linux/drivers/mtd/chips/cfi_cmdset_0002.c
<<
>>
Prefs
   1/*
   2 * Common Flash Interface support:
   3 *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
   4 *
   5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
   6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
   7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
   8 *
   9 * 2_by_8 routines added by Simon Munton
  10 *
  11 * 4_by_16 work by Carolyn J. Smith
  12 *
  13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
  14 * by Nicolas Pitre)
  15 *
  16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
  17 *
  18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
  19 *
  20 * This code is GPL
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/types.h>
  25#include <linux/kernel.h>
  26#include <linux/sched.h>
  27#include <asm/io.h>
  28#include <asm/byteorder.h>
  29
  30#include <linux/errno.h>
  31#include <linux/slab.h>
  32#include <linux/delay.h>
  33#include <linux/interrupt.h>
  34#include <linux/reboot.h>
  35#include <linux/of.h>
  36#include <linux/of_platform.h>
  37#include <linux/mtd/map.h>
  38#include <linux/mtd/mtd.h>
  39#include <linux/mtd/cfi.h>
  40#include <linux/mtd/xip.h>
  41
  42#define AMD_BOOTLOC_BUG
  43#define FORCE_WORD_WRITE 0
  44
  45#define MAX_WORD_RETRIES 3
  46
  47#define SST49LF004B             0x0060
  48#define SST49LF040B             0x0050
  49#define SST49LF008A             0x005a
  50#define AT49BV6416              0x00d6
  51
  52static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
  53static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
  54static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
  55static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
  56static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
  57static void cfi_amdstd_sync (struct mtd_info *);
  58static int cfi_amdstd_suspend (struct mtd_info *);
  59static void cfi_amdstd_resume (struct mtd_info *);
  60static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
  61static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
  62                                         size_t *, struct otp_info *);
  63static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
  64                                         size_t *, struct otp_info *);
  65static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
  66static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
  67                                         size_t *, u_char *);
  68static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
  69                                         size_t *, u_char *);
  70static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
  71                                          size_t *, u_char *);
  72static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
  73
  74static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  75                                  size_t *retlen, const u_char *buf);
  76
  77static void cfi_amdstd_destroy(struct mtd_info *);
  78
  79struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
  80static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
  81
  82static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
  83static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
  84#include "fwh_lock.h"
  85
  86static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  87static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  88
  89static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  90static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  91static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  92
  93static struct mtd_chip_driver cfi_amdstd_chipdrv = {
  94        .probe          = NULL, /* Not usable directly */
  95        .destroy        = cfi_amdstd_destroy,
  96        .name           = "cfi_cmdset_0002",
  97        .module         = THIS_MODULE
  98};
  99
 100
 101/* #define DEBUG_CFI_FEATURES */
 102
 103
 104#ifdef DEBUG_CFI_FEATURES
 105static void cfi_tell_features(struct cfi_pri_amdstd *extp)
 106{
 107        const char* erase_suspend[3] = {
 108                "Not supported", "Read only", "Read/write"
 109        };
 110        const char* top_bottom[6] = {
 111                "No WP", "8x8KiB sectors at top & bottom, no WP",
 112                "Bottom boot", "Top boot",
 113                "Uniform, Bottom WP", "Uniform, Top WP"
 114        };
 115
 116        printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
 117        printk("  Address sensitive unlock: %s\n",
 118               (extp->SiliconRevision & 1) ? "Not required" : "Required");
 119
 120        if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
 121                printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
 122        else
 123                printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
 124
 125        if (extp->BlkProt == 0)
 126                printk("  Block protection: Not supported\n");
 127        else
 128                printk("  Block protection: %d sectors per group\n", extp->BlkProt);
 129
 130
 131        printk("  Temporary block unprotect: %s\n",
 132               extp->TmpBlkUnprotect ? "Supported" : "Not supported");
 133        printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
 134        printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
 135        printk("  Burst mode: %s\n",
 136               extp->BurstMode ? "Supported" : "Not supported");
 137        if (extp->PageMode == 0)
 138                printk("  Page mode: Not supported\n");
 139        else
 140                printk("  Page mode: %d word page\n", extp->PageMode << 2);
 141
 142        printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
 143               extp->VppMin >> 4, extp->VppMin & 0xf);
 144        printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
 145               extp->VppMax >> 4, extp->VppMax & 0xf);
 146
 147        if (extp->TopBottom < ARRAY_SIZE(top_bottom))
 148                printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
 149        else
 150                printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
 151}
 152#endif
 153
 154#ifdef AMD_BOOTLOC_BUG
 155/* Wheee. Bring me the head of someone at AMD. */
 156static void fixup_amd_bootblock(struct mtd_info *mtd)
 157{
 158        struct map_info *map = mtd->priv;
 159        struct cfi_private *cfi = map->fldrv_priv;
 160        struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 161        __u8 major = extp->MajorVersion;
 162        __u8 minor = extp->MinorVersion;
 163
 164        if (((major << 8) | minor) < 0x3131) {
 165                /* CFI version 1.0 => don't trust bootloc */
 166
 167                pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
 168                        map->name, cfi->mfr, cfi->id);
 169
 170                /* AFAICS all 29LV400 with a bottom boot block have a device ID
 171                 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
 172                 * These were badly detected as they have the 0x80 bit set
 173                 * so treat them as a special case.
 174                 */
 175                if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
 176
 177                        /* Macronix added CFI to their 2nd generation
 178                         * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
 179                         * Fujitsu, Spansion, EON, ESI and older Macronix)
 180                         * has CFI.
 181                         *
 182                         * Therefore also check the manufacturer.
 183                         * This reduces the risk of false detection due to
 184                         * the 8-bit device ID.
 185                         */
 186                        (cfi->mfr == CFI_MFR_MACRONIX)) {
 187                        pr_debug("%s: Macronix MX29LV400C with bottom boot block"
 188                                " detected\n", map->name);
 189                        extp->TopBottom = 2;    /* bottom boot */
 190                } else
 191                if (cfi->id & 0x80) {
 192                        printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
 193                        extp->TopBottom = 3;    /* top boot */
 194                } else {
 195                        extp->TopBottom = 2;    /* bottom boot */
 196                }
 197
 198                pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
 199                        " deduced %s from Device ID\n", map->name, major, minor,
 200                        extp->TopBottom == 2 ? "bottom" : "top");
 201        }
 202}
 203#endif
 204
 205static void fixup_use_write_buffers(struct mtd_info *mtd)
 206{
 207        struct map_info *map = mtd->priv;
 208        struct cfi_private *cfi = map->fldrv_priv;
 209        if (cfi->cfiq->BufWriteTimeoutTyp) {
 210                pr_debug("Using buffer write method\n" );
 211                mtd->_write = cfi_amdstd_write_buffers;
 212        }
 213}
 214
 215/* Atmel chips don't use the same PRI format as AMD chips */
 216static void fixup_convert_atmel_pri(struct mtd_info *mtd)
 217{
 218        struct map_info *map = mtd->priv;
 219        struct cfi_private *cfi = map->fldrv_priv;
 220        struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 221        struct cfi_pri_atmel atmel_pri;
 222
 223        memcpy(&atmel_pri, extp, sizeof(atmel_pri));
 224        memset((char *)extp + 5, 0, sizeof(*extp) - 5);
 225
 226        if (atmel_pri.Features & 0x02)
 227                extp->EraseSuspend = 2;
 228
 229        /* Some chips got it backwards... */
 230        if (cfi->id == AT49BV6416) {
 231                if (atmel_pri.BottomBoot)
 232                        extp->TopBottom = 3;
 233                else
 234                        extp->TopBottom = 2;
 235        } else {
 236                if (atmel_pri.BottomBoot)
 237                        extp->TopBottom = 2;
 238                else
 239                        extp->TopBottom = 3;
 240        }
 241
 242        /* burst write mode not supported */
 243        cfi->cfiq->BufWriteTimeoutTyp = 0;
 244        cfi->cfiq->BufWriteTimeoutMax = 0;
 245}
 246
 247static void fixup_use_secsi(struct mtd_info *mtd)
 248{
 249        /* Setup for chips with a secsi area */
 250        mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
 251        mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
 252}
 253
 254static void fixup_use_erase_chip(struct mtd_info *mtd)
 255{
 256        struct map_info *map = mtd->priv;
 257        struct cfi_private *cfi = map->fldrv_priv;
 258        if ((cfi->cfiq->NumEraseRegions == 1) &&
 259                ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
 260                mtd->_erase = cfi_amdstd_erase_chip;
 261        }
 262
 263}
 264
 265/*
 266 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
 267 * locked by default.
 268 */
 269static void fixup_use_atmel_lock(struct mtd_info *mtd)
 270{
 271        mtd->_lock = cfi_atmel_lock;
 272        mtd->_unlock = cfi_atmel_unlock;
 273        mtd->flags |= MTD_POWERUP_LOCK;
 274}
 275
 276static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
 277{
 278        struct map_info *map = mtd->priv;
 279        struct cfi_private *cfi = map->fldrv_priv;
 280
 281        /*
 282         * These flashes report two separate eraseblock regions based on the
 283         * sector_erase-size and block_erase-size, although they both operate on the
 284         * same memory. This is not allowed according to CFI, so we just pick the
 285         * sector_erase-size.
 286         */
 287        cfi->cfiq->NumEraseRegions = 1;
 288}
 289
 290static void fixup_sst39vf(struct mtd_info *mtd)
 291{
 292        struct map_info *map = mtd->priv;
 293        struct cfi_private *cfi = map->fldrv_priv;
 294
 295        fixup_old_sst_eraseregion(mtd);
 296
 297        cfi->addr_unlock1 = 0x5555;
 298        cfi->addr_unlock2 = 0x2AAA;
 299}
 300
 301static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
 302{
 303        struct map_info *map = mtd->priv;
 304        struct cfi_private *cfi = map->fldrv_priv;
 305
 306        fixup_old_sst_eraseregion(mtd);
 307
 308        cfi->addr_unlock1 = 0x555;
 309        cfi->addr_unlock2 = 0x2AA;
 310
 311        cfi->sector_erase_cmd = CMD(0x50);
 312}
 313
 314static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
 315{
 316        struct map_info *map = mtd->priv;
 317        struct cfi_private *cfi = map->fldrv_priv;
 318
 319        fixup_sst39vf_rev_b(mtd);
 320
 321        /*
 322         * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
 323         * it should report a size of 8KBytes (0x0020*256).
 324         */
 325        cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
 326        pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
 327}
 328
 329static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
 330{
 331        struct map_info *map = mtd->priv;
 332        struct cfi_private *cfi = map->fldrv_priv;
 333
 334        if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
 335                cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
 336                pr_warning("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", mtd->name);
 337        }
 338}
 339
 340static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
 341{
 342        struct map_info *map = mtd->priv;
 343        struct cfi_private *cfi = map->fldrv_priv;
 344
 345        if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
 346                cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
 347                pr_warning("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", mtd->name);
 348        }
 349}
 350
 351static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
 352{
 353        struct map_info *map = mtd->priv;
 354        struct cfi_private *cfi = map->fldrv_priv;
 355
 356        /*
 357         *  S29NS512P flash uses more than 8bits to report number of sectors,
 358         * which is not permitted by CFI.
 359         */
 360        cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
 361        pr_warning("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", mtd->name);
 362}
 363
 364/* Used to fix CFI-Tables of chips without Extended Query Tables */
 365static struct cfi_fixup cfi_nopri_fixup_table[] = {
 366        { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
 367        { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
 368        { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
 369        { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
 370        { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
 371        { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
 372        { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
 373        { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
 374        { 0, 0, NULL }
 375};
 376
 377static struct cfi_fixup cfi_fixup_table[] = {
 378        { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
 379#ifdef AMD_BOOTLOC_BUG
 380        { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
 381        { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
 382        { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
 383#endif
 384        { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
 385        { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
 386        { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
 387        { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
 388        { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
 389        { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
 390        { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
 391        { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
 392        { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
 393        { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
 394        { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
 395        { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
 396        { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
 397        { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
 398        { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
 399#if !FORCE_WORD_WRITE
 400        { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
 401#endif
 402        { 0, 0, NULL }
 403};
 404static struct cfi_fixup jedec_fixup_table[] = {
 405        { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
 406        { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
 407        { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
 408        { 0, 0, NULL }
 409};
 410
 411static struct cfi_fixup fixup_table[] = {
 412        /* The CFI vendor ids and the JEDEC vendor IDs appear
 413         * to be common.  It is like the devices id's are as
 414         * well.  This table is to pick all cases where
 415         * we know that is the case.
 416         */
 417        { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
 418        { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
 419        { 0, 0, NULL }
 420};
 421
 422
 423static void cfi_fixup_major_minor(struct cfi_private *cfi,
 424                                  struct cfi_pri_amdstd *extp)
 425{
 426        if (cfi->mfr == CFI_MFR_SAMSUNG) {
 427                if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
 428                    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
 429                        /*
 430                         * Samsung K8P2815UQB and K8D6x16UxM chips
 431                         * report major=0 / minor=0.
 432                         * K8D3x16UxC chips report major=3 / minor=3.
 433                         */
 434                        printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
 435                               " Extended Query version to 1.%c\n",
 436                               extp->MinorVersion);
 437                        extp->MajorVersion = '1';
 438                }
 439        }
 440
 441        /*
 442         * SST 38VF640x chips report major=0xFF / minor=0xFF.
 443         */
 444        if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
 445                extp->MajorVersion = '1';
 446                extp->MinorVersion = '0';
 447        }
 448}
 449
 450static int is_m29ew(struct cfi_private *cfi)
 451{
 452        if (cfi->mfr == CFI_MFR_INTEL &&
 453            ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
 454             (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
 455                return 1;
 456        return 0;
 457}
 458
 459/*
 460 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
 461 * Some revisions of the M29EW suffer from erase suspend hang ups. In
 462 * particular, it can occur when the sequence
 463 * Erase Confirm -> Suspend -> Program -> Resume
 464 * causes a lockup due to internal timing issues. The consequence is that the
 465 * erase cannot be resumed without inserting a dummy command after programming
 466 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
 467 * that writes an F0 command code before the RESUME command.
 468 */
 469static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
 470                                          unsigned long adr)
 471{
 472        struct cfi_private *cfi = map->fldrv_priv;
 473        /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
 474        if (is_m29ew(cfi))
 475                map_write(map, CMD(0xF0), adr);
 476}
 477
 478/*
 479 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
 480 *
 481 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
 482 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
 483 * command is issued after an ERASE RESUME operation without waiting for a
 484 * minimum delay.  The result is that once the ERASE seems to be completed
 485 * (no bits are toggling), the contents of the Flash memory block on which
 486 * the erase was ongoing could be inconsistent with the expected values
 487 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
 488 * values), causing a consequent failure of the ERASE operation.
 489 * The occurrence of this issue could be high, especially when file system
 490 * operations on the Flash are intensive.  As a result, it is recommended
 491 * that a patch be applied.  Intensive file system operations can cause many
 492 * calls to the garbage routine to free Flash space (also by erasing physical
 493 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
 494 * commands can occur.  The problem disappears when a delay is inserted after
 495 * the RESUME command by using the udelay() function available in Linux.
 496 * The DELAY value must be tuned based on the customer's platform.
 497 * The maximum value that fixes the problem in all cases is 500us.
 498 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
 499 * in most cases.
 500 * We have chosen 500µs because this latency is acceptable.
 501 */
 502static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
 503{
 504        /*
 505         * Resolving the Delay After Resume Issue see Micron TN-13-07
 506         * Worst case delay must be 500µs but 30-50µs should be ok as well
 507         */
 508        if (is_m29ew(cfi))
 509                cfi_udelay(500);
 510}
 511
 512struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
 513{
 514        struct cfi_private *cfi = map->fldrv_priv;
 515        struct device_node __maybe_unused *np = map->device_node;
 516        struct mtd_info *mtd;
 517        int i;
 518
 519        mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 520        if (!mtd)
 521                return NULL;
 522        mtd->priv = map;
 523        mtd->type = MTD_NORFLASH;
 524
 525        /* Fill in the default mtd operations */
 526        mtd->_erase   = cfi_amdstd_erase_varsize;
 527        mtd->_write   = cfi_amdstd_write_words;
 528        mtd->_read    = cfi_amdstd_read;
 529        mtd->_sync    = cfi_amdstd_sync;
 530        mtd->_suspend = cfi_amdstd_suspend;
 531        mtd->_resume  = cfi_amdstd_resume;
 532        mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
 533        mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
 534        mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
 535        mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
 536        mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
 537        mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
 538        mtd->flags   = MTD_CAP_NORFLASH;
 539        mtd->name    = map->name;
 540        mtd->writesize = 1;
 541        mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
 542
 543        pr_debug("MTD %s(): write buffer size %d\n", __func__,
 544                        mtd->writebufsize);
 545
 546        mtd->_panic_write = cfi_amdstd_panic_write;
 547        mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
 548
 549        if (cfi->cfi_mode==CFI_MODE_CFI){
 550                unsigned char bootloc;
 551                __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
 552                struct cfi_pri_amdstd *extp;
 553
 554                extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
 555                if (extp) {
 556                        /*
 557                         * It's a real CFI chip, not one for which the probe
 558                         * routine faked a CFI structure.
 559                         */
 560                        cfi_fixup_major_minor(cfi, extp);
 561
 562                        /*
 563                         * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
 564                         * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19 
 565                         *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
 566                         *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
 567                         *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
 568                         */
 569                        if (extp->MajorVersion != '1' ||
 570                            (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
 571                                printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
 572                                       "version %c.%c (%#02x/%#02x).\n",
 573                                       extp->MajorVersion, extp->MinorVersion,
 574                                       extp->MajorVersion, extp->MinorVersion);
 575                                kfree(extp);
 576                                kfree(mtd);
 577                                return NULL;
 578                        }
 579
 580                        printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
 581                               extp->MajorVersion, extp->MinorVersion);
 582
 583                        /* Install our own private info structure */
 584                        cfi->cmdset_priv = extp;
 585
 586                        /* Apply cfi device specific fixups */
 587                        cfi_fixup(mtd, cfi_fixup_table);
 588
 589#ifdef DEBUG_CFI_FEATURES
 590                        /* Tell the user about it in lots of lovely detail */
 591                        cfi_tell_features(extp);
 592#endif
 593
 594#ifdef CONFIG_OF
 595                        if (np && of_property_read_bool(
 596                                    np, "use-advanced-sector-protection")
 597                            && extp->BlkProtUnprot == 8) {
 598                                printk(KERN_INFO "  Advanced Sector Protection (PPB Locking) supported\n");
 599                                mtd->_lock = cfi_ppb_lock;
 600                                mtd->_unlock = cfi_ppb_unlock;
 601                                mtd->_is_locked = cfi_ppb_is_locked;
 602                        }
 603#endif
 604
 605                        bootloc = extp->TopBottom;
 606                        if ((bootloc < 2) || (bootloc > 5)) {
 607                                printk(KERN_WARNING "%s: CFI contains unrecognised boot "
 608                                       "bank location (%d). Assuming bottom.\n",
 609                                       map->name, bootloc);
 610                                bootloc = 2;
 611                        }
 612
 613                        if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
 614                                printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
 615
 616                                for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
 617                                        int j = (cfi->cfiq->NumEraseRegions-1)-i;
 618                                        __u32 swap;
 619
 620                                        swap = cfi->cfiq->EraseRegionInfo[i];
 621                                        cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
 622                                        cfi->cfiq->EraseRegionInfo[j] = swap;
 623                                }
 624                        }
 625                        /* Set the default CFI lock/unlock addresses */
 626                        cfi->addr_unlock1 = 0x555;
 627                        cfi->addr_unlock2 = 0x2aa;
 628                }
 629                cfi_fixup(mtd, cfi_nopri_fixup_table);
 630
 631                if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
 632                        kfree(mtd);
 633                        return NULL;
 634                }
 635
 636        } /* CFI mode */
 637        else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
 638                /* Apply jedec specific fixups */
 639                cfi_fixup(mtd, jedec_fixup_table);
 640        }
 641        /* Apply generic fixups */
 642        cfi_fixup(mtd, fixup_table);
 643
 644        for (i=0; i< cfi->numchips; i++) {
 645                cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
 646                cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
 647                cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
 648                /*
 649                 * First calculate the timeout max according to timeout field
 650                 * of struct cfi_ident that probed from chip's CFI aera, if
 651                 * available. Specify a minimum of 2000us, in case the CFI data
 652                 * is wrong.
 653                 */
 654                if (cfi->cfiq->BufWriteTimeoutTyp &&
 655                    cfi->cfiq->BufWriteTimeoutMax)
 656                        cfi->chips[i].buffer_write_time_max =
 657                                1 << (cfi->cfiq->BufWriteTimeoutTyp +
 658                                      cfi->cfiq->BufWriteTimeoutMax);
 659                else
 660                        cfi->chips[i].buffer_write_time_max = 0;
 661
 662                cfi->chips[i].buffer_write_time_max =
 663                        max(cfi->chips[i].buffer_write_time_max, 2000);
 664
 665                cfi->chips[i].ref_point_counter = 0;
 666                init_waitqueue_head(&(cfi->chips[i].wq));
 667        }
 668
 669        map->fldrv = &cfi_amdstd_chipdrv;
 670
 671        return cfi_amdstd_setup(mtd);
 672}
 673struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
 674struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
 675EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
 676EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
 677EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
 678
 679static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
 680{
 681        struct map_info *map = mtd->priv;
 682        struct cfi_private *cfi = map->fldrv_priv;
 683        unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
 684        unsigned long offset = 0;
 685        int i,j;
 686
 687        printk(KERN_NOTICE "number of %s chips: %d\n",
 688               (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
 689        /* Select the correct geometry setup */
 690        mtd->size = devsize * cfi->numchips;
 691
 692        mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
 693        mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
 694                                    * mtd->numeraseregions, GFP_KERNEL);
 695        if (!mtd->eraseregions)
 696                goto setup_err;
 697
 698        for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
 699                unsigned long ernum, ersize;
 700                ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
 701                ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
 702
 703                if (mtd->erasesize < ersize) {
 704                        mtd->erasesize = ersize;
 705                }
 706                for (j=0; j<cfi->numchips; j++) {
 707                        mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
 708                        mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
 709                        mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
 710                }
 711                offset += (ersize * ernum);
 712        }
 713        if (offset != devsize) {
 714                /* Argh */
 715                printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
 716                goto setup_err;
 717        }
 718
 719        __module_get(THIS_MODULE);
 720        register_reboot_notifier(&mtd->reboot_notifier);
 721        return mtd;
 722
 723 setup_err:
 724        kfree(mtd->eraseregions);
 725        kfree(mtd);
 726        kfree(cfi->cmdset_priv);
 727        kfree(cfi->cfiq);
 728        return NULL;
 729}
 730
 731/*
 732 * Return true if the chip is ready.
 733 *
 734 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
 735 * non-suspended sector) and is indicated by no toggle bits toggling.
 736 *
 737 * Note that anything more complicated than checking if no bits are toggling
 738 * (including checking DQ5 for an error status) is tricky to get working
 739 * correctly and is therefore not done  (particularly with interleaved chips
 740 * as each chip must be checked independently of the others).
 741 */
 742static int __xipram chip_ready(struct map_info *map, unsigned long addr)
 743{
 744        map_word d, t;
 745
 746        d = map_read(map, addr);
 747        t = map_read(map, addr);
 748
 749        return map_word_equal(map, d, t);
 750}
 751
 752/*
 753 * Return true if the chip is ready and has the correct value.
 754 *
 755 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
 756 * non-suspended sector) and it is indicated by no bits toggling.
 757 *
 758 * Error are indicated by toggling bits or bits held with the wrong value,
 759 * or with bits toggling.
 760 *
 761 * Note that anything more complicated than checking if no bits are toggling
 762 * (including checking DQ5 for an error status) is tricky to get working
 763 * correctly and is therefore not done  (particularly with interleaved chips
 764 * as each chip must be checked independently of the others).
 765 *
 766 */
 767static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
 768{
 769        map_word oldd, curd;
 770
 771        oldd = map_read(map, addr);
 772        curd = map_read(map, addr);
 773
 774        return  map_word_equal(map, oldd, curd) &&
 775                map_word_equal(map, curd, expected);
 776}
 777
 778static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
 779{
 780        DECLARE_WAITQUEUE(wait, current);
 781        struct cfi_private *cfi = map->fldrv_priv;
 782        unsigned long timeo;
 783        struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
 784
 785 resettime:
 786        timeo = jiffies + HZ;
 787 retry:
 788        switch (chip->state) {
 789
 790        case FL_STATUS:
 791                for (;;) {
 792                        if (chip_ready(map, adr))
 793                                break;
 794
 795                        if (time_after(jiffies, timeo)) {
 796                                printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
 797                                return -EIO;
 798                        }
 799                        mutex_unlock(&chip->mutex);
 800                        cfi_udelay(1);
 801                        mutex_lock(&chip->mutex);
 802                        /* Someone else might have been playing with it. */
 803                        goto retry;
 804                }
 805
 806        case FL_READY:
 807        case FL_CFI_QUERY:
 808        case FL_JEDEC_QUERY:
 809                return 0;
 810
 811        case FL_ERASING:
 812                if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
 813                    !(mode == FL_READY || mode == FL_POINT ||
 814                    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
 815                        goto sleep;
 816
 817                /* We could check to see if we're trying to access the sector
 818                 * that is currently being erased. However, no user will try
 819                 * anything like that so we just wait for the timeout. */
 820
 821                /* Erase suspend */
 822                /* It's harmless to issue the Erase-Suspend and Erase-Resume
 823                 * commands when the erase algorithm isn't in progress. */
 824                map_write(map, CMD(0xB0), chip->in_progress_block_addr);
 825                chip->oldstate = FL_ERASING;
 826                chip->state = FL_ERASE_SUSPENDING;
 827                chip->erase_suspended = 1;
 828                for (;;) {
 829                        if (chip_ready(map, adr))
 830                                break;
 831
 832                        if (time_after(jiffies, timeo)) {
 833                                /* Should have suspended the erase by now.
 834                                 * Send an Erase-Resume command as either
 835                                 * there was an error (so leave the erase
 836                                 * routine to recover from it) or we trying to
 837                                 * use the erase-in-progress sector. */
 838                                put_chip(map, chip, adr);
 839                                printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
 840                                return -EIO;
 841                        }
 842
 843                        mutex_unlock(&chip->mutex);
 844                        cfi_udelay(1);
 845                        mutex_lock(&chip->mutex);
 846                        /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
 847                           So we can just loop here. */
 848                }
 849                chip->state = FL_READY;
 850                return 0;
 851
 852        case FL_XIP_WHILE_ERASING:
 853                if (mode != FL_READY && mode != FL_POINT &&
 854                    (!cfip || !(cfip->EraseSuspend&2)))
 855                        goto sleep;
 856                chip->oldstate = chip->state;
 857                chip->state = FL_READY;
 858                return 0;
 859
 860        case FL_SHUTDOWN:
 861                /* The machine is rebooting */
 862                return -EIO;
 863
 864        case FL_POINT:
 865                /* Only if there's no operation suspended... */
 866                if (mode == FL_READY && chip->oldstate == FL_READY)
 867                        return 0;
 868
 869        default:
 870        sleep:
 871                set_current_state(TASK_UNINTERRUPTIBLE);
 872                add_wait_queue(&chip->wq, &wait);
 873                mutex_unlock(&chip->mutex);
 874                schedule();
 875                remove_wait_queue(&chip->wq, &wait);
 876                mutex_lock(&chip->mutex);
 877                goto resettime;
 878        }
 879}
 880
 881
 882static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
 883{
 884        struct cfi_private *cfi = map->fldrv_priv;
 885
 886        switch(chip->oldstate) {
 887        case FL_ERASING:
 888                cfi_fixup_m29ew_erase_suspend(map,
 889                        chip->in_progress_block_addr);
 890                map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
 891                cfi_fixup_m29ew_delay_after_resume(cfi);
 892                chip->oldstate = FL_READY;
 893                chip->state = FL_ERASING;
 894                break;
 895
 896        case FL_XIP_WHILE_ERASING:
 897                chip->state = chip->oldstate;
 898                chip->oldstate = FL_READY;
 899                break;
 900
 901        case FL_READY:
 902        case FL_STATUS:
 903                break;
 904        default:
 905                printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
 906        }
 907        wake_up(&chip->wq);
 908}
 909
 910#ifdef CONFIG_MTD_XIP
 911
 912/*
 913 * No interrupt what so ever can be serviced while the flash isn't in array
 914 * mode.  This is ensured by the xip_disable() and xip_enable() functions
 915 * enclosing any code path where the flash is known not to be in array mode.
 916 * And within a XIP disabled code path, only functions marked with __xipram
 917 * may be called and nothing else (it's a good thing to inspect generated
 918 * assembly to make sure inline functions were actually inlined and that gcc
 919 * didn't emit calls to its own support functions). Also configuring MTD CFI
 920 * support to a single buswidth and a single interleave is also recommended.
 921 */
 922
 923static void xip_disable(struct map_info *map, struct flchip *chip,
 924                        unsigned long adr)
 925{
 926        /* TODO: chips with no XIP use should ignore and return */
 927        (void) map_read(map, adr); /* ensure mmu mapping is up to date */
 928        local_irq_disable();
 929}
 930
 931static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
 932                                unsigned long adr)
 933{
 934        struct cfi_private *cfi = map->fldrv_priv;
 935
 936        if (chip->state != FL_POINT && chip->state != FL_READY) {
 937                map_write(map, CMD(0xf0), adr);
 938                chip->state = FL_READY;
 939        }
 940        (void) map_read(map, adr);
 941        xip_iprefetch();
 942        local_irq_enable();
 943}
 944
 945/*
 946 * When a delay is required for the flash operation to complete, the
 947 * xip_udelay() function is polling for both the given timeout and pending
 948 * (but still masked) hardware interrupts.  Whenever there is an interrupt
 949 * pending then the flash erase operation is suspended, array mode restored
 950 * and interrupts unmasked.  Task scheduling might also happen at that
 951 * point.  The CPU eventually returns from the interrupt or the call to
 952 * schedule() and the suspended flash operation is resumed for the remaining
 953 * of the delay period.
 954 *
 955 * Warning: this function _will_ fool interrupt latency tracing tools.
 956 */
 957
 958static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
 959                                unsigned long adr, int usec)
 960{
 961        struct cfi_private *cfi = map->fldrv_priv;
 962        struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 963        map_word status, OK = CMD(0x80);
 964        unsigned long suspended, start = xip_currtime();
 965        flstate_t oldstate;
 966
 967        do {
 968                cpu_relax();
 969                if (xip_irqpending() && extp &&
 970                    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
 971                    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
 972                        /*
 973                         * Let's suspend the erase operation when supported.
 974                         * Note that we currently don't try to suspend
 975                         * interleaved chips if there is already another
 976                         * operation suspended (imagine what happens
 977                         * when one chip was already done with the current
 978                         * operation while another chip suspended it, then
 979                         * we resume the whole thing at once).  Yes, it
 980                         * can happen!
 981                         */
 982                        map_write(map, CMD(0xb0), adr);
 983                        usec -= xip_elapsed_since(start);
 984                        suspended = xip_currtime();
 985                        do {
 986                                if (xip_elapsed_since(suspended) > 100000) {
 987                                        /*
 988                                         * The chip doesn't want to suspend
 989                                         * after waiting for 100 msecs.
 990                                         * This is a critical error but there
 991                                         * is not much we can do here.
 992                                         */
 993                                        return;
 994                                }
 995                                status = map_read(map, adr);
 996                        } while (!map_word_andequal(map, status, OK, OK));
 997
 998                        /* Suspend succeeded */
 999                        oldstate = chip->state;
1000                        if (!map_word_bitsset(map, status, CMD(0x40)))
1001                                break;
1002                        chip->state = FL_XIP_WHILE_ERASING;
1003                        chip->erase_suspended = 1;
1004                        map_write(map, CMD(0xf0), adr);
1005                        (void) map_read(map, adr);
1006                        xip_iprefetch();
1007                        local_irq_enable();
1008                        mutex_unlock(&chip->mutex);
1009                        xip_iprefetch();
1010                        cond_resched();
1011
1012                        /*
1013                         * We're back.  However someone else might have
1014                         * decided to go write to the chip if we are in
1015                         * a suspended erase state.  If so let's wait
1016                         * until it's done.
1017                         */
1018                        mutex_lock(&chip->mutex);
1019                        while (chip->state != FL_XIP_WHILE_ERASING) {
1020                                DECLARE_WAITQUEUE(wait, current);
1021                                set_current_state(TASK_UNINTERRUPTIBLE);
1022                                add_wait_queue(&chip->wq, &wait);
1023                                mutex_unlock(&chip->mutex);
1024                                schedule();
1025                                remove_wait_queue(&chip->wq, &wait);
1026                                mutex_lock(&chip->mutex);
1027                        }
1028                        /* Disallow XIP again */
1029                        local_irq_disable();
1030
1031                        /* Correct Erase Suspend Hangups for M29EW */
1032                        cfi_fixup_m29ew_erase_suspend(map, adr);
1033                        /* Resume the write or erase operation */
1034                        map_write(map, cfi->sector_erase_cmd, adr);
1035                        chip->state = oldstate;
1036                        start = xip_currtime();
1037                } else if (usec >= 1000000/HZ) {
1038                        /*
1039                         * Try to save on CPU power when waiting delay
1040                         * is at least a system timer tick period.
1041                         * No need to be extremely accurate here.
1042                         */
1043                        xip_cpu_idle();
1044                }
1045                status = map_read(map, adr);
1046        } while (!map_word_andequal(map, status, OK, OK)
1047                 && xip_elapsed_since(start) < usec);
1048}
1049
1050#define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
1051
1052/*
1053 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1054 * the flash is actively programming or erasing since we have to poll for
1055 * the operation to complete anyway.  We can't do that in a generic way with
1056 * a XIP setup so do it before the actual flash operation in this case
1057 * and stub it out from INVALIDATE_CACHE_UDELAY.
1058 */
1059#define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1060        INVALIDATE_CACHED_RANGE(map, from, size)
1061
1062#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1063        UDELAY(map, chip, adr, usec)
1064
1065/*
1066 * Extra notes:
1067 *
1068 * Activating this XIP support changes the way the code works a bit.  For
1069 * example the code to suspend the current process when concurrent access
1070 * happens is never executed because xip_udelay() will always return with the
1071 * same chip state as it was entered with.  This is why there is no care for
1072 * the presence of add_wait_queue() or schedule() calls from within a couple
1073 * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
1074 * The queueing and scheduling are always happening within xip_udelay().
1075 *
1076 * Similarly, get_chip() and put_chip() just happen to always be executed
1077 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1078 * is in array mode, therefore never executing many cases therein and not
1079 * causing any problem with XIP.
1080 */
1081
1082#else
1083
1084#define xip_disable(map, chip, adr)
1085#define xip_enable(map, chip, adr)
1086#define XIP_INVAL_CACHED_RANGE(x...)
1087
1088#define UDELAY(map, chip, adr, usec)  \
1089do {  \
1090        mutex_unlock(&chip->mutex);  \
1091        cfi_udelay(usec);  \
1092        mutex_lock(&chip->mutex);  \
1093} while (0)
1094
1095#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1096do {  \
1097        mutex_unlock(&chip->mutex);  \
1098        INVALIDATE_CACHED_RANGE(map, adr, len);  \
1099        cfi_udelay(usec);  \
1100        mutex_lock(&chip->mutex);  \
1101} while (0)
1102
1103#endif
1104
1105static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1106{
1107        unsigned long cmd_addr;
1108        struct cfi_private *cfi = map->fldrv_priv;
1109        int ret;
1110
1111        adr += chip->start;
1112
1113        /* Ensure cmd read/writes are aligned. */
1114        cmd_addr = adr & ~(map_bankwidth(map)-1);
1115
1116        mutex_lock(&chip->mutex);
1117        ret = get_chip(map, chip, cmd_addr, FL_READY);
1118        if (ret) {
1119                mutex_unlock(&chip->mutex);
1120                return ret;
1121        }
1122
1123        if (chip->state != FL_POINT && chip->state != FL_READY) {
1124                map_write(map, CMD(0xf0), cmd_addr);
1125                chip->state = FL_READY;
1126        }
1127
1128        map_copy_from(map, buf, adr, len);
1129
1130        put_chip(map, chip, cmd_addr);
1131
1132        mutex_unlock(&chip->mutex);
1133        return 0;
1134}
1135
1136
1137static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1138{
1139        struct map_info *map = mtd->priv;
1140        struct cfi_private *cfi = map->fldrv_priv;
1141        unsigned long ofs;
1142        int chipnum;
1143        int ret = 0;
1144
1145        /* ofs: offset within the first chip that the first read should start */
1146        chipnum = (from >> cfi->chipshift);
1147        ofs = from - (chipnum <<  cfi->chipshift);
1148
1149        while (len) {
1150                unsigned long thislen;
1151
1152                if (chipnum >= cfi->numchips)
1153                        break;
1154
1155                if ((len + ofs -1) >> cfi->chipshift)
1156                        thislen = (1<<cfi->chipshift) - ofs;
1157                else
1158                        thislen = len;
1159
1160                ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1161                if (ret)
1162                        break;
1163
1164                *retlen += thislen;
1165                len -= thislen;
1166                buf += thislen;
1167
1168                ofs = 0;
1169                chipnum++;
1170        }
1171        return ret;
1172}
1173
1174typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1175                        loff_t adr, size_t len, u_char *buf, size_t grouplen);
1176
1177static inline void otp_enter(struct map_info *map, struct flchip *chip,
1178                             loff_t adr, size_t len)
1179{
1180        struct cfi_private *cfi = map->fldrv_priv;
1181
1182        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1183                         cfi->device_type, NULL);
1184        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1185                         cfi->device_type, NULL);
1186        cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1187                         cfi->device_type, NULL);
1188
1189        INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1190}
1191
1192static inline void otp_exit(struct map_info *map, struct flchip *chip,
1193                            loff_t adr, size_t len)
1194{
1195        struct cfi_private *cfi = map->fldrv_priv;
1196
1197        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1198                         cfi->device_type, NULL);
1199        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1200                         cfi->device_type, NULL);
1201        cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1202                         cfi->device_type, NULL);
1203        cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1204                         cfi->device_type, NULL);
1205
1206        INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1207}
1208
1209static inline int do_read_secsi_onechip(struct map_info *map,
1210                                        struct flchip *chip, loff_t adr,
1211                                        size_t len, u_char *buf,
1212                                        size_t grouplen)
1213{
1214        DECLARE_WAITQUEUE(wait, current);
1215        unsigned long timeo = jiffies + HZ;
1216
1217 retry:
1218        mutex_lock(&chip->mutex);
1219
1220        if (chip->state != FL_READY){
1221                set_current_state(TASK_UNINTERRUPTIBLE);
1222                add_wait_queue(&chip->wq, &wait);
1223
1224                mutex_unlock(&chip->mutex);
1225
1226                schedule();
1227                remove_wait_queue(&chip->wq, &wait);
1228                timeo = jiffies + HZ;
1229
1230                goto retry;
1231        }
1232
1233        adr += chip->start;
1234
1235        chip->state = FL_READY;
1236
1237        otp_enter(map, chip, adr, len);
1238        map_copy_from(map, buf, adr, len);
1239        otp_exit(map, chip, adr, len);
1240
1241        wake_up(&chip->wq);
1242        mutex_unlock(&chip->mutex);
1243
1244        return 0;
1245}
1246
1247static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1248{
1249        struct map_info *map = mtd->priv;
1250        struct cfi_private *cfi = map->fldrv_priv;
1251        unsigned long ofs;
1252        int chipnum;
1253        int ret = 0;
1254
1255        /* ofs: offset within the first chip that the first read should start */
1256        /* 8 secsi bytes per chip */
1257        chipnum=from>>3;
1258        ofs=from & 7;
1259
1260        while (len) {
1261                unsigned long thislen;
1262
1263                if (chipnum >= cfi->numchips)
1264                        break;
1265
1266                if ((len + ofs -1) >> 3)
1267                        thislen = (1<<3) - ofs;
1268                else
1269                        thislen = len;
1270
1271                ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1272                                            thislen, buf, 0);
1273                if (ret)
1274                        break;
1275
1276                *retlen += thislen;
1277                len -= thislen;
1278                buf += thislen;
1279
1280                ofs = 0;
1281                chipnum++;
1282        }
1283        return ret;
1284}
1285
1286static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1287                                     unsigned long adr, map_word datum,
1288                                     int mode);
1289
1290static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1291                        size_t len, u_char *buf, size_t grouplen)
1292{
1293        int ret;
1294        while (len) {
1295                unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1296                int gap = adr - bus_ofs;
1297                int n = min_t(int, len, map_bankwidth(map) - gap);
1298                map_word datum;
1299
1300                if (n != map_bankwidth(map)) {
1301                        /* partial write of a word, load old contents */
1302                        otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1303                        datum = map_read(map, bus_ofs);
1304                        otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1305                }
1306
1307                datum = map_word_load_partial(map, datum, buf, gap, n);
1308                ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1309                if (ret)
1310                        return ret;
1311
1312                adr += n;
1313                buf += n;
1314                len -= n;
1315        }
1316
1317        return 0;
1318}
1319
1320static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1321                       size_t len, u_char *buf, size_t grouplen)
1322{
1323        struct cfi_private *cfi = map->fldrv_priv;
1324        uint8_t lockreg;
1325        unsigned long timeo;
1326        int ret;
1327
1328        /* make sure area matches group boundaries */
1329        if ((adr != 0) || (len != grouplen))
1330                return -EINVAL;
1331
1332        mutex_lock(&chip->mutex);
1333        ret = get_chip(map, chip, chip->start, FL_LOCKING);
1334        if (ret) {
1335                mutex_unlock(&chip->mutex);
1336                return ret;
1337        }
1338        chip->state = FL_LOCKING;
1339
1340        /* Enter lock register command */
1341        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1342                         cfi->device_type, NULL);
1343        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1344                         cfi->device_type, NULL);
1345        cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1346                         cfi->device_type, NULL);
1347
1348        /* read lock register */
1349        lockreg = cfi_read_query(map, 0);
1350
1351        /* set bit 0 to protect extended memory block */
1352        lockreg &= ~0x01;
1353
1354        /* set bit 0 to protect extended memory block */
1355        /* write lock register */
1356        map_write(map, CMD(0xA0), chip->start);
1357        map_write(map, CMD(lockreg), chip->start);
1358
1359        /* wait for chip to become ready */
1360        timeo = jiffies + msecs_to_jiffies(2);
1361        for (;;) {
1362                if (chip_ready(map, adr))
1363                        break;
1364
1365                if (time_after(jiffies, timeo)) {
1366                        pr_err("Waiting for chip to be ready timed out.\n");
1367                        ret = -EIO;
1368                        break;
1369                }
1370                UDELAY(map, chip, 0, 1);
1371        }
1372
1373        /* exit protection commands */
1374        map_write(map, CMD(0x90), chip->start);
1375        map_write(map, CMD(0x00), chip->start);
1376
1377        chip->state = FL_READY;
1378        put_chip(map, chip, chip->start);
1379        mutex_unlock(&chip->mutex);
1380
1381        return ret;
1382}
1383
1384static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1385                               size_t *retlen, u_char *buf,
1386                               otp_op_t action, int user_regs)
1387{
1388        struct map_info *map = mtd->priv;
1389        struct cfi_private *cfi = map->fldrv_priv;
1390        int ofs_factor = cfi->interleave * cfi->device_type;
1391        unsigned long base;
1392        int chipnum;
1393        struct flchip *chip;
1394        uint8_t otp, lockreg;
1395        int ret;
1396
1397        size_t user_size, factory_size, otpsize;
1398        loff_t user_offset, factory_offset, otpoffset;
1399        int user_locked = 0, otplocked;
1400
1401        *retlen = 0;
1402
1403        for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1404                chip = &cfi->chips[chipnum];
1405                factory_size = 0;
1406                user_size = 0;
1407
1408                /* Micron M29EW family */
1409                if (is_m29ew(cfi)) {
1410                        base = chip->start;
1411
1412                        /* check whether secsi area is factory locked
1413                           or user lockable */
1414                        mutex_lock(&chip->mutex);
1415                        ret = get_chip(map, chip, base, FL_CFI_QUERY);
1416                        if (ret) {
1417                                mutex_unlock(&chip->mutex);
1418                                return ret;
1419                        }
1420                        cfi_qry_mode_on(base, map, cfi);
1421                        otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1422                        cfi_qry_mode_off(base, map, cfi);
1423                        put_chip(map, chip, base);
1424                        mutex_unlock(&chip->mutex);
1425
1426                        if (otp & 0x80) {
1427                                /* factory locked */
1428                                factory_offset = 0;
1429                                factory_size = 0x100;
1430                        } else {
1431                                /* customer lockable */
1432                                user_offset = 0;
1433                                user_size = 0x100;
1434
1435                                mutex_lock(&chip->mutex);
1436                                ret = get_chip(map, chip, base, FL_LOCKING);
1437                                if (ret) {
1438                                        mutex_unlock(&chip->mutex);
1439                                        return ret;
1440                                }
1441
1442                                /* Enter lock register command */
1443                                cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1444                                                 chip->start, map, cfi,
1445                                                 cfi->device_type, NULL);
1446                                cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1447                                                 chip->start, map, cfi,
1448                                                 cfi->device_type, NULL);
1449                                cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1450                                                 chip->start, map, cfi,
1451                                                 cfi->device_type, NULL);
1452                                /* read lock register */
1453                                lockreg = cfi_read_query(map, 0);
1454                                /* exit protection commands */
1455                                map_write(map, CMD(0x90), chip->start);
1456                                map_write(map, CMD(0x00), chip->start);
1457                                put_chip(map, chip, chip->start);
1458                                mutex_unlock(&chip->mutex);
1459
1460                                user_locked = ((lockreg & 0x01) == 0x00);
1461                        }
1462                }
1463
1464                otpsize = user_regs ? user_size : factory_size;
1465                if (!otpsize)
1466                        continue;
1467                otpoffset = user_regs ? user_offset : factory_offset;
1468                otplocked = user_regs ? user_locked : 1;
1469
1470                if (!action) {
1471                        /* return otpinfo */
1472                        struct otp_info *otpinfo;
1473                        len -= sizeof(*otpinfo);
1474                        if (len <= 0)
1475                                return -ENOSPC;
1476                        otpinfo = (struct otp_info *)buf;
1477                        otpinfo->start = from;
1478                        otpinfo->length = otpsize;
1479                        otpinfo->locked = otplocked;
1480                        buf += sizeof(*otpinfo);
1481                        *retlen += sizeof(*otpinfo);
1482                        from += otpsize;
1483                } else if ((from < otpsize) && (len > 0)) {
1484                        size_t size;
1485                        size = (len < otpsize - from) ? len : otpsize - from;
1486                        ret = action(map, chip, otpoffset + from, size, buf,
1487                                     otpsize);
1488                        if (ret < 0)
1489                                return ret;
1490
1491                        buf += size;
1492                        len -= size;
1493                        *retlen += size;
1494                        from = 0;
1495                } else {
1496                        from -= otpsize;
1497                }
1498        }
1499        return 0;
1500}
1501
1502static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1503                                         size_t *retlen, struct otp_info *buf)
1504{
1505        return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1506                                   NULL, 0);
1507}
1508
1509static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1510                                         size_t *retlen, struct otp_info *buf)
1511{
1512        return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1513                                   NULL, 1);
1514}
1515
1516static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1517                                         size_t len, size_t *retlen,
1518                                         u_char *buf)
1519{
1520        return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1521                                   buf, do_read_secsi_onechip, 0);
1522}
1523
1524static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1525                                         size_t len, size_t *retlen,
1526                                         u_char *buf)
1527{
1528        return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1529                                   buf, do_read_secsi_onechip, 1);
1530}
1531
1532static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1533                                          size_t len, size_t *retlen,
1534                                          u_char *buf)
1535{
1536        return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1537                                   do_otp_write, 1);
1538}
1539
1540static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1541                                         size_t len)
1542{
1543        size_t retlen;
1544        return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1545                                   do_otp_lock, 1);
1546}
1547
1548static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1549                                     unsigned long adr, map_word datum,
1550                                     int mode)
1551{
1552        struct cfi_private *cfi = map->fldrv_priv;
1553        unsigned long timeo = jiffies + HZ;
1554        /*
1555         * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1556         * have a max write time of a few hundreds usec). However, we should
1557         * use the maximum timeout value given by the chip at probe time
1558         * instead.  Unfortunately, struct flchip does have a field for
1559         * maximum timeout, only for typical which can be far too short
1560         * depending of the conditions.  The ' + 1' is to avoid having a
1561         * timeout of 0 jiffies if HZ is smaller than 1000.
1562         */
1563        unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1564        int ret = 0;
1565        map_word oldd;
1566        int retry_cnt = 0;
1567
1568        adr += chip->start;
1569
1570        mutex_lock(&chip->mutex);
1571        ret = get_chip(map, chip, adr, mode);
1572        if (ret) {
1573                mutex_unlock(&chip->mutex);
1574                return ret;
1575        }
1576
1577        pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1578               __func__, adr, datum.x[0] );
1579
1580        if (mode == FL_OTP_WRITE)
1581                otp_enter(map, chip, adr, map_bankwidth(map));
1582
1583        /*
1584         * Check for a NOP for the case when the datum to write is already
1585         * present - it saves time and works around buggy chips that corrupt
1586         * data at other locations when 0xff is written to a location that
1587         * already contains 0xff.
1588         */
1589        oldd = map_read(map, adr);
1590        if (map_word_equal(map, oldd, datum)) {
1591                pr_debug("MTD %s(): NOP\n",
1592                       __func__);
1593                goto op_done;
1594        }
1595
1596        XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1597        ENABLE_VPP(map);
1598        xip_disable(map, chip, adr);
1599
1600 retry:
1601        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1602        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1603        cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1604        map_write(map, datum, adr);
1605        chip->state = mode;
1606
1607        INVALIDATE_CACHE_UDELAY(map, chip,
1608                                adr, map_bankwidth(map),
1609                                chip->word_write_time);
1610
1611        /* See comment above for timeout value. */
1612        timeo = jiffies + uWriteTimeout;
1613        for (;;) {
1614                if (chip->state != mode) {
1615                        /* Someone's suspended the write. Sleep */
1616                        DECLARE_WAITQUEUE(wait, current);
1617
1618                        set_current_state(TASK_UNINTERRUPTIBLE);
1619                        add_wait_queue(&chip->wq, &wait);
1620                        mutex_unlock(&chip->mutex);
1621                        schedule();
1622                        remove_wait_queue(&chip->wq, &wait);
1623                        timeo = jiffies + (HZ / 2); /* FIXME */
1624                        mutex_lock(&chip->mutex);
1625                        continue;
1626                }
1627
1628                if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1629                        xip_enable(map, chip, adr);
1630                        printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1631                        xip_disable(map, chip, adr);
1632                        break;
1633                }
1634
1635                if (chip_ready(map, adr))
1636                        break;
1637
1638                /* Latency issues. Drop the lock, wait a while and retry */
1639                UDELAY(map, chip, adr, 1);
1640        }
1641        /* Did we succeed? */
1642        if (!chip_good(map, adr, datum)) {
1643                /* reset on all failures. */
1644                map_write( map, CMD(0xF0), chip->start );
1645                /* FIXME - should have reset delay before continuing */
1646
1647                if (++retry_cnt <= MAX_WORD_RETRIES)
1648                        goto retry;
1649
1650                ret = -EIO;
1651        }
1652        xip_enable(map, chip, adr);
1653 op_done:
1654        if (mode == FL_OTP_WRITE)
1655                otp_exit(map, chip, adr, map_bankwidth(map));
1656        chip->state = FL_READY;
1657        DISABLE_VPP(map);
1658        put_chip(map, chip, adr);
1659        mutex_unlock(&chip->mutex);
1660
1661        return ret;
1662}
1663
1664
1665static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1666                                  size_t *retlen, const u_char *buf)
1667{
1668        struct map_info *map = mtd->priv;
1669        struct cfi_private *cfi = map->fldrv_priv;
1670        int ret = 0;
1671        int chipnum;
1672        unsigned long ofs, chipstart;
1673        DECLARE_WAITQUEUE(wait, current);
1674
1675        chipnum = to >> cfi->chipshift;
1676        ofs = to  - (chipnum << cfi->chipshift);
1677        chipstart = cfi->chips[chipnum].start;
1678
1679        /* If it's not bus-aligned, do the first byte write */
1680        if (ofs & (map_bankwidth(map)-1)) {
1681                unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1682                int i = ofs - bus_ofs;
1683                int n = 0;
1684                map_word tmp_buf;
1685
1686 retry:
1687                mutex_lock(&cfi->chips[chipnum].mutex);
1688
1689                if (cfi->chips[chipnum].state != FL_READY) {
1690                        set_current_state(TASK_UNINTERRUPTIBLE);
1691                        add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1692
1693                        mutex_unlock(&cfi->chips[chipnum].mutex);
1694
1695                        schedule();
1696                        remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1697                        goto retry;
1698                }
1699
1700                /* Load 'tmp_buf' with old contents of flash */
1701                tmp_buf = map_read(map, bus_ofs+chipstart);
1702
1703                mutex_unlock(&cfi->chips[chipnum].mutex);
1704
1705                /* Number of bytes to copy from buffer */
1706                n = min_t(int, len, map_bankwidth(map)-i);
1707
1708                tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1709
1710                ret = do_write_oneword(map, &cfi->chips[chipnum],
1711                                       bus_ofs, tmp_buf, FL_WRITING);
1712                if (ret)
1713                        return ret;
1714
1715                ofs += n;
1716                buf += n;
1717                (*retlen) += n;
1718                len -= n;
1719
1720                if (ofs >> cfi->chipshift) {
1721                        chipnum ++;
1722                        ofs = 0;
1723                        if (chipnum == cfi->numchips)
1724                                return 0;
1725                }
1726        }
1727
1728        /* We are now aligned, write as much as possible */
1729        while(len >= map_bankwidth(map)) {
1730                map_word datum;
1731
1732                datum = map_word_load(map, buf);
1733
1734                ret = do_write_oneword(map, &cfi->chips[chipnum],
1735                                       ofs, datum, FL_WRITING);
1736                if (ret)
1737                        return ret;
1738
1739                ofs += map_bankwidth(map);
1740                buf += map_bankwidth(map);
1741                (*retlen) += map_bankwidth(map);
1742                len -= map_bankwidth(map);
1743
1744                if (ofs >> cfi->chipshift) {
1745                        chipnum ++;
1746                        ofs = 0;
1747                        if (chipnum == cfi->numchips)
1748                                return 0;
1749                        chipstart = cfi->chips[chipnum].start;
1750                }
1751        }
1752
1753        /* Write the trailing bytes if any */
1754        if (len & (map_bankwidth(map)-1)) {
1755                map_word tmp_buf;
1756
1757 retry1:
1758                mutex_lock(&cfi->chips[chipnum].mutex);
1759
1760                if (cfi->chips[chipnum].state != FL_READY) {
1761                        set_current_state(TASK_UNINTERRUPTIBLE);
1762                        add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1763
1764                        mutex_unlock(&cfi->chips[chipnum].mutex);
1765
1766                        schedule();
1767                        remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1768                        goto retry1;
1769                }
1770
1771                tmp_buf = map_read(map, ofs + chipstart);
1772
1773                mutex_unlock(&cfi->chips[chipnum].mutex);
1774
1775                tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1776
1777                ret = do_write_oneword(map, &cfi->chips[chipnum],
1778                                       ofs, tmp_buf, FL_WRITING);
1779                if (ret)
1780                        return ret;
1781
1782                (*retlen) += len;
1783        }
1784
1785        return 0;
1786}
1787
1788
1789/*
1790 * FIXME: interleaved mode not tested, and probably not supported!
1791 */
1792static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1793                                    unsigned long adr, const u_char *buf,
1794                                    int len)
1795{
1796        struct cfi_private *cfi = map->fldrv_priv;
1797        unsigned long timeo = jiffies + HZ;
1798        /*
1799         * Timeout is calculated according to CFI data, if available.
1800         * See more comments in cfi_cmdset_0002().
1801         */
1802        unsigned long uWriteTimeout =
1803                                usecs_to_jiffies(chip->buffer_write_time_max);
1804        int ret = -EIO;
1805        unsigned long cmd_adr;
1806        int z, words;
1807        map_word datum;
1808
1809        adr += chip->start;
1810        cmd_adr = adr;
1811
1812        mutex_lock(&chip->mutex);
1813        ret = get_chip(map, chip, adr, FL_WRITING);
1814        if (ret) {
1815                mutex_unlock(&chip->mutex);
1816                return ret;
1817        }
1818
1819        datum = map_word_load(map, buf);
1820
1821        pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1822               __func__, adr, datum.x[0] );
1823
1824        XIP_INVAL_CACHED_RANGE(map, adr, len);
1825        ENABLE_VPP(map);
1826        xip_disable(map, chip, cmd_adr);
1827
1828        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1829        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1830
1831        /* Write Buffer Load */
1832        map_write(map, CMD(0x25), cmd_adr);
1833
1834        chip->state = FL_WRITING_TO_BUFFER;
1835
1836        /* Write length of data to come */
1837        words = len / map_bankwidth(map);
1838        map_write(map, CMD(words - 1), cmd_adr);
1839        /* Write data */
1840        z = 0;
1841        while(z < words * map_bankwidth(map)) {
1842                datum = map_word_load(map, buf);
1843                map_write(map, datum, adr + z);
1844
1845                z += map_bankwidth(map);
1846                buf += map_bankwidth(map);
1847        }
1848        z -= map_bankwidth(map);
1849
1850        adr += z;
1851
1852        /* Write Buffer Program Confirm: GO GO GO */
1853        map_write(map, CMD(0x29), cmd_adr);
1854        chip->state = FL_WRITING;
1855
1856        INVALIDATE_CACHE_UDELAY(map, chip,
1857                                adr, map_bankwidth(map),
1858                                chip->word_write_time);
1859
1860        timeo = jiffies + uWriteTimeout;
1861
1862        for (;;) {
1863                if (chip->state != FL_WRITING) {
1864                        /* Someone's suspended the write. Sleep */
1865                        DECLARE_WAITQUEUE(wait, current);
1866
1867                        set_current_state(TASK_UNINTERRUPTIBLE);
1868                        add_wait_queue(&chip->wq, &wait);
1869                        mutex_unlock(&chip->mutex);
1870                        schedule();
1871                        remove_wait_queue(&chip->wq, &wait);
1872                        timeo = jiffies + (HZ / 2); /* FIXME */
1873                        mutex_lock(&chip->mutex);
1874                        continue;
1875                }
1876
1877                if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1878                        break;
1879
1880                if (chip_ready(map, adr)) {
1881                        xip_enable(map, chip, adr);
1882                        goto op_done;
1883                }
1884
1885                /* Latency issues. Drop the lock, wait a while and retry */
1886                UDELAY(map, chip, adr, 1);
1887        }
1888
1889        /*
1890         * Recovery from write-buffer programming failures requires
1891         * the write-to-buffer-reset sequence.  Since the last part
1892         * of the sequence also works as a normal reset, we can run
1893         * the same commands regardless of why we are here.
1894         * See e.g.
1895         * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
1896         */
1897        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1898                         cfi->device_type, NULL);
1899        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1900                         cfi->device_type, NULL);
1901        cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
1902                         cfi->device_type, NULL);
1903        xip_enable(map, chip, adr);
1904        /* FIXME - should have reset delay before continuing */
1905
1906        printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
1907               __func__, adr);
1908
1909        ret = -EIO;
1910 op_done:
1911        chip->state = FL_READY;
1912        DISABLE_VPP(map);
1913        put_chip(map, chip, adr);
1914        mutex_unlock(&chip->mutex);
1915
1916        return ret;
1917}
1918
1919
1920static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1921                                    size_t *retlen, const u_char *buf)
1922{
1923        struct map_info *map = mtd->priv;
1924        struct cfi_private *cfi = map->fldrv_priv;
1925        int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1926        int ret = 0;
1927        int chipnum;
1928        unsigned long ofs;
1929
1930        chipnum = to >> cfi->chipshift;
1931        ofs = to  - (chipnum << cfi->chipshift);
1932
1933        /* If it's not bus-aligned, do the first word write */
1934        if (ofs & (map_bankwidth(map)-1)) {
1935                size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1936                if (local_len > len)
1937                        local_len = len;
1938                ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1939                                             local_len, retlen, buf);
1940                if (ret)
1941                        return ret;
1942                ofs += local_len;
1943                buf += local_len;
1944                len -= local_len;
1945
1946                if (ofs >> cfi->chipshift) {
1947                        chipnum ++;
1948                        ofs = 0;
1949                        if (chipnum == cfi->numchips)
1950                                return 0;
1951                }
1952        }
1953
1954        /* Write buffer is worth it only if more than one word to write... */
1955        while (len >= map_bankwidth(map) * 2) {
1956                /* We must not cross write block boundaries */
1957                int size = wbufsize - (ofs & (wbufsize-1));
1958
1959                if (size > len)
1960                        size = len;
1961                if (size % map_bankwidth(map))
1962                        size -= size % map_bankwidth(map);
1963
1964                ret = do_write_buffer(map, &cfi->chips[chipnum],
1965                                      ofs, buf, size);
1966                if (ret)
1967                        return ret;
1968
1969                ofs += size;
1970                buf += size;
1971                (*retlen) += size;
1972                len -= size;
1973
1974                if (ofs >> cfi->chipshift) {
1975                        chipnum ++;
1976                        ofs = 0;
1977                        if (chipnum == cfi->numchips)
1978                                return 0;
1979                }
1980        }
1981
1982        if (len) {
1983                size_t retlen_dregs = 0;
1984
1985                ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1986                                             len, &retlen_dregs, buf);
1987
1988                *retlen += retlen_dregs;
1989                return ret;
1990        }
1991
1992        return 0;
1993}
1994
1995/*
1996 * Wait for the flash chip to become ready to write data
1997 *
1998 * This is only called during the panic_write() path. When panic_write()
1999 * is called, the kernel is in the process of a panic, and will soon be
2000 * dead. Therefore we don't take any locks, and attempt to get access
2001 * to the chip as soon as possible.
2002 */
2003static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2004                                 unsigned long adr)
2005{
2006        struct cfi_private *cfi = map->fldrv_priv;
2007        int retries = 10;
2008        int i;
2009
2010        /*
2011         * If the driver thinks the chip is idle, and no toggle bits
2012         * are changing, then the chip is actually idle for sure.
2013         */
2014        if (chip->state == FL_READY && chip_ready(map, adr))
2015                return 0;
2016
2017        /*
2018         * Try several times to reset the chip and then wait for it
2019         * to become idle. The upper limit of a few milliseconds of
2020         * delay isn't a big problem: the kernel is dying anyway. It
2021         * is more important to save the messages.
2022         */
2023        while (retries > 0) {
2024                const unsigned long timeo = (HZ / 1000) + 1;
2025
2026                /* send the reset command */
2027                map_write(map, CMD(0xF0), chip->start);
2028
2029                /* wait for the chip to become ready */
2030                for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2031                        if (chip_ready(map, adr))
2032                                return 0;
2033
2034                        udelay(1);
2035                }
2036
2037                retries--;
2038        }
2039
2040        /* the chip never became ready */
2041        return -EBUSY;
2042}
2043
2044/*
2045 * Write out one word of data to a single flash chip during a kernel panic
2046 *
2047 * This is only called during the panic_write() path. When panic_write()
2048 * is called, the kernel is in the process of a panic, and will soon be
2049 * dead. Therefore we don't take any locks, and attempt to get access
2050 * to the chip as soon as possible.
2051 *
2052 * The implementation of this routine is intentionally similar to
2053 * do_write_oneword(), in order to ease code maintenance.
2054 */
2055static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2056                                  unsigned long adr, map_word datum)
2057{
2058        const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2059        struct cfi_private *cfi = map->fldrv_priv;
2060        int retry_cnt = 0;
2061        map_word oldd;
2062        int ret = 0;
2063        int i;
2064
2065        adr += chip->start;
2066
2067        ret = cfi_amdstd_panic_wait(map, chip, adr);
2068        if (ret)
2069                return ret;
2070
2071        pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2072                        __func__, adr, datum.x[0]);
2073
2074        /*
2075         * Check for a NOP for the case when the datum to write is already
2076         * present - it saves time and works around buggy chips that corrupt
2077         * data at other locations when 0xff is written to a location that
2078         * already contains 0xff.
2079         */
2080        oldd = map_read(map, adr);
2081        if (map_word_equal(map, oldd, datum)) {
2082                pr_debug("MTD %s(): NOP\n", __func__);
2083                goto op_done;
2084        }
2085
2086        ENABLE_VPP(map);
2087
2088retry:
2089        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2090        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2091        cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2092        map_write(map, datum, adr);
2093
2094        for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2095                if (chip_ready(map, adr))
2096                        break;
2097
2098                udelay(1);
2099        }
2100
2101        if (!chip_good(map, adr, datum)) {
2102                /* reset on all failures. */
2103                map_write(map, CMD(0xF0), chip->start);
2104                /* FIXME - should have reset delay before continuing */
2105
2106                if (++retry_cnt <= MAX_WORD_RETRIES)
2107                        goto retry;
2108
2109                ret = -EIO;
2110        }
2111
2112op_done:
2113        DISABLE_VPP(map);
2114        return ret;
2115}
2116
2117/*
2118 * Write out some data during a kernel panic
2119 *
2120 * This is used by the mtdoops driver to save the dying messages from a
2121 * kernel which has panic'd.
2122 *
2123 * This routine ignores all of the locking used throughout the rest of the
2124 * driver, in order to ensure that the data gets written out no matter what
2125 * state this driver (and the flash chip itself) was in when the kernel crashed.
2126 *
2127 * The implementation of this routine is intentionally similar to
2128 * cfi_amdstd_write_words(), in order to ease code maintenance.
2129 */
2130static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2131                                  size_t *retlen, const u_char *buf)
2132{
2133        struct map_info *map = mtd->priv;
2134        struct cfi_private *cfi = map->fldrv_priv;
2135        unsigned long ofs, chipstart;
2136        int ret = 0;
2137        int chipnum;
2138
2139        chipnum = to >> cfi->chipshift;
2140        ofs = to - (chipnum << cfi->chipshift);
2141        chipstart = cfi->chips[chipnum].start;
2142
2143        /* If it's not bus aligned, do the first byte write */
2144        if (ofs & (map_bankwidth(map) - 1)) {
2145                unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2146                int i = ofs - bus_ofs;
2147                int n = 0;
2148                map_word tmp_buf;
2149
2150                ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2151                if (ret)
2152                        return ret;
2153
2154                /* Load 'tmp_buf' with old contents of flash */
2155                tmp_buf = map_read(map, bus_ofs + chipstart);
2156
2157                /* Number of bytes to copy from buffer */
2158                n = min_t(int, len, map_bankwidth(map) - i);
2159
2160                tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2161
2162                ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2163                                             bus_ofs, tmp_buf);
2164                if (ret)
2165                        return ret;
2166
2167                ofs += n;
2168                buf += n;
2169                (*retlen) += n;
2170                len -= n;
2171
2172                if (ofs >> cfi->chipshift) {
2173                        chipnum++;
2174                        ofs = 0;
2175                        if (chipnum == cfi->numchips)
2176                                return 0;
2177                }
2178        }
2179
2180        /* We are now aligned, write as much as possible */
2181        while (len >= map_bankwidth(map)) {
2182                map_word datum;
2183
2184                datum = map_word_load(map, buf);
2185
2186                ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2187                                             ofs, datum);
2188                if (ret)
2189                        return ret;
2190
2191                ofs += map_bankwidth(map);
2192                buf += map_bankwidth(map);
2193                (*retlen) += map_bankwidth(map);
2194                len -= map_bankwidth(map);
2195
2196                if (ofs >> cfi->chipshift) {
2197                        chipnum++;
2198                        ofs = 0;
2199                        if (chipnum == cfi->numchips)
2200                                return 0;
2201
2202                        chipstart = cfi->chips[chipnum].start;
2203                }
2204        }
2205
2206        /* Write the trailing bytes if any */
2207        if (len & (map_bankwidth(map) - 1)) {
2208                map_word tmp_buf;
2209
2210                ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2211                if (ret)
2212                        return ret;
2213
2214                tmp_buf = map_read(map, ofs + chipstart);
2215
2216                tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2217
2218                ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2219                                             ofs, tmp_buf);
2220                if (ret)
2221                        return ret;
2222
2223                (*retlen) += len;
2224        }
2225
2226        return 0;
2227}
2228
2229
2230/*
2231 * Handle devices with one erase region, that only implement
2232 * the chip erase command.
2233 */
2234static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2235{
2236        struct cfi_private *cfi = map->fldrv_priv;
2237        unsigned long timeo = jiffies + HZ;
2238        unsigned long int adr;
2239        DECLARE_WAITQUEUE(wait, current);
2240        int ret = 0;
2241
2242        adr = cfi->addr_unlock1;
2243
2244        mutex_lock(&chip->mutex);
2245        ret = get_chip(map, chip, adr, FL_WRITING);
2246        if (ret) {
2247                mutex_unlock(&chip->mutex);
2248                return ret;
2249        }
2250
2251        pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2252               __func__, chip->start );
2253
2254        XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2255        ENABLE_VPP(map);
2256        xip_disable(map, chip, adr);
2257
2258        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2259        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2260        cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2261        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2262        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2263        cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2264
2265        chip->state = FL_ERASING;
2266        chip->erase_suspended = 0;
2267        chip->in_progress_block_addr = adr;
2268
2269        INVALIDATE_CACHE_UDELAY(map, chip,
2270                                adr, map->size,
2271                                chip->erase_time*500);
2272
2273        timeo = jiffies + (HZ*20);
2274
2275        for (;;) {
2276                if (chip->state != FL_ERASING) {
2277                        /* Someone's suspended the erase. Sleep */
2278                        set_current_state(TASK_UNINTERRUPTIBLE);
2279                        add_wait_queue(&chip->wq, &wait);
2280                        mutex_unlock(&chip->mutex);
2281                        schedule();
2282                        remove_wait_queue(&chip->wq, &wait);
2283                        mutex_lock(&chip->mutex);
2284                        continue;
2285                }
2286                if (chip->erase_suspended) {
2287                        /* This erase was suspended and resumed.
2288                           Adjust the timeout */
2289                        timeo = jiffies + (HZ*20); /* FIXME */
2290                        chip->erase_suspended = 0;
2291                }
2292
2293                if (chip_ready(map, adr))
2294                        break;
2295
2296                if (time_after(jiffies, timeo)) {
2297                        printk(KERN_WARNING "MTD %s(): software timeout\n",
2298                                __func__ );
2299                        break;
2300                }
2301
2302                /* Latency issues. Drop the lock, wait a while and retry */
2303                UDELAY(map, chip, adr, 1000000/HZ);
2304        }
2305        /* Did we succeed? */
2306        if (!chip_good(map, adr, map_word_ff(map))) {
2307                /* reset on all failures. */
2308                map_write( map, CMD(0xF0), chip->start );
2309                /* FIXME - should have reset delay before continuing */
2310
2311                ret = -EIO;
2312        }
2313
2314        chip->state = FL_READY;
2315        xip_enable(map, chip, adr);
2316        DISABLE_VPP(map);
2317        put_chip(map, chip, adr);
2318        mutex_unlock(&chip->mutex);
2319
2320        return ret;
2321}
2322
2323
2324static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2325{
2326        struct cfi_private *cfi = map->fldrv_priv;
2327        unsigned long timeo = jiffies + HZ;
2328        DECLARE_WAITQUEUE(wait, current);
2329        int ret = 0;
2330
2331        adr += chip->start;
2332
2333        mutex_lock(&chip->mutex);
2334        ret = get_chip(map, chip, adr, FL_ERASING);
2335        if (ret) {
2336                mutex_unlock(&chip->mutex);
2337                return ret;
2338        }
2339
2340        pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2341               __func__, adr );
2342
2343        XIP_INVAL_CACHED_RANGE(map, adr, len);
2344        ENABLE_VPP(map);
2345        xip_disable(map, chip, adr);
2346
2347        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2348        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2349        cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2350        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2351        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2352        map_write(map, cfi->sector_erase_cmd, adr);
2353
2354        chip->state = FL_ERASING;
2355        chip->erase_suspended = 0;
2356        chip->in_progress_block_addr = adr;
2357
2358        INVALIDATE_CACHE_UDELAY(map, chip,
2359                                adr, len,
2360                                chip->erase_time*500);
2361
2362        timeo = jiffies + (HZ*20);
2363
2364        for (;;) {
2365                if (chip->state != FL_ERASING) {
2366                        /* Someone's suspended the erase. Sleep */
2367                        set_current_state(TASK_UNINTERRUPTIBLE);
2368                        add_wait_queue(&chip->wq, &wait);
2369                        mutex_unlock(&chip->mutex);
2370                        schedule();
2371                        remove_wait_queue(&chip->wq, &wait);
2372                        mutex_lock(&chip->mutex);
2373                        continue;
2374                }
2375                if (chip->erase_suspended) {
2376                        /* This erase was suspended and resumed.
2377                           Adjust the timeout */
2378                        timeo = jiffies + (HZ*20); /* FIXME */
2379                        chip->erase_suspended = 0;
2380                }
2381
2382                if (chip_ready(map, adr)) {
2383                        xip_enable(map, chip, adr);
2384                        break;
2385                }
2386
2387                if (time_after(jiffies, timeo)) {
2388                        xip_enable(map, chip, adr);
2389                        printk(KERN_WARNING "MTD %s(): software timeout\n",
2390                                __func__ );
2391                        break;
2392                }
2393
2394                /* Latency issues. Drop the lock, wait a while and retry */
2395                UDELAY(map, chip, adr, 1000000/HZ);
2396        }
2397        /* Did we succeed? */
2398        if (!chip_good(map, adr, map_word_ff(map))) {
2399                /* reset on all failures. */
2400                map_write( map, CMD(0xF0), chip->start );
2401                /* FIXME - should have reset delay before continuing */
2402
2403                ret = -EIO;
2404        }
2405
2406        chip->state = FL_READY;
2407        DISABLE_VPP(map);
2408        put_chip(map, chip, adr);
2409        mutex_unlock(&chip->mutex);
2410        return ret;
2411}
2412
2413
2414static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2415{
2416        unsigned long ofs, len;
2417        int ret;
2418
2419        ofs = instr->addr;
2420        len = instr->len;
2421
2422        ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
2423        if (ret)
2424                return ret;
2425
2426        instr->state = MTD_ERASE_DONE;
2427        mtd_erase_callback(instr);
2428
2429        return 0;
2430}
2431
2432
2433static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2434{
2435        struct map_info *map = mtd->priv;
2436        struct cfi_private *cfi = map->fldrv_priv;
2437        int ret = 0;
2438
2439        if (instr->addr != 0)
2440                return -EINVAL;
2441
2442        if (instr->len != mtd->size)
2443                return -EINVAL;
2444
2445        ret = do_erase_chip(map, &cfi->chips[0]);
2446        if (ret)
2447                return ret;
2448
2449        instr->state = MTD_ERASE_DONE;
2450        mtd_erase_callback(instr);
2451
2452        return 0;
2453}
2454
2455static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2456                         unsigned long adr, int len, void *thunk)
2457{
2458        struct cfi_private *cfi = map->fldrv_priv;
2459        int ret;
2460
2461        mutex_lock(&chip->mutex);
2462        ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2463        if (ret)
2464                goto out_unlock;
2465        chip->state = FL_LOCKING;
2466
2467        pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2468
2469        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2470                         cfi->device_type, NULL);
2471        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2472                         cfi->device_type, NULL);
2473        cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2474                         cfi->device_type, NULL);
2475        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2476                         cfi->device_type, NULL);
2477        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2478                         cfi->device_type, NULL);
2479        map_write(map, CMD(0x40), chip->start + adr);
2480
2481        chip->state = FL_READY;
2482        put_chip(map, chip, adr + chip->start);
2483        ret = 0;
2484
2485out_unlock:
2486        mutex_unlock(&chip->mutex);
2487        return ret;
2488}
2489
2490static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2491                           unsigned long adr, int len, void *thunk)
2492{
2493        struct cfi_private *cfi = map->fldrv_priv;
2494        int ret;
2495
2496        mutex_lock(&chip->mutex);
2497        ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2498        if (ret)
2499                goto out_unlock;
2500        chip->state = FL_UNLOCKING;
2501
2502        pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2503
2504        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2505                         cfi->device_type, NULL);
2506        map_write(map, CMD(0x70), adr);
2507
2508        chip->state = FL_READY;
2509        put_chip(map, chip, adr + chip->start);
2510        ret = 0;
2511
2512out_unlock:
2513        mutex_unlock(&chip->mutex);
2514        return ret;
2515}
2516
2517static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2518{
2519        return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2520}
2521
2522static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2523{
2524        return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2525}
2526
2527/*
2528 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2529 */
2530
2531struct ppb_lock {
2532        struct flchip *chip;
2533        loff_t offset;
2534        int locked;
2535};
2536
2537#define MAX_SECTORS                     512
2538
2539#define DO_XXLOCK_ONEBLOCK_LOCK         ((void *)1)
2540#define DO_XXLOCK_ONEBLOCK_UNLOCK       ((void *)2)
2541#define DO_XXLOCK_ONEBLOCK_GETLOCK      ((void *)3)
2542
2543static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2544                                        struct flchip *chip,
2545                                        unsigned long adr, int len, void *thunk)
2546{
2547        struct cfi_private *cfi = map->fldrv_priv;
2548        unsigned long timeo;
2549        int ret;
2550
2551        mutex_lock(&chip->mutex);
2552        ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2553        if (ret) {
2554                mutex_unlock(&chip->mutex);
2555                return ret;
2556        }
2557
2558        pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2559
2560        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2561                         cfi->device_type, NULL);
2562        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2563                         cfi->device_type, NULL);
2564        /* PPB entry command */
2565        cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2566                         cfi->device_type, NULL);
2567
2568        if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2569                chip->state = FL_LOCKING;
2570                map_write(map, CMD(0xA0), chip->start + adr);
2571                map_write(map, CMD(0x00), chip->start + adr);
2572        } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2573                /*
2574                 * Unlocking of one specific sector is not supported, so we
2575                 * have to unlock all sectors of this device instead
2576                 */
2577                chip->state = FL_UNLOCKING;
2578                map_write(map, CMD(0x80), chip->start);
2579                map_write(map, CMD(0x30), chip->start);
2580        } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2581                chip->state = FL_JEDEC_QUERY;
2582                /* Return locked status: 0->locked, 1->unlocked */
2583                ret = !cfi_read_query(map, adr);
2584        } else
2585                BUG();
2586
2587        /*
2588         * Wait for some time as unlocking of all sectors takes quite long
2589         */
2590        timeo = jiffies + msecs_to_jiffies(2000);       /* 2s max (un)locking */
2591        for (;;) {
2592                if (chip_ready(map, adr))
2593                        break;
2594
2595                if (time_after(jiffies, timeo)) {
2596                        printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2597                        ret = -EIO;
2598                        break;
2599                }
2600
2601                UDELAY(map, chip, adr, 1);
2602        }
2603
2604        /* Exit BC commands */
2605        map_write(map, CMD(0x90), chip->start);
2606        map_write(map, CMD(0x00), chip->start);
2607
2608        chip->state = FL_READY;
2609        put_chip(map, chip, adr + chip->start);
2610        mutex_unlock(&chip->mutex);
2611
2612        return ret;
2613}
2614
2615static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2616                                       uint64_t len)
2617{
2618        return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2619                                DO_XXLOCK_ONEBLOCK_LOCK);
2620}
2621
2622static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2623                                         uint64_t len)
2624{
2625        struct mtd_erase_region_info *regions = mtd->eraseregions;
2626        struct map_info *map = mtd->priv;
2627        struct cfi_private *cfi = map->fldrv_priv;
2628        struct ppb_lock *sect;
2629        unsigned long adr;
2630        loff_t offset;
2631        uint64_t length;
2632        int chipnum;
2633        int i;
2634        int sectors;
2635        int ret;
2636
2637        /*
2638         * PPB unlocking always unlocks all sectors of the flash chip.
2639         * We need to re-lock all previously locked sectors. So lets
2640         * first check the locking status of all sectors and save
2641         * it for future use.
2642         */
2643        sect = kzalloc(MAX_SECTORS * sizeof(struct ppb_lock), GFP_KERNEL);
2644        if (!sect)
2645                return -ENOMEM;
2646
2647        /*
2648         * This code to walk all sectors is a slightly modified version
2649         * of the cfi_varsize_frob() code.
2650         */
2651        i = 0;
2652        chipnum = 0;
2653        adr = 0;
2654        sectors = 0;
2655        offset = 0;
2656        length = mtd->size;
2657
2658        while (length) {
2659                int size = regions[i].erasesize;
2660
2661                /*
2662                 * Only test sectors that shall not be unlocked. The other
2663                 * sectors shall be unlocked, so lets keep their locking
2664                 * status at "unlocked" (locked=0) for the final re-locking.
2665                 */
2666                if ((adr < ofs) || (adr >= (ofs + len))) {
2667                        sect[sectors].chip = &cfi->chips[chipnum];
2668                        sect[sectors].offset = offset;
2669                        sect[sectors].locked = do_ppb_xxlock(
2670                                map, &cfi->chips[chipnum], adr, 0,
2671                                DO_XXLOCK_ONEBLOCK_GETLOCK);
2672                }
2673
2674                adr += size;
2675                offset += size;
2676                length -= size;
2677
2678                if (offset == regions[i].offset + size * regions[i].numblocks)
2679                        i++;
2680
2681                if (adr >> cfi->chipshift) {
2682                        adr = 0;
2683                        chipnum++;
2684
2685                        if (chipnum >= cfi->numchips)
2686                                break;
2687                }
2688
2689                sectors++;
2690                if (sectors >= MAX_SECTORS) {
2691                        printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2692                               MAX_SECTORS);
2693                        kfree(sect);
2694                        return -EINVAL;
2695                }
2696        }
2697
2698        /* Now unlock the whole chip */
2699        ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2700                               DO_XXLOCK_ONEBLOCK_UNLOCK);
2701        if (ret) {
2702                kfree(sect);
2703                return ret;
2704        }
2705
2706        /*
2707         * PPB unlocking always unlocks all sectors of the flash chip.
2708         * We need to re-lock all previously locked sectors.
2709         */
2710        for (i = 0; i < sectors; i++) {
2711                if (sect[i].locked)
2712                        do_ppb_xxlock(map, sect[i].chip, sect[i].offset, 0,
2713                                      DO_XXLOCK_ONEBLOCK_LOCK);
2714        }
2715
2716        kfree(sect);
2717        return ret;
2718}
2719
2720static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2721                                            uint64_t len)
2722{
2723        return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2724                                DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2725}
2726
2727static void cfi_amdstd_sync (struct mtd_info *mtd)
2728{
2729        struct map_info *map = mtd->priv;
2730        struct cfi_private *cfi = map->fldrv_priv;
2731        int i;
2732        struct flchip *chip;
2733        int ret = 0;
2734        DECLARE_WAITQUEUE(wait, current);
2735
2736        for (i=0; !ret && i<cfi->numchips; i++) {
2737                chip = &cfi->chips[i];
2738
2739        retry:
2740                mutex_lock(&chip->mutex);
2741
2742                switch(chip->state) {
2743                case FL_READY:
2744                case FL_STATUS:
2745                case FL_CFI_QUERY:
2746                case FL_JEDEC_QUERY:
2747                        chip->oldstate = chip->state;
2748                        chip->state = FL_SYNCING;
2749                        /* No need to wake_up() on this state change -
2750                         * as the whole point is that nobody can do anything
2751                         * with the chip now anyway.
2752                         */
2753                case FL_SYNCING:
2754                        mutex_unlock(&chip->mutex);
2755                        break;
2756
2757                default:
2758                        /* Not an idle state */
2759                        set_current_state(TASK_UNINTERRUPTIBLE);
2760                        add_wait_queue(&chip->wq, &wait);
2761
2762                        mutex_unlock(&chip->mutex);
2763
2764                        schedule();
2765
2766                        remove_wait_queue(&chip->wq, &wait);
2767
2768                        goto retry;
2769                }
2770        }
2771
2772        /* Unlock the chips again */
2773
2774        for (i--; i >=0; i--) {
2775                chip = &cfi->chips[i];
2776
2777                mutex_lock(&chip->mutex);
2778
2779                if (chip->state == FL_SYNCING) {
2780                        chip->state = chip->oldstate;
2781                        wake_up(&chip->wq);
2782                }
2783                mutex_unlock(&chip->mutex);
2784        }
2785}
2786
2787
2788static int cfi_amdstd_suspend(struct mtd_info *mtd)
2789{
2790        struct map_info *map = mtd->priv;
2791        struct cfi_private *cfi = map->fldrv_priv;
2792        int i;
2793        struct flchip *chip;
2794        int ret = 0;
2795
2796        for (i=0; !ret && i<cfi->numchips; i++) {
2797                chip = &cfi->chips[i];
2798
2799                mutex_lock(&chip->mutex);
2800
2801                switch(chip->state) {
2802                case FL_READY:
2803                case FL_STATUS:
2804                case FL_CFI_QUERY:
2805                case FL_JEDEC_QUERY:
2806                        chip->oldstate = chip->state;
2807                        chip->state = FL_PM_SUSPENDED;
2808                        /* No need to wake_up() on this state change -
2809                         * as the whole point is that nobody can do anything
2810                         * with the chip now anyway.
2811                         */
2812                case FL_PM_SUSPENDED:
2813                        break;
2814
2815                default:
2816                        ret = -EAGAIN;
2817                        break;
2818                }
2819                mutex_unlock(&chip->mutex);
2820        }
2821
2822        /* Unlock the chips again */
2823
2824        if (ret) {
2825                for (i--; i >=0; i--) {
2826                        chip = &cfi->chips[i];
2827
2828                        mutex_lock(&chip->mutex);
2829
2830                        if (chip->state == FL_PM_SUSPENDED) {
2831                                chip->state = chip->oldstate;
2832                                wake_up(&chip->wq);
2833                        }
2834                        mutex_unlock(&chip->mutex);
2835                }
2836        }
2837
2838        return ret;
2839}
2840
2841
2842static void cfi_amdstd_resume(struct mtd_info *mtd)
2843{
2844        struct map_info *map = mtd->priv;
2845        struct cfi_private *cfi = map->fldrv_priv;
2846        int i;
2847        struct flchip *chip;
2848
2849        for (i=0; i<cfi->numchips; i++) {
2850
2851                chip = &cfi->chips[i];
2852
2853                mutex_lock(&chip->mutex);
2854
2855                if (chip->state == FL_PM_SUSPENDED) {
2856                        chip->state = FL_READY;
2857                        map_write(map, CMD(0xF0), chip->start);
2858                        wake_up(&chip->wq);
2859                }
2860                else
2861                        printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2862
2863                mutex_unlock(&chip->mutex);
2864        }
2865}
2866
2867
2868/*
2869 * Ensure that the flash device is put back into read array mode before
2870 * unloading the driver or rebooting.  On some systems, rebooting while
2871 * the flash is in query/program/erase mode will prevent the CPU from
2872 * fetching the bootloader code, requiring a hard reset or power cycle.
2873 */
2874static int cfi_amdstd_reset(struct mtd_info *mtd)
2875{
2876        struct map_info *map = mtd->priv;
2877        struct cfi_private *cfi = map->fldrv_priv;
2878        int i, ret;
2879        struct flchip *chip;
2880
2881        for (i = 0; i < cfi->numchips; i++) {
2882
2883                chip = &cfi->chips[i];
2884
2885                mutex_lock(&chip->mutex);
2886
2887                ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2888                if (!ret) {
2889                        map_write(map, CMD(0xF0), chip->start);
2890                        chip->state = FL_SHUTDOWN;
2891                        put_chip(map, chip, chip->start);
2892                }
2893
2894                mutex_unlock(&chip->mutex);
2895        }
2896
2897        return 0;
2898}
2899
2900
2901static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2902                               void *v)
2903{
2904        struct mtd_info *mtd;
2905
2906        mtd = container_of(nb, struct mtd_info, reboot_notifier);
2907        cfi_amdstd_reset(mtd);
2908        return NOTIFY_DONE;
2909}
2910
2911
2912static void cfi_amdstd_destroy(struct mtd_info *mtd)
2913{
2914        struct map_info *map = mtd->priv;
2915        struct cfi_private *cfi = map->fldrv_priv;
2916
2917        cfi_amdstd_reset(mtd);
2918        unregister_reboot_notifier(&mtd->reboot_notifier);
2919        kfree(cfi->cmdset_priv);
2920        kfree(cfi->cfiq);
2921        kfree(cfi);
2922        kfree(mtd->eraseregions);
2923}
2924
2925MODULE_LICENSE("GPL");
2926MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2927MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2928MODULE_ALIAS("cfi_cmdset_0006");
2929MODULE_ALIAS("cfi_cmdset_0701");
2930