linux/drivers/mtd/nand/davinci_nand.c
<<
>>
Prefs
   1/*
   2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
   3 *
   4 * Copyright © 2006 Texas Instruments.
   5 *
   6 * Port to 2.6.23 Copyright © 2008 by:
   7 *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
   8 *   Troy Kisky <troy.kisky@boundarydevices.com>
   9 *   Dirk Behme <Dirk.Behme@gmail.com>
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 */
  25
  26#include <linux/kernel.h>
  27#include <linux/module.h>
  28#include <linux/platform_device.h>
  29#include <linux/err.h>
  30#include <linux/clk.h>
  31#include <linux/io.h>
  32#include <linux/mtd/nand.h>
  33#include <linux/mtd/partitions.h>
  34#include <linux/slab.h>
  35#include <linux/of_device.h>
  36#include <linux/of.h>
  37#include <linux/of_mtd.h>
  38
  39#include <linux/platform_data/mtd-davinci.h>
  40#include <linux/platform_data/mtd-davinci-aemif.h>
  41
  42/*
  43 * This is a device driver for the NAND flash controller found on the
  44 * various DaVinci family chips.  It handles up to four SoC chipselects,
  45 * and some flavors of secondary chipselect (e.g. based on A12) as used
  46 * with multichip packages.
  47 *
  48 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
  49 * available on chips like the DM355 and OMAP-L137 and needed with the
  50 * more error-prone MLC NAND chips.
  51 *
  52 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
  53 * outputs in a "wire-AND" configuration, with no per-chip signals.
  54 */
  55struct davinci_nand_info {
  56        struct mtd_info         mtd;
  57        struct nand_chip        chip;
  58        struct nand_ecclayout   ecclayout;
  59
  60        struct device           *dev;
  61        struct clk              *clk;
  62
  63        bool                    is_readmode;
  64
  65        void __iomem            *base;
  66        void __iomem            *vaddr;
  67
  68        uint32_t                ioaddr;
  69        uint32_t                current_cs;
  70
  71        uint32_t                mask_chipsel;
  72        uint32_t                mask_ale;
  73        uint32_t                mask_cle;
  74
  75        uint32_t                core_chipsel;
  76
  77        struct davinci_aemif_timing     *timing;
  78};
  79
  80static DEFINE_SPINLOCK(davinci_nand_lock);
  81static bool ecc4_busy;
  82
  83#define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
  84
  85
  86static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
  87                int offset)
  88{
  89        return __raw_readl(info->base + offset);
  90}
  91
  92static inline void davinci_nand_writel(struct davinci_nand_info *info,
  93                int offset, unsigned long value)
  94{
  95        __raw_writel(value, info->base + offset);
  96}
  97
  98/*----------------------------------------------------------------------*/
  99
 100/*
 101 * Access to hardware control lines:  ALE, CLE, secondary chipselect.
 102 */
 103
 104static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
 105                                   unsigned int ctrl)
 106{
 107        struct davinci_nand_info        *info = to_davinci_nand(mtd);
 108        uint32_t                        addr = info->current_cs;
 109        struct nand_chip                *nand = mtd->priv;
 110
 111        /* Did the control lines change? */
 112        if (ctrl & NAND_CTRL_CHANGE) {
 113                if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
 114                        addr |= info->mask_cle;
 115                else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
 116                        addr |= info->mask_ale;
 117
 118                nand->IO_ADDR_W = (void __iomem __force *)addr;
 119        }
 120
 121        if (cmd != NAND_CMD_NONE)
 122                iowrite8(cmd, nand->IO_ADDR_W);
 123}
 124
 125static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
 126{
 127        struct davinci_nand_info        *info = to_davinci_nand(mtd);
 128        uint32_t                        addr = info->ioaddr;
 129
 130        /* maybe kick in a second chipselect */
 131        if (chip > 0)
 132                addr |= info->mask_chipsel;
 133        info->current_cs = addr;
 134
 135        info->chip.IO_ADDR_W = (void __iomem __force *)addr;
 136        info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
 137}
 138
 139/*----------------------------------------------------------------------*/
 140
 141/*
 142 * 1-bit hardware ECC ... context maintained for each core chipselect
 143 */
 144
 145static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
 146{
 147        struct davinci_nand_info *info = to_davinci_nand(mtd);
 148
 149        return davinci_nand_readl(info, NANDF1ECC_OFFSET
 150                        + 4 * info->core_chipsel);
 151}
 152
 153static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
 154{
 155        struct davinci_nand_info *info;
 156        uint32_t nandcfr;
 157        unsigned long flags;
 158
 159        info = to_davinci_nand(mtd);
 160
 161        /* Reset ECC hardware */
 162        nand_davinci_readecc_1bit(mtd);
 163
 164        spin_lock_irqsave(&davinci_nand_lock, flags);
 165
 166        /* Restart ECC hardware */
 167        nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
 168        nandcfr |= BIT(8 + info->core_chipsel);
 169        davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
 170
 171        spin_unlock_irqrestore(&davinci_nand_lock, flags);
 172}
 173
 174/*
 175 * Read hardware ECC value and pack into three bytes
 176 */
 177static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
 178                                      const u_char *dat, u_char *ecc_code)
 179{
 180        unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
 181        unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
 182
 183        /* invert so that erased block ecc is correct */
 184        ecc24 = ~ecc24;
 185        ecc_code[0] = (u_char)(ecc24);
 186        ecc_code[1] = (u_char)(ecc24 >> 8);
 187        ecc_code[2] = (u_char)(ecc24 >> 16);
 188
 189        return 0;
 190}
 191
 192static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
 193                                     u_char *read_ecc, u_char *calc_ecc)
 194{
 195        struct nand_chip *chip = mtd->priv;
 196        uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
 197                                          (read_ecc[2] << 16);
 198        uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
 199                                          (calc_ecc[2] << 16);
 200        uint32_t diff = eccCalc ^ eccNand;
 201
 202        if (diff) {
 203                if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
 204                        /* Correctable error */
 205                        if ((diff >> (12 + 3)) < chip->ecc.size) {
 206                                dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
 207                                return 1;
 208                        } else {
 209                                return -1;
 210                        }
 211                } else if (!(diff & (diff - 1))) {
 212                        /* Single bit ECC error in the ECC itself,
 213                         * nothing to fix */
 214                        return 1;
 215                } else {
 216                        /* Uncorrectable error */
 217                        return -1;
 218                }
 219
 220        }
 221        return 0;
 222}
 223
 224/*----------------------------------------------------------------------*/
 225
 226/*
 227 * 4-bit hardware ECC ... context maintained over entire AEMIF
 228 *
 229 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
 230 * since that forces use of a problematic "infix OOB" layout.
 231 * Among other things, it trashes manufacturer bad block markers.
 232 * Also, and specific to this hardware, it ECC-protects the "prepad"
 233 * in the OOB ... while having ECC protection for parts of OOB would
 234 * seem useful, the current MTD stack sometimes wants to update the
 235 * OOB without recomputing ECC.
 236 */
 237
 238static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
 239{
 240        struct davinci_nand_info *info = to_davinci_nand(mtd);
 241        unsigned long flags;
 242        u32 val;
 243
 244        spin_lock_irqsave(&davinci_nand_lock, flags);
 245
 246        /* Start 4-bit ECC calculation for read/write */
 247        val = davinci_nand_readl(info, NANDFCR_OFFSET);
 248        val &= ~(0x03 << 4);
 249        val |= (info->core_chipsel << 4) | BIT(12);
 250        davinci_nand_writel(info, NANDFCR_OFFSET, val);
 251
 252        info->is_readmode = (mode == NAND_ECC_READ);
 253
 254        spin_unlock_irqrestore(&davinci_nand_lock, flags);
 255}
 256
 257/* Read raw ECC code after writing to NAND. */
 258static void
 259nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
 260{
 261        const u32 mask = 0x03ff03ff;
 262
 263        code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
 264        code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
 265        code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
 266        code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
 267}
 268
 269/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
 270static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
 271                const u_char *dat, u_char *ecc_code)
 272{
 273        struct davinci_nand_info *info = to_davinci_nand(mtd);
 274        u32 raw_ecc[4], *p;
 275        unsigned i;
 276
 277        /* After a read, terminate ECC calculation by a dummy read
 278         * of some 4-bit ECC register.  ECC covers everything that
 279         * was read; correct() just uses the hardware state, so
 280         * ecc_code is not needed.
 281         */
 282        if (info->is_readmode) {
 283                davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
 284                return 0;
 285        }
 286
 287        /* Pack eight raw 10-bit ecc values into ten bytes, making
 288         * two passes which each convert four values (in upper and
 289         * lower halves of two 32-bit words) into five bytes.  The
 290         * ROM boot loader uses this same packing scheme.
 291         */
 292        nand_davinci_readecc_4bit(info, raw_ecc);
 293        for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
 294                *ecc_code++ =   p[0]        & 0xff;
 295                *ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
 296                *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
 297                *ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
 298                *ecc_code++ =  (p[1] >> 18) & 0xff;
 299        }
 300
 301        return 0;
 302}
 303
 304/* Correct up to 4 bits in data we just read, using state left in the
 305 * hardware plus the ecc_code computed when it was first written.
 306 */
 307static int nand_davinci_correct_4bit(struct mtd_info *mtd,
 308                u_char *data, u_char *ecc_code, u_char *null)
 309{
 310        int i;
 311        struct davinci_nand_info *info = to_davinci_nand(mtd);
 312        unsigned short ecc10[8];
 313        unsigned short *ecc16;
 314        u32 syndrome[4];
 315        u32 ecc_state;
 316        unsigned num_errors, corrected;
 317        unsigned long timeo;
 318
 319        /* All bytes 0xff?  It's an erased page; ignore its ECC. */
 320        for (i = 0; i < 10; i++) {
 321                if (ecc_code[i] != 0xff)
 322                        goto compare;
 323        }
 324        return 0;
 325
 326compare:
 327        /* Unpack ten bytes into eight 10 bit values.  We know we're
 328         * little-endian, and use type punning for less shifting/masking.
 329         */
 330        if (WARN_ON(0x01 & (unsigned) ecc_code))
 331                return -EINVAL;
 332        ecc16 = (unsigned short *)ecc_code;
 333
 334        ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
 335        ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
 336        ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
 337        ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
 338        ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
 339        ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
 340        ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
 341        ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
 342
 343        /* Tell ECC controller about the expected ECC codes. */
 344        for (i = 7; i >= 0; i--)
 345                davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
 346
 347        /* Allow time for syndrome calculation ... then read it.
 348         * A syndrome of all zeroes 0 means no detected errors.
 349         */
 350        davinci_nand_readl(info, NANDFSR_OFFSET);
 351        nand_davinci_readecc_4bit(info, syndrome);
 352        if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
 353                return 0;
 354
 355        /*
 356         * Clear any previous address calculation by doing a dummy read of an
 357         * error address register.
 358         */
 359        davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
 360
 361        /* Start address calculation, and wait for it to complete.
 362         * We _could_ start reading more data while this is working,
 363         * to speed up the overall page read.
 364         */
 365        davinci_nand_writel(info, NANDFCR_OFFSET,
 366                        davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
 367
 368        /*
 369         * ECC_STATE field reads 0x3 (Error correction complete) immediately
 370         * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
 371         * begin trying to poll for the state, you may fall right out of your
 372         * loop without any of the correction calculations having taken place.
 373         * The recommendation from the hardware team is to initially delay as
 374         * long as ECC_STATE reads less than 4. After that, ECC HW has entered
 375         * correction state.
 376         */
 377        timeo = jiffies + usecs_to_jiffies(100);
 378        do {
 379                ecc_state = (davinci_nand_readl(info,
 380                                NANDFSR_OFFSET) >> 8) & 0x0f;
 381                cpu_relax();
 382        } while ((ecc_state < 4) && time_before(jiffies, timeo));
 383
 384        for (;;) {
 385                u32     fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
 386
 387                switch ((fsr >> 8) & 0x0f) {
 388                case 0:         /* no error, should not happen */
 389                        davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
 390                        return 0;
 391                case 1:         /* five or more errors detected */
 392                        davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
 393                        return -EIO;
 394                case 2:         /* error addresses computed */
 395                case 3:
 396                        num_errors = 1 + ((fsr >> 16) & 0x03);
 397                        goto correct;
 398                default:        /* still working on it */
 399                        cpu_relax();
 400                        continue;
 401                }
 402        }
 403
 404correct:
 405        /* correct each error */
 406        for (i = 0, corrected = 0; i < num_errors; i++) {
 407                int error_address, error_value;
 408
 409                if (i > 1) {
 410                        error_address = davinci_nand_readl(info,
 411                                                NAND_ERR_ADD2_OFFSET);
 412                        error_value = davinci_nand_readl(info,
 413                                                NAND_ERR_ERRVAL2_OFFSET);
 414                } else {
 415                        error_address = davinci_nand_readl(info,
 416                                                NAND_ERR_ADD1_OFFSET);
 417                        error_value = davinci_nand_readl(info,
 418                                                NAND_ERR_ERRVAL1_OFFSET);
 419                }
 420
 421                if (i & 1) {
 422                        error_address >>= 16;
 423                        error_value >>= 16;
 424                }
 425                error_address &= 0x3ff;
 426                error_address = (512 + 7) - error_address;
 427
 428                if (error_address < 512) {
 429                        data[error_address] ^= error_value;
 430                        corrected++;
 431                }
 432        }
 433
 434        return corrected;
 435}
 436
 437/*----------------------------------------------------------------------*/
 438
 439/*
 440 * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
 441 * how these chips are normally wired.  This translates to both 8 and 16
 442 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
 443 *
 444 * For now we assume that configuration, or any other one which ignores
 445 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
 446 * and have that transparently morphed into multiple NAND operations.
 447 */
 448static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 449{
 450        struct nand_chip *chip = mtd->priv;
 451
 452        if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
 453                ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
 454        else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
 455                ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
 456        else
 457                ioread8_rep(chip->IO_ADDR_R, buf, len);
 458}
 459
 460static void nand_davinci_write_buf(struct mtd_info *mtd,
 461                const uint8_t *buf, int len)
 462{
 463        struct nand_chip *chip = mtd->priv;
 464
 465        if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
 466                iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
 467        else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
 468                iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
 469        else
 470                iowrite8_rep(chip->IO_ADDR_R, buf, len);
 471}
 472
 473/*
 474 * Check hardware register for wait status. Returns 1 if device is ready,
 475 * 0 if it is still busy.
 476 */
 477static int nand_davinci_dev_ready(struct mtd_info *mtd)
 478{
 479        struct davinci_nand_info *info = to_davinci_nand(mtd);
 480
 481        return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
 482}
 483
 484/*----------------------------------------------------------------------*/
 485
 486/* An ECC layout for using 4-bit ECC with small-page flash, storing
 487 * ten ECC bytes plus the manufacturer's bad block marker byte, and
 488 * and not overlapping the default BBT markers.
 489 */
 490static struct nand_ecclayout hwecc4_small = {
 491        .eccbytes = 10,
 492        .eccpos = { 0, 1, 2, 3, 4,
 493                /* offset 5 holds the badblock marker */
 494                6, 7,
 495                13, 14, 15, },
 496        .oobfree = {
 497                {.offset = 8, .length = 5, },
 498                {.offset = 16, },
 499        },
 500};
 501
 502/* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
 503 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
 504 * and not overlapping the default BBT markers.
 505 */
 506static struct nand_ecclayout hwecc4_2048 = {
 507        .eccbytes = 40,
 508        .eccpos = {
 509                /* at the end of spare sector */
 510                24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
 511                34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
 512                44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
 513                54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
 514                },
 515        .oobfree = {
 516                /* 2 bytes at offset 0 hold manufacturer badblock markers */
 517                {.offset = 2, .length = 22, },
 518                /* 5 bytes at offset 8 hold BBT markers */
 519                /* 8 bytes at offset 16 hold JFFS2 clean markers */
 520        },
 521};
 522
 523#if defined(CONFIG_OF)
 524static const struct of_device_id davinci_nand_of_match[] = {
 525        {.compatible = "ti,davinci-nand", },
 526        {.compatible = "ti,keystone-nand", },
 527        {},
 528};
 529MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
 530
 531static struct davinci_nand_pdata
 532        *nand_davinci_get_pdata(struct platform_device *pdev)
 533{
 534        if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
 535                struct davinci_nand_pdata *pdata;
 536                const char *mode;
 537                u32 prop;
 538
 539                pdata =  devm_kzalloc(&pdev->dev,
 540                                sizeof(struct davinci_nand_pdata),
 541                                GFP_KERNEL);
 542                pdev->dev.platform_data = pdata;
 543                if (!pdata)
 544                        return ERR_PTR(-ENOMEM);
 545                if (!of_property_read_u32(pdev->dev.of_node,
 546                        "ti,davinci-chipselect", &prop))
 547                        pdev->id = prop;
 548                else
 549                        return ERR_PTR(-EINVAL);
 550
 551                if (!of_property_read_u32(pdev->dev.of_node,
 552                        "ti,davinci-mask-ale", &prop))
 553                        pdata->mask_ale = prop;
 554                if (!of_property_read_u32(pdev->dev.of_node,
 555                        "ti,davinci-mask-cle", &prop))
 556                        pdata->mask_cle = prop;
 557                if (!of_property_read_u32(pdev->dev.of_node,
 558                        "ti,davinci-mask-chipsel", &prop))
 559                        pdata->mask_chipsel = prop;
 560                if (!of_property_read_string(pdev->dev.of_node,
 561                        "nand-ecc-mode", &mode) ||
 562                    !of_property_read_string(pdev->dev.of_node,
 563                        "ti,davinci-ecc-mode", &mode)) {
 564                        if (!strncmp("none", mode, 4))
 565                                pdata->ecc_mode = NAND_ECC_NONE;
 566                        if (!strncmp("soft", mode, 4))
 567                                pdata->ecc_mode = NAND_ECC_SOFT;
 568                        if (!strncmp("hw", mode, 2))
 569                                pdata->ecc_mode = NAND_ECC_HW;
 570                }
 571                if (!of_property_read_u32(pdev->dev.of_node,
 572                        "ti,davinci-ecc-bits", &prop))
 573                        pdata->ecc_bits = prop;
 574
 575                prop = of_get_nand_bus_width(pdev->dev.of_node);
 576                if (0 < prop || !of_property_read_u32(pdev->dev.of_node,
 577                        "ti,davinci-nand-buswidth", &prop))
 578                        if (prop == 16)
 579                                pdata->options |= NAND_BUSWIDTH_16;
 580                if (of_property_read_bool(pdev->dev.of_node,
 581                        "nand-on-flash-bbt") ||
 582                    of_property_read_bool(pdev->dev.of_node,
 583                        "ti,davinci-nand-use-bbt"))
 584                        pdata->bbt_options = NAND_BBT_USE_FLASH;
 585
 586                if (of_device_is_compatible(pdev->dev.of_node,
 587                                            "ti,keystone-nand")) {
 588                        pdata->options |= NAND_NO_SUBPAGE_WRITE;
 589                }
 590        }
 591
 592        return dev_get_platdata(&pdev->dev);
 593}
 594#else
 595static struct davinci_nand_pdata
 596        *nand_davinci_get_pdata(struct platform_device *pdev)
 597{
 598        return dev_get_platdata(&pdev->dev);
 599}
 600#endif
 601
 602static int nand_davinci_probe(struct platform_device *pdev)
 603{
 604        struct davinci_nand_pdata       *pdata;
 605        struct davinci_nand_info        *info;
 606        struct resource                 *res1;
 607        struct resource                 *res2;
 608        void __iomem                    *vaddr;
 609        void __iomem                    *base;
 610        int                             ret;
 611        uint32_t                        val;
 612        nand_ecc_modes_t                ecc_mode;
 613
 614        pdata = nand_davinci_get_pdata(pdev);
 615        if (IS_ERR(pdata))
 616                return PTR_ERR(pdata);
 617
 618        /* insist on board-specific configuration */
 619        if (!pdata)
 620                return -ENODEV;
 621
 622        /* which external chipselect will we be managing? */
 623        if (pdev->id < 0 || pdev->id > 3)
 624                return -ENODEV;
 625
 626        info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
 627        if (!info)
 628                return -ENOMEM;
 629
 630        platform_set_drvdata(pdev, info);
 631
 632        res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 633        res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
 634        if (!res1 || !res2) {
 635                dev_err(&pdev->dev, "resource missing\n");
 636                return -EINVAL;
 637        }
 638
 639        vaddr = devm_ioremap_resource(&pdev->dev, res1);
 640        if (IS_ERR(vaddr))
 641                return PTR_ERR(vaddr);
 642
 643        /*
 644         * This registers range is used to setup NAND settings. In case with
 645         * TI AEMIF driver, the same memory address range is requested already
 646         * by AEMIF, so we cannot request it twice, just ioremap.
 647         * The AEMIF and NAND drivers not use the same registers in this range.
 648         */
 649        base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
 650        if (!base) {
 651                dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
 652                return -EADDRNOTAVAIL;
 653        }
 654
 655        info->dev               = &pdev->dev;
 656        info->base              = base;
 657        info->vaddr             = vaddr;
 658
 659        info->mtd.priv          = &info->chip;
 660        info->mtd.name          = dev_name(&pdev->dev);
 661        info->mtd.owner         = THIS_MODULE;
 662
 663        info->mtd.dev.parent    = &pdev->dev;
 664
 665        info->chip.IO_ADDR_R    = vaddr;
 666        info->chip.IO_ADDR_W    = vaddr;
 667        info->chip.chip_delay   = 0;
 668        info->chip.select_chip  = nand_davinci_select_chip;
 669
 670        /* options such as NAND_BBT_USE_FLASH */
 671        info->chip.bbt_options  = pdata->bbt_options;
 672        /* options such as 16-bit widths */
 673        info->chip.options      = pdata->options;
 674        info->chip.bbt_td       = pdata->bbt_td;
 675        info->chip.bbt_md       = pdata->bbt_md;
 676        info->timing            = pdata->timing;
 677
 678        info->ioaddr            = (uint32_t __force) vaddr;
 679
 680        info->current_cs        = info->ioaddr;
 681        info->core_chipsel      = pdev->id;
 682        info->mask_chipsel      = pdata->mask_chipsel;
 683
 684        /* use nandboot-capable ALE/CLE masks by default */
 685        info->mask_ale          = pdata->mask_ale ? : MASK_ALE;
 686        info->mask_cle          = pdata->mask_cle ? : MASK_CLE;
 687
 688        /* Set address of hardware control function */
 689        info->chip.cmd_ctrl     = nand_davinci_hwcontrol;
 690        info->chip.dev_ready    = nand_davinci_dev_ready;
 691
 692        /* Speed up buffer I/O */
 693        info->chip.read_buf     = nand_davinci_read_buf;
 694        info->chip.write_buf    = nand_davinci_write_buf;
 695
 696        /* Use board-specific ECC config */
 697        ecc_mode                = pdata->ecc_mode;
 698
 699        ret = -EINVAL;
 700        switch (ecc_mode) {
 701        case NAND_ECC_NONE:
 702        case NAND_ECC_SOFT:
 703                pdata->ecc_bits = 0;
 704                break;
 705        case NAND_ECC_HW:
 706                if (pdata->ecc_bits == 4) {
 707                        /* No sanity checks:  CPUs must support this,
 708                         * and the chips may not use NAND_BUSWIDTH_16.
 709                         */
 710
 711                        /* No sharing 4-bit hardware between chipselects yet */
 712                        spin_lock_irq(&davinci_nand_lock);
 713                        if (ecc4_busy)
 714                                ret = -EBUSY;
 715                        else
 716                                ecc4_busy = true;
 717                        spin_unlock_irq(&davinci_nand_lock);
 718
 719                        if (ret == -EBUSY)
 720                                return ret;
 721
 722                        info->chip.ecc.calculate = nand_davinci_calculate_4bit;
 723                        info->chip.ecc.correct = nand_davinci_correct_4bit;
 724                        info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
 725                        info->chip.ecc.bytes = 10;
 726                } else {
 727                        info->chip.ecc.calculate = nand_davinci_calculate_1bit;
 728                        info->chip.ecc.correct = nand_davinci_correct_1bit;
 729                        info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
 730                        info->chip.ecc.bytes = 3;
 731                }
 732                info->chip.ecc.size = 512;
 733                info->chip.ecc.strength = pdata->ecc_bits;
 734                break;
 735        default:
 736                return -EINVAL;
 737        }
 738        info->chip.ecc.mode = ecc_mode;
 739
 740        info->clk = devm_clk_get(&pdev->dev, "aemif");
 741        if (IS_ERR(info->clk)) {
 742                ret = PTR_ERR(info->clk);
 743                dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
 744                return ret;
 745        }
 746
 747        ret = clk_prepare_enable(info->clk);
 748        if (ret < 0) {
 749                dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
 750                        ret);
 751                goto err_clk_enable;
 752        }
 753
 754        spin_lock_irq(&davinci_nand_lock);
 755
 756        /* put CSxNAND into NAND mode */
 757        val = davinci_nand_readl(info, NANDFCR_OFFSET);
 758        val |= BIT(info->core_chipsel);
 759        davinci_nand_writel(info, NANDFCR_OFFSET, val);
 760
 761        spin_unlock_irq(&davinci_nand_lock);
 762
 763        /* Scan to find existence of the device(s) */
 764        ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
 765        if (ret < 0) {
 766                dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
 767                goto err;
 768        }
 769
 770        /* Update ECC layout if needed ... for 1-bit HW ECC, the default
 771         * is OK, but it allocates 6 bytes when only 3 are needed (for
 772         * each 512 bytes).  For the 4-bit HW ECC, that default is not
 773         * usable:  10 bytes are needed, not 6.
 774         */
 775        if (pdata->ecc_bits == 4) {
 776                int     chunks = info->mtd.writesize / 512;
 777
 778                if (!chunks || info->mtd.oobsize < 16) {
 779                        dev_dbg(&pdev->dev, "too small\n");
 780                        ret = -EINVAL;
 781                        goto err;
 782                }
 783
 784                /* For small page chips, preserve the manufacturer's
 785                 * badblock marking data ... and make sure a flash BBT
 786                 * table marker fits in the free bytes.
 787                 */
 788                if (chunks == 1) {
 789                        info->ecclayout = hwecc4_small;
 790                        info->ecclayout.oobfree[1].length =
 791                                info->mtd.oobsize - 16;
 792                        goto syndrome_done;
 793                }
 794                if (chunks == 4) {
 795                        info->ecclayout = hwecc4_2048;
 796                        info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
 797                        goto syndrome_done;
 798                }
 799
 800                /* 4KiB page chips are not yet supported. The eccpos from
 801                 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
 802                 * breaks userspace ioctl interface with mtd-utils. Once we
 803                 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
 804                 * for the 4KiB page chips.
 805                 *
 806                 * TODO: Note that nand_ecclayout has now been expanded and can
 807                 *  hold plenty of OOB entries.
 808                 */
 809                dev_warn(&pdev->dev, "no 4-bit ECC support yet "
 810                                "for 4KiB-page NAND\n");
 811                ret = -EIO;
 812                goto err;
 813
 814syndrome_done:
 815                info->chip.ecc.layout = &info->ecclayout;
 816        }
 817
 818        ret = nand_scan_tail(&info->mtd);
 819        if (ret < 0)
 820                goto err;
 821
 822        if (pdata->parts)
 823                ret = mtd_device_parse_register(&info->mtd, NULL, NULL,
 824                                        pdata->parts, pdata->nr_parts);
 825        else {
 826                struct mtd_part_parser_data     ppdata;
 827
 828                ppdata.of_node = pdev->dev.of_node;
 829                ret = mtd_device_parse_register(&info->mtd, NULL, &ppdata,
 830                                                NULL, 0);
 831        }
 832        if (ret < 0)
 833                goto err;
 834
 835        val = davinci_nand_readl(info, NRCSR_OFFSET);
 836        dev_info(&pdev->dev, "controller rev. %d.%d\n",
 837               (val >> 8) & 0xff, val & 0xff);
 838
 839        return 0;
 840
 841err:
 842        clk_disable_unprepare(info->clk);
 843
 844err_clk_enable:
 845        spin_lock_irq(&davinci_nand_lock);
 846        if (ecc_mode == NAND_ECC_HW_SYNDROME)
 847                ecc4_busy = false;
 848        spin_unlock_irq(&davinci_nand_lock);
 849        return ret;
 850}
 851
 852static int nand_davinci_remove(struct platform_device *pdev)
 853{
 854        struct davinci_nand_info *info = platform_get_drvdata(pdev);
 855
 856        spin_lock_irq(&davinci_nand_lock);
 857        if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
 858                ecc4_busy = false;
 859        spin_unlock_irq(&davinci_nand_lock);
 860
 861        nand_release(&info->mtd);
 862
 863        clk_disable_unprepare(info->clk);
 864
 865        return 0;
 866}
 867
 868static struct platform_driver nand_davinci_driver = {
 869        .probe          = nand_davinci_probe,
 870        .remove         = nand_davinci_remove,
 871        .driver         = {
 872                .name   = "davinci_nand",
 873                .of_match_table = of_match_ptr(davinci_nand_of_match),
 874        },
 875};
 876MODULE_ALIAS("platform:davinci_nand");
 877
 878module_platform_driver(nand_davinci_driver);
 879
 880MODULE_LICENSE("GPL");
 881MODULE_AUTHOR("Texas Instruments");
 882MODULE_DESCRIPTION("Davinci NAND flash driver");
 883
 884