linux/drivers/misc/carma/carma-fpga.c
<<
>>
Prefs
   1/*
   2 * CARMA DATA-FPGA Access Driver
   3 *
   4 * Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the
   8 * Free Software Foundation; either version 2 of the License, or (at your
   9 * option) any later version.
  10 */
  11
  12/*
  13 * FPGA Memory Dump Format
  14 *
  15 * FPGA #0 control registers (32 x 32-bit words)
  16 * FPGA #1 control registers (32 x 32-bit words)
  17 * FPGA #2 control registers (32 x 32-bit words)
  18 * FPGA #3 control registers (32 x 32-bit words)
  19 * SYSFPGA control registers (32 x 32-bit words)
  20 * FPGA #0 correlation array (NUM_CORL0 correlation blocks)
  21 * FPGA #1 correlation array (NUM_CORL1 correlation blocks)
  22 * FPGA #2 correlation array (NUM_CORL2 correlation blocks)
  23 * FPGA #3 correlation array (NUM_CORL3 correlation blocks)
  24 *
  25 * Each correlation array consists of:
  26 *
  27 * Correlation Data      (2 x NUM_LAGSn x 32-bit words)
  28 * Pipeline Metadata     (2 x NUM_METAn x 32-bit words)
  29 * Quantization Counters (2 x NUM_QCNTn x 32-bit words)
  30 *
  31 * The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
  32 * the FPGA configuration registers. They do not change once the FPGA's
  33 * have been programmed, they only change on re-programming.
  34 */
  35
  36/*
  37 * Basic Description:
  38 *
  39 * This driver is used to capture correlation spectra off of the four data
  40 * processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
  41 * this driver supports dynamic enable/disable of capture while the device
  42 * remains open.
  43 *
  44 * The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
  45 * capture rate, all buffers are pre-allocated to avoid any potentially long
  46 * running memory allocations while capturing.
  47 *
  48 * There are two lists and one pointer which are used to keep track of the
  49 * different states of data buffers.
  50 *
  51 * 1) free list
  52 * This list holds all empty data buffers which are ready to receive data.
  53 *
  54 * 2) inflight pointer
  55 * This pointer holds the currently inflight data buffer. This buffer is having
  56 * data copied into it by the DMA engine.
  57 *
  58 * 3) used list
  59 * This list holds data buffers which have been filled, and are waiting to be
  60 * read by userspace.
  61 *
  62 * All buffers start life on the free list, then move successively to the
  63 * inflight pointer, and then to the used list. After they have been read by
  64 * userspace, they are moved back to the free list. The cycle repeats as long
  65 * as necessary.
  66 *
  67 * It should be noted that all buffers are mapped and ready for DMA when they
  68 * are on any of the three lists. They are only unmapped when they are in the
  69 * process of being read by userspace.
  70 */
  71
  72/*
  73 * Notes on the IRQ masking scheme:
  74 *
  75 * The IRQ masking scheme here is different than most other hardware. The only
  76 * way for the DATA-FPGAs to detect if the kernel has taken too long to copy
  77 * the data is if the status registers are not cleared before the next
  78 * correlation data dump is ready.
  79 *
  80 * The interrupt line is connected to the status registers, such that when they
  81 * are cleared, the interrupt is de-asserted. Therein lies our problem. We need
  82 * to schedule a long-running DMA operation and return from the interrupt
  83 * handler quickly, but we cannot clear the status registers.
  84 *
  85 * To handle this, the system controller FPGA has the capability to connect the
  86 * interrupt line to a user-controlled GPIO pin. This pin is driven high
  87 * (unasserted) and left that way. To mask the interrupt, we change the
  88 * interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
  89 */
  90
  91#include <linux/of_address.h>
  92#include <linux/of_irq.h>
  93#include <linux/of_platform.h>
  94#include <linux/dma-mapping.h>
  95#include <linux/miscdevice.h>
  96#include <linux/interrupt.h>
  97#include <linux/dmaengine.h>
  98#include <linux/seq_file.h>
  99#include <linux/highmem.h>
 100#include <linux/debugfs.h>
 101#include <linux/vmalloc.h>
 102#include <linux/kernel.h>
 103#include <linux/module.h>
 104#include <linux/poll.h>
 105#include <linux/slab.h>
 106#include <linux/kref.h>
 107#include <linux/io.h>
 108
 109/* system controller registers */
 110#define SYS_IRQ_SOURCE_CTL      0x24
 111#define SYS_IRQ_OUTPUT_EN       0x28
 112#define SYS_IRQ_OUTPUT_DATA     0x2C
 113#define SYS_IRQ_INPUT_DATA      0x30
 114#define SYS_FPGA_CONFIG_STATUS  0x44
 115
 116/* GPIO IRQ line assignment */
 117#define IRQ_CORL_DONE           0x10
 118
 119/* FPGA registers */
 120#define MMAP_REG_VERSION        0x00
 121#define MMAP_REG_CORL_CONF1     0x08
 122#define MMAP_REG_CORL_CONF2     0x0C
 123#define MMAP_REG_STATUS         0x48
 124
 125#define SYS_FPGA_BLOCK          0xF0000000
 126
 127#define DATA_FPGA_START         0x400000
 128#define DATA_FPGA_SIZE          0x80000
 129
 130static const char drv_name[] = "carma-fpga";
 131
 132#define NUM_FPGA        4
 133
 134#define MIN_DATA_BUFS   8
 135#define MAX_DATA_BUFS   64
 136
 137struct fpga_info {
 138        unsigned int num_lag_ram;
 139        unsigned int blk_size;
 140};
 141
 142struct data_buf {
 143        struct list_head entry;
 144        void *vaddr;
 145        struct scatterlist *sglist;
 146        int sglen;
 147        int nr_pages;
 148        size_t size;
 149};
 150
 151struct fpga_device {
 152        /* character device */
 153        struct miscdevice miscdev;
 154        struct device *dev;
 155        struct mutex mutex;
 156
 157        /* reference count */
 158        struct kref ref;
 159
 160        /* FPGA registers and information */
 161        struct fpga_info info[NUM_FPGA];
 162        void __iomem *regs;
 163        int irq;
 164
 165        /* FPGA Physical Address/Size Information */
 166        resource_size_t phys_addr;
 167        size_t phys_size;
 168
 169        /* DMA structures */
 170        struct sg_table corl_table;
 171        unsigned int corl_nents;
 172        struct dma_chan *chan;
 173
 174        /* Protection for all members below */
 175        spinlock_t lock;
 176
 177        /* Device enable/disable flag */
 178        bool enabled;
 179
 180        /* Correlation data buffers */
 181        wait_queue_head_t wait;
 182        struct list_head free;
 183        struct list_head used;
 184        struct data_buf *inflight;
 185
 186        /* Information about data buffers */
 187        unsigned int num_dropped;
 188        unsigned int num_buffers;
 189        size_t bufsize;
 190        struct dentry *dbg_entry;
 191};
 192
 193struct fpga_reader {
 194        struct fpga_device *priv;
 195        struct data_buf *buf;
 196        off_t buf_start;
 197};
 198
 199static void fpga_device_release(struct kref *ref)
 200{
 201        struct fpga_device *priv = container_of(ref, struct fpga_device, ref);
 202
 203        /* the last reader has exited, cleanup the last bits */
 204        mutex_destroy(&priv->mutex);
 205        kfree(priv);
 206}
 207
 208/*
 209 * Data Buffer Allocation Helpers
 210 */
 211
 212static int carma_dma_init(struct data_buf *buf, int nr_pages)
 213{
 214        struct page *pg;
 215        int i;
 216
 217        buf->vaddr = vmalloc_32(nr_pages << PAGE_SHIFT);
 218        if (NULL == buf->vaddr) {
 219                pr_debug("vmalloc_32(%d pages) failed\n", nr_pages);
 220                return -ENOMEM;
 221        }
 222
 223        pr_debug("vmalloc is at addr 0x%08lx, size=%d\n",
 224                                (unsigned long)buf->vaddr,
 225                                nr_pages << PAGE_SHIFT);
 226
 227        memset(buf->vaddr, 0, nr_pages << PAGE_SHIFT);
 228        buf->nr_pages = nr_pages;
 229
 230        buf->sglist = vzalloc(buf->nr_pages * sizeof(*buf->sglist));
 231        if (NULL == buf->sglist)
 232                goto vzalloc_err;
 233
 234        sg_init_table(buf->sglist, buf->nr_pages);
 235        for (i = 0; i < buf->nr_pages; i++) {
 236                pg = vmalloc_to_page(buf->vaddr + i * PAGE_SIZE);
 237                if (NULL == pg)
 238                        goto vmalloc_to_page_err;
 239                sg_set_page(&buf->sglist[i], pg, PAGE_SIZE, 0);
 240        }
 241        return 0;
 242
 243vmalloc_to_page_err:
 244        vfree(buf->sglist);
 245        buf->sglist = NULL;
 246vzalloc_err:
 247        vfree(buf->vaddr);
 248        buf->vaddr = NULL;
 249        return -ENOMEM;
 250}
 251
 252static int carma_dma_map(struct device *dev, struct data_buf *buf)
 253{
 254        buf->sglen = dma_map_sg(dev, buf->sglist,
 255                        buf->nr_pages, DMA_FROM_DEVICE);
 256
 257        if (0 == buf->sglen) {
 258                pr_warn("%s: dma_map_sg failed\n", __func__);
 259                return -ENOMEM;
 260        }
 261        return 0;
 262}
 263
 264static int carma_dma_unmap(struct device *dev, struct data_buf *buf)
 265{
 266        if (!buf->sglen)
 267                return 0;
 268
 269        dma_unmap_sg(dev, buf->sglist, buf->sglen, DMA_FROM_DEVICE);
 270        buf->sglen = 0;
 271        return 0;
 272}
 273
 274/**
 275 * data_free_buffer() - free a single data buffer and all allocated memory
 276 * @buf: the buffer to free
 277 *
 278 * This will free all of the pages allocated to the given data buffer, and
 279 * then free the structure itself
 280 */
 281static void data_free_buffer(struct data_buf *buf)
 282{
 283        /* It is ok to free a NULL buffer */
 284        if (!buf)
 285                return;
 286
 287        /* free all memory */
 288        vfree(buf->sglist);
 289        vfree(buf->vaddr);
 290        kfree(buf);
 291}
 292
 293/**
 294 * data_alloc_buffer() - allocate and fill a data buffer with pages
 295 * @bytes: the number of bytes required
 296 *
 297 * This allocates all space needed for a data buffer. It must be mapped before
 298 * use in a DMA transaction using carma_dma_map().
 299 *
 300 * Returns NULL on failure
 301 */
 302static struct data_buf *data_alloc_buffer(const size_t bytes)
 303{
 304        unsigned int nr_pages;
 305        struct data_buf *buf;
 306        int ret;
 307
 308        /* calculate the number of pages necessary */
 309        nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
 310
 311        /* allocate the buffer structure */
 312        buf = kzalloc(sizeof(*buf), GFP_KERNEL);
 313        if (!buf)
 314                goto out_return;
 315
 316        /* initialize internal fields */
 317        INIT_LIST_HEAD(&buf->entry);
 318        buf->size = bytes;
 319
 320        /* allocate the buffer */
 321        ret = carma_dma_init(buf, nr_pages);
 322        if (ret)
 323                goto out_free_buf;
 324
 325        return buf;
 326
 327out_free_buf:
 328        kfree(buf);
 329out_return:
 330        return NULL;
 331}
 332
 333/**
 334 * data_free_buffers() - free all allocated buffers
 335 * @priv: the driver's private data structure
 336 *
 337 * Free all buffers allocated by the driver (except those currently in the
 338 * process of being read by userspace).
 339 *
 340 * LOCKING: must hold dev->mutex
 341 * CONTEXT: user
 342 */
 343static void data_free_buffers(struct fpga_device *priv)
 344{
 345        struct data_buf *buf, *tmp;
 346
 347        /* the device should be stopped, no DMA in progress */
 348        BUG_ON(priv->inflight != NULL);
 349
 350        list_for_each_entry_safe(buf, tmp, &priv->free, entry) {
 351                list_del_init(&buf->entry);
 352                carma_dma_unmap(priv->dev, buf);
 353                data_free_buffer(buf);
 354        }
 355
 356        list_for_each_entry_safe(buf, tmp, &priv->used, entry) {
 357                list_del_init(&buf->entry);
 358                carma_dma_unmap(priv->dev, buf);
 359                data_free_buffer(buf);
 360        }
 361
 362        priv->num_buffers = 0;
 363        priv->bufsize = 0;
 364}
 365
 366/**
 367 * data_alloc_buffers() - allocate 1 seconds worth of data buffers
 368 * @priv: the driver's private data structure
 369 *
 370 * Allocate enough buffers for a whole second worth of data
 371 *
 372 * This routine will attempt to degrade nicely by succeeding even if a full
 373 * second worth of data buffers could not be allocated, as long as a minimum
 374 * number were allocated. In this case, it will print a message to the kernel
 375 * log.
 376 *
 377 * The device must not be modifying any lists when this is called.
 378 *
 379 * CONTEXT: user
 380 * LOCKING: must hold dev->mutex
 381 *
 382 * Returns 0 on success, -ERRNO otherwise
 383 */
 384static int data_alloc_buffers(struct fpga_device *priv)
 385{
 386        struct data_buf *buf;
 387        int i, ret;
 388
 389        for (i = 0; i < MAX_DATA_BUFS; i++) {
 390
 391                /* allocate a buffer */
 392                buf = data_alloc_buffer(priv->bufsize);
 393                if (!buf)
 394                        break;
 395
 396                /* map it for DMA */
 397                ret = carma_dma_map(priv->dev, buf);
 398                if (ret) {
 399                        data_free_buffer(buf);
 400                        break;
 401                }
 402
 403                /* add it to the list of free buffers */
 404                list_add_tail(&buf->entry, &priv->free);
 405                priv->num_buffers++;
 406        }
 407
 408        /* Make sure we allocated the minimum required number of buffers */
 409        if (priv->num_buffers < MIN_DATA_BUFS) {
 410                dev_err(priv->dev, "Unable to allocate enough data buffers\n");
 411                data_free_buffers(priv);
 412                return -ENOMEM;
 413        }
 414
 415        /* Warn if we are running in a degraded state, but do not fail */
 416        if (priv->num_buffers < MAX_DATA_BUFS) {
 417                dev_warn(priv->dev,
 418                         "Unable to allocate %d buffers, using %d buffers instead\n",
 419                         MAX_DATA_BUFS, i);
 420        }
 421
 422        return 0;
 423}
 424
 425/*
 426 * DMA Operations Helpers
 427 */
 428
 429/**
 430 * fpga_start_addr() - get the physical address a DATA-FPGA
 431 * @priv: the driver's private data structure
 432 * @fpga: the DATA-FPGA number (zero based)
 433 */
 434static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga)
 435{
 436        return priv->phys_addr + 0x400000 + (0x80000 * fpga);
 437}
 438
 439/**
 440 * fpga_block_addr() - get the physical address of a correlation data block
 441 * @priv: the driver's private data structure
 442 * @fpga: the DATA-FPGA number (zero based)
 443 * @blknum: the correlation block number (zero based)
 444 */
 445static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga,
 446                                  unsigned int blknum)
 447{
 448        return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum));
 449}
 450
 451#define REG_BLOCK_SIZE  (32 * 4)
 452
 453/**
 454 * data_setup_corl_table() - create the scatterlist for correlation dumps
 455 * @priv: the driver's private data structure
 456 *
 457 * Create the scatterlist for transferring a correlation dump from the
 458 * DATA FPGAs. This structure will be reused for each buffer than needs
 459 * to be filled with correlation data.
 460 *
 461 * Returns 0 on success, -ERRNO otherwise
 462 */
 463static int data_setup_corl_table(struct fpga_device *priv)
 464{
 465        struct sg_table *table = &priv->corl_table;
 466        struct scatterlist *sg;
 467        struct fpga_info *info;
 468        int i, j, ret;
 469
 470        /* Calculate the number of entries needed */
 471        priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
 472        for (i = 0; i < NUM_FPGA; i++)
 473                priv->corl_nents += priv->info[i].num_lag_ram;
 474
 475        /* Allocate the scatterlist table */
 476        ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL);
 477        if (ret) {
 478                dev_err(priv->dev, "unable to allocate DMA table\n");
 479                return ret;
 480        }
 481
 482        /* Add the DATA FPGA registers to the scatterlist */
 483        sg = table->sgl;
 484        for (i = 0; i < NUM_FPGA; i++) {
 485                sg_dma_address(sg) = fpga_start_addr(priv, i);
 486                sg_dma_len(sg) = REG_BLOCK_SIZE;
 487                sg = sg_next(sg);
 488        }
 489
 490        /* Add the SYS-FPGA registers to the scatterlist */
 491        sg_dma_address(sg) = SYS_FPGA_BLOCK;
 492        sg_dma_len(sg) = REG_BLOCK_SIZE;
 493        sg = sg_next(sg);
 494
 495        /* Add the FPGA correlation data blocks to the scatterlist */
 496        for (i = 0; i < NUM_FPGA; i++) {
 497                info = &priv->info[i];
 498                for (j = 0; j < info->num_lag_ram; j++) {
 499                        sg_dma_address(sg) = fpga_block_addr(priv, i, j);
 500                        sg_dma_len(sg) = info->blk_size;
 501                        sg = sg_next(sg);
 502                }
 503        }
 504
 505        /*
 506         * All physical addresses and lengths are present in the structure
 507         * now. It can be reused for every FPGA DATA interrupt
 508         */
 509        return 0;
 510}
 511
 512/*
 513 * FPGA Register Access Helpers
 514 */
 515
 516static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga,
 517                           unsigned int reg, u32 val)
 518{
 519        const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
 520        iowrite32be(val, priv->regs + fpga_start + reg);
 521}
 522
 523static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga,
 524                         unsigned int reg)
 525{
 526        const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
 527        return ioread32be(priv->regs + fpga_start + reg);
 528}
 529
 530/**
 531 * data_calculate_bufsize() - calculate the data buffer size required
 532 * @priv: the driver's private data structure
 533 *
 534 * Calculate the total buffer size needed to hold a single block
 535 * of correlation data
 536 *
 537 * CONTEXT: user
 538 *
 539 * Returns 0 on success, -ERRNO otherwise
 540 */
 541static int data_calculate_bufsize(struct fpga_device *priv)
 542{
 543        u32 num_corl, num_lags, num_meta, num_qcnt, num_pack;
 544        u32 conf1, conf2, version;
 545        u32 num_lag_ram, blk_size;
 546        int i;
 547
 548        /* Each buffer starts with the 5 FPGA register areas */
 549        priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
 550
 551        /* Read and store the configuration data for each FPGA */
 552        for (i = 0; i < NUM_FPGA; i++) {
 553                version = fpga_read_reg(priv, i, MMAP_REG_VERSION);
 554                conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1);
 555                conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2);
 556
 557                /* minor version 2 and later */
 558                if ((version & 0x000000FF) >= 2) {
 559                        num_corl = (conf1 & 0x000000F0) >> 4;
 560                        num_pack = (conf1 & 0x00000F00) >> 8;
 561                        num_lags = (conf1 & 0x00FFF000) >> 12;
 562                        num_meta = (conf1 & 0x7F000000) >> 24;
 563                        num_qcnt = (conf2 & 0x00000FFF) >> 0;
 564                } else {
 565                        num_corl = (conf1 & 0x000000F0) >> 4;
 566                        num_pack = 1; /* implied */
 567                        num_lags = (conf1 & 0x000FFF00) >> 8;
 568                        num_meta = (conf1 & 0x7FF00000) >> 20;
 569                        num_qcnt = (conf2 & 0x00000FFF) >> 0;
 570                }
 571
 572                num_lag_ram = (num_corl + num_pack - 1) / num_pack;
 573                blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8;
 574
 575                priv->info[i].num_lag_ram = num_lag_ram;
 576                priv->info[i].blk_size = blk_size;
 577                priv->bufsize += num_lag_ram * blk_size;
 578
 579                dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl);
 580                dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack);
 581                dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags);
 582                dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta);
 583                dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt);
 584                dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size);
 585        }
 586
 587        dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize);
 588        return 0;
 589}
 590
 591/*
 592 * Interrupt Handling
 593 */
 594
 595/**
 596 * data_disable_interrupts() - stop the device from generating interrupts
 597 * @priv: the driver's private data structure
 598 *
 599 * Hide interrupts by switching to GPIO interrupt source
 600 *
 601 * LOCKING: must hold dev->lock
 602 */
 603static void data_disable_interrupts(struct fpga_device *priv)
 604{
 605        /* hide the interrupt by switching the IRQ driver to GPIO */
 606        iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL);
 607}
 608
 609/**
 610 * data_enable_interrupts() - allow the device to generate interrupts
 611 * @priv: the driver's private data structure
 612 *
 613 * Unhide interrupts by switching to the FPGA interrupt source. At the
 614 * same time, clear the DATA-FPGA status registers.
 615 *
 616 * LOCKING: must hold dev->lock
 617 */
 618static void data_enable_interrupts(struct fpga_device *priv)
 619{
 620        /* clear the actual FPGA corl_done interrupt */
 621        fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0);
 622        fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0);
 623        fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0);
 624        fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0);
 625
 626        /* flush the writes */
 627        fpga_read_reg(priv, 0, MMAP_REG_STATUS);
 628        fpga_read_reg(priv, 1, MMAP_REG_STATUS);
 629        fpga_read_reg(priv, 2, MMAP_REG_STATUS);
 630        fpga_read_reg(priv, 3, MMAP_REG_STATUS);
 631
 632        /* switch back to the external interrupt source */
 633        iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL);
 634}
 635
 636/**
 637 * data_dma_cb() - DMAEngine callback for DMA completion
 638 * @data: the driver's private data structure
 639 *
 640 * Complete a DMA transfer from the DATA-FPGA's
 641 *
 642 * This is called via the DMA callback mechanism, and will handle moving the
 643 * completed DMA transaction to the used list, and then wake any processes
 644 * waiting for new data
 645 *
 646 * CONTEXT: any, softirq expected
 647 */
 648static void data_dma_cb(void *data)
 649{
 650        struct fpga_device *priv = data;
 651        unsigned long flags;
 652
 653        spin_lock_irqsave(&priv->lock, flags);
 654
 655        /* If there is no inflight buffer, we've got a bug */
 656        BUG_ON(priv->inflight == NULL);
 657
 658        /* Move the inflight buffer onto the used list */
 659        list_move_tail(&priv->inflight->entry, &priv->used);
 660        priv->inflight = NULL;
 661
 662        /*
 663         * If data dumping is still enabled, then clear the FPGA
 664         * status registers and re-enable FPGA interrupts
 665         */
 666        if (priv->enabled)
 667                data_enable_interrupts(priv);
 668
 669        spin_unlock_irqrestore(&priv->lock, flags);
 670
 671        /*
 672         * We've changed both the inflight and used lists, so we need
 673         * to wake up any processes that are blocking for those events
 674         */
 675        wake_up(&priv->wait);
 676}
 677
 678/**
 679 * data_submit_dma() - prepare and submit the required DMA to fill a buffer
 680 * @priv: the driver's private data structure
 681 * @buf: the data buffer
 682 *
 683 * Prepare and submit the necessary DMA transactions to fill a correlation
 684 * data buffer.
 685 *
 686 * LOCKING: must hold dev->lock
 687 * CONTEXT: hardirq only
 688 *
 689 * Returns 0 on success, -ERRNO otherwise
 690 */
 691static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf)
 692{
 693        struct scatterlist *dst_sg, *src_sg;
 694        unsigned int dst_nents, src_nents;
 695        struct dma_chan *chan = priv->chan;
 696        struct dma_async_tx_descriptor *tx;
 697        dma_cookie_t cookie;
 698        dma_addr_t dst, src;
 699        unsigned long dma_flags = 0;
 700
 701        dst_sg = buf->sglist;
 702        dst_nents = buf->sglen;
 703
 704        src_sg = priv->corl_table.sgl;
 705        src_nents = priv->corl_nents;
 706
 707        /*
 708         * All buffers passed to this function should be ready and mapped
 709         * for DMA already. Therefore, we don't need to do anything except
 710         * submit it to the Freescale DMA Engine for processing
 711         */
 712
 713        /* setup the scatterlist to scatterlist transfer */
 714        tx = chan->device->device_prep_dma_sg(chan,
 715                                              dst_sg, dst_nents,
 716                                              src_sg, src_nents,
 717                                              0);
 718        if (!tx) {
 719                dev_err(priv->dev, "unable to prep scatterlist DMA\n");
 720                return -ENOMEM;
 721        }
 722
 723        /* submit the transaction to the DMA controller */
 724        cookie = tx->tx_submit(tx);
 725        if (dma_submit_error(cookie)) {
 726                dev_err(priv->dev, "unable to submit scatterlist DMA\n");
 727                return -ENOMEM;
 728        }
 729
 730        /* Prepare the re-read of the SYS-FPGA block */
 731        dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE);
 732        src = SYS_FPGA_BLOCK;
 733        tx = chan->device->device_prep_dma_memcpy(chan, dst, src,
 734                                                  REG_BLOCK_SIZE,
 735                                                  dma_flags);
 736        if (!tx) {
 737                dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n");
 738                return -ENOMEM;
 739        }
 740
 741        /* Setup the callback */
 742        tx->callback = data_dma_cb;
 743        tx->callback_param = priv;
 744
 745        /* submit the transaction to the DMA controller */
 746        cookie = tx->tx_submit(tx);
 747        if (dma_submit_error(cookie)) {
 748                dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n");
 749                return -ENOMEM;
 750        }
 751
 752        return 0;
 753}
 754
 755#define CORL_DONE       0x1
 756#define CORL_ERR        0x2
 757
 758static irqreturn_t data_irq(int irq, void *dev_id)
 759{
 760        struct fpga_device *priv = dev_id;
 761        bool submitted = false;
 762        struct data_buf *buf;
 763        u32 status;
 764        int i;
 765
 766        /* detect spurious interrupts via FPGA status */
 767        for (i = 0; i < 4; i++) {
 768                status = fpga_read_reg(priv, i, MMAP_REG_STATUS);
 769                if (!(status & (CORL_DONE | CORL_ERR))) {
 770                        dev_err(priv->dev, "spurious irq detected (FPGA)\n");
 771                        return IRQ_NONE;
 772                }
 773        }
 774
 775        /* detect spurious interrupts via raw IRQ pin readback */
 776        status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA);
 777        if (status & IRQ_CORL_DONE) {
 778                dev_err(priv->dev, "spurious irq detected (IRQ)\n");
 779                return IRQ_NONE;
 780        }
 781
 782        spin_lock(&priv->lock);
 783
 784        /*
 785         * This is an error case that should never happen.
 786         *
 787         * If this driver has a bug and manages to re-enable interrupts while
 788         * a DMA is in progress, then we will hit this statement and should
 789         * start paying attention immediately.
 790         */
 791        BUG_ON(priv->inflight != NULL);
 792
 793        /* hide the interrupt by switching the IRQ driver to GPIO */
 794        data_disable_interrupts(priv);
 795
 796        /* If there are no free buffers, drop this data */
 797        if (list_empty(&priv->free)) {
 798                priv->num_dropped++;
 799                goto out;
 800        }
 801
 802        buf = list_first_entry(&priv->free, struct data_buf, entry);
 803        list_del_init(&buf->entry);
 804        BUG_ON(buf->size != priv->bufsize);
 805
 806        /* Submit a DMA transfer to get the correlation data */
 807        if (data_submit_dma(priv, buf)) {
 808                dev_err(priv->dev, "Unable to setup DMA transfer\n");
 809                list_move_tail(&buf->entry, &priv->free);
 810                goto out;
 811        }
 812
 813        /* Save the buffer for the DMA callback */
 814        priv->inflight = buf;
 815        submitted = true;
 816
 817        /* Start the DMA Engine */
 818        dma_async_issue_pending(priv->chan);
 819
 820out:
 821        /* If no DMA was submitted, re-enable interrupts */
 822        if (!submitted)
 823                data_enable_interrupts(priv);
 824
 825        spin_unlock(&priv->lock);
 826        return IRQ_HANDLED;
 827}
 828
 829/*
 830 * Realtime Device Enable Helpers
 831 */
 832
 833/**
 834 * data_device_enable() - enable the device for buffered dumping
 835 * @priv: the driver's private data structure
 836 *
 837 * Enable the device for buffered dumping. Allocates buffers and hooks up
 838 * the interrupt handler. When this finishes, data will come pouring in.
 839 *
 840 * LOCKING: must hold dev->mutex
 841 * CONTEXT: user context only
 842 *
 843 * Returns 0 on success, -ERRNO otherwise
 844 */
 845static int data_device_enable(struct fpga_device *priv)
 846{
 847        bool enabled;
 848        u32 val;
 849        int ret;
 850
 851        /* multiple enables are safe: they do nothing */
 852        spin_lock_irq(&priv->lock);
 853        enabled = priv->enabled;
 854        spin_unlock_irq(&priv->lock);
 855        if (enabled)
 856                return 0;
 857
 858        /* check that the FPGAs are programmed */
 859        val = ioread32be(priv->regs + SYS_FPGA_CONFIG_STATUS);
 860        if (!(val & (1 << 18))) {
 861                dev_err(priv->dev, "DATA-FPGAs are not enabled\n");
 862                return -ENODATA;
 863        }
 864
 865        /* read the FPGAs to calculate the buffer size */
 866        ret = data_calculate_bufsize(priv);
 867        if (ret) {
 868                dev_err(priv->dev, "unable to calculate buffer size\n");
 869                goto out_error;
 870        }
 871
 872        /* allocate the correlation data buffers */
 873        ret = data_alloc_buffers(priv);
 874        if (ret) {
 875                dev_err(priv->dev, "unable to allocate buffers\n");
 876                goto out_error;
 877        }
 878
 879        /* setup the source scatterlist for dumping correlation data */
 880        ret = data_setup_corl_table(priv);
 881        if (ret) {
 882                dev_err(priv->dev, "unable to setup correlation DMA table\n");
 883                goto out_error;
 884        }
 885
 886        /* prevent the FPGAs from generating interrupts */
 887        data_disable_interrupts(priv);
 888
 889        /* hookup the irq handler */
 890        ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv);
 891        if (ret) {
 892                dev_err(priv->dev, "unable to request IRQ handler\n");
 893                goto out_error;
 894        }
 895
 896        /* allow the DMA callback to re-enable FPGA interrupts */
 897        spin_lock_irq(&priv->lock);
 898        priv->enabled = true;
 899        spin_unlock_irq(&priv->lock);
 900
 901        /* allow the FPGAs to generate interrupts */
 902        data_enable_interrupts(priv);
 903        return 0;
 904
 905out_error:
 906        sg_free_table(&priv->corl_table);
 907        priv->corl_nents = 0;
 908
 909        data_free_buffers(priv);
 910        return ret;
 911}
 912
 913/**
 914 * data_device_disable() - disable the device for buffered dumping
 915 * @priv: the driver's private data structure
 916 *
 917 * Disable the device for buffered dumping. Stops new DMA transactions from
 918 * being generated, waits for all outstanding DMA to complete, and then frees
 919 * all buffers.
 920 *
 921 * LOCKING: must hold dev->mutex
 922 * CONTEXT: user only
 923 *
 924 * Returns 0 on success, -ERRNO otherwise
 925 */
 926static int data_device_disable(struct fpga_device *priv)
 927{
 928        spin_lock_irq(&priv->lock);
 929
 930        /* allow multiple disable */
 931        if (!priv->enabled) {
 932                spin_unlock_irq(&priv->lock);
 933                return 0;
 934        }
 935
 936        /*
 937         * Mark the device disabled
 938         *
 939         * This stops DMA callbacks from re-enabling interrupts
 940         */
 941        priv->enabled = false;
 942
 943        /* prevent the FPGAs from generating interrupts */
 944        data_disable_interrupts(priv);
 945
 946        /* wait until all ongoing DMA has finished */
 947        while (priv->inflight != NULL) {
 948                spin_unlock_irq(&priv->lock);
 949                wait_event(priv->wait, priv->inflight == NULL);
 950                spin_lock_irq(&priv->lock);
 951        }
 952
 953        spin_unlock_irq(&priv->lock);
 954
 955        /* unhook the irq handler */
 956        free_irq(priv->irq, priv);
 957
 958        /* free the correlation table */
 959        sg_free_table(&priv->corl_table);
 960        priv->corl_nents = 0;
 961
 962        /* free all buffers: the free and used lists are not being changed */
 963        data_free_buffers(priv);
 964        return 0;
 965}
 966
 967/*
 968 * DEBUGFS Interface
 969 */
 970#ifdef CONFIG_DEBUG_FS
 971
 972/*
 973 * Count the number of entries in the given list
 974 */
 975static unsigned int list_num_entries(struct list_head *list)
 976{
 977        struct list_head *entry;
 978        unsigned int ret = 0;
 979
 980        list_for_each(entry, list)
 981                ret++;
 982
 983        return ret;
 984}
 985
 986static int data_debug_show(struct seq_file *f, void *offset)
 987{
 988        struct fpga_device *priv = f->private;
 989
 990        spin_lock_irq(&priv->lock);
 991
 992        seq_printf(f, "enabled: %d\n", priv->enabled);
 993        seq_printf(f, "bufsize: %d\n", priv->bufsize);
 994        seq_printf(f, "num_buffers: %d\n", priv->num_buffers);
 995        seq_printf(f, "num_free: %d\n", list_num_entries(&priv->free));
 996        seq_printf(f, "inflight: %d\n", priv->inflight != NULL);
 997        seq_printf(f, "num_used: %d\n", list_num_entries(&priv->used));
 998        seq_printf(f, "num_dropped: %d\n", priv->num_dropped);
 999
1000        spin_unlock_irq(&priv->lock);
1001        return 0;
1002}
1003
1004static int data_debug_open(struct inode *inode, struct file *file)
1005{
1006        return single_open(file, data_debug_show, inode->i_private);
1007}
1008
1009static const struct file_operations data_debug_fops = {
1010        .owner          = THIS_MODULE,
1011        .open           = data_debug_open,
1012        .read           = seq_read,
1013        .llseek         = seq_lseek,
1014        .release        = single_release,
1015};
1016
1017static int data_debugfs_init(struct fpga_device *priv)
1018{
1019        priv->dbg_entry = debugfs_create_file(drv_name, S_IRUGO, NULL, priv,
1020                                              &data_debug_fops);
1021        return PTR_ERR_OR_ZERO(priv->dbg_entry);
1022}
1023
1024static void data_debugfs_exit(struct fpga_device *priv)
1025{
1026        debugfs_remove(priv->dbg_entry);
1027}
1028
1029#else
1030
1031static inline int data_debugfs_init(struct fpga_device *priv)
1032{
1033        return 0;
1034}
1035
1036static inline void data_debugfs_exit(struct fpga_device *priv)
1037{
1038}
1039
1040#endif  /* CONFIG_DEBUG_FS */
1041
1042/*
1043 * SYSFS Attributes
1044 */
1045
1046static ssize_t data_en_show(struct device *dev, struct device_attribute *attr,
1047                            char *buf)
1048{
1049        struct fpga_device *priv = dev_get_drvdata(dev);
1050        int ret;
1051
1052        spin_lock_irq(&priv->lock);
1053        ret = snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled);
1054        spin_unlock_irq(&priv->lock);
1055
1056        return ret;
1057}
1058
1059static ssize_t data_en_set(struct device *dev, struct device_attribute *attr,
1060                           const char *buf, size_t count)
1061{
1062        struct fpga_device *priv = dev_get_drvdata(dev);
1063        unsigned long enable;
1064        int ret;
1065
1066        ret = kstrtoul(buf, 0, &enable);
1067        if (ret) {
1068                dev_err(priv->dev, "unable to parse enable input\n");
1069                return ret;
1070        }
1071
1072        /* protect against concurrent enable/disable */
1073        ret = mutex_lock_interruptible(&priv->mutex);
1074        if (ret)
1075                return ret;
1076
1077        if (enable)
1078                ret = data_device_enable(priv);
1079        else
1080                ret = data_device_disable(priv);
1081
1082        if (ret) {
1083                dev_err(priv->dev, "device %s failed\n",
1084                        enable ? "enable" : "disable");
1085                count = ret;
1086                goto out_unlock;
1087        }
1088
1089out_unlock:
1090        mutex_unlock(&priv->mutex);
1091        return count;
1092}
1093
1094static DEVICE_ATTR(enable, S_IWUSR | S_IRUGO, data_en_show, data_en_set);
1095
1096static struct attribute *data_sysfs_attrs[] = {
1097        &dev_attr_enable.attr,
1098        NULL,
1099};
1100
1101static const struct attribute_group rt_sysfs_attr_group = {
1102        .attrs = data_sysfs_attrs,
1103};
1104
1105/*
1106 * FPGA Realtime Data Character Device
1107 */
1108
1109static int data_open(struct inode *inode, struct file *filp)
1110{
1111        /*
1112         * The miscdevice layer puts our struct miscdevice into the
1113         * filp->private_data field. We use this to find our private
1114         * data and then overwrite it with our own private structure.
1115         */
1116        struct fpga_device *priv = container_of(filp->private_data,
1117                                                struct fpga_device, miscdev);
1118        struct fpga_reader *reader;
1119        int ret;
1120
1121        /* allocate private data */
1122        reader = kzalloc(sizeof(*reader), GFP_KERNEL);
1123        if (!reader)
1124                return -ENOMEM;
1125
1126        reader->priv = priv;
1127        reader->buf = NULL;
1128
1129        filp->private_data = reader;
1130        ret = nonseekable_open(inode, filp);
1131        if (ret) {
1132                dev_err(priv->dev, "nonseekable-open failed\n");
1133                kfree(reader);
1134                return ret;
1135        }
1136
1137        /*
1138         * success, increase the reference count of the private data structure
1139         * so that it doesn't disappear if the device is unbound
1140         */
1141        kref_get(&priv->ref);
1142        return 0;
1143}
1144
1145static int data_release(struct inode *inode, struct file *filp)
1146{
1147        struct fpga_reader *reader = filp->private_data;
1148        struct fpga_device *priv = reader->priv;
1149
1150        /* free the per-reader structure */
1151        data_free_buffer(reader->buf);
1152        kfree(reader);
1153        filp->private_data = NULL;
1154
1155        /* decrement our reference count to the private data */
1156        kref_put(&priv->ref, fpga_device_release);
1157        return 0;
1158}
1159
1160static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count,
1161                         loff_t *f_pos)
1162{
1163        struct fpga_reader *reader = filp->private_data;
1164        struct fpga_device *priv = reader->priv;
1165        struct list_head *used = &priv->used;
1166        bool drop_buffer = false;
1167        struct data_buf *dbuf;
1168        size_t avail;
1169        void *data;
1170        int ret;
1171
1172        /* check if we already have a partial buffer */
1173        if (reader->buf) {
1174                dbuf = reader->buf;
1175                goto have_buffer;
1176        }
1177
1178        spin_lock_irq(&priv->lock);
1179
1180        /* Block until there is at least one buffer on the used list */
1181        while (list_empty(used)) {
1182                spin_unlock_irq(&priv->lock);
1183
1184                if (filp->f_flags & O_NONBLOCK)
1185                        return -EAGAIN;
1186
1187                ret = wait_event_interruptible(priv->wait, !list_empty(used));
1188                if (ret)
1189                        return ret;
1190
1191                spin_lock_irq(&priv->lock);
1192        }
1193
1194        /* Grab the first buffer off of the used list */
1195        dbuf = list_first_entry(used, struct data_buf, entry);
1196        list_del_init(&dbuf->entry);
1197
1198        spin_unlock_irq(&priv->lock);
1199
1200        /* Buffers are always mapped: unmap it */
1201        carma_dma_unmap(priv->dev, dbuf);
1202
1203        /* save the buffer for later */
1204        reader->buf = dbuf;
1205        reader->buf_start = 0;
1206
1207have_buffer:
1208        /* Get the number of bytes available */
1209        avail = dbuf->size - reader->buf_start;
1210        data = dbuf->vaddr + reader->buf_start;
1211
1212        /* Get the number of bytes we can transfer */
1213        count = min(count, avail);
1214
1215        /* Copy the data to the userspace buffer */
1216        if (copy_to_user(ubuf, data, count))
1217                return -EFAULT;
1218
1219        /* Update the amount of available space */
1220        avail -= count;
1221
1222        /*
1223         * If there is still some data available, save the buffer for the
1224         * next userspace call to read() and return
1225         */
1226        if (avail > 0) {
1227                reader->buf_start += count;
1228                reader->buf = dbuf;
1229                return count;
1230        }
1231
1232        /*
1233         * Get the buffer ready to be reused for DMA
1234         *
1235         * If it fails, we pretend that the read never happed and return
1236         * -EFAULT to userspace. The read will be retried.
1237         */
1238        ret = carma_dma_map(priv->dev, dbuf);
1239        if (ret) {
1240                dev_err(priv->dev, "unable to remap buffer for DMA\n");
1241                return -EFAULT;
1242        }
1243
1244        /* Lock against concurrent enable/disable */
1245        spin_lock_irq(&priv->lock);
1246
1247        /* the reader is finished with this buffer */
1248        reader->buf = NULL;
1249
1250        /*
1251         * One of two things has happened, the device is disabled, or the
1252         * device has been reconfigured underneath us. In either case, we
1253         * should just throw away the buffer.
1254         *
1255         * Lockdep complains if this is done under the spinlock, so we
1256         * handle it during the unlock path.
1257         */
1258        if (!priv->enabled || dbuf->size != priv->bufsize) {
1259                drop_buffer = true;
1260                goto out_unlock;
1261        }
1262
1263        /* The buffer is safe to reuse, so add it back to the free list */
1264        list_add_tail(&dbuf->entry, &priv->free);
1265
1266out_unlock:
1267        spin_unlock_irq(&priv->lock);
1268
1269        if (drop_buffer) {
1270                carma_dma_unmap(priv->dev, dbuf);
1271                data_free_buffer(dbuf);
1272        }
1273
1274        return count;
1275}
1276
1277static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl)
1278{
1279        struct fpga_reader *reader = filp->private_data;
1280        struct fpga_device *priv = reader->priv;
1281        unsigned int mask = 0;
1282
1283        poll_wait(filp, &priv->wait, tbl);
1284
1285        if (!list_empty(&priv->used))
1286                mask |= POLLIN | POLLRDNORM;
1287
1288        return mask;
1289}
1290
1291static int data_mmap(struct file *filp, struct vm_area_struct *vma)
1292{
1293        struct fpga_reader *reader = filp->private_data;
1294        struct fpga_device *priv = reader->priv;
1295        unsigned long offset, vsize, psize, addr;
1296
1297        /* VMA properties */
1298        offset = vma->vm_pgoff << PAGE_SHIFT;
1299        vsize = vma->vm_end - vma->vm_start;
1300        psize = priv->phys_size - offset;
1301        addr = (priv->phys_addr + offset) >> PAGE_SHIFT;
1302
1303        /* Check against the FPGA region's physical memory size */
1304        if (vsize > psize) {
1305                dev_err(priv->dev, "requested mmap mapping too large\n");
1306                return -EINVAL;
1307        }
1308
1309        vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1310
1311        return io_remap_pfn_range(vma, vma->vm_start, addr, vsize,
1312                                  vma->vm_page_prot);
1313}
1314
1315static const struct file_operations data_fops = {
1316        .owner          = THIS_MODULE,
1317        .open           = data_open,
1318        .release        = data_release,
1319        .read           = data_read,
1320        .poll           = data_poll,
1321        .mmap           = data_mmap,
1322        .llseek         = no_llseek,
1323};
1324
1325/*
1326 * OpenFirmware Device Subsystem
1327 */
1328
1329static bool dma_filter(struct dma_chan *chan, void *data)
1330{
1331        /*
1332         * DMA Channel #0 is used for the FPGA Programmer, so ignore it
1333         *
1334         * This probably won't survive an unload/load cycle of the Freescale
1335         * DMAEngine driver, but that won't be a problem
1336         */
1337        if (chan->chan_id == 0 && chan->device->dev_id == 0)
1338                return false;
1339
1340        return true;
1341}
1342
1343static int data_of_probe(struct platform_device *op)
1344{
1345        struct device_node *of_node = op->dev.of_node;
1346        struct device *this_device;
1347        struct fpga_device *priv;
1348        struct resource res;
1349        dma_cap_mask_t mask;
1350        int ret;
1351
1352        /* Allocate private data */
1353        priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1354        if (!priv) {
1355                dev_err(&op->dev, "Unable to allocate device private data\n");
1356                ret = -ENOMEM;
1357                goto out_return;
1358        }
1359
1360        platform_set_drvdata(op, priv);
1361        priv->dev = &op->dev;
1362        kref_init(&priv->ref);
1363        mutex_init(&priv->mutex);
1364
1365        dev_set_drvdata(priv->dev, priv);
1366        spin_lock_init(&priv->lock);
1367        INIT_LIST_HEAD(&priv->free);
1368        INIT_LIST_HEAD(&priv->used);
1369        init_waitqueue_head(&priv->wait);
1370
1371        /* Setup the misc device */
1372        priv->miscdev.minor = MISC_DYNAMIC_MINOR;
1373        priv->miscdev.name = drv_name;
1374        priv->miscdev.fops = &data_fops;
1375
1376        /* Get the physical address of the FPGA registers */
1377        ret = of_address_to_resource(of_node, 0, &res);
1378        if (ret) {
1379                dev_err(&op->dev, "Unable to find FPGA physical address\n");
1380                ret = -ENODEV;
1381                goto out_free_priv;
1382        }
1383
1384        priv->phys_addr = res.start;
1385        priv->phys_size = resource_size(&res);
1386
1387        /* ioremap the registers for use */
1388        priv->regs = of_iomap(of_node, 0);
1389        if (!priv->regs) {
1390                dev_err(&op->dev, "Unable to ioremap registers\n");
1391                ret = -ENOMEM;
1392                goto out_free_priv;
1393        }
1394
1395        dma_cap_zero(mask);
1396        dma_cap_set(DMA_MEMCPY, mask);
1397        dma_cap_set(DMA_INTERRUPT, mask);
1398        dma_cap_set(DMA_SLAVE, mask);
1399        dma_cap_set(DMA_SG, mask);
1400
1401        /* Request a DMA channel */
1402        priv->chan = dma_request_channel(mask, dma_filter, NULL);
1403        if (!priv->chan) {
1404                dev_err(&op->dev, "Unable to request DMA channel\n");
1405                ret = -ENODEV;
1406                goto out_unmap_regs;
1407        }
1408
1409        /* Find the correct IRQ number */
1410        priv->irq = irq_of_parse_and_map(of_node, 0);
1411        if (priv->irq == NO_IRQ) {
1412                dev_err(&op->dev, "Unable to find IRQ line\n");
1413                ret = -ENODEV;
1414                goto out_release_dma;
1415        }
1416
1417        /* Drive the GPIO for FPGA IRQ high (no interrupt) */
1418        iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA);
1419
1420        /* Register the miscdevice */
1421        ret = misc_register(&priv->miscdev);
1422        if (ret) {
1423                dev_err(&op->dev, "Unable to register miscdevice\n");
1424                goto out_irq_dispose_mapping;
1425        }
1426
1427        /* Create the debugfs files */
1428        ret = data_debugfs_init(priv);
1429        if (ret) {
1430                dev_err(&op->dev, "Unable to create debugfs files\n");
1431                goto out_misc_deregister;
1432        }
1433
1434        /* Create the sysfs files */
1435        this_device = priv->miscdev.this_device;
1436        dev_set_drvdata(this_device, priv);
1437        ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group);
1438        if (ret) {
1439                dev_err(&op->dev, "Unable to create sysfs files\n");
1440                goto out_data_debugfs_exit;
1441        }
1442
1443        dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n");
1444        return 0;
1445
1446out_data_debugfs_exit:
1447        data_debugfs_exit(priv);
1448out_misc_deregister:
1449        misc_deregister(&priv->miscdev);
1450out_irq_dispose_mapping:
1451        irq_dispose_mapping(priv->irq);
1452out_release_dma:
1453        dma_release_channel(priv->chan);
1454out_unmap_regs:
1455        iounmap(priv->regs);
1456out_free_priv:
1457        kref_put(&priv->ref, fpga_device_release);
1458out_return:
1459        return ret;
1460}
1461
1462static int data_of_remove(struct platform_device *op)
1463{
1464        struct fpga_device *priv = platform_get_drvdata(op);
1465        struct device *this_device = priv->miscdev.this_device;
1466
1467        /* remove all sysfs files, now the device cannot be re-enabled */
1468        sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group);
1469
1470        /* remove all debugfs files */
1471        data_debugfs_exit(priv);
1472
1473        /* disable the device from generating data */
1474        data_device_disable(priv);
1475
1476        /* remove the character device to stop new readers from appearing */
1477        misc_deregister(&priv->miscdev);
1478
1479        /* cleanup everything not needed by readers */
1480        irq_dispose_mapping(priv->irq);
1481        dma_release_channel(priv->chan);
1482        iounmap(priv->regs);
1483
1484        /* release our reference */
1485        kref_put(&priv->ref, fpga_device_release);
1486        return 0;
1487}
1488
1489static const struct of_device_id data_of_match[] = {
1490        { .compatible = "carma,carma-fpga", },
1491        {},
1492};
1493
1494static struct platform_driver data_of_driver = {
1495        .probe          = data_of_probe,
1496        .remove         = data_of_remove,
1497        .driver         = {
1498                .name           = drv_name,
1499                .of_match_table = data_of_match,
1500        },
1501};
1502
1503module_platform_driver(data_of_driver);
1504
1505MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
1506MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
1507MODULE_LICENSE("GPL");
1508