linux/drivers/media/pci/cx23885/cx23888-ir.c
<<
>>
Prefs
   1/*
   2 *  Driver for the Conexant CX23885/7/8 PCIe bridge
   3 *
   4 *  CX23888 Integrated Consumer Infrared Controller
   5 *
   6 *  Copyright (C) 2009  Andy Walls <awalls@md.metrocast.net>
   7 *
   8 *  This program is free software; you can redistribute it and/or
   9 *  modify it under the terms of the GNU General Public License
  10 *  as published by the Free Software Foundation; either version 2
  11 *  of the License, or (at your option) any later version.
  12 *
  13 *  This program is distributed in the hope that it will be useful,
  14 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 *  GNU General Public License for more details.
  17 */
  18
  19#include <linux/kfifo.h>
  20#include <linux/slab.h>
  21
  22#include <media/v4l2-device.h>
  23#include <media/rc-core.h>
  24
  25#include "cx23885.h"
  26#include "cx23888-ir.h"
  27
  28static unsigned int ir_888_debug;
  29module_param(ir_888_debug, int, 0644);
  30MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
  31
  32#define CX23888_IR_REG_BASE     0x170000
  33/*
  34 * These CX23888 register offsets have a straightforward one to one mapping
  35 * to the CX23885 register offsets of 0x200 through 0x218
  36 */
  37#define CX23888_IR_CNTRL_REG    0x170000
  38#define CNTRL_WIN_3_3   0x00000000
  39#define CNTRL_WIN_4_3   0x00000001
  40#define CNTRL_WIN_3_4   0x00000002
  41#define CNTRL_WIN_4_4   0x00000003
  42#define CNTRL_WIN       0x00000003
  43#define CNTRL_EDG_NONE  0x00000000
  44#define CNTRL_EDG_FALL  0x00000004
  45#define CNTRL_EDG_RISE  0x00000008
  46#define CNTRL_EDG_BOTH  0x0000000C
  47#define CNTRL_EDG       0x0000000C
  48#define CNTRL_DMD       0x00000010
  49#define CNTRL_MOD       0x00000020
  50#define CNTRL_RFE       0x00000040
  51#define CNTRL_TFE       0x00000080
  52#define CNTRL_RXE       0x00000100
  53#define CNTRL_TXE       0x00000200
  54#define CNTRL_RIC       0x00000400
  55#define CNTRL_TIC       0x00000800
  56#define CNTRL_CPL       0x00001000
  57#define CNTRL_LBM       0x00002000
  58#define CNTRL_R         0x00004000
  59/* CX23888 specific control flag */
  60#define CNTRL_IVO       0x00008000
  61
  62#define CX23888_IR_TXCLK_REG    0x170004
  63#define TXCLK_TCD       0x0000FFFF
  64
  65#define CX23888_IR_RXCLK_REG    0x170008
  66#define RXCLK_RCD       0x0000FFFF
  67
  68#define CX23888_IR_CDUTY_REG    0x17000C
  69#define CDUTY_CDC       0x0000000F
  70
  71#define CX23888_IR_STATS_REG    0x170010
  72#define STATS_RTO       0x00000001
  73#define STATS_ROR       0x00000002
  74#define STATS_RBY       0x00000004
  75#define STATS_TBY       0x00000008
  76#define STATS_RSR       0x00000010
  77#define STATS_TSR       0x00000020
  78
  79#define CX23888_IR_IRQEN_REG    0x170014
  80#define IRQEN_RTE       0x00000001
  81#define IRQEN_ROE       0x00000002
  82#define IRQEN_RSE       0x00000010
  83#define IRQEN_TSE       0x00000020
  84
  85#define CX23888_IR_FILTR_REG    0x170018
  86#define FILTR_LPF       0x0000FFFF
  87
  88/* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
  89#define CX23888_IR_FIFO_REG     0x170040
  90#define FIFO_RXTX       0x0000FFFF
  91#define FIFO_RXTX_LVL   0x00010000
  92#define FIFO_RXTX_RTO   0x0001FFFF
  93#define FIFO_RX_NDV     0x00020000
  94#define FIFO_RX_DEPTH   8
  95#define FIFO_TX_DEPTH   8
  96
  97/* CX23888 unique registers */
  98#define CX23888_IR_SEEDP_REG    0x17001C
  99#define CX23888_IR_TIMOL_REG    0x170020
 100#define CX23888_IR_WAKE0_REG    0x170024
 101#define CX23888_IR_WAKE1_REG    0x170028
 102#define CX23888_IR_WAKE2_REG    0x17002C
 103#define CX23888_IR_MASK0_REG    0x170030
 104#define CX23888_IR_MASK1_REG    0x170034
 105#define CX23888_IR_MAKS2_REG    0x170038
 106#define CX23888_IR_DPIPG_REG    0x17003C
 107#define CX23888_IR_LEARN_REG    0x170044
 108
 109#define CX23888_VIDCLK_FREQ     108000000 /* 108 MHz, BT.656 */
 110#define CX23888_IR_REFCLK_FREQ  (CX23888_VIDCLK_FREQ / 2)
 111
 112/*
 113 * We use this union internally for convenience, but callers to tx_write
 114 * and rx_read will be expecting records of type struct ir_raw_event.
 115 * Always ensure the size of this union is dictated by struct ir_raw_event.
 116 */
 117union cx23888_ir_fifo_rec {
 118        u32 hw_fifo_data;
 119        struct ir_raw_event ir_core_data;
 120};
 121
 122#define CX23888_IR_RX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
 123#define CX23888_IR_TX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
 124
 125struct cx23888_ir_state {
 126        struct v4l2_subdev sd;
 127        struct cx23885_dev *dev;
 128
 129        struct v4l2_subdev_ir_parameters rx_params;
 130        struct mutex rx_params_lock;
 131        atomic_t rxclk_divider;
 132        atomic_t rx_invert;
 133
 134        struct kfifo rx_kfifo;
 135        spinlock_t rx_kfifo_lock;
 136
 137        struct v4l2_subdev_ir_parameters tx_params;
 138        struct mutex tx_params_lock;
 139        atomic_t txclk_divider;
 140};
 141
 142static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
 143{
 144        return v4l2_get_subdevdata(sd);
 145}
 146
 147/*
 148 * IR register block read and write functions
 149 */
 150static
 151inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
 152{
 153        cx_write(addr, value);
 154        return 0;
 155}
 156
 157static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
 158{
 159        return cx_read(addr);
 160}
 161
 162static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
 163                                     u32 and_mask, u32 or_value)
 164{
 165        cx_andor(addr, ~and_mask, or_value);
 166        return 0;
 167}
 168
 169/*
 170 * Rx and Tx Clock Divider register computations
 171 *
 172 * Note the largest clock divider value of 0xffff corresponds to:
 173 *      (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
 174 * which fits in 21 bits, so we'll use unsigned int for time arguments.
 175 */
 176static inline u16 count_to_clock_divider(unsigned int d)
 177{
 178        if (d > RXCLK_RCD + 1)
 179                d = RXCLK_RCD;
 180        else if (d < 2)
 181                d = 1;
 182        else
 183                d--;
 184        return (u16) d;
 185}
 186
 187static inline u16 ns_to_clock_divider(unsigned int ns)
 188{
 189        return count_to_clock_divider(
 190                DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
 191}
 192
 193static inline unsigned int clock_divider_to_ns(unsigned int divider)
 194{
 195        /* Period of the Rx or Tx clock in ns */
 196        return DIV_ROUND_CLOSEST((divider + 1) * 1000,
 197                                 CX23888_IR_REFCLK_FREQ / 1000000);
 198}
 199
 200static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
 201{
 202        return count_to_clock_divider(
 203                          DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
 204}
 205
 206static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
 207{
 208        return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
 209}
 210
 211static inline u16 freq_to_clock_divider(unsigned int freq,
 212                                        unsigned int rollovers)
 213{
 214        return count_to_clock_divider(
 215                   DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
 216}
 217
 218static inline unsigned int clock_divider_to_freq(unsigned int divider,
 219                                                 unsigned int rollovers)
 220{
 221        return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
 222                                 (divider + 1) * rollovers);
 223}
 224
 225/*
 226 * Low Pass Filter register calculations
 227 *
 228 * Note the largest count value of 0xffff corresponds to:
 229 *      0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
 230 * which fits in 21 bits, so we'll use unsigned int for time arguments.
 231 */
 232static inline u16 count_to_lpf_count(unsigned int d)
 233{
 234        if (d > FILTR_LPF)
 235                d = FILTR_LPF;
 236        else if (d < 4)
 237                d = 0;
 238        return (u16) d;
 239}
 240
 241static inline u16 ns_to_lpf_count(unsigned int ns)
 242{
 243        return count_to_lpf_count(
 244                DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
 245}
 246
 247static inline unsigned int lpf_count_to_ns(unsigned int count)
 248{
 249        /* Duration of the Low Pass Filter rejection window in ns */
 250        return DIV_ROUND_CLOSEST(count * 1000,
 251                                 CX23888_IR_REFCLK_FREQ / 1000000);
 252}
 253
 254static inline unsigned int lpf_count_to_us(unsigned int count)
 255{
 256        /* Duration of the Low Pass Filter rejection window in us */
 257        return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
 258}
 259
 260/*
 261 * FIFO register pulse width count computations
 262 */
 263static u32 clock_divider_to_resolution(u16 divider)
 264{
 265        /*
 266         * Resolution is the duration of 1 tick of the readable portion of
 267         * of the pulse width counter as read from the FIFO.  The two lsb's are
 268         * not readable, hence the << 2.  This function returns ns.
 269         */
 270        return DIV_ROUND_CLOSEST((1 << 2)  * ((u32) divider + 1) * 1000,
 271                                 CX23888_IR_REFCLK_FREQ / 1000000);
 272}
 273
 274static u64 pulse_width_count_to_ns(u16 count, u16 divider)
 275{
 276        u64 n;
 277        u32 rem;
 278
 279        /*
 280         * The 2 lsb's of the pulse width timer count are not readable, hence
 281         * the (count << 2) | 0x3
 282         */
 283        n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
 284        rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000);     /* / MHz => ns */
 285        if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
 286                n++;
 287        return n;
 288}
 289
 290static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
 291{
 292        u64 n;
 293        u32 rem;
 294
 295        /*
 296         * The 2 lsb's of the pulse width timer count are not readable, hence
 297         * the (count << 2) | 0x3
 298         */
 299        n = (((u64) count << 2) | 0x3) * (divider + 1);    /* cycles      */
 300        rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
 301        if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
 302                n++;
 303        return (unsigned int) n;
 304}
 305
 306/*
 307 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
 308 *
 309 * The total pulse clock count is an 18 bit pulse width timer count as the most
 310 * significant part and (up to) 16 bit clock divider count as a modulus.
 311 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
 312 * width timer count's least significant bit.
 313 */
 314static u64 ns_to_pulse_clocks(u32 ns)
 315{
 316        u64 clocks;
 317        u32 rem;
 318        clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles  */
 319        rem = do_div(clocks, 1000);                         /* /1000 = cycles */
 320        if (rem >= 1000 / 2)
 321                clocks++;
 322        return clocks;
 323}
 324
 325static u16 pulse_clocks_to_clock_divider(u64 count)
 326{
 327        do_div(count, (FIFO_RXTX << 2) | 0x3);
 328
 329        /* net result needs to be rounded down and decremented by 1 */
 330        if (count > RXCLK_RCD + 1)
 331                count = RXCLK_RCD;
 332        else if (count < 2)
 333                count = 1;
 334        else
 335                count--;
 336        return (u16) count;
 337}
 338
 339/*
 340 * IR Control Register helpers
 341 */
 342enum tx_fifo_watermark {
 343        TX_FIFO_HALF_EMPTY = 0,
 344        TX_FIFO_EMPTY      = CNTRL_TIC,
 345};
 346
 347enum rx_fifo_watermark {
 348        RX_FIFO_HALF_FULL = 0,
 349        RX_FIFO_NOT_EMPTY = CNTRL_RIC,
 350};
 351
 352static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
 353                                            enum tx_fifo_watermark level)
 354{
 355        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
 356}
 357
 358static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
 359                                            enum rx_fifo_watermark level)
 360{
 361        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
 362}
 363
 364static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
 365{
 366        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
 367                           enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
 368}
 369
 370static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
 371{
 372        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
 373                           enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
 374}
 375
 376static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
 377                                                bool enable)
 378{
 379        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
 380                           enable ? CNTRL_MOD : 0);
 381}
 382
 383static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
 384                                                  bool enable)
 385{
 386        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
 387                           enable ? CNTRL_DMD : 0);
 388}
 389
 390static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
 391                                               u32 edge_types)
 392{
 393        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
 394                           edge_types & CNTRL_EDG_BOTH);
 395}
 396
 397static void control_rx_s_carrier_window(struct cx23885_dev *dev,
 398                                        unsigned int carrier,
 399                                        unsigned int *carrier_range_low,
 400                                        unsigned int *carrier_range_high)
 401{
 402        u32 v;
 403        unsigned int c16 = carrier * 16;
 404
 405        if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
 406                v = CNTRL_WIN_3_4;
 407                *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
 408        } else {
 409                v = CNTRL_WIN_3_3;
 410                *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
 411        }
 412
 413        if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
 414                v |= CNTRL_WIN_4_3;
 415                *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
 416        } else {
 417                v |= CNTRL_WIN_3_3;
 418                *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
 419        }
 420        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
 421}
 422
 423static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
 424                                              bool invert)
 425{
 426        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
 427                           invert ? CNTRL_CPL : 0);
 428}
 429
 430static inline void control_tx_level_invert(struct cx23885_dev *dev,
 431                                          bool invert)
 432{
 433        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
 434                           invert ? CNTRL_IVO : 0);
 435}
 436
 437/*
 438 * IR Rx & Tx Clock Register helpers
 439 */
 440static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
 441                                       unsigned int freq,
 442                                       u16 *divider)
 443{
 444        *divider = carrier_freq_to_clock_divider(freq);
 445        cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
 446        return clock_divider_to_carrier_freq(*divider);
 447}
 448
 449static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
 450                                       unsigned int freq,
 451                                       u16 *divider)
 452{
 453        *divider = carrier_freq_to_clock_divider(freq);
 454        cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
 455        return clock_divider_to_carrier_freq(*divider);
 456}
 457
 458static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
 459                                      u16 *divider)
 460{
 461        u64 pulse_clocks;
 462
 463        if (ns > IR_MAX_DURATION)
 464                ns = IR_MAX_DURATION;
 465        pulse_clocks = ns_to_pulse_clocks(ns);
 466        *divider = pulse_clocks_to_clock_divider(pulse_clocks);
 467        cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
 468        return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
 469}
 470
 471static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
 472                                      u16 *divider)
 473{
 474        u64 pulse_clocks;
 475
 476        if (ns > IR_MAX_DURATION)
 477                ns = IR_MAX_DURATION;
 478        pulse_clocks = ns_to_pulse_clocks(ns);
 479        *divider = pulse_clocks_to_clock_divider(pulse_clocks);
 480        cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
 481        return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
 482}
 483
 484/*
 485 * IR Tx Carrier Duty Cycle register helpers
 486 */
 487static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
 488                                          unsigned int duty_cycle)
 489{
 490        u32 n;
 491        n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
 492        if (n != 0)
 493                n--;
 494        if (n > 15)
 495                n = 15;
 496        cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
 497        return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
 498}
 499
 500/*
 501 * IR Filter Register helpers
 502 */
 503static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
 504{
 505        u32 count = ns_to_lpf_count(min_width_ns);
 506        cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
 507        return lpf_count_to_ns(count);
 508}
 509
 510/*
 511 * IR IRQ Enable Register helpers
 512 */
 513static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
 514{
 515        mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
 516        cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
 517                           ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
 518}
 519
 520static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
 521{
 522        mask &= IRQEN_TSE;
 523        cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
 524}
 525
 526/*
 527 * V4L2 Subdevice IR Ops
 528 */
 529static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
 530                                  bool *handled)
 531{
 532        struct cx23888_ir_state *state = to_state(sd);
 533        struct cx23885_dev *dev = state->dev;
 534        unsigned long flags;
 535
 536        u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
 537        u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
 538        u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
 539
 540        union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
 541        unsigned int i, j, k;
 542        u32 events, v;
 543        int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
 544
 545        tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
 546        rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
 547        rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
 548        ror = stats & STATS_ROR; /* Rx FIFO Over Run */
 549
 550        tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
 551        rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
 552        rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
 553        roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
 554
 555        *handled = false;
 556        v4l2_dbg(2, ir_888_debug, sd, "IRQ Status:  %s %s %s %s %s %s\n",
 557                 tsr ? "tsr" : "   ", rsr ? "rsr" : "   ",
 558                 rto ? "rto" : "   ", ror ? "ror" : "   ",
 559                 stats & STATS_TBY ? "tby" : "   ",
 560                 stats & STATS_RBY ? "rby" : "   ");
 561
 562        v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
 563                 tse ? "tse" : "   ", rse ? "rse" : "   ",
 564                 rte ? "rte" : "   ", roe ? "roe" : "   ");
 565
 566        /*
 567         * Transmitter interrupt service
 568         */
 569        if (tse && tsr) {
 570                /*
 571                 * TODO:
 572                 * Check the watermark threshold setting
 573                 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
 574                 * Push the data to the hardware FIFO.
 575                 * If there was nothing more to send in the tx_kfifo, disable
 576                 *      the TSR IRQ and notify the v4l2_device.
 577                 * If there was something in the tx_kfifo, check the tx_kfifo
 578                 *      level and notify the v4l2_device, if it is low.
 579                 */
 580                /* For now, inhibit TSR interrupt until Tx is implemented */
 581                irqenable_tx(dev, 0);
 582                events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
 583                v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
 584                *handled = true;
 585        }
 586
 587        /*
 588         * Receiver interrupt service
 589         */
 590        kror = 0;
 591        if ((rse && rsr) || (rte && rto)) {
 592                /*
 593                 * Receive data on RSR to clear the STATS_RSR.
 594                 * Receive data on RTO, since we may not have yet hit the RSR
 595                 * watermark when we receive the RTO.
 596                 */
 597                for (i = 0, v = FIFO_RX_NDV;
 598                     (v & FIFO_RX_NDV) && !kror; i = 0) {
 599                        for (j = 0;
 600                             (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
 601                                v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
 602                                rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
 603                                i++;
 604                        }
 605                        if (i == 0)
 606                                break;
 607                        j = i * sizeof(union cx23888_ir_fifo_rec);
 608                        k = kfifo_in_locked(&state->rx_kfifo,
 609                                      (unsigned char *) rx_data, j,
 610                                      &state->rx_kfifo_lock);
 611                        if (k != j)
 612                                kror++; /* rx_kfifo over run */
 613                }
 614                *handled = true;
 615        }
 616
 617        events = 0;
 618        v = 0;
 619        if (kror) {
 620                events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
 621                v4l2_err(sd, "IR receiver software FIFO overrun\n");
 622        }
 623        if (roe && ror) {
 624                /*
 625                 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
 626                 * the Rx FIFO Over Run status (STATS_ROR)
 627                 */
 628                v |= CNTRL_RFE;
 629                events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
 630                v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
 631        }
 632        if (rte && rto) {
 633                /*
 634                 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
 635                 * the Rx Pulse Width Timer Time Out (STATS_RTO)
 636                 */
 637                v |= CNTRL_RXE;
 638                events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
 639        }
 640        if (v) {
 641                /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
 642                cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
 643                cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
 644                *handled = true;
 645        }
 646
 647        spin_lock_irqsave(&state->rx_kfifo_lock, flags);
 648        if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
 649                events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
 650        spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
 651
 652        if (events)
 653                v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
 654        return 0;
 655}
 656
 657/* Receiver */
 658static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
 659                              ssize_t *num)
 660{
 661        struct cx23888_ir_state *state = to_state(sd);
 662        bool invert = (bool) atomic_read(&state->rx_invert);
 663        u16 divider = (u16) atomic_read(&state->rxclk_divider);
 664
 665        unsigned int i, n;
 666        union cx23888_ir_fifo_rec *p;
 667        unsigned u, v, w;
 668
 669        n = count / sizeof(union cx23888_ir_fifo_rec)
 670                * sizeof(union cx23888_ir_fifo_rec);
 671        if (n == 0) {
 672                *num = 0;
 673                return 0;
 674        }
 675
 676        n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
 677
 678        n /= sizeof(union cx23888_ir_fifo_rec);
 679        *num = n * sizeof(union cx23888_ir_fifo_rec);
 680
 681        for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
 682
 683                if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
 684                        /* Assume RTO was because of no IR light input */
 685                        u = 0;
 686                        w = 1;
 687                } else {
 688                        u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
 689                        if (invert)
 690                                u = u ? 0 : 1;
 691                        w = 0;
 692                }
 693
 694                v = (unsigned) pulse_width_count_to_ns(
 695                                  (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
 696                if (v > IR_MAX_DURATION)
 697                        v = IR_MAX_DURATION;
 698
 699                init_ir_raw_event(&p->ir_core_data);
 700                p->ir_core_data.pulse = u;
 701                p->ir_core_data.duration = v;
 702                p->ir_core_data.timeout = w;
 703
 704                v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns  %s  %s\n",
 705                         v, u ? "mark" : "space", w ? "(timed out)" : "");
 706                if (w)
 707                        v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
 708        }
 709        return 0;
 710}
 711
 712static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
 713                                      struct v4l2_subdev_ir_parameters *p)
 714{
 715        struct cx23888_ir_state *state = to_state(sd);
 716        mutex_lock(&state->rx_params_lock);
 717        memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
 718        mutex_unlock(&state->rx_params_lock);
 719        return 0;
 720}
 721
 722static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
 723{
 724        struct cx23888_ir_state *state = to_state(sd);
 725        struct cx23885_dev *dev = state->dev;
 726
 727        mutex_lock(&state->rx_params_lock);
 728
 729        /* Disable or slow down all IR Rx circuits and counters */
 730        irqenable_rx(dev, 0);
 731        control_rx_enable(dev, false);
 732        control_rx_demodulation_enable(dev, false);
 733        control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
 734        filter_rx_s_min_width(dev, 0);
 735        cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
 736
 737        state->rx_params.shutdown = true;
 738
 739        mutex_unlock(&state->rx_params_lock);
 740        return 0;
 741}
 742
 743static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
 744                                      struct v4l2_subdev_ir_parameters *p)
 745{
 746        struct cx23888_ir_state *state = to_state(sd);
 747        struct cx23885_dev *dev = state->dev;
 748        struct v4l2_subdev_ir_parameters *o = &state->rx_params;
 749        u16 rxclk_divider;
 750
 751        if (p->shutdown)
 752                return cx23888_ir_rx_shutdown(sd);
 753
 754        if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
 755                return -ENOSYS;
 756
 757        mutex_lock(&state->rx_params_lock);
 758
 759        o->shutdown = p->shutdown;
 760
 761        o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
 762
 763        o->bytes_per_data_element = p->bytes_per_data_element
 764                                  = sizeof(union cx23888_ir_fifo_rec);
 765
 766        /* Before we tweak the hardware, we have to disable the receiver */
 767        irqenable_rx(dev, 0);
 768        control_rx_enable(dev, false);
 769
 770        control_rx_demodulation_enable(dev, p->modulation);
 771        o->modulation = p->modulation;
 772
 773        if (p->modulation) {
 774                p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
 775                                                     &rxclk_divider);
 776
 777                o->carrier_freq = p->carrier_freq;
 778
 779                o->duty_cycle = p->duty_cycle = 50;
 780
 781                control_rx_s_carrier_window(dev, p->carrier_freq,
 782                                            &p->carrier_range_lower,
 783                                            &p->carrier_range_upper);
 784                o->carrier_range_lower = p->carrier_range_lower;
 785                o->carrier_range_upper = p->carrier_range_upper;
 786
 787                p->max_pulse_width =
 788                        (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
 789        } else {
 790                p->max_pulse_width =
 791                            rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
 792                                                       &rxclk_divider);
 793        }
 794        o->max_pulse_width = p->max_pulse_width;
 795        atomic_set(&state->rxclk_divider, rxclk_divider);
 796
 797        p->noise_filter_min_width =
 798                          filter_rx_s_min_width(dev, p->noise_filter_min_width);
 799        o->noise_filter_min_width = p->noise_filter_min_width;
 800
 801        p->resolution = clock_divider_to_resolution(rxclk_divider);
 802        o->resolution = p->resolution;
 803
 804        /* FIXME - make this dependent on resolution for better performance */
 805        control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
 806
 807        control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
 808
 809        o->invert_level = p->invert_level;
 810        atomic_set(&state->rx_invert, p->invert_level);
 811
 812        o->interrupt_enable = p->interrupt_enable;
 813        o->enable = p->enable;
 814        if (p->enable) {
 815                unsigned long flags;
 816
 817                spin_lock_irqsave(&state->rx_kfifo_lock, flags);
 818                kfifo_reset(&state->rx_kfifo);
 819                /* reset tx_fifo too if there is one... */
 820                spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
 821                if (p->interrupt_enable)
 822                        irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
 823                control_rx_enable(dev, p->enable);
 824        }
 825
 826        mutex_unlock(&state->rx_params_lock);
 827        return 0;
 828}
 829
 830/* Transmitter */
 831static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
 832                               ssize_t *num)
 833{
 834        struct cx23888_ir_state *state = to_state(sd);
 835        struct cx23885_dev *dev = state->dev;
 836        /* For now enable the Tx FIFO Service interrupt & pretend we did work */
 837        irqenable_tx(dev, IRQEN_TSE);
 838        *num = count;
 839        return 0;
 840}
 841
 842static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
 843                                      struct v4l2_subdev_ir_parameters *p)
 844{
 845        struct cx23888_ir_state *state = to_state(sd);
 846        mutex_lock(&state->tx_params_lock);
 847        memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
 848        mutex_unlock(&state->tx_params_lock);
 849        return 0;
 850}
 851
 852static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
 853{
 854        struct cx23888_ir_state *state = to_state(sd);
 855        struct cx23885_dev *dev = state->dev;
 856
 857        mutex_lock(&state->tx_params_lock);
 858
 859        /* Disable or slow down all IR Tx circuits and counters */
 860        irqenable_tx(dev, 0);
 861        control_tx_enable(dev, false);
 862        control_tx_modulation_enable(dev, false);
 863        cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
 864
 865        state->tx_params.shutdown = true;
 866
 867        mutex_unlock(&state->tx_params_lock);
 868        return 0;
 869}
 870
 871static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
 872                                      struct v4l2_subdev_ir_parameters *p)
 873{
 874        struct cx23888_ir_state *state = to_state(sd);
 875        struct cx23885_dev *dev = state->dev;
 876        struct v4l2_subdev_ir_parameters *o = &state->tx_params;
 877        u16 txclk_divider;
 878
 879        if (p->shutdown)
 880                return cx23888_ir_tx_shutdown(sd);
 881
 882        if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
 883                return -ENOSYS;
 884
 885        mutex_lock(&state->tx_params_lock);
 886
 887        o->shutdown = p->shutdown;
 888
 889        o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
 890
 891        o->bytes_per_data_element = p->bytes_per_data_element
 892                                  = sizeof(union cx23888_ir_fifo_rec);
 893
 894        /* Before we tweak the hardware, we have to disable the transmitter */
 895        irqenable_tx(dev, 0);
 896        control_tx_enable(dev, false);
 897
 898        control_tx_modulation_enable(dev, p->modulation);
 899        o->modulation = p->modulation;
 900
 901        if (p->modulation) {
 902                p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
 903                                                     &txclk_divider);
 904                o->carrier_freq = p->carrier_freq;
 905
 906                p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
 907                o->duty_cycle = p->duty_cycle;
 908
 909                p->max_pulse_width =
 910                        (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
 911        } else {
 912                p->max_pulse_width =
 913                            txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
 914                                                       &txclk_divider);
 915        }
 916        o->max_pulse_width = p->max_pulse_width;
 917        atomic_set(&state->txclk_divider, txclk_divider);
 918
 919        p->resolution = clock_divider_to_resolution(txclk_divider);
 920        o->resolution = p->resolution;
 921
 922        /* FIXME - make this dependent on resolution for better performance */
 923        control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
 924
 925        control_tx_polarity_invert(dev, p->invert_carrier_sense);
 926        o->invert_carrier_sense = p->invert_carrier_sense;
 927
 928        control_tx_level_invert(dev, p->invert_level);
 929        o->invert_level = p->invert_level;
 930
 931        o->interrupt_enable = p->interrupt_enable;
 932        o->enable = p->enable;
 933        if (p->enable) {
 934                if (p->interrupt_enable)
 935                        irqenable_tx(dev, IRQEN_TSE);
 936                control_tx_enable(dev, p->enable);
 937        }
 938
 939        mutex_unlock(&state->tx_params_lock);
 940        return 0;
 941}
 942
 943
 944/*
 945 * V4L2 Subdevice Core Ops
 946 */
 947static int cx23888_ir_log_status(struct v4l2_subdev *sd)
 948{
 949        struct cx23888_ir_state *state = to_state(sd);
 950        struct cx23885_dev *dev = state->dev;
 951        char *s;
 952        int i, j;
 953
 954        u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
 955        u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
 956        u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
 957        u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
 958        u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
 959        u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
 960        u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
 961
 962        v4l2_info(sd, "IR Receiver:\n");
 963        v4l2_info(sd, "\tEnabled:                           %s\n",
 964                  cntrl & CNTRL_RXE ? "yes" : "no");
 965        v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
 966                  cntrl & CNTRL_DMD ? "enabled" : "disabled");
 967        v4l2_info(sd, "\tFIFO:                              %s\n",
 968                  cntrl & CNTRL_RFE ? "enabled" : "disabled");
 969        switch (cntrl & CNTRL_EDG) {
 970        case CNTRL_EDG_NONE:
 971                s = "disabled";
 972                break;
 973        case CNTRL_EDG_FALL:
 974                s = "falling edge";
 975                break;
 976        case CNTRL_EDG_RISE:
 977                s = "rising edge";
 978                break;
 979        case CNTRL_EDG_BOTH:
 980                s = "rising & falling edges";
 981                break;
 982        default:
 983                s = "??? edge";
 984                break;
 985        }
 986        v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
 987        v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
 988                  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
 989        v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
 990                  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
 991        v4l2_info(sd, "\tLoopback mode:                     %s\n",
 992                  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
 993        if (cntrl & CNTRL_DMD) {
 994                v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
 995                          clock_divider_to_carrier_freq(rxclk));
 996                switch (cntrl & CNTRL_WIN) {
 997                case CNTRL_WIN_3_3:
 998                        i = 3;
 999                        j = 3;
1000                        break;
1001                case CNTRL_WIN_4_3:
1002                        i = 4;
1003                        j = 3;
1004                        break;
1005                case CNTRL_WIN_3_4:
1006                        i = 3;
1007                        j = 4;
1008                        break;
1009                case CNTRL_WIN_4_4:
1010                        i = 4;
1011                        j = 4;
1012                        break;
1013                default:
1014                        i = 0;
1015                        j = 0;
1016                        break;
1017                }
1018                v4l2_info(sd, "\tNext carrier edge window:          16 clocks "
1019                          "-%1d/+%1d, %u to %u Hz\n", i, j,
1020                          clock_divider_to_freq(rxclk, 16 + j),
1021                          clock_divider_to_freq(rxclk, 16 - i));
1022        }
1023        v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
1024                  pulse_width_count_to_us(FIFO_RXTX, rxclk),
1025                  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1026        v4l2_info(sd, "\tLow pass filter:                   %s\n",
1027                  filtr ? "enabled" : "disabled");
1028        if (filtr)
1029                v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, "
1030                          "%u ns\n",
1031                          lpf_count_to_us(filtr),
1032                          lpf_count_to_ns(filtr));
1033        v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
1034                  stats & STATS_RTO ? "yes" : "no");
1035        v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
1036                  irqen & IRQEN_RTE ? "enabled" : "disabled");
1037        v4l2_info(sd, "\tFIFO overrun:                      %s\n",
1038                  stats & STATS_ROR ? "yes" : "no");
1039        v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
1040                  irqen & IRQEN_ROE ? "enabled" : "disabled");
1041        v4l2_info(sd, "\tBusy:                              %s\n",
1042                  stats & STATS_RBY ? "yes" : "no");
1043        v4l2_info(sd, "\tFIFO service requested:            %s\n",
1044                  stats & STATS_RSR ? "yes" : "no");
1045        v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1046                  irqen & IRQEN_RSE ? "enabled" : "disabled");
1047
1048        v4l2_info(sd, "IR Transmitter:\n");
1049        v4l2_info(sd, "\tEnabled:                           %s\n",
1050                  cntrl & CNTRL_TXE ? "yes" : "no");
1051        v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
1052                  cntrl & CNTRL_MOD ? "enabled" : "disabled");
1053        v4l2_info(sd, "\tFIFO:                              %s\n",
1054                  cntrl & CNTRL_TFE ? "enabled" : "disabled");
1055        v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1056                  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1057        v4l2_info(sd, "\tOutput pin level inversion         %s\n",
1058                  cntrl & CNTRL_IVO ? "yes" : "no");
1059        v4l2_info(sd, "\tCarrier polarity:                  %s\n",
1060                  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1061                                    : "space:noburst mark:burst");
1062        if (cntrl & CNTRL_MOD) {
1063                v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
1064                          clock_divider_to_carrier_freq(txclk));
1065                v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
1066                          cduty + 1);
1067        }
1068        v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
1069                  pulse_width_count_to_us(FIFO_RXTX, txclk),
1070                  pulse_width_count_to_ns(FIFO_RXTX, txclk));
1071        v4l2_info(sd, "\tBusy:                              %s\n",
1072                  stats & STATS_TBY ? "yes" : "no");
1073        v4l2_info(sd, "\tFIFO service requested:            %s\n",
1074                  stats & STATS_TSR ? "yes" : "no");
1075        v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1076                  irqen & IRQEN_TSE ? "enabled" : "disabled");
1077
1078        return 0;
1079}
1080
1081#ifdef CONFIG_VIDEO_ADV_DEBUG
1082static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1083                                 struct v4l2_dbg_register *reg)
1084{
1085        struct cx23888_ir_state *state = to_state(sd);
1086        u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1087
1088        if ((addr & 0x3) != 0)
1089                return -EINVAL;
1090        if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1091                return -EINVAL;
1092        reg->size = 4;
1093        reg->val = cx23888_ir_read4(state->dev, addr);
1094        return 0;
1095}
1096
1097static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1098                                 const struct v4l2_dbg_register *reg)
1099{
1100        struct cx23888_ir_state *state = to_state(sd);
1101        u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1102
1103        if ((addr & 0x3) != 0)
1104                return -EINVAL;
1105        if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1106                return -EINVAL;
1107        cx23888_ir_write4(state->dev, addr, reg->val);
1108        return 0;
1109}
1110#endif
1111
1112static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1113        .log_status = cx23888_ir_log_status,
1114#ifdef CONFIG_VIDEO_ADV_DEBUG
1115        .g_register = cx23888_ir_g_register,
1116        .s_register = cx23888_ir_s_register,
1117#endif
1118        .interrupt_service_routine = cx23888_ir_irq_handler,
1119};
1120
1121static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1122        .rx_read = cx23888_ir_rx_read,
1123        .rx_g_parameters = cx23888_ir_rx_g_parameters,
1124        .rx_s_parameters = cx23888_ir_rx_s_parameters,
1125
1126        .tx_write = cx23888_ir_tx_write,
1127        .tx_g_parameters = cx23888_ir_tx_g_parameters,
1128        .tx_s_parameters = cx23888_ir_tx_s_parameters,
1129};
1130
1131static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1132        .core = &cx23888_ir_core_ops,
1133        .ir = &cx23888_ir_ir_ops,
1134};
1135
1136static const struct v4l2_subdev_ir_parameters default_rx_params = {
1137        .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1138        .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1139
1140        .enable = false,
1141        .interrupt_enable = false,
1142        .shutdown = true,
1143
1144        .modulation = true,
1145        .carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1146
1147        /* RC-5:    666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1148        /* RC-6A:   333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1149        .noise_filter_min_width = 333333, /* ns */
1150        .carrier_range_lower = 35000,
1151        .carrier_range_upper = 37000,
1152        .invert_level = false,
1153};
1154
1155static const struct v4l2_subdev_ir_parameters default_tx_params = {
1156        .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1157        .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1158
1159        .enable = false,
1160        .interrupt_enable = false,
1161        .shutdown = true,
1162
1163        .modulation = true,
1164        .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1165        .duty_cycle = 25,      /* 25 %   - RC-5 carrier */
1166        .invert_level = false,
1167        .invert_carrier_sense = false,
1168};
1169
1170int cx23888_ir_probe(struct cx23885_dev *dev)
1171{
1172        struct cx23888_ir_state *state;
1173        struct v4l2_subdev *sd;
1174        struct v4l2_subdev_ir_parameters default_params;
1175        int ret;
1176
1177        state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1178        if (state == NULL)
1179                return -ENOMEM;
1180
1181        spin_lock_init(&state->rx_kfifo_lock);
1182        if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1183                return -ENOMEM;
1184
1185        state->dev = dev;
1186        sd = &state->sd;
1187
1188        v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1189        v4l2_set_subdevdata(sd, state);
1190        /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1191        snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1192        sd->grp_id = CX23885_HW_888_IR;
1193
1194        ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1195        if (ret == 0) {
1196                /*
1197                 * Ensure no interrupts arrive from '888 specific conditions,
1198                 * since we ignore them in this driver to have commonality with
1199                 * similar IR controller cores.
1200                 */
1201                cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1202
1203                mutex_init(&state->rx_params_lock);
1204                default_params = default_rx_params;
1205                v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1206
1207                mutex_init(&state->tx_params_lock);
1208                default_params = default_tx_params;
1209                v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1210        } else {
1211                kfifo_free(&state->rx_kfifo);
1212        }
1213        return ret;
1214}
1215
1216int cx23888_ir_remove(struct cx23885_dev *dev)
1217{
1218        struct v4l2_subdev *sd;
1219        struct cx23888_ir_state *state;
1220
1221        sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1222        if (sd == NULL)
1223                return -ENODEV;
1224
1225        cx23888_ir_rx_shutdown(sd);
1226        cx23888_ir_tx_shutdown(sd);
1227
1228        state = to_state(sd);
1229        v4l2_device_unregister_subdev(sd);
1230        kfifo_free(&state->rx_kfifo);
1231        kfree(state);
1232        /* Nothing more to free() as state held the actual v4l2_subdev object */
1233        return 0;
1234}
1235