578        if (merge_is_optional)
2579                set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2580        else
2581                clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2582        if (old_map)
2583                dm_sync_table(md);
2584
2585        return old_map;
2586}
2587
2588/*
2589 * Returns unbound table for the caller to free.
2590 */
2591static struct dm_table *__unbind(struct mapped_device *md)
2592{
2593        struct dm_table *map = rcu_dereference_protected(md->map, 1);
2594
2595        if (!map)
2596                return NULL;
2597
2598        dm_table_event_callback(map, NULL, NULL);
2599        RCU_INIT_POINTER(md->map, NULL);
2600        dm_sync_table(md);
2601
2602        return map;
2603}
2604
2605/*
2606 * Constructor for a new device.
2607 */
2608int dm_create(int minor, struct mapped_device **result)
2609{
2610        struct mapped_device *md;
2611
2612        md = alloc_dev(minor);
2613        if (!md)
2614                return -ENXIO;
2615
2616        dm_sysfs_init(md);
2617
2618        *result = md;
2619        return 0;
2620}
2621
2622/*
2623 * Functions to manage md->type.
2624 * All are required to hold md->type_lock.
2625 */
2626void dm_lock_md_type(struct mapped_device *md)
2627{
2628        mutex_lock(&md->type_lock);
2629}
2630
2631void dm_unlock_md_type(struct mapped_device *md)
2632{
2633        mutex_unlock(&md->type_lock);
2634}
2635
2636void dm_set_md_type(struct mapped_device *md, unsigned type)
2637{
2638        BUG_ON(!mutex_is_locked(&md->type_lock));
2639        md->type = type;
2640}
2641
2642unsigned dm_get_md_type(struct mapped_device *md)
2643{
2644        BUG_ON(!mutex_is_locked(&md->type_lock));
2645        return md->type;
2646}
2647
2648struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2649{
2650        return md->immutable_target_type;
2651}
2652
2653/*
2654 * The queue_limits are only valid as long as you have a reference
2655 * count on 'md'.
2656 */
2657struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2658{
2659        BUG_ON(!atomic_read(&md->holders));
2660        return &md->queue->limits;
2661}
2662EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2663
2664static void init_rq_based_worker_thread(struct mapped_device *md)
2665{
2666        /* Initialize the request-based DM worker thread */
2667        init_kthread_worker(&md->kworker);
2668        md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2669                                       "kdmwork-%s", dm_device_name(md));
2670}
2671
2672/*
2673 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2674 */
2675static int dm_init_request_based_queue(struct mapped_device *md)
2676{
2677        struct request_queue *q = NULL;
2678
2679        /* Fully initialize the queue */
2680        q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2681        if (!q)
2682                return -EINVAL;
2683
2684        /* disable dm_request_fn's merge heuristic by default */
2685        md->seq_rq_merge_deadline_usecs = 0;
2686
2687        md->queue = q;
2688        dm_init_old_md_queue(md);
2689        blk_queue_softirq_done(md->queue, dm_softirq_done);
2690        blk_queue_prep_rq(md->queue, dm_prep_fn);
2691
2692        init_rq_based_worker_thread(md);
2693
2694        elv_register_queue(md->queue);
2695
2696        return 0;
2697}
2698
2699static int dm_mq_init_request(void *data, struct request *rq,
2700                              unsigned int hctx_idx, unsigned int request_idx,
2701                              unsigned int numa_node)
2702{
2703        struct mapped_device *md = data;
2704        struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2705
2706        /*
2707         * Must initialize md member of tio, otherwise it won't
2708         * be available in dm_mq_queue_rq.
2709         */
2710        tio->md = md;
2711
2712        return 0;
2713}
2714
2715static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2716                          const struct blk_mq_queue_data *bd)
2717{
2718        struct request *rq = bd->rq;
2719        struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2720        struct mapped_device *md = tio->md;
2721        int srcu_idx;
2722        struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2723        struct dm_target *ti;
2724        sector_t pos;
2725
2726        /* always use block 0 to find the target for flushes for now */
2727        pos = 0;
2728        if (!(rq->cmd_flags & REQ_FLUSH))
2729                pos = blk_rq_pos(rq);
2730
2731        ti = dm_table_find_target(map, pos);
2732        if (!dm_target_is_valid(ti)) {
2733                dm_put_live_table(md, srcu_idx);
2734                DMERR_LIMIT("request attempted access beyond the end of device");
2735                /*
2736                 * Must perform setup, that rq_completed() requires,
2737                 * before returning BLK_MQ_RQ_QUEUE_ERROR
2738                 */
2739                dm_start_request(md, rq);
2740                return BLK_MQ_RQ_QUEUE_ERROR;
2741        }
2742        dm_put_live_table(md, srcu_idx);
2743
2744        if (ti->type->busy && ti->type->busy(ti))
2745                return BLK_MQ_RQ_QUEUE_BUSY;
2746
2747        dm_start_request(md, rq);
2748
2749        /* Init tio using md established in .init_request */
2750        init_tio(tio, rq, md);
2751
2752        /*
2753         * Establish tio->ti before queuing work (map_tio_request)
2754         * or making direct call to map_request().
2755         */
2756        tio->ti = ti;
2757
2758        /* Clone the request if underlying devices aren't blk-mq */
2759        if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2760                /* clone request is allocated at the end of the pdu */
2761                tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2762                (void) clone_rq(rq, md, tio, GFP_ATOMIC);
2763                queue_kthread_work(&md->kworker, &tio->work);
2764        } else {
2765                /* Direct call is fine since .queue_rq allows allocations */
2766                if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2767                        /* Undo dm_start_request() before requeuing */
2768                        rq_completed(md, rq_data_dir(rq), false);
2769                        return BLK_MQ_RQ_QUEUE_BUSY;
2770                }
2771        }
2772
2773        return BLK_MQ_RQ_QUEUE_OK;
2774}
2775
2776static struct blk_mq_ops dm_mq_ops = {
2777        .queue_rq = dm_mq_queue_rq,
2778        .map_queue = blk_mq_map_queue,
2779        .complete = dm_softirq_done,
2780        .init_request = dm_mq_init_request,
2781};
2782
2783static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2784{
2785        unsigned md_type = dm_get_md_type(md);
2786        struct request_queue *q;
2787        int err;
2788
2789        memset(&md->tag_set, 0, sizeof(md->tag_set));
2790        md->tag_set.ops = &dm_mq_ops;
2791        md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2792        md->tag_set.numa_node = NUMA_NO_NODE;
2793        md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2794        md->tag_set.nr_hw_queues = 1;
2795        if (md_type == DM_TYPE_REQUEST_BASED) {
2796                /* make the memory for non-blk-mq clone part of the pdu */
2797                md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2798        } else
2799                md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2800        md->tag_set.driver_data = md;
2801
2802        err = blk_mq_alloc_tag_set(&md->tag_set);
2803        if (err)
2804                return err;
2805
2806        q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2807        if (IS_ERR(q)) {
2808                err = PTR_ERR(q);
2809                goto out_tag_set;
2810        }
2811        md->queue = q;
2812        dm_init_md_queue(md);
2813
2814        /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2815        blk_mq_register_disk(md->disk);
2816
2817        if (md_type == DM_TYPE_REQUEST_BASED)
2818                init_rq_based_worker_thread(md);
2819
2820        return 0;
2821
2822out_tag_set:
2823        blk_mq_free_tag_set(&md->tag_set);
2824        return err;
2825}
2826
2827static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2828{
2829        if (type == DM_TYPE_BIO_BASED)
2830                return type;
2831
2832        return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2833}
2834
2835/*
2836 * Setup the DM device's queue based on md's type
2837 */
2838int dm_setup_md_queue(struct mapped_device *md)
2839{
2840        int r;
2841        unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2842
2843        switch (md_type) {
2844        case DM_TYPE_REQUEST_BASED:
2845                r = dm_init_request_based_queue(md);
2846                if (r) {
2847                        DMWARN("Cannot initialize queue for request-based mapped device");
2848                        return r;
2849                }
2850                break;
2851        case DM_TYPE_MQ_REQUEST_BASED:
2852                r = dm_init_request_based_blk_mq_queue(md);
2853                if (r) {
2854                        DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2855                        return r;
2856                }
2857                break;
2858        case DM_TYPE_BIO_BASED:
2859                dm_init_old_md_queue(md);
2860                blk_queue_make_request(md->queue, dm_make_request);
2861                blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2862                break;
2863        }
2864
2865        return 0;
2866}
2867
2868struct mapped_device *dm_get_md(dev_t dev)
2869{
2870        struct mapped_device *md;
2871        unsigned minor = MINOR(dev);
2872
2873        if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2874                return NULL;
2875
2876        spin_lock(&_minor_lock);
2877
2878        md = idr_find(&_minor_idr, minor);
2879        if (md) {
2880                if ((md == MINOR_ALLOCED ||
2881                     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2882                     dm_deleting_md(md) ||
2883                     test_bit(DMF_FREEING, &md->flags))) {
2884                        md = NULL;
2885                        goto out;
2886                }
2887                dm_get(md);
2888        }
2889
2890out:
2891        spin_unlock(&_minor_lock);
2892
2893        return md;
2894}
2895EXPORT_SYMBOL_GPL(dm_get_md);
2896
2897void *dm_get_mdptr(struct mapped_device *md)
2898{
2899        return md->interface_ptr;
2900}
2901
2902void dm_set_mdptr(struct mapped_device *md, void *ptr)
2903{
2904        md->interface_ptr = ptr;
2905}
2906
2907void dm_get(struct mapped_device *md)
2908{
2909        atomic_inc(&md->holders);
2910        BUG_ON(test_bit(DMF_FREEING, &md->flags));
2911}
2912
2913int dm_hold(struct mapped_device *md)
2914{
2915        spin_lock(&_minor_lock);
2916        if (test_bit(DMF_FREEING, &md->flags)) {
2917                spin_unlock(&_minor_lock);
2918                return -EBUSY;
2919        }
2920        dm_get(md);
2921        spin_unlock(&_minor_lock);
2922        return 0;
2923}
2924EXPORT_SYMBOL_GPL(dm_hold);
2925
2926const char *dm_device_name(struct mapped_device *md)
2927{
2928        return md->name;
2929}
2930EXPORT_SYMBOL_GPL(dm_device_name);
2931
2932static void __dm_destroy(struct mapped_device *md, bool wait)
2933{
2934        struct dm_table *map;
2935        int srcu_idx;
2936
2937        might_sleep();
2938
2939        map = dm_get_live_table(md, &srcu_idx);
2940
2941        spin_lock(&_minor_lock);
2942        idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2943        set_bit(DMF_FREEING, &md->flags);
2944        spin_unlock(&_minor_lock);
2945
2946        if (dm_request_based(md) && md->kworker_task)
2947                flush_kthread_worker(&md->kworker);
2948
2949        /*
2950         * Take suspend_lock so that presuspend and postsuspend methods
2951         * do not race with internal suspend.
2952         */
2953        mutex_lock(&md->suspend_lock);
2954        if (!dm_suspended_md(md)) {
2955                dm_table_presuspend_targets(map);
2956                dm_table_postsuspend_targets(map);
2957        }
2958        mutex_unlock(&md->suspend_lock);
2959
2960        /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2961        dm_put_live_table(md, srcu_idx);
2962
2963        /*
2964         * Rare, but there may be I/O requests still going to complete,
2965         * for example.  Wait for all references to disappear.
2966         * No one should increment the reference count of the mapped_device,
2967         * after the mapped_device state becomes DMF_FREEING.
2968         */
2969        if (wait)
2970                while (atomic_read(&md->holders))
2971                        msleep(1);
2972        else if (atomic_read(&md->holders))
2973                DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2974                       dm_device_name(md), atomic_read(&md->holders));
2975
2976        dm_sysfs_exit(md);
2977        dm_table_destroy(__unbind(md));
2978        free_dev(md);
2979}
2980
2981void dm_destroy(struct mapped_device *md)
2982{
2983        __dm_destroy(md, true);
2984}
2985
2986void dm_destroy_immediate(struct mapped_device *md)
2987{
2988        __dm_destroy(md, false);
2989}
2990
2991void dm_put(struct mapped_device *md)
2992{
2993        atomic_dec(&md->holders);
2994}
2995EXPORT_SYMBOL_GPL(dm_put);
2996
2997static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2998{
2999        int r = 0;
3000        DECLARE_WAITQUEUE(wait, current);
3001
3002        add_wait_queue(&md->wait, &wait);
3003
3004        while (1) {
3005                set_current_state(interruptible);
3006
3007                if (!md_in_flight(md))
3008                        break;
3009
3010                if (interruptible == TASK_INTERRUPTIBLE &&
3011                    signal_pending(current)) {
3012                        r = -EINTR;
3013                        break;
3014                }
3015
3016                io_schedule();
3017        }
3018        set_current_state(TASK_RUNNING);
3019
3020        remove_wait_queue(&md->wait, &wait);
3021
3022        return r;
3023}
3024
3025/*
3026 * Process the deferred bios
3027 */
3028static void dm_wq_work(struct work_struct *work)
3029{
3030        struct mapped_device *md = container_of(work, struct mapped_device,
3031                                                work);
3032        struct bio *c;
3033        int srcu_idx;
3034        struct dm_table *map;
3035
3036        map = dm_get_live_table(md, &srcu_idx);
3037
3038        while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3039                spin_lock_irq(&md->deferred_lock);
3040                c = bio_list_pop(&md->deferred);
3041                spin_unlock_irq(&md->deferred_lock);
3042
3043                if (!c)
3044                        break;
3045
3046                if (dm_request_based(md))
3047                        generic_make_request(c);
3048                else
3049                        __split_and_process_bio(md, map, c);
3050        }
3051
3052        dm_put_live_table(md, srcu_idx);
3053}
3054
3055static void dm_queue_flush(struct mapped_device *md)
3056{
3057        clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3058        smp_mb__after_atomic();
3059        queue_work(md->wq, &md->work);
3060}
3061
3062/*
3063 * Swap in a new table, returning the old one for the caller to destroy.
3064 */
3065struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3066{
3067        struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3068        struct queue_limits limits;
3069        int r;
3070
3071        mutex_lock(&md->suspend_lock);
3072
3073        /* device must be suspended */
3074        if (!dm_suspended_md(md))
3075                goto out;
3076
3077        /*
3078         * If the new table has no data devices, retain the existing limits.
3079         * This helps multipath with queue_if_no_path if all paths disappear,
3080         * then new I/O is queued based on these limits, and then some paths
3081         * reappear.
3082         */
3083        if (dm_table_has_no_data_devices(table)) {
3084                live_map = dm_get_live_table_fast(md);
3085                if (live_map)
3086                        limits = md->queue->limits;
3087                dm_put_live_table_fast(md);
3088        }
3089
3090        if (!live_map) {
3091                r = dm_calculate_queue_limits(table, &limits);
3092                if (r) {
3093                        map = ERR_PTR(r);
3094                        goto out;
3095                }
3096        }
3097
3098        map = __bind(md, table, &limits);
3099
3100out:
3101        mutex_unlock(&md->suspend_lock);
3102        return map;
3103}
3104
3105/*
3106 * Functions to lock and unlock any filesystem running on the
3107 * device.
3108 */
3109static int lock_fs(struct mapped_device *md)
3110{
3111        int r;
3112
3113        WARN_ON(md->frozen_sb);
3114
3115        md->frozen_sb = freeze_bdev(md->bdev);
3116        if (IS_ERR(md->frozen_sb)) {
3117                r = PTR_ERR(md->frozen_sb);
3118                md->frozen_sb = NULL;
3119                return r;
3120        }
3121
3122        set_bit(DMF_FROZEN, &md->flags);
3123
3124        return 0;
3125}
3126
3127static void unlock_fs(struct mapped_device *md)
3128{
3129        if (!test_bit(DMF_FROZEN, &md->flags))
3130                return;
3131
3132        thaw_bdev(md->bdev, md->frozen_sb);
3133        md->frozen_sb = NULL;
3134        clear_bit(DMF_FROZEN, &md->flags);
3135}
3136
3137/*
3138 * If __dm_suspend returns 0, the device is completely quiescent
3139 * now. There is no request-processing activity. All new requests
3140 * are being added to md->deferred list.
3141 *
3142 * Caller must hold md->suspend_lock
3143 */
3144static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3145                        unsigned suspend_flags, int interruptible)
3146{
3147        bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3148        bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3149        int r;
3150
3151        /*
3152         * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3153         * This flag is cleared before dm_suspend returns.
3154         */
3155        if (noflush)
3156                set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3157
3158        /*
3159         * This gets reverted if there's an error later and the targets
3160         * provide the .presuspend_undo hook.
3161         */
3162        dm_table_presuspend_targets(map);
3163
3164        /*
3165         * Flush I/O to the device.
3166         * Any I/O submitted after lock_fs() may not be flushed.
3167         * noflush takes precedence over do_lockfs.
3168         * (lock_fs() flushes I/Os and waits for them to complete.)
3169         */
3170        if (!noflush && do_lockfs) {
3171                r = lock_fs(md);
3172                if (r) {
3173                        dm_table_presuspend_undo_targets(map);
3174                        return r;
3175                }
3176        }
3177
3178        /*
3179         * Here we must make sure that no processes are submitting requests
3180         * to target drivers i.e. no one may be executing
3181         * __split_and_process_bio. This is called from dm_request and
3182         * dm_wq_work.
3183         *
3184         * To get all processes out of __split_and_process_bio in dm_request,
3185         * we take the write lock. To prevent any process from reentering
3186         * __split_and_process_bio from dm_request and quiesce the thread
3187         * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3188         * flush_workqueue(md->wq).
3189         */
3190        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3191        if (map)
3192                synchronize_srcu(&md->io_barrier);
3193
3194        /*
3195         * Stop md->queue before flushing md->wq in case request-based
3196         * dm defers requests to md->wq from md->queue.
3197         */
3198        if (dm_request_based(md)) {
3199                stop_queue(md->queue);
3200                if (md->kworker_task)
3201                        flush_kthread_worker(&md->kworker);
3202        }
3203
3204        flush_workqueue(md->wq);
3205
3206        /*
3207         * At this point no more requests are entering target request routines.
3208         * We call dm_wait_for_completion to wait for all existing requests
3209         * to finish.
3210         */
3211        r = dm_wait_for_completion(md, interruptible);
3212
3213        if (noflush)
3214                clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3215        if (map)
3216                synchronize_srcu(&md->io_barrier);
3217
3218        /* were we interrupted ? */
3219        if (r < 0) {
3220                dm_queue_flush(md);
3221
3222                if (dm_request_based(md))
3223                        start_queue(md->queue);
3224
3225                unlock_fs(md);
3226                dm_table_presuspend_undo_targets(map);
3227                /* pushback list is already flushed, so skip flush */
3228        }
3229
3230        return r;
3231}
3232
3233/*
3234 * We need to be able to change a mapping table under a mounted
3235 * filesystem.  For example we might want to move some data in
3236 * the background.  Before the table can be swapped with
3237 * dm_bind_table, dm_suspend must be called to flush any in
3238 * flight bios and ensure that any further io gets deferred.
3239 */
3240/*
3241 * Suspend mechanism in request-based dm.
3242 *
3243 * 1. Flush all I/Os by lock_fs() if needed.
3244 * 2. Stop dispatching any I/O by stopping the request_queue.
3245 * 3. Wait for all in-flight I/Os to be completed or requeued.
3246 *
3247 * To abort suspend, start the request_queue.
3248 */
3249int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3250{
3251        struct dm_table *map = NULL;
3252        int r = 0;
3253
3254retry:
3255        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3256
3257        if (dm_suspended_md(md)) {
3258                r = -EINVAL;
3259                goto out_unlock;
3260        }
3261
3262        if (dm_suspended_internally_md(md)) {
3263                /* already internally suspended, wait for internal resume */
3264                mutex_unlock(&md->suspend_lock);
3265                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3266                if (r)
3267                        return r;
3268                goto retry;
3269        }
3270
3271        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3272
3273        r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3274        if (r)
3275                goto out_unlock;
3276
3277        set_bit(DMF_SUSPENDED, &md->flags);
3278
3279        dm_table_postsuspend_targets(map);
3280
3281out_unlock:
3282        mutex_unlock(&md->suspend_lock);
3283        return r;
3284}
3285
3286static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3287{
3288        if (map) {
3289                int r = dm_table_resume_targets(map);
3290                if (r)
3291                        return r;
3292        }
3293
3294        dm_queue_flush(md);
3295
3296        /*
3297         * Flushing deferred I/Os must be done after targets are resumed
3298         * so that mapping of targets can work correctly.
3299         * Request-based dm is queueing the deferred I/Os in its request_queue.
3300         */
3301        if (dm_request_based(md))
3302                start_queue(md->queue);
3303
3304        unlock_fs(md);
3305
3306        return 0;
3307}
3308
3309int dm_resume(struct mapped_device *md)
3310{
3311        int r = -EINVAL;
3312        struct dm_table *map = NULL;
3313
3314retry:
3315        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3316
3317        if (!dm_suspended_md(md))
3318                goto out;
3319
3320        if (dm_suspended_internally_md(md)) {
3321                /* already internally suspended, wait for internal resume */
3322                mutex_unlock(&md->suspend_lock);
3323                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3324                if (r)
3325                        return r;
3326                goto retry;
3327        }
3328
3329        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3330        if (!map || !dm_table_get_size(map))
3331                goto out;
3332
3333        r = __dm_resume(md, map);
3334        if (r)
3335                goto out;
3336
3337        clear_bit(DMF_SUSPENDED, &md->flags);
3338
3339        r = 0;
3340out:
3341        mutex_unlock(&md->suspend_lock);
3342
3343        return r;
3344}
3345
3346/*
3347 * Internal suspend/resume works like userspace-driven suspend. It waits
3348 * until all bios finish and prevents issuing new bios to the target drivers.
3349 * It may be used only from the kernel.
3350 */
3351
3352static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3353{
3354        struct dm_table *map = NULL;
3355
3356        if (md->internal_suspend_count++)
3357                return; /* nested internal suspend */
3358
3359        if (dm_suspended_md(md)) {
3360                set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3361                return; /* nest suspend */
3362        }
3363
3364        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3365
3366        /*
3367         * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3368         * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3369         * would require changing .presuspend to return an error -- avoid this
3370         * until there is a need for more elaborate variants of internal suspend.
3371         */
3372        (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3373
3374        set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3375
3376        dm_table_postsuspend_targets(map);
3377}
3378
3379static void __dm_internal_resume(struct mapped_device *md)
3380{
3381        BUG_ON(!md->internal_suspend_count);
3382
3383        if (--md->internal_suspend_count)
3384                return; /* resume from nested internal suspend */
3385
3386        if (dm_suspended_md(md))
3387                goto done; /* resume from nested suspend */
3388
3389        /*
3390         * NOTE: existing callers don't need to call dm_table_resume_targets
3391         * (which may fail -- so best to avoid it for now by passing NULL map)
3392         */
3393        (void) __dm_resume(md, NULL);
3394
3395done:
3396        clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3397        smp_mb__after_atomic();
3398        wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3399}
3400
3401void dm_internal_suspend_noflush(struct mapped_device *md)
3402{
3403        mutex_lock(&md->suspend_lock);
3404        __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3405        mutex_unlock(&md->suspend_lock);
3406}
3407EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3408
3409void dm_internal_resume(struct mapped_device *md)
3410{
3411        mutex_lock(&md->suspend_lock);
3412        __dm_internal_resume(md);
3413        mutex_unlock(&md->suspend_lock);
3414}
3415EXPORT_SYMBOL_GPL(dm_internal_resume);
3416
3417/*
3418 * Fast variants of internal suspend/resume hold md->suspend_lock,
3419 * which prevents interaction with userspace-driven suspend.
3420 */
3421
3422void dm_internal_suspend_fast(struct mapped_device *md)
3423{
3424        mutex_lock(&md->suspend_lock);
3425        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3426                return;
3427
3428        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3429        synchronize_srcu(&md->io_barrier);
3430        flush_workqueue(md->wq);
3431        dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3432}
3433EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3434
3435void dm_internal_resume_fast(struct mapped_device *md)
3436{
3437        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3438                goto done;
3439
3440        dm_queue_flush(md);
3441
3442done:
3443        mutex_unlock(&md->suspend_lock);
3444}
3445EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3446
3447/*-----------------------------------------------------------------
3448 * Event notification.
3449 *---------------------------------------------------------------*/
3450int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3451                       unsigned cookie)
3452{
3453        char udev_cookie[DM_COOKIE_LENGTH];
3454        char *envp[] = { udev_cookie, NULL };
3455
3456        if (!cookie)
3457                return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3458        else {
3459                snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3460                         DM_COOKIE_ENV_VAR_NAME, cookie);
3461                return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3462                                          action, envp);
3463        }
3464}
3465
3466uint32_t dm_next_uevent_seq(struct mapped_device *md)
3467{
3468        return atomic_add_return(1, &md->uevent_seq);
3469}
3470
3471uint32_t dm_get_event_nr(struct mapped_device *md)
3472{
3473        return atomic_read(&md->event_nr);
3474}
3475
3476int dm_wait_event(struct mapped_device *md, int event_nr)
3477{
3478        return wait_event_interruptible(md->eventq,
3479                        (event_nr != atomic_read(&md->event_nr)));
3480}
3481
3482void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3483{
3484        unsigned long flags;
3485
3486        spin_lock_irqsave(&md->uevent_lock, flags);
3487        list_add(elist, &md->uevent_list);
3488        spin_unlock_irqrestore(&md->uevent_lock, flags);
3489}
3490
3491/*
3492 * The gendisk is only valid as long as you have a reference
3493 * count on 'md'.
3494 */
3495struct gendisk *dm_disk(struct mapped_device *md)
3496{
3497        return md->disk;
3498}
3499EXPORT_SYMBOL_GPL(dm_disk);
3500
3501struct kobject *dm_kobject(struct mapped_device *md)
3502{
3503        return &md->kobj_holder.kobj;
3504}
3505
3506struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3507{
3508        struct mapped_device *md;
3509
3510        md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3511
3512        if (test_bit(DMF_FREEING, &md->flags) ||
3513            dm_deleting_md(md))
3514                return NULL;
3515
3516        dm_get(md);
3517        return md;
3518}
3519
3520int dm_suspended_md(struct mapped_device *md)
3521{
3522        return test_bit(DMF_SUSPENDED, &md->flags);
3523}
3524
3525int dm_suspended_internally_md(struct mapped_device *md)
3526{
3527        return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3528}
3529
3530int dm_test_deferred_remove_flag(struct mapped_device *md)
3531{
3532        return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3533}
3534
3535int dm_suspended(struct dm_target *ti)
3536{
3537        return dm_suspended_md(dm_table_get_md(ti->table));
3538}
3539EXPORT_SYMBOL_GPL(dm_suspended);
3540
3541int dm_noflush_suspending(struct dm_target *ti)
3542{
3543        return __noflush_suspending(dm_table_get_md(ti->table));
3544}
3545EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3546
3547struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3548                                            unsigned integrity, unsigned per_bio_data_size)
3549{
3550        struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3551        struct kmem_cache *cachep = NULL;
3552        unsigned int pool_size = 0;
3553        unsigned int front_pad;
3554
3555        if (!pools)
3556                return NULL;
3557
3558        type = filter_md_type(type, md);
3559
3560        switch (type) {
3561        case DM_TYPE_BIO_BASED:
3562                cachep = _io_cache;
3563                pool_size = dm_get_reserved_bio_based_ios();
3564                front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3565                break;
3566        case DM_TYPE_REQUEST_BASED:
3567                cachep = _rq_tio_cache;
3568                pool_size = dm_get_reserved_rq_based_ios();
3569                pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3570                if (!pools->rq_pool)
3571                        goto out;
3572                /* fall through to setup remaining rq-based pools */
3573        case DM_TYPE_MQ_REQUEST_BASED:
3574                if (!pool_size)
3575                        pool_size = dm_get_reserved_rq_based_ios();
3576                front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3577                /* per_bio_data_size is not used. See __bind_mempools(). */
3578                WARN_ON(per_bio_data_size != 0);
3579                break;
3580        default:
3581                BUG();
3582        }
3583
3584        if (cachep) {
3585                pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3586                if (!pools->io_pool)
3587                        goto out;
3588        }
3589
3590        pools->bs = bioset_create_nobvec(pool_size, front_pad);
3591        if (!pools->bs)
3592                goto out;
3593
3594        if (integrity && bioset_integrity_create(pools->bs, pool_size))
3595                goto out;
3596
3597        return pools;
3598
3599out:
3600        dm_free_md_mempools(pools);
3601
3602        return NULL;
3603}
3604
3605void dm_free_md_mempools(struct dm_md_mempools *pools)
3606{
3607        if (!pools)
3608                return;
3609
3610        if (pools->io_pool)
3611                mempool_destroy(pools->io_pool);
3612
3613        if (pools->rq_pool)
3614                mempool_destroy(pools->rq_pool);
3615
3616        if (pools->bs)
3617                bioset_free(pools->bs);
3618
3619        kfree(pools);
3620}
3621
3622static const struct block_device_operations dm_blk_dops = {
3623        .open = dm_blk_open,
3624        .release = dm_blk_close,
3625        .ioctl = dm_blk_ioctl,
3626        .getgeo = dm_blk_getgeo,
3627        .owner = THIS_MODULE
3628};
3629
3630/*
3631 * module hooks
3632 */
3633module_init(dm_init);
3634module_exit(dm_exit);
3635
3636module_param(major, uint, 0);
3637MODULE_PARM_DESC(major, "The major number of the device mapper");
3638
3639module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3640MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3641
3642module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3643MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3644
3645module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3646MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3647
3648MODULE_DESCRIPTION(DM_NAME " driver");
3649MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3650MODULE_LICENSE("GPL");
3651