linux/drivers/mmc/host/mmci.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
  16#include <linux/io.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel.h>
  19#include <linux/slab.h>
  20#include <linux/delay.h>
  21#include <linux/err.h>
  22#include <linux/highmem.h>
  23#include <linux/log2.h>
  24#include <linux/mmc/pm.h>
  25#include <linux/mmc/host.h>
  26#include <linux/mmc/card.h>
  27#include <linux/mmc/slot-gpio.h>
  28#include <linux/amba/bus.h>
  29#include <linux/clk.h>
  30#include <linux/scatterlist.h>
  31#include <linux/gpio.h>
  32#include <linux/of_gpio.h>
  33#include <linux/regulator/consumer.h>
  34#include <linux/dmaengine.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/amba/mmci.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/types.h>
  39#include <linux/pinctrl/consumer.h>
  40
  41#include <asm/div64.h>
  42#include <asm/io.h>
  43#include <asm/sizes.h>
  44
  45#include "mmci.h"
  46#include "mmci_qcom_dml.h"
  47
  48#define DRIVER_NAME "mmci-pl18x"
  49
  50static unsigned int fmax = 515633;
  51
  52/**
  53 * struct variant_data - MMCI variant-specific quirks
  54 * @clkreg: default value for MCICLOCK register
  55 * @clkreg_enable: enable value for MMCICLOCK register
  56 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
  57 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
  58 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  59 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  60 *            is asserted (likewise for RX)
  61 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  62 *                is asserted (likewise for RX)
  63 * @data_cmd_enable: enable value for data commands.
  64 * @st_sdio: enable ST specific SDIO logic
  65 * @st_clkdiv: true if using a ST-specific clock divider algorithm
  66 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
  67 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
  68 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
  69 *                   register
  70 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
  71 * @pwrreg_powerup: power up value for MMCIPOWER register
  72 * @f_max: maximum clk frequency supported by the controller.
  73 * @signal_direction: input/out direction of bus signals can be indicated
  74 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
  75 * @busy_detect: true if busy detection on dat0 is supported
  76 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
  77 * @explicit_mclk_control: enable explicit mclk control in driver.
  78 * @qcom_fifo: enables qcom specific fifo pio read logic.
  79 * @qcom_dml: enables qcom specific dma glue for dma transfers.
  80 * @reversed_irq_handling: handle data irq before cmd irq.
  81 */
  82struct variant_data {
  83        unsigned int            clkreg;
  84        unsigned int            clkreg_enable;
  85        unsigned int            clkreg_8bit_bus_enable;
  86        unsigned int            clkreg_neg_edge_enable;
  87        unsigned int            datalength_bits;
  88        unsigned int            fifosize;
  89        unsigned int            fifohalfsize;
  90        unsigned int            data_cmd_enable;
  91        unsigned int            datactrl_mask_ddrmode;
  92        unsigned int            datactrl_mask_sdio;
  93        bool                    st_sdio;
  94        bool                    st_clkdiv;
  95        bool                    blksz_datactrl16;
  96        bool                    blksz_datactrl4;
  97        u32                     pwrreg_powerup;
  98        u32                     f_max;
  99        bool                    signal_direction;
 100        bool                    pwrreg_clkgate;
 101        bool                    busy_detect;
 102        bool                    pwrreg_nopower;
 103        bool                    explicit_mclk_control;
 104        bool                    qcom_fifo;
 105        bool                    qcom_dml;
 106        bool                    reversed_irq_handling;
 107};
 108
 109static struct variant_data variant_arm = {
 110        .fifosize               = 16 * 4,
 111        .fifohalfsize           = 8 * 4,
 112        .datalength_bits        = 16,
 113        .pwrreg_powerup         = MCI_PWR_UP,
 114        .f_max                  = 100000000,
 115        .reversed_irq_handling  = true,
 116};
 117
 118static struct variant_data variant_arm_extended_fifo = {
 119        .fifosize               = 128 * 4,
 120        .fifohalfsize           = 64 * 4,
 121        .datalength_bits        = 16,
 122        .pwrreg_powerup         = MCI_PWR_UP,
 123        .f_max                  = 100000000,
 124};
 125
 126static struct variant_data variant_arm_extended_fifo_hwfc = {
 127        .fifosize               = 128 * 4,
 128        .fifohalfsize           = 64 * 4,
 129        .clkreg_enable          = MCI_ARM_HWFCEN,
 130        .datalength_bits        = 16,
 131        .pwrreg_powerup         = MCI_PWR_UP,
 132        .f_max                  = 100000000,
 133};
 134
 135static struct variant_data variant_u300 = {
 136        .fifosize               = 16 * 4,
 137        .fifohalfsize           = 8 * 4,
 138        .clkreg_enable          = MCI_ST_U300_HWFCEN,
 139        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 140        .datalength_bits        = 16,
 141        .datactrl_mask_sdio     = MCI_ST_DPSM_SDIOEN,
 142        .st_sdio                        = true,
 143        .pwrreg_powerup         = MCI_PWR_ON,
 144        .f_max                  = 100000000,
 145        .signal_direction       = true,
 146        .pwrreg_clkgate         = true,
 147        .pwrreg_nopower         = true,
 148};
 149
 150static struct variant_data variant_nomadik = {
 151        .fifosize               = 16 * 4,
 152        .fifohalfsize           = 8 * 4,
 153        .clkreg                 = MCI_CLK_ENABLE,
 154        .datalength_bits        = 24,
 155        .datactrl_mask_sdio     = MCI_ST_DPSM_SDIOEN,
 156        .st_sdio                = true,
 157        .st_clkdiv              = true,
 158        .pwrreg_powerup         = MCI_PWR_ON,
 159        .f_max                  = 100000000,
 160        .signal_direction       = true,
 161        .pwrreg_clkgate         = true,
 162        .pwrreg_nopower         = true,
 163};
 164
 165static struct variant_data variant_ux500 = {
 166        .fifosize               = 30 * 4,
 167        .fifohalfsize           = 8 * 4,
 168        .clkreg                 = MCI_CLK_ENABLE,
 169        .clkreg_enable          = MCI_ST_UX500_HWFCEN,
 170        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 171        .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
 172        .datalength_bits        = 24,
 173        .datactrl_mask_sdio     = MCI_ST_DPSM_SDIOEN,
 174        .st_sdio                = true,
 175        .st_clkdiv              = true,
 176        .pwrreg_powerup         = MCI_PWR_ON,
 177        .f_max                  = 100000000,
 178        .signal_direction       = true,
 179        .pwrreg_clkgate         = true,
 180        .busy_detect            = true,
 181        .pwrreg_nopower         = true,
 182};
 183
 184static struct variant_data variant_ux500v2 = {
 185        .fifosize               = 30 * 4,
 186        .fifohalfsize           = 8 * 4,
 187        .clkreg                 = MCI_CLK_ENABLE,
 188        .clkreg_enable          = MCI_ST_UX500_HWFCEN,
 189        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 190        .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
 191        .datactrl_mask_ddrmode  = MCI_ST_DPSM_DDRMODE,
 192        .datalength_bits        = 24,
 193        .datactrl_mask_sdio     = MCI_ST_DPSM_SDIOEN,
 194        .st_sdio                = true,
 195        .st_clkdiv              = true,
 196        .blksz_datactrl16       = true,
 197        .pwrreg_powerup         = MCI_PWR_ON,
 198        .f_max                  = 100000000,
 199        .signal_direction       = true,
 200        .pwrreg_clkgate         = true,
 201        .busy_detect            = true,
 202        .pwrreg_nopower         = true,
 203};
 204
 205static struct variant_data variant_qcom = {
 206        .fifosize               = 16 * 4,
 207        .fifohalfsize           = 8 * 4,
 208        .clkreg                 = MCI_CLK_ENABLE,
 209        .clkreg_enable          = MCI_QCOM_CLK_FLOWENA |
 210                                  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 211        .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 212        .datactrl_mask_ddrmode  = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 213        .data_cmd_enable        = MCI_QCOM_CSPM_DATCMD,
 214        .blksz_datactrl4        = true,
 215        .datalength_bits        = 24,
 216        .pwrreg_powerup         = MCI_PWR_UP,
 217        .f_max                  = 208000000,
 218        .explicit_mclk_control  = true,
 219        .qcom_fifo              = true,
 220        .qcom_dml               = true,
 221};
 222
 223static int mmci_card_busy(struct mmc_host *mmc)
 224{
 225        struct mmci_host *host = mmc_priv(mmc);
 226        unsigned long flags;
 227        int busy = 0;
 228
 229        pm_runtime_get_sync(mmc_dev(mmc));
 230
 231        spin_lock_irqsave(&host->lock, flags);
 232        if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
 233                busy = 1;
 234        spin_unlock_irqrestore(&host->lock, flags);
 235
 236        pm_runtime_mark_last_busy(mmc_dev(mmc));
 237        pm_runtime_put_autosuspend(mmc_dev(mmc));
 238
 239        return busy;
 240}
 241
 242/*
 243 * Validate mmc prerequisites
 244 */
 245static int mmci_validate_data(struct mmci_host *host,
 246                              struct mmc_data *data)
 247{
 248        if (!data)
 249                return 0;
 250
 251        if (!is_power_of_2(data->blksz)) {
 252                dev_err(mmc_dev(host->mmc),
 253                        "unsupported block size (%d bytes)\n", data->blksz);
 254                return -EINVAL;
 255        }
 256
 257        return 0;
 258}
 259
 260static void mmci_reg_delay(struct mmci_host *host)
 261{
 262        /*
 263         * According to the spec, at least three feedback clock cycles
 264         * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 265         * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 266         * Worst delay time during card init is at 100 kHz => 30 us.
 267         * Worst delay time when up and running is at 25 MHz => 120 ns.
 268         */
 269        if (host->cclk < 25000000)
 270                udelay(30);
 271        else
 272                ndelay(120);
 273}
 274
 275/*
 276 * This must be called with host->lock held
 277 */
 278static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 279{
 280        if (host->clk_reg != clk) {
 281                host->clk_reg = clk;
 282                writel(clk, host->base + MMCICLOCK);
 283        }
 284}
 285
 286/*
 287 * This must be called with host->lock held
 288 */
 289static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 290{
 291        if (host->pwr_reg != pwr) {
 292                host->pwr_reg = pwr;
 293                writel(pwr, host->base + MMCIPOWER);
 294        }
 295}
 296
 297/*
 298 * This must be called with host->lock held
 299 */
 300static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 301{
 302        /* Keep ST Micro busy mode if enabled */
 303        datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
 304
 305        if (host->datactrl_reg != datactrl) {
 306                host->datactrl_reg = datactrl;
 307                writel(datactrl, host->base + MMCIDATACTRL);
 308        }
 309}
 310
 311/*
 312 * This must be called with host->lock held
 313 */
 314static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 315{
 316        struct variant_data *variant = host->variant;
 317        u32 clk = variant->clkreg;
 318
 319        /* Make sure cclk reflects the current calculated clock */
 320        host->cclk = 0;
 321
 322        if (desired) {
 323                if (variant->explicit_mclk_control) {
 324                        host->cclk = host->mclk;
 325                } else if (desired >= host->mclk) {
 326                        clk = MCI_CLK_BYPASS;
 327                        if (variant->st_clkdiv)
 328                                clk |= MCI_ST_UX500_NEG_EDGE;
 329                        host->cclk = host->mclk;
 330                } else if (variant->st_clkdiv) {
 331                        /*
 332                         * DB8500 TRM says f = mclk / (clkdiv + 2)
 333                         * => clkdiv = (mclk / f) - 2
 334                         * Round the divider up so we don't exceed the max
 335                         * frequency
 336                         */
 337                        clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 338                        if (clk >= 256)
 339                                clk = 255;
 340                        host->cclk = host->mclk / (clk + 2);
 341                } else {
 342                        /*
 343                         * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 344                         * => clkdiv = mclk / (2 * f) - 1
 345                         */
 346                        clk = host->mclk / (2 * desired) - 1;
 347                        if (clk >= 256)
 348                                clk = 255;
 349                        host->cclk = host->mclk / (2 * (clk + 1));
 350                }
 351
 352                clk |= variant->clkreg_enable;
 353                clk |= MCI_CLK_ENABLE;
 354                /* This hasn't proven to be worthwhile */
 355                /* clk |= MCI_CLK_PWRSAVE; */
 356        }
 357
 358        /* Set actual clock for debug */
 359        host->mmc->actual_clock = host->cclk;
 360
 361        if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 362                clk |= MCI_4BIT_BUS;
 363        if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 364                clk |= variant->clkreg_8bit_bus_enable;
 365
 366        if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 367            host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 368                clk |= variant->clkreg_neg_edge_enable;
 369
 370        mmci_write_clkreg(host, clk);
 371}
 372
 373static void
 374mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 375{
 376        writel(0, host->base + MMCICOMMAND);
 377
 378        BUG_ON(host->data);
 379
 380        host->mrq = NULL;
 381        host->cmd = NULL;
 382
 383        mmc_request_done(host->mmc, mrq);
 384
 385        pm_runtime_mark_last_busy(mmc_dev(host->mmc));
 386        pm_runtime_put_autosuspend(mmc_dev(host->mmc));
 387}
 388
 389static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 390{
 391        void __iomem *base = host->base;
 392
 393        if (host->singleirq) {
 394                unsigned int mask0 = readl(base + MMCIMASK0);
 395
 396                mask0 &= ~MCI_IRQ1MASK;
 397                mask0 |= mask;
 398
 399                writel(mask0, base + MMCIMASK0);
 400        }
 401
 402        writel(mask, base + MMCIMASK1);
 403}
 404
 405static void mmci_stop_data(struct mmci_host *host)
 406{
 407        mmci_write_datactrlreg(host, 0);
 408        mmci_set_mask1(host, 0);
 409        host->data = NULL;
 410}
 411
 412static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 413{
 414        unsigned int flags = SG_MITER_ATOMIC;
 415
 416        if (data->flags & MMC_DATA_READ)
 417                flags |= SG_MITER_TO_SG;
 418        else
 419                flags |= SG_MITER_FROM_SG;
 420
 421        sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 422}
 423
 424/*
 425 * All the DMA operation mode stuff goes inside this ifdef.
 426 * This assumes that you have a generic DMA device interface,
 427 * no custom DMA interfaces are supported.
 428 */
 429#ifdef CONFIG_DMA_ENGINE
 430static void mmci_dma_setup(struct mmci_host *host)
 431{
 432        const char *rxname, *txname;
 433        struct variant_data *variant = host->variant;
 434
 435        host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
 436        host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
 437
 438        /* initialize pre request cookie */
 439        host->next_data.cookie = 1;
 440
 441        /*
 442         * If only an RX channel is specified, the driver will
 443         * attempt to use it bidirectionally, however if it is
 444         * is specified but cannot be located, DMA will be disabled.
 445         */
 446        if (host->dma_rx_channel && !host->dma_tx_channel)
 447                host->dma_tx_channel = host->dma_rx_channel;
 448
 449        if (host->dma_rx_channel)
 450                rxname = dma_chan_name(host->dma_rx_channel);
 451        else
 452                rxname = "none";
 453
 454        if (host->dma_tx_channel)
 455                txname = dma_chan_name(host->dma_tx_channel);
 456        else
 457                txname = "none";
 458
 459        dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 460                 rxname, txname);
 461
 462        /*
 463         * Limit the maximum segment size in any SG entry according to
 464         * the parameters of the DMA engine device.
 465         */
 466        if (host->dma_tx_channel) {
 467                struct device *dev = host->dma_tx_channel->device->dev;
 468                unsigned int max_seg_size = dma_get_max_seg_size(dev);
 469
 470                if (max_seg_size < host->mmc->max_seg_size)
 471                        host->mmc->max_seg_size = max_seg_size;
 472        }
 473        if (host->dma_rx_channel) {
 474                struct device *dev = host->dma_rx_channel->device->dev;
 475                unsigned int max_seg_size = dma_get_max_seg_size(dev);
 476
 477                if (max_seg_size < host->mmc->max_seg_size)
 478                        host->mmc->max_seg_size = max_seg_size;
 479        }
 480
 481        if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
 482                if (dml_hw_init(host, host->mmc->parent->of_node))
 483                        variant->qcom_dml = false;
 484}
 485
 486/*
 487 * This is used in or so inline it
 488 * so it can be discarded.
 489 */
 490static inline void mmci_dma_release(struct mmci_host *host)
 491{
 492        if (host->dma_rx_channel)
 493                dma_release_channel(host->dma_rx_channel);
 494        if (host->dma_tx_channel)
 495                dma_release_channel(host->dma_tx_channel);
 496        host->dma_rx_channel = host->dma_tx_channel = NULL;
 497}
 498
 499static void mmci_dma_data_error(struct mmci_host *host)
 500{
 501        dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 502        dmaengine_terminate_all(host->dma_current);
 503        host->dma_current = NULL;
 504        host->dma_desc_current = NULL;
 505        host->data->host_cookie = 0;
 506}
 507
 508static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 509{
 510        struct dma_chan *chan;
 511        enum dma_data_direction dir;
 512
 513        if (data->flags & MMC_DATA_READ) {
 514                dir = DMA_FROM_DEVICE;
 515                chan = host->dma_rx_channel;
 516        } else {
 517                dir = DMA_TO_DEVICE;
 518                chan = host->dma_tx_channel;
 519        }
 520
 521        dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
 522}
 523
 524static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 525{
 526        u32 status;
 527        int i;
 528
 529        /* Wait up to 1ms for the DMA to complete */
 530        for (i = 0; ; i++) {
 531                status = readl(host->base + MMCISTATUS);
 532                if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 533                        break;
 534                udelay(10);
 535        }
 536
 537        /*
 538         * Check to see whether we still have some data left in the FIFO -
 539         * this catches DMA controllers which are unable to monitor the
 540         * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 541         * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 542         */
 543        if (status & MCI_RXDATAAVLBLMASK) {
 544                mmci_dma_data_error(host);
 545                if (!data->error)
 546                        data->error = -EIO;
 547        }
 548
 549        if (!data->host_cookie)
 550                mmci_dma_unmap(host, data);
 551
 552        /*
 553         * Use of DMA with scatter-gather is impossible.
 554         * Give up with DMA and switch back to PIO mode.
 555         */
 556        if (status & MCI_RXDATAAVLBLMASK) {
 557                dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 558                mmci_dma_release(host);
 559        }
 560
 561        host->dma_current = NULL;
 562        host->dma_desc_current = NULL;
 563}
 564
 565/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 566static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 567                                struct dma_chan **dma_chan,
 568                                struct dma_async_tx_descriptor **dma_desc)
 569{
 570        struct variant_data *variant = host->variant;
 571        struct dma_slave_config conf = {
 572                .src_addr = host->phybase + MMCIFIFO,
 573                .dst_addr = host->phybase + MMCIFIFO,
 574                .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 575                .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 576                .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 577                .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 578                .device_fc = false,
 579        };
 580        struct dma_chan *chan;
 581        struct dma_device *device;
 582        struct dma_async_tx_descriptor *desc;
 583        enum dma_data_direction buffer_dirn;
 584        int nr_sg;
 585        unsigned long flags = DMA_CTRL_ACK;
 586
 587        if (data->flags & MMC_DATA_READ) {
 588                conf.direction = DMA_DEV_TO_MEM;
 589                buffer_dirn = DMA_FROM_DEVICE;
 590                chan = host->dma_rx_channel;
 591        } else {
 592                conf.direction = DMA_MEM_TO_DEV;
 593                buffer_dirn = DMA_TO_DEVICE;
 594                chan = host->dma_tx_channel;
 595        }
 596
 597        /* If there's no DMA channel, fall back to PIO */
 598        if (!chan)
 599                return -EINVAL;
 600
 601        /* If less than or equal to the fifo size, don't bother with DMA */
 602        if (data->blksz * data->blocks <= variant->fifosize)
 603                return -EINVAL;
 604
 605        device = chan->device;
 606        nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 607        if (nr_sg == 0)
 608                return -EINVAL;
 609
 610        if (host->variant->qcom_dml)
 611                flags |= DMA_PREP_INTERRUPT;
 612
 613        dmaengine_slave_config(chan, &conf);
 614        desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 615                                            conf.direction, flags);
 616        if (!desc)
 617                goto unmap_exit;
 618
 619        *dma_chan = chan;
 620        *dma_desc = desc;
 621
 622        return 0;
 623
 624 unmap_exit:
 625        dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 626        return -ENOMEM;
 627}
 628
 629static inline int mmci_dma_prep_data(struct mmci_host *host,
 630                                     struct mmc_data *data)
 631{
 632        /* Check if next job is already prepared. */
 633        if (host->dma_current && host->dma_desc_current)
 634                return 0;
 635
 636        /* No job were prepared thus do it now. */
 637        return __mmci_dma_prep_data(host, data, &host->dma_current,
 638                                    &host->dma_desc_current);
 639}
 640
 641static inline int mmci_dma_prep_next(struct mmci_host *host,
 642                                     struct mmc_data *data)
 643{
 644        struct mmci_host_next *nd = &host->next_data;
 645        return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
 646}
 647
 648static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 649{
 650        int ret;
 651        struct mmc_data *data = host->data;
 652
 653        ret = mmci_dma_prep_data(host, host->data);
 654        if (ret)
 655                return ret;
 656
 657        /* Okay, go for it. */
 658        dev_vdbg(mmc_dev(host->mmc),
 659                 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 660                 data->sg_len, data->blksz, data->blocks, data->flags);
 661        dmaengine_submit(host->dma_desc_current);
 662        dma_async_issue_pending(host->dma_current);
 663
 664        if (host->variant->qcom_dml)
 665                dml_start_xfer(host, data);
 666
 667        datactrl |= MCI_DPSM_DMAENABLE;
 668
 669        /* Trigger the DMA transfer */
 670        mmci_write_datactrlreg(host, datactrl);
 671
 672        /*
 673         * Let the MMCI say when the data is ended and it's time
 674         * to fire next DMA request. When that happens, MMCI will
 675         * call mmci_data_end()
 676         */
 677        writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 678               host->base + MMCIMASK0);
 679        return 0;
 680}
 681
 682static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 683{
 684        struct mmci_host_next *next = &host->next_data;
 685
 686        WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
 687        WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
 688
 689        host->dma_desc_current = next->dma_desc;
 690        host->dma_current = next->dma_chan;
 691        next->dma_desc = NULL;
 692        next->dma_chan = NULL;
 693}
 694
 695static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
 696                             bool is_first_req)
 697{
 698        struct mmci_host *host = mmc_priv(mmc);
 699        struct mmc_data *data = mrq->data;
 700        struct mmci_host_next *nd = &host->next_data;
 701
 702        if (!data)
 703                return;
 704
 705        BUG_ON(data->host_cookie);
 706
 707        if (mmci_validate_data(host, data))
 708                return;
 709
 710        if (!mmci_dma_prep_next(host, data))
 711                data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 712}
 713
 714static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 715                              int err)
 716{
 717        struct mmci_host *host = mmc_priv(mmc);
 718        struct mmc_data *data = mrq->data;
 719
 720        if (!data || !data->host_cookie)
 721                return;
 722
 723        mmci_dma_unmap(host, data);
 724
 725        if (err) {
 726                struct mmci_host_next *next = &host->next_data;
 727                struct dma_chan *chan;
 728                if (data->flags & MMC_DATA_READ)
 729                        chan = host->dma_rx_channel;
 730                else
 731                        chan = host->dma_tx_channel;
 732                dmaengine_terminate_all(chan);
 733
 734                if (host->dma_desc_current == next->dma_desc)
 735                        host->dma_desc_current = NULL;
 736
 737                if (host->dma_current == next->dma_chan)
 738                        host->dma_current = NULL;
 739
 740                next->dma_desc = NULL;
 741                next->dma_chan = NULL;
 742                data->host_cookie = 0;
 743        }
 744}
 745
 746#else
 747/* Blank functions if the DMA engine is not available */
 748static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 749{
 750}
 751static inline void mmci_dma_setup(struct mmci_host *host)
 752{
 753}
 754
 755static inline void mmci_dma_release(struct mmci_host *host)
 756{
 757}
 758
 759static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 760{
 761}
 762
 763static inline void mmci_dma_finalize(struct mmci_host *host,
 764                                     struct mmc_data *data)
 765{
 766}
 767
 768static inline void mmci_dma_data_error(struct mmci_host *host)
 769{
 770}
 771
 772static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 773{
 774        return -ENOSYS;
 775}
 776
 777#define mmci_pre_request NULL
 778#define mmci_post_request NULL
 779
 780#endif
 781
 782static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 783{
 784        struct variant_data *variant = host->variant;
 785        unsigned int datactrl, timeout, irqmask;
 786        unsigned long long clks;
 787        void __iomem *base;
 788        int blksz_bits;
 789
 790        dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 791                data->blksz, data->blocks, data->flags);
 792
 793        host->data = data;
 794        host->size = data->blksz * data->blocks;
 795        data->bytes_xfered = 0;
 796
 797        clks = (unsigned long long)data->timeout_ns * host->cclk;
 798        do_div(clks, NSEC_PER_SEC);
 799
 800        timeout = data->timeout_clks + (unsigned int)clks;
 801
 802        base = host->base;
 803        writel(timeout, base + MMCIDATATIMER);
 804        writel(host->size, base + MMCIDATALENGTH);
 805
 806        blksz_bits = ffs(data->blksz) - 1;
 807        BUG_ON(1 << blksz_bits != data->blksz);
 808
 809        if (variant->blksz_datactrl16)
 810                datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 811        else if (variant->blksz_datactrl4)
 812                datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
 813        else
 814                datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 815
 816        if (data->flags & MMC_DATA_READ)
 817                datactrl |= MCI_DPSM_DIRECTION;
 818
 819        if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
 820                u32 clk;
 821
 822                datactrl |= variant->datactrl_mask_sdio;
 823
 824                /*
 825                 * The ST Micro variant for SDIO small write transfers
 826                 * needs to have clock H/W flow control disabled,
 827                 * otherwise the transfer will not start. The threshold
 828                 * depends on the rate of MCLK.
 829                 */
 830                if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
 831                    (host->size < 8 ||
 832                     (host->size <= 8 && host->mclk > 50000000)))
 833                        clk = host->clk_reg & ~variant->clkreg_enable;
 834                else
 835                        clk = host->clk_reg | variant->clkreg_enable;
 836
 837                mmci_write_clkreg(host, clk);
 838        }
 839
 840        if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 841            host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 842                datactrl |= variant->datactrl_mask_ddrmode;
 843
 844        /*
 845         * Attempt to use DMA operation mode, if this
 846         * should fail, fall back to PIO mode
 847         */
 848        if (!mmci_dma_start_data(host, datactrl))
 849                return;
 850
 851        /* IRQ mode, map the SG list for CPU reading/writing */
 852        mmci_init_sg(host, data);
 853
 854        if (data->flags & MMC_DATA_READ) {
 855                irqmask = MCI_RXFIFOHALFFULLMASK;
 856
 857                /*
 858                 * If we have less than the fifo 'half-full' threshold to
 859                 * transfer, trigger a PIO interrupt as soon as any data
 860                 * is available.
 861                 */
 862                if (host->size < variant->fifohalfsize)
 863                        irqmask |= MCI_RXDATAAVLBLMASK;
 864        } else {
 865                /*
 866                 * We don't actually need to include "FIFO empty" here
 867                 * since its implicit in "FIFO half empty".
 868                 */
 869                irqmask = MCI_TXFIFOHALFEMPTYMASK;
 870        }
 871
 872        mmci_write_datactrlreg(host, datactrl);
 873        writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 874        mmci_set_mask1(host, irqmask);
 875}
 876
 877static void
 878mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 879{
 880        void __iomem *base = host->base;
 881
 882        dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 883            cmd->opcode, cmd->arg, cmd->flags);
 884
 885        if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 886                writel(0, base + MMCICOMMAND);
 887                mmci_reg_delay(host);
 888        }
 889
 890        c |= cmd->opcode | MCI_CPSM_ENABLE;
 891        if (cmd->flags & MMC_RSP_PRESENT) {
 892                if (cmd->flags & MMC_RSP_136)
 893                        c |= MCI_CPSM_LONGRSP;
 894                c |= MCI_CPSM_RESPONSE;
 895        }
 896        if (/*interrupt*/0)
 897                c |= MCI_CPSM_INTERRUPT;
 898
 899        if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
 900                c |= host->variant->data_cmd_enable;
 901
 902        host->cmd = cmd;
 903
 904        writel(cmd->arg, base + MMCIARGUMENT);
 905        writel(c, base + MMCICOMMAND);
 906}
 907
 908static void
 909mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 910              unsigned int status)
 911{
 912        /* Make sure we have data to handle */
 913        if (!data)
 914                return;
 915
 916        /* First check for errors */
 917        if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
 918                      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
 919                u32 remain, success;
 920
 921                /* Terminate the DMA transfer */
 922                if (dma_inprogress(host)) {
 923                        mmci_dma_data_error(host);
 924                        mmci_dma_unmap(host, data);
 925                }
 926
 927                /*
 928                 * Calculate how far we are into the transfer.  Note that
 929                 * the data counter gives the number of bytes transferred
 930                 * on the MMC bus, not on the host side.  On reads, this
 931                 * can be as much as a FIFO-worth of data ahead.  This
 932                 * matters for FIFO overruns only.
 933                 */
 934                remain = readl(host->base + MMCIDATACNT);
 935                success = data->blksz * data->blocks - remain;
 936
 937                dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 938                        status, success);
 939                if (status & MCI_DATACRCFAIL) {
 940                        /* Last block was not successful */
 941                        success -= 1;
 942                        data->error = -EILSEQ;
 943                } else if (status & MCI_DATATIMEOUT) {
 944                        data->error = -ETIMEDOUT;
 945                } else if (status & MCI_STARTBITERR) {
 946                        data->error = -ECOMM;
 947                } else if (status & MCI_TXUNDERRUN) {
 948                        data->error = -EIO;
 949                } else if (status & MCI_RXOVERRUN) {
 950                        if (success > host->variant->fifosize)
 951                                success -= host->variant->fifosize;
 952                        else
 953                                success = 0;
 954                        data->error = -EIO;
 955                }
 956                data->bytes_xfered = round_down(success, data->blksz);
 957        }
 958
 959        if (status & MCI_DATABLOCKEND)
 960                dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
 961
 962        if (status & MCI_DATAEND || data->error) {
 963                if (dma_inprogress(host))
 964                        mmci_dma_finalize(host, data);
 965                mmci_stop_data(host);
 966
 967                if (!data->error)
 968                        /* The error clause is handled above, success! */
 969                        data->bytes_xfered = data->blksz * data->blocks;
 970
 971                if (!data->stop || host->mrq->sbc) {
 972                        mmci_request_end(host, data->mrq);
 973                } else {
 974                        mmci_start_command(host, data->stop, 0);
 975                }
 976        }
 977}
 978
 979static void
 980mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
 981             unsigned int status)
 982{
 983        void __iomem *base = host->base;
 984        bool sbc, busy_resp;
 985
 986        if (!cmd)
 987                return;
 988
 989        sbc = (cmd == host->mrq->sbc);
 990        busy_resp = host->variant->busy_detect && (cmd->flags & MMC_RSP_BUSY);
 991
 992        if (!((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
 993                MCI_CMDSENT|MCI_CMDRESPEND)))
 994                return;
 995
 996        /* Check if we need to wait for busy completion. */
 997        if (host->busy_status && (status & MCI_ST_CARDBUSY))
 998                return;
 999
1000        /* Enable busy completion if needed and supported. */
1001        if (!host->busy_status && busy_resp &&
1002                !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1003                (readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
1004                writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
1005                        base + MMCIMASK0);
1006                host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
1007                return;
1008        }
1009
1010        /* At busy completion, mask the IRQ and complete the request. */
1011        if (host->busy_status) {
1012                writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
1013                        base + MMCIMASK0);
1014                host->busy_status = 0;
1015        }
1016
1017        host->cmd = NULL;
1018
1019        if (status & MCI_CMDTIMEOUT) {
1020                cmd->error = -ETIMEDOUT;
1021        } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1022                cmd->error = -EILSEQ;
1023        } else {
1024                cmd->resp[0] = readl(base + MMCIRESPONSE0);
1025                cmd->resp[1] = readl(base + MMCIRESPONSE1);
1026                cmd->resp[2] = readl(base + MMCIRESPONSE2);
1027                cmd->resp[3] = readl(base + MMCIRESPONSE3);
1028        }
1029
1030        if ((!sbc && !cmd->data) || cmd->error) {
1031                if (host->data) {
1032                        /* Terminate the DMA transfer */
1033                        if (dma_inprogress(host)) {
1034                                mmci_dma_data_error(host);
1035                                mmci_dma_unmap(host, host->data);
1036                        }
1037                        mmci_stop_data(host);
1038                }
1039                mmci_request_end(host, host->mrq);
1040        } else if (sbc) {
1041                mmci_start_command(host, host->mrq->cmd, 0);
1042        } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1043                mmci_start_data(host, cmd->data);
1044        }
1045}
1046
1047static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1048{
1049        return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1050}
1051
1052static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1053{
1054        /*
1055         * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1056         * from the fifo range should be used
1057         */
1058        if (status & MCI_RXFIFOHALFFULL)
1059                return host->variant->fifohalfsize;
1060        else if (status & MCI_RXDATAAVLBL)
1061                return 4;
1062
1063        return 0;
1064}
1065
1066static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1067{
1068        void __iomem *base = host->base;
1069        char *ptr = buffer;
1070        u32 status = readl(host->base + MMCISTATUS);
1071        int host_remain = host->size;
1072
1073        do {
1074                int count = host->get_rx_fifocnt(host, status, host_remain);
1075
1076                if (count > remain)
1077                        count = remain;
1078
1079                if (count <= 0)
1080                        break;
1081
1082                /*
1083                 * SDIO especially may want to send something that is
1084                 * not divisible by 4 (as opposed to card sectors
1085                 * etc). Therefore make sure to always read the last bytes
1086                 * while only doing full 32-bit reads towards the FIFO.
1087                 */
1088                if (unlikely(count & 0x3)) {
1089                        if (count < 4) {
1090                                unsigned char buf[4];
1091                                ioread32_rep(base + MMCIFIFO, buf, 1);
1092                                memcpy(ptr, buf, count);
1093                        } else {
1094                                ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1095                                count &= ~0x3;
1096                        }
1097                } else {
1098                        ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1099                }
1100
1101                ptr += count;
1102                remain -= count;
1103                host_remain -= count;
1104
1105                if (remain == 0)
1106                        break;
1107
1108                status = readl(base + MMCISTATUS);
1109        } while (status & MCI_RXDATAAVLBL);
1110
1111        return ptr - buffer;
1112}
1113
1114static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1115{
1116        struct variant_data *variant = host->variant;
1117        void __iomem *base = host->base;
1118        char *ptr = buffer;
1119
1120        do {
1121                unsigned int count, maxcnt;
1122
1123                maxcnt = status & MCI_TXFIFOEMPTY ?
1124                         variant->fifosize : variant->fifohalfsize;
1125                count = min(remain, maxcnt);
1126
1127                /*
1128                 * SDIO especially may want to send something that is
1129                 * not divisible by 4 (as opposed to card sectors
1130                 * etc), and the FIFO only accept full 32-bit writes.
1131                 * So compensate by adding +3 on the count, a single
1132                 * byte become a 32bit write, 7 bytes will be two
1133                 * 32bit writes etc.
1134                 */
1135                iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1136
1137                ptr += count;
1138                remain -= count;
1139
1140                if (remain == 0)
1141                        break;
1142
1143                status = readl(base + MMCISTATUS);
1144        } while (status & MCI_TXFIFOHALFEMPTY);
1145
1146        return ptr - buffer;
1147}
1148
1149/*
1150 * PIO data transfer IRQ handler.
1151 */
1152static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1153{
1154        struct mmci_host *host = dev_id;
1155        struct sg_mapping_iter *sg_miter = &host->sg_miter;
1156        struct variant_data *variant = host->variant;
1157        void __iomem *base = host->base;
1158        unsigned long flags;
1159        u32 status;
1160
1161        status = readl(base + MMCISTATUS);
1162
1163        dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1164
1165        local_irq_save(flags);
1166
1167        do {
1168                unsigned int remain, len;
1169                char *buffer;
1170
1171                /*
1172                 * For write, we only need to test the half-empty flag
1173                 * here - if the FIFO is completely empty, then by
1174                 * definition it is more than half empty.
1175                 *
1176                 * For read, check for data available.
1177                 */
1178                if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1179                        break;
1180
1181                if (!sg_miter_next(sg_miter))
1182                        break;
1183
1184                buffer = sg_miter->addr;
1185                remain = sg_miter->length;
1186
1187                len = 0;
1188                if (status & MCI_RXACTIVE)
1189                        len = mmci_pio_read(host, buffer, remain);
1190                if (status & MCI_TXACTIVE)
1191                        len = mmci_pio_write(host, buffer, remain, status);
1192
1193                sg_miter->consumed = len;
1194
1195                host->size -= len;
1196                remain -= len;
1197
1198                if (remain)
1199                        break;
1200
1201                status = readl(base + MMCISTATUS);
1202        } while (1);
1203
1204        sg_miter_stop(sg_miter);
1205
1206        local_irq_restore(flags);
1207
1208        /*
1209         * If we have less than the fifo 'half-full' threshold to transfer,
1210         * trigger a PIO interrupt as soon as any data is available.
1211         */
1212        if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1213                mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1214
1215        /*
1216         * If we run out of data, disable the data IRQs; this
1217         * prevents a race where the FIFO becomes empty before
1218         * the chip itself has disabled the data path, and
1219         * stops us racing with our data end IRQ.
1220         */
1221        if (host->size == 0) {
1222                mmci_set_mask1(host, 0);
1223                writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1224        }
1225
1226        return IRQ_HANDLED;
1227}
1228
1229/*
1230 * Handle completion of command and data transfers.
1231 */
1232static irqreturn_t mmci_irq(int irq, void *dev_id)
1233{
1234        struct mmci_host *host = dev_id;
1235        u32 status;
1236        int ret = 0;
1237
1238        spin_lock(&host->lock);
1239
1240        do {
1241                status = readl(host->base + MMCISTATUS);
1242
1243                if (host->singleirq) {
1244                        if (status & readl(host->base + MMCIMASK1))
1245                                mmci_pio_irq(irq, dev_id);
1246
1247                        status &= ~MCI_IRQ1MASK;
1248                }
1249
1250                /*
1251                 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1252                 * enabled) since the HW seems to be triggering the IRQ on both
1253                 * edges while monitoring DAT0 for busy completion.
1254                 */
1255                status &= readl(host->base + MMCIMASK0);
1256                writel(status, host->base + MMCICLEAR);
1257
1258                dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1259
1260                if (host->variant->reversed_irq_handling) {
1261                        mmci_data_irq(host, host->data, status);
1262                        mmci_cmd_irq(host, host->cmd, status);
1263                } else {
1264                        mmci_cmd_irq(host, host->cmd, status);
1265                        mmci_data_irq(host, host->data, status);
1266                }
1267
1268                /* Don't poll for busy completion in irq context. */
1269                if (host->busy_status)
1270                        status &= ~MCI_ST_CARDBUSY;
1271
1272                ret = 1;
1273        } while (status);
1274
1275        spin_unlock(&host->lock);
1276
1277        return IRQ_RETVAL(ret);
1278}
1279
1280static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1281{
1282        struct mmci_host *host = mmc_priv(mmc);
1283        unsigned long flags;
1284
1285        WARN_ON(host->mrq != NULL);
1286
1287        mrq->cmd->error = mmci_validate_data(host, mrq->data);
1288        if (mrq->cmd->error) {
1289                mmc_request_done(mmc, mrq);
1290                return;
1291        }
1292
1293        pm_runtime_get_sync(mmc_dev(mmc));
1294
1295        spin_lock_irqsave(&host->lock, flags);
1296
1297        host->mrq = mrq;
1298
1299        if (mrq->data)
1300                mmci_get_next_data(host, mrq->data);
1301
1302        if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1303                mmci_start_data(host, mrq->data);
1304
1305        if (mrq->sbc)
1306                mmci_start_command(host, mrq->sbc, 0);
1307        else
1308                mmci_start_command(host, mrq->cmd, 0);
1309
1310        spin_unlock_irqrestore(&host->lock, flags);
1311}
1312
1313static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1314{
1315        struct mmci_host *host = mmc_priv(mmc);
1316        struct variant_data *variant = host->variant;
1317        u32 pwr = 0;
1318        unsigned long flags;
1319        int ret;
1320
1321        pm_runtime_get_sync(mmc_dev(mmc));
1322
1323        if (host->plat->ios_handler &&
1324                host->plat->ios_handler(mmc_dev(mmc), ios))
1325                        dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1326
1327        switch (ios->power_mode) {
1328        case MMC_POWER_OFF:
1329                if (!IS_ERR(mmc->supply.vmmc))
1330                        mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1331
1332                if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1333                        regulator_disable(mmc->supply.vqmmc);
1334                        host->vqmmc_enabled = false;
1335                }
1336
1337                break;
1338        case MMC_POWER_UP:
1339                if (!IS_ERR(mmc->supply.vmmc))
1340                        mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1341
1342                /*
1343                 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1344                 * and instead uses MCI_PWR_ON so apply whatever value is
1345                 * configured in the variant data.
1346                 */
1347                pwr |= variant->pwrreg_powerup;
1348
1349                break;
1350        case MMC_POWER_ON:
1351                if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1352                        ret = regulator_enable(mmc->supply.vqmmc);
1353                        if (ret < 0)
1354                                dev_err(mmc_dev(mmc),
1355                                        "failed to enable vqmmc regulator\n");
1356                        else
1357                                host->vqmmc_enabled = true;
1358                }
1359
1360                pwr |= MCI_PWR_ON;
1361                break;
1362        }
1363
1364        if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1365                /*
1366                 * The ST Micro variant has some additional bits
1367                 * indicating signal direction for the signals in
1368                 * the SD/MMC bus and feedback-clock usage.
1369                 */
1370                pwr |= host->pwr_reg_add;
1371
1372                if (ios->bus_width == MMC_BUS_WIDTH_4)
1373                        pwr &= ~MCI_ST_DATA74DIREN;
1374                else if (ios->bus_width == MMC_BUS_WIDTH_1)
1375                        pwr &= (~MCI_ST_DATA74DIREN &
1376                                ~MCI_ST_DATA31DIREN &
1377                                ~MCI_ST_DATA2DIREN);
1378        }
1379
1380        if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1381                if (host->hw_designer != AMBA_VENDOR_ST)
1382                        pwr |= MCI_ROD;
1383                else {
1384                        /*
1385                         * The ST Micro variant use the ROD bit for something
1386                         * else and only has OD (Open Drain).
1387                         */
1388                        pwr |= MCI_OD;
1389                }
1390        }
1391
1392        /*
1393         * If clock = 0 and the variant requires the MMCIPOWER to be used for
1394         * gating the clock, the MCI_PWR_ON bit is cleared.
1395         */
1396        if (!ios->clock && variant->pwrreg_clkgate)
1397                pwr &= ~MCI_PWR_ON;
1398
1399        if (host->variant->explicit_mclk_control &&
1400            ios->clock != host->clock_cache) {
1401                ret = clk_set_rate(host->clk, ios->clock);
1402                if (ret < 0)
1403                        dev_err(mmc_dev(host->mmc),
1404                                "Error setting clock rate (%d)\n", ret);
1405                else
1406                        host->mclk = clk_get_rate(host->clk);
1407        }
1408        host->clock_cache = ios->clock;
1409
1410        spin_lock_irqsave(&host->lock, flags);
1411
1412        mmci_set_clkreg(host, ios->clock);
1413        mmci_write_pwrreg(host, pwr);
1414        mmci_reg_delay(host);
1415
1416        spin_unlock_irqrestore(&host->lock, flags);
1417
1418        pm_runtime_mark_last_busy(mmc_dev(mmc));
1419        pm_runtime_put_autosuspend(mmc_dev(mmc));
1420}
1421
1422static int mmci_get_cd(struct mmc_host *mmc)
1423{
1424        struct mmci_host *host = mmc_priv(mmc);
1425        struct mmci_platform_data *plat = host->plat;
1426        unsigned int status = mmc_gpio_get_cd(mmc);
1427
1428        if (status == -ENOSYS) {
1429                if (!plat->status)
1430                        return 1; /* Assume always present */
1431
1432                status = plat->status(mmc_dev(host->mmc));
1433        }
1434        return status;
1435}
1436
1437static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1438{
1439        int ret = 0;
1440
1441        if (!IS_ERR(mmc->supply.vqmmc)) {
1442
1443                pm_runtime_get_sync(mmc_dev(mmc));
1444
1445                switch (ios->signal_voltage) {
1446                case MMC_SIGNAL_VOLTAGE_330:
1447                        ret = regulator_set_voltage(mmc->supply.vqmmc,
1448                                                2700000, 3600000);
1449                        break;
1450                case MMC_SIGNAL_VOLTAGE_180:
1451                        ret = regulator_set_voltage(mmc->supply.vqmmc,
1452                                                1700000, 1950000);
1453                        break;
1454                case MMC_SIGNAL_VOLTAGE_120:
1455                        ret = regulator_set_voltage(mmc->supply.vqmmc,
1456                                                1100000, 1300000);
1457                        break;
1458                }
1459
1460                if (ret)
1461                        dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1462
1463                pm_runtime_mark_last_busy(mmc_dev(mmc));
1464                pm_runtime_put_autosuspend(mmc_dev(mmc));
1465        }
1466
1467        return ret;
1468}
1469
1470static struct mmc_host_ops mmci_ops = {
1471        .request        = mmci_request,
1472        .pre_req        = mmci_pre_request,
1473        .post_req       = mmci_post_request,
1474        .set_ios        = mmci_set_ios,
1475        .get_ro         = mmc_gpio_get_ro,
1476        .get_cd         = mmci_get_cd,
1477        .start_signal_voltage_switch = mmci_sig_volt_switch,
1478};
1479
1480static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1481{
1482        struct mmci_host *host = mmc_priv(mmc);
1483        int ret = mmc_of_parse(mmc);
1484
1485        if (ret)
1486                return ret;
1487
1488        if (of_get_property(np, "st,sig-dir-dat0", NULL))
1489                host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1490        if (of_get_property(np, "st,sig-dir-dat2", NULL))
1491                host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1492        if (of_get_property(np, "st,sig-dir-dat31", NULL))
1493                host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1494        if (of_get_property(np, "st,sig-dir-dat74", NULL))
1495                host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1496        if (of_get_property(np, "st,sig-dir-cmd", NULL))
1497                host->pwr_reg_add |= MCI_ST_CMDDIREN;
1498        if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1499                host->pwr_reg_add |= MCI_ST_FBCLKEN;
1500
1501        if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1502                mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1503        if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1504                mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1505
1506        return 0;
1507}
1508
1509static int mmci_probe(struct amba_device *dev,
1510        const struct amba_id *id)
1511{
1512        struct mmci_platform_data *plat = dev->dev.platform_data;
1513        struct device_node *np = dev->dev.of_node;
1514        struct variant_data *variant = id->data;
1515        struct mmci_host *host;
1516        struct mmc_host *mmc;
1517        int ret;
1518
1519        /* Must have platform data or Device Tree. */
1520        if (!plat && !np) {
1521                dev_err(&dev->dev, "No plat data or DT found\n");
1522                return -EINVAL;
1523        }
1524
1525        if (!plat) {
1526                plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1527                if (!plat)
1528                        return -ENOMEM;
1529        }
1530
1531        mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1532        if (!mmc)
1533                return -ENOMEM;
1534
1535        ret = mmci_of_parse(np, mmc);
1536        if (ret)
1537                goto host_free;
1538
1539        host = mmc_priv(mmc);
1540        host->mmc = mmc;
1541
1542        host->hw_designer = amba_manf(dev);
1543        host->hw_revision = amba_rev(dev);
1544        dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1545        dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1546
1547        host->clk = devm_clk_get(&dev->dev, NULL);
1548        if (IS_ERR(host->clk)) {
1549                ret = PTR_ERR(host->clk);
1550                goto host_free;
1551        }
1552
1553        ret = clk_prepare_enable(host->clk);
1554        if (ret)
1555                goto host_free;
1556
1557        if (variant->qcom_fifo)
1558                host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1559        else
1560                host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1561
1562        host->plat = plat;
1563        host->variant = variant;
1564        host->mclk = clk_get_rate(host->clk);
1565        /*
1566         * According to the spec, mclk is max 100 MHz,
1567         * so we try to adjust the clock down to this,
1568         * (if possible).
1569         */
1570        if (host->mclk > variant->f_max) {
1571                ret = clk_set_rate(host->clk, variant->f_max);
1572                if (ret < 0)
1573                        goto clk_disable;
1574                host->mclk = clk_get_rate(host->clk);
1575                dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1576                        host->mclk);
1577        }
1578
1579        host->phybase = dev->res.start;
1580        host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1581        if (IS_ERR(host->base)) {
1582                ret = PTR_ERR(host->base);
1583                goto clk_disable;
1584        }
1585
1586        /*
1587         * The ARM and ST versions of the block have slightly different
1588         * clock divider equations which means that the minimum divider
1589         * differs too.
1590         * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1591         */
1592        if (variant->st_clkdiv)
1593                mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1594        else if (variant->explicit_mclk_control)
1595                mmc->f_min = clk_round_rate(host->clk, 100000);
1596        else
1597                mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1598        /*
1599         * If no maximum operating frequency is supplied, fall back to use
1600         * the module parameter, which has a (low) default value in case it
1601         * is not specified. Either value must not exceed the clock rate into
1602         * the block, of course.
1603         */
1604        if (mmc->f_max)
1605                mmc->f_max = variant->explicit_mclk_control ?
1606                                min(variant->f_max, mmc->f_max) :
1607                                min(host->mclk, mmc->f_max);
1608        else
1609                mmc->f_max = variant->explicit_mclk_control ?
1610                                fmax : min(host->mclk, fmax);
1611
1612
1613        dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1614
1615        /* Get regulators and the supported OCR mask */
1616        ret = mmc_regulator_get_supply(mmc);
1617        if (ret == -EPROBE_DEFER)
1618                goto clk_disable;
1619
1620        if (!mmc->ocr_avail)
1621                mmc->ocr_avail = plat->ocr_mask;
1622        else if (plat->ocr_mask)
1623                dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1624
1625        /* DT takes precedence over platform data. */
1626        if (!np) {
1627                if (!plat->cd_invert)
1628                        mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1629                mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1630        }
1631
1632        /* We support these capabilities. */
1633        mmc->caps |= MMC_CAP_CMD23;
1634
1635        if (variant->busy_detect) {
1636                mmci_ops.card_busy = mmci_card_busy;
1637                mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1638                mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1639                mmc->max_busy_timeout = 0;
1640        }
1641
1642        mmc->ops = &mmci_ops;
1643
1644        /* We support these PM capabilities. */
1645        mmc->pm_caps |= MMC_PM_KEEP_POWER;
1646
1647        /*
1648         * We can do SGIO
1649         */
1650        mmc->max_segs = NR_SG;
1651
1652        /*
1653         * Since only a certain number of bits are valid in the data length
1654         * register, we must ensure that we don't exceed 2^num-1 bytes in a
1655         * single request.
1656         */
1657        mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1658
1659        /*
1660         * Set the maximum segment size.  Since we aren't doing DMA
1661         * (yet) we are only limited by the data length register.
1662         */
1663        mmc->max_seg_size = mmc->max_req_size;
1664
1665        /*
1666         * Block size can be up to 2048 bytes, but must be a power of two.
1667         */
1668        mmc->max_blk_size = 1 << 11;
1669
1670        /*
1671         * Limit the number of blocks transferred so that we don't overflow
1672         * the maximum request size.
1673         */
1674        mmc->max_blk_count = mmc->max_req_size >> 11;
1675
1676        spin_lock_init(&host->lock);
1677
1678        writel(0, host->base + MMCIMASK0);
1679        writel(0, host->base + MMCIMASK1);
1680        writel(0xfff, host->base + MMCICLEAR);
1681
1682        /*
1683         * If:
1684         * - not using DT but using a descriptor table, or
1685         * - using a table of descriptors ALONGSIDE DT, or
1686         * look up these descriptors named "cd" and "wp" right here, fail
1687         * silently of these do not exist and proceed to try platform data
1688         */
1689        if (!np) {
1690                ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1691                if (ret < 0) {
1692                        if (ret == -EPROBE_DEFER)
1693                                goto clk_disable;
1694                        else if (gpio_is_valid(plat->gpio_cd)) {
1695                                ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1696                                if (ret)
1697                                        goto clk_disable;
1698                        }
1699                }
1700
1701                ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1702                if (ret < 0) {
1703                        if (ret == -EPROBE_DEFER)
1704                                goto clk_disable;
1705                        else if (gpio_is_valid(plat->gpio_wp)) {
1706                                ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1707                                if (ret)
1708                                        goto clk_disable;
1709                        }
1710                }
1711        }
1712
1713        ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1714                        DRIVER_NAME " (cmd)", host);
1715        if (ret)
1716                goto clk_disable;
1717
1718        if (!dev->irq[1])
1719                host->singleirq = true;
1720        else {
1721                ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1722                                IRQF_SHARED, DRIVER_NAME " (pio)", host);
1723                if (ret)
1724                        goto clk_disable;
1725        }
1726
1727        writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1728
1729        amba_set_drvdata(dev, mmc);
1730
1731        dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1732                 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1733                 amba_rev(dev), (unsigned long long)dev->res.start,
1734                 dev->irq[0], dev->irq[1]);
1735
1736        mmci_dma_setup(host);
1737
1738        pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1739        pm_runtime_use_autosuspend(&dev->dev);
1740
1741        mmc_add_host(mmc);
1742
1743        pm_runtime_put(&dev->dev);
1744        return 0;
1745
1746 clk_disable:
1747        clk_disable_unprepare(host->clk);
1748 host_free:
1749        mmc_free_host(mmc);
1750        return ret;
1751}
1752
1753static int mmci_remove(struct amba_device *dev)
1754{
1755        struct mmc_host *mmc = amba_get_drvdata(dev);
1756
1757        if (mmc) {
1758                struct mmci_host *host = mmc_priv(mmc);
1759
1760                /*
1761                 * Undo pm_runtime_put() in probe.  We use the _sync
1762                 * version here so that we can access the primecell.
1763                 */
1764                pm_runtime_get_sync(&dev->dev);
1765
1766                mmc_remove_host(mmc);
1767
1768                writel(0, host->base + MMCIMASK0);
1769                writel(0, host->base + MMCIMASK1);
1770
1771                writel(0, host->base + MMCICOMMAND);
1772                writel(0, host->base + MMCIDATACTRL);
1773
1774                mmci_dma_release(host);
1775                clk_disable_unprepare(host->clk);
1776                mmc_free_host(mmc);
1777        }
1778
1779        return 0;
1780}
1781
1782#ifdef CONFIG_PM
1783static void mmci_save(struct mmci_host *host)
1784{
1785        unsigned long flags;
1786
1787        spin_lock_irqsave(&host->lock, flags);
1788
1789        writel(0, host->base + MMCIMASK0);
1790        if (host->variant->pwrreg_nopower) {
1791                writel(0, host->base + MMCIDATACTRL);
1792                writel(0, host->base + MMCIPOWER);
1793                writel(0, host->base + MMCICLOCK);
1794        }
1795        mmci_reg_delay(host);
1796
1797        spin_unlock_irqrestore(&host->lock, flags);
1798}
1799
1800static void mmci_restore(struct mmci_host *host)
1801{
1802        unsigned long flags;
1803
1804        spin_lock_irqsave(&host->lock, flags);
1805
1806        if (host->variant->pwrreg_nopower) {
1807                writel(host->clk_reg, host->base + MMCICLOCK);
1808                writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1809                writel(host->pwr_reg, host->base + MMCIPOWER);
1810        }
1811        writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1812        mmci_reg_delay(host);
1813
1814        spin_unlock_irqrestore(&host->lock, flags);
1815}
1816
1817static int mmci_runtime_suspend(struct device *dev)
1818{
1819        struct amba_device *adev = to_amba_device(dev);
1820        struct mmc_host *mmc = amba_get_drvdata(adev);
1821
1822        if (mmc) {
1823                struct mmci_host *host = mmc_priv(mmc);
1824                pinctrl_pm_select_sleep_state(dev);
1825                mmci_save(host);
1826                clk_disable_unprepare(host->clk);
1827        }
1828
1829        return 0;
1830}
1831
1832static int mmci_runtime_resume(struct device *dev)
1833{
1834        struct amba_device *adev = to_amba_device(dev);
1835        struct mmc_host *mmc = amba_get_drvdata(adev);
1836
1837        if (mmc) {
1838                struct mmci_host *host = mmc_priv(mmc);
1839                clk_prepare_enable(host->clk);
1840                mmci_restore(host);
1841                pinctrl_pm_select_default_state(dev);
1842        }
1843
1844        return 0;
1845}
1846#endif
1847
1848static const struct dev_pm_ops mmci_dev_pm_ops = {
1849        SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1850                                pm_runtime_force_resume)
1851        SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1852};
1853
1854static struct amba_id mmci_ids[] = {
1855        {
1856                .id     = 0x00041180,
1857                .mask   = 0xff0fffff,
1858                .data   = &variant_arm,
1859        },
1860        {
1861                .id     = 0x01041180,
1862                .mask   = 0xff0fffff,
1863                .data   = &variant_arm_extended_fifo,
1864        },
1865        {
1866                .id     = 0x02041180,
1867                .mask   = 0xff0fffff,
1868                .data   = &variant_arm_extended_fifo_hwfc,
1869        },
1870        {
1871                .id     = 0x00041181,
1872                .mask   = 0x000fffff,
1873                .data   = &variant_arm,
1874        },
1875        /* ST Micro variants */
1876        {
1877                .id     = 0x00180180,
1878                .mask   = 0x00ffffff,
1879                .data   = &variant_u300,
1880        },
1881        {
1882                .id     = 0x10180180,
1883                .mask   = 0xf0ffffff,
1884                .data   = &variant_nomadik,
1885        },
1886        {
1887                .id     = 0x00280180,
1888                .mask   = 0x00ffffff,
1889                .data   = &variant_u300,
1890        },
1891        {
1892                .id     = 0x00480180,
1893                .mask   = 0xf0ffffff,
1894                .data   = &variant_ux500,
1895        },
1896        {
1897                .id     = 0x10480180,
1898                .mask   = 0xf0ffffff,
1899                .data   = &variant_ux500v2,
1900        },
1901        /* Qualcomm variants */
1902        {
1903                .id     = 0x00051180,
1904                .mask   = 0x000fffff,
1905                .data   = &variant_qcom,
1906        },
1907        { 0, 0 },
1908};
1909
1910MODULE_DEVICE_TABLE(amba, mmci_ids);
1911
1912static struct amba_driver mmci_driver = {
1913        .drv            = {
1914                .name   = DRIVER_NAME,
1915                .pm     = &mmci_dev_pm_ops,
1916        },
1917        .probe          = mmci_probe,
1918        .remove         = mmci_remove,
1919        .id_table       = mmci_ids,
1920};
1921
1922module_amba_driver(mmci_driver);
1923
1924module_param(fmax, uint, 0444);
1925
1926MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1927MODULE_LICENSE("GPL");
1928