linux/drivers/media/i2c/aptina-pll.c
<<
>>
Prefs
   1/*
   2 * Aptina Sensor PLL Configuration
   3 *
   4 * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * version 2 as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but
  11 * WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  13 * General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
  18 * 02110-1301 USA
  19 */
  20
  21#include <linux/device.h>
  22#include <linux/gcd.h>
  23#include <linux/kernel.h>
  24#include <linux/lcm.h>
  25#include <linux/module.h>
  26
  27#include "aptina-pll.h"
  28
  29int aptina_pll_calculate(struct device *dev,
  30                         const struct aptina_pll_limits *limits,
  31                         struct aptina_pll *pll)
  32{
  33        unsigned int mf_min;
  34        unsigned int mf_max;
  35        unsigned int p1_min;
  36        unsigned int p1_max;
  37        unsigned int p1;
  38        unsigned int div;
  39
  40        dev_dbg(dev, "PLL: ext clock %u pix clock %u\n",
  41                pll->ext_clock, pll->pix_clock);
  42
  43        if (pll->ext_clock < limits->ext_clock_min ||
  44            pll->ext_clock > limits->ext_clock_max) {
  45                dev_err(dev, "pll: invalid external clock frequency.\n");
  46                return -EINVAL;
  47        }
  48
  49        if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) {
  50                dev_err(dev, "pll: invalid pixel clock frequency.\n");
  51                return -EINVAL;
  52        }
  53
  54        /* Compute the multiplier M and combined N*P1 divisor. */
  55        div = gcd(pll->pix_clock, pll->ext_clock);
  56        pll->m = pll->pix_clock / div;
  57        div = pll->ext_clock / div;
  58
  59        /* We now have the smallest M and N*P1 values that will result in the
  60         * desired pixel clock frequency, but they might be out of the valid
  61         * range. Compute the factor by which we should multiply them given the
  62         * following constraints:
  63         *
  64         * - minimum/maximum multiplier
  65         * - minimum/maximum multiplier output clock frequency assuming the
  66         *   minimum/maximum N value
  67         * - minimum/maximum combined N*P1 divisor
  68         */
  69        mf_min = DIV_ROUND_UP(limits->m_min, pll->m);
  70        mf_min = max(mf_min, limits->out_clock_min /
  71                     (pll->ext_clock / limits->n_min * pll->m));
  72        mf_min = max(mf_min, limits->n_min * limits->p1_min / div);
  73        mf_max = limits->m_max / pll->m;
  74        mf_max = min(mf_max, limits->out_clock_max /
  75                    (pll->ext_clock / limits->n_max * pll->m));
  76        mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div));
  77
  78        dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max);
  79        if (mf_min > mf_max) {
  80                dev_err(dev, "pll: no valid combined N*P1 divisor.\n");
  81                return -EINVAL;
  82        }
  83
  84        /*
  85         * We're looking for the highest acceptable P1 value for which a
  86         * multiplier factor MF exists that fulfills the following conditions:
  87         *
  88         * 1. p1 is in the [p1_min, p1_max] range given by the limits and is
  89         *    even
  90         * 2. mf is in the [mf_min, mf_max] range computed above
  91         * 3. div * mf is a multiple of p1, in order to compute
  92         *      n = div * mf / p1
  93         *      m = pll->m * mf
  94         * 4. the internal clock frequency, given by ext_clock / n, is in the
  95         *    [int_clock_min, int_clock_max] range given by the limits
  96         * 5. the output clock frequency, given by ext_clock / n * m, is in the
  97         *    [out_clock_min, out_clock_max] range given by the limits
  98         *
  99         * The first naive approach is to iterate over all p1 values acceptable
 100         * according to (1) and all mf values acceptable according to (2), and
 101         * stop at the first combination that fulfills (3), (4) and (5). This
 102         * has a O(n^2) complexity.
 103         *
 104         * Instead of iterating over all mf values in the [mf_min, mf_max] range
 105         * we can compute the mf increment between two acceptable values
 106         * according to (3) with
 107         *
 108         *      mf_inc = p1 / gcd(div, p1)                      (6)
 109         *
 110         * and round the minimum up to the nearest multiple of mf_inc. This will
 111         * restrict the number of mf values to be checked.
 112         *
 113         * Furthermore, conditions (4) and (5) only restrict the range of
 114         * acceptable p1 and mf values by modifying the minimum and maximum
 115         * limits. (5) can be expressed as
 116         *
 117         *      ext_clock / (div * mf / p1) * m * mf >= out_clock_min
 118         *      ext_clock / (div * mf / p1) * m * mf <= out_clock_max
 119         *
 120         * or
 121         *
 122         *      p1 >= out_clock_min * div / (ext_clock * m)     (7)
 123         *      p1 <= out_clock_max * div / (ext_clock * m)
 124         *
 125         * Similarly, (4) can be expressed as
 126         *
 127         *      mf >= ext_clock * p1 / (int_clock_max * div)    (8)
 128         *      mf <= ext_clock * p1 / (int_clock_min * div)
 129         *
 130         * We can thus iterate over the restricted p1 range defined by the
 131         * combination of (1) and (7), and then compute the restricted mf range
 132         * defined by the combination of (2), (6) and (8). If the resulting mf
 133         * range is not empty, any value in the mf range is acceptable. We thus
 134         * select the mf lwoer bound and the corresponding p1 value.
 135         */
 136        if (limits->p1_min == 0) {
 137                dev_err(dev, "pll: P1 minimum value must be >0.\n");
 138                return -EINVAL;
 139        }
 140
 141        p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div,
 142                     pll->ext_clock * pll->m));
 143        p1_max = min(limits->p1_max, limits->out_clock_max * div /
 144                     (pll->ext_clock * pll->m));
 145
 146        for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) {
 147                unsigned int mf_inc = p1 / gcd(div, p1);
 148                unsigned int mf_high;
 149                unsigned int mf_low;
 150
 151                mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1,
 152                                        limits->int_clock_max * div)), mf_inc);
 153                mf_high = min(mf_max, pll->ext_clock * p1 /
 154                              (limits->int_clock_min * div));
 155
 156                if (mf_low > mf_high)
 157                        continue;
 158
 159                pll->n = div * mf_low / p1;
 160                pll->m *= mf_low;
 161                pll->p1 = p1;
 162                dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1);
 163                return 0;
 164        }
 165
 166        dev_err(dev, "pll: no valid N and P1 divisors found.\n");
 167        return -EINVAL;
 168}
 169EXPORT_SYMBOL_GPL(aptina_pll_calculate);
 170
 171MODULE_DESCRIPTION("Aptina PLL Helpers");
 172MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
 173MODULE_LICENSE("GPL v2");
 174