linux/drivers/mtd/nand/lpc32xx_slc.c
<<
>>
Prefs
   1/*
   2 * NXP LPC32XX NAND SLC driver
   3 *
   4 * Authors:
   5 *    Kevin Wells <kevin.wells@nxp.com>
   6 *    Roland Stigge <stigge@antcom.de>
   7 *
   8 * Copyright © 2011 NXP Semiconductors
   9 * Copyright © 2012 Roland Stigge
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 */
  21
  22#include <linux/slab.h>
  23#include <linux/module.h>
  24#include <linux/platform_device.h>
  25#include <linux/mtd/mtd.h>
  26#include <linux/mtd/nand.h>
  27#include <linux/mtd/partitions.h>
  28#include <linux/clk.h>
  29#include <linux/err.h>
  30#include <linux/delay.h>
  31#include <linux/io.h>
  32#include <linux/mm.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/dmaengine.h>
  35#include <linux/mtd/nand_ecc.h>
  36#include <linux/gpio.h>
  37#include <linux/of.h>
  38#include <linux/of_mtd.h>
  39#include <linux/of_gpio.h>
  40#include <linux/mtd/lpc32xx_slc.h>
  41
  42#define LPC32XX_MODNAME         "lpc32xx-nand"
  43
  44/**********************************************************************
  45* SLC NAND controller register offsets
  46**********************************************************************/
  47
  48#define SLC_DATA(x)             (x + 0x000)
  49#define SLC_ADDR(x)             (x + 0x004)
  50#define SLC_CMD(x)              (x + 0x008)
  51#define SLC_STOP(x)             (x + 0x00C)
  52#define SLC_CTRL(x)             (x + 0x010)
  53#define SLC_CFG(x)              (x + 0x014)
  54#define SLC_STAT(x)             (x + 0x018)
  55#define SLC_INT_STAT(x)         (x + 0x01C)
  56#define SLC_IEN(x)              (x + 0x020)
  57#define SLC_ISR(x)              (x + 0x024)
  58#define SLC_ICR(x)              (x + 0x028)
  59#define SLC_TAC(x)              (x + 0x02C)
  60#define SLC_TC(x)               (x + 0x030)
  61#define SLC_ECC(x)              (x + 0x034)
  62#define SLC_DMA_DATA(x)         (x + 0x038)
  63
  64/**********************************************************************
  65* slc_ctrl register definitions
  66**********************************************************************/
  67#define SLCCTRL_SW_RESET        (1 << 2) /* Reset the NAND controller bit */
  68#define SLCCTRL_ECC_CLEAR       (1 << 1) /* Reset ECC bit */
  69#define SLCCTRL_DMA_START       (1 << 0) /* Start DMA channel bit */
  70
  71/**********************************************************************
  72* slc_cfg register definitions
  73**********************************************************************/
  74#define SLCCFG_CE_LOW           (1 << 5) /* Force CE low bit */
  75#define SLCCFG_DMA_ECC          (1 << 4) /* Enable DMA ECC bit */
  76#define SLCCFG_ECC_EN           (1 << 3) /* ECC enable bit */
  77#define SLCCFG_DMA_BURST        (1 << 2) /* DMA burst bit */
  78#define SLCCFG_DMA_DIR          (1 << 1) /* DMA write(0)/read(1) bit */
  79#define SLCCFG_WIDTH            (1 << 0) /* External device width, 0=8bit */
  80
  81/**********************************************************************
  82* slc_stat register definitions
  83**********************************************************************/
  84#define SLCSTAT_DMA_FIFO        (1 << 2) /* DMA FIFO has data bit */
  85#define SLCSTAT_SLC_FIFO        (1 << 1) /* SLC FIFO has data bit */
  86#define SLCSTAT_NAND_READY      (1 << 0) /* NAND device is ready bit */
  87
  88/**********************************************************************
  89* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
  90**********************************************************************/
  91#define SLCSTAT_INT_TC          (1 << 1) /* Transfer count bit */
  92#define SLCSTAT_INT_RDY_EN      (1 << 0) /* Ready interrupt bit */
  93
  94/**********************************************************************
  95* slc_tac register definitions
  96**********************************************************************/
  97/* Clock setting for RDY write sample wait time in 2*n clocks */
  98#define SLCTAC_WDR(n)           (((n) & 0xF) << 28)
  99/* Write pulse width in clock cycles, 1 to 16 clocks */
 100#define SLCTAC_WWIDTH(n)        (((n) & 0xF) << 24)
 101/* Write hold time of control and data signals, 1 to 16 clocks */
 102#define SLCTAC_WHOLD(n)         (((n) & 0xF) << 20)
 103/* Write setup time of control and data signals, 1 to 16 clocks */
 104#define SLCTAC_WSETUP(n)        (((n) & 0xF) << 16)
 105/* Clock setting for RDY read sample wait time in 2*n clocks */
 106#define SLCTAC_RDR(n)           (((n) & 0xF) << 12)
 107/* Read pulse width in clock cycles, 1 to 16 clocks */
 108#define SLCTAC_RWIDTH(n)        (((n) & 0xF) << 8)
 109/* Read hold time of control and data signals, 1 to 16 clocks */
 110#define SLCTAC_RHOLD(n)         (((n) & 0xF) << 4)
 111/* Read setup time of control and data signals, 1 to 16 clocks */
 112#define SLCTAC_RSETUP(n)        (((n) & 0xF) << 0)
 113
 114/**********************************************************************
 115* slc_ecc register definitions
 116**********************************************************************/
 117/* ECC line party fetch macro */
 118#define SLCECC_TO_LINEPAR(n)    (((n) >> 6) & 0x7FFF)
 119#define SLCECC_TO_COLPAR(n)     ((n) & 0x3F)
 120
 121/*
 122 * DMA requires storage space for the DMA local buffer and the hardware ECC
 123 * storage area. The DMA local buffer is only used if DMA mapping fails
 124 * during runtime.
 125 */
 126#define LPC32XX_DMA_DATA_SIZE           4096
 127#define LPC32XX_ECC_SAVE_SIZE           ((4096 / 256) * 4)
 128
 129/* Number of bytes used for ECC stored in NAND per 256 bytes */
 130#define LPC32XX_SLC_DEV_ECC_BYTES       3
 131
 132/*
 133 * If the NAND base clock frequency can't be fetched, this frequency will be
 134 * used instead as the base. This rate is used to setup the timing registers
 135 * used for NAND accesses.
 136 */
 137#define LPC32XX_DEF_BUS_RATE            133250000
 138
 139/* Milliseconds for DMA FIFO timeout (unlikely anyway) */
 140#define LPC32XX_DMA_TIMEOUT             100
 141
 142/*
 143 * NAND ECC Layout for small page NAND devices
 144 * Note: For large and huge page devices, the default layouts are used
 145 */
 146static struct nand_ecclayout lpc32xx_nand_oob_16 = {
 147        .eccbytes = 6,
 148        .eccpos = {10, 11, 12, 13, 14, 15},
 149        .oobfree = {
 150                { .offset = 0, .length = 4 },
 151                { .offset = 6, .length = 4 },
 152        },
 153};
 154
 155static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 156static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 157
 158/*
 159 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
 160 * Note: Large page devices used the default layout
 161 */
 162static struct nand_bbt_descr bbt_smallpage_main_descr = {
 163        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 164                | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 165        .offs = 0,
 166        .len = 4,
 167        .veroffs = 6,
 168        .maxblocks = 4,
 169        .pattern = bbt_pattern
 170};
 171
 172static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
 173        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 174                | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 175        .offs = 0,
 176        .len = 4,
 177        .veroffs = 6,
 178        .maxblocks = 4,
 179        .pattern = mirror_pattern
 180};
 181
 182/*
 183 * NAND platform configuration structure
 184 */
 185struct lpc32xx_nand_cfg_slc {
 186        uint32_t wdr_clks;
 187        uint32_t wwidth;
 188        uint32_t whold;
 189        uint32_t wsetup;
 190        uint32_t rdr_clks;
 191        uint32_t rwidth;
 192        uint32_t rhold;
 193        uint32_t rsetup;
 194        bool use_bbt;
 195        int wp_gpio;
 196        struct mtd_partition *parts;
 197        unsigned num_parts;
 198};
 199
 200struct lpc32xx_nand_host {
 201        struct nand_chip        nand_chip;
 202        struct lpc32xx_slc_platform_data *pdata;
 203        struct clk              *clk;
 204        struct mtd_info         mtd;
 205        void __iomem            *io_base;
 206        struct lpc32xx_nand_cfg_slc *ncfg;
 207
 208        struct completion       comp;
 209        struct dma_chan         *dma_chan;
 210        uint32_t                dma_buf_len;
 211        struct dma_slave_config dma_slave_config;
 212        struct scatterlist      sgl;
 213
 214        /*
 215         * DMA and CPU addresses of ECC work area and data buffer
 216         */
 217        uint32_t                *ecc_buf;
 218        uint8_t                 *data_buf;
 219        dma_addr_t              io_base_dma;
 220};
 221
 222static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
 223{
 224        uint32_t clkrate, tmp;
 225
 226        /* Reset SLC controller */
 227        writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
 228        udelay(1000);
 229
 230        /* Basic setup */
 231        writel(0, SLC_CFG(host->io_base));
 232        writel(0, SLC_IEN(host->io_base));
 233        writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
 234                SLC_ICR(host->io_base));
 235
 236        /* Get base clock for SLC block */
 237        clkrate = clk_get_rate(host->clk);
 238        if (clkrate == 0)
 239                clkrate = LPC32XX_DEF_BUS_RATE;
 240
 241        /* Compute clock setup values */
 242        tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
 243                SLCTAC_WWIDTH(1 + (clkrate / host->ncfg->wwidth)) |
 244                SLCTAC_WHOLD(1 + (clkrate / host->ncfg->whold)) |
 245                SLCTAC_WSETUP(1 + (clkrate / host->ncfg->wsetup)) |
 246                SLCTAC_RDR(host->ncfg->rdr_clks) |
 247                SLCTAC_RWIDTH(1 + (clkrate / host->ncfg->rwidth)) |
 248                SLCTAC_RHOLD(1 + (clkrate / host->ncfg->rhold)) |
 249                SLCTAC_RSETUP(1 + (clkrate / host->ncfg->rsetup));
 250        writel(tmp, SLC_TAC(host->io_base));
 251}
 252
 253/*
 254 * Hardware specific access to control lines
 255 */
 256static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
 257        unsigned int ctrl)
 258{
 259        uint32_t tmp;
 260        struct nand_chip *chip = mtd->priv;
 261        struct lpc32xx_nand_host *host = chip->priv;
 262
 263        /* Does CE state need to be changed? */
 264        tmp = readl(SLC_CFG(host->io_base));
 265        if (ctrl & NAND_NCE)
 266                tmp |= SLCCFG_CE_LOW;
 267        else
 268                tmp &= ~SLCCFG_CE_LOW;
 269        writel(tmp, SLC_CFG(host->io_base));
 270
 271        if (cmd != NAND_CMD_NONE) {
 272                if (ctrl & NAND_CLE)
 273                        writel(cmd, SLC_CMD(host->io_base));
 274                else
 275                        writel(cmd, SLC_ADDR(host->io_base));
 276        }
 277}
 278
 279/*
 280 * Read the Device Ready pin
 281 */
 282static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
 283{
 284        struct nand_chip *chip = mtd->priv;
 285        struct lpc32xx_nand_host *host = chip->priv;
 286        int rdy = 0;
 287
 288        if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
 289                rdy = 1;
 290
 291        return rdy;
 292}
 293
 294/*
 295 * Enable NAND write protect
 296 */
 297static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
 298{
 299        if (gpio_is_valid(host->ncfg->wp_gpio))
 300                gpio_set_value(host->ncfg->wp_gpio, 0);
 301}
 302
 303/*
 304 * Disable NAND write protect
 305 */
 306static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
 307{
 308        if (gpio_is_valid(host->ncfg->wp_gpio))
 309                gpio_set_value(host->ncfg->wp_gpio, 1);
 310}
 311
 312/*
 313 * Prepares SLC for transfers with H/W ECC enabled
 314 */
 315static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
 316{
 317        /* Hardware ECC is enabled automatically in hardware as needed */
 318}
 319
 320/*
 321 * Calculates the ECC for the data
 322 */
 323static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
 324                                      const unsigned char *buf,
 325                                      unsigned char *code)
 326{
 327        /*
 328         * ECC is calculated automatically in hardware during syndrome read
 329         * and write operations, so it doesn't need to be calculated here.
 330         */
 331        return 0;
 332}
 333
 334/*
 335 * Read a single byte from NAND device
 336 */
 337static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
 338{
 339        struct nand_chip *chip = mtd->priv;
 340        struct lpc32xx_nand_host *host = chip->priv;
 341
 342        return (uint8_t)readl(SLC_DATA(host->io_base));
 343}
 344
 345/*
 346 * Simple device read without ECC
 347 */
 348static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
 349{
 350        struct nand_chip *chip = mtd->priv;
 351        struct lpc32xx_nand_host *host = chip->priv;
 352
 353        /* Direct device read with no ECC */
 354        while (len-- > 0)
 355                *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
 356}
 357
 358/*
 359 * Simple device write without ECC
 360 */
 361static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 362{
 363        struct nand_chip *chip = mtd->priv;
 364        struct lpc32xx_nand_host *host = chip->priv;
 365
 366        /* Direct device write with no ECC */
 367        while (len-- > 0)
 368                writel((uint32_t)*buf++, SLC_DATA(host->io_base));
 369}
 370
 371/*
 372 * Read the OOB data from the device without ECC using FIFO method
 373 */
 374static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
 375                                          struct nand_chip *chip, int page)
 376{
 377        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
 378        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 379
 380        return 0;
 381}
 382
 383/*
 384 * Write the OOB data to the device without ECC using FIFO method
 385 */
 386static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
 387        struct nand_chip *chip, int page)
 388{
 389        int status;
 390
 391        chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
 392        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 393
 394        /* Send command to program the OOB data */
 395        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 396
 397        status = chip->waitfunc(mtd, chip);
 398
 399        return status & NAND_STATUS_FAIL ? -EIO : 0;
 400}
 401
 402/*
 403 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
 404 */
 405static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
 406{
 407        int i;
 408
 409        for (i = 0; i < (count * 3); i += 3) {
 410                uint32_t ce = ecc[i / 3];
 411                ce = ~(ce << 2) & 0xFFFFFF;
 412                spare[i + 2] = (uint8_t)(ce & 0xFF);
 413                ce >>= 8;
 414                spare[i + 1] = (uint8_t)(ce & 0xFF);
 415                ce >>= 8;
 416                spare[i] = (uint8_t)(ce & 0xFF);
 417        }
 418}
 419
 420static void lpc32xx_dma_complete_func(void *completion)
 421{
 422        complete(completion);
 423}
 424
 425static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
 426                            void *mem, int len, enum dma_transfer_direction dir)
 427{
 428        struct nand_chip *chip = mtd->priv;
 429        struct lpc32xx_nand_host *host = chip->priv;
 430        struct dma_async_tx_descriptor *desc;
 431        int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 432        int res;
 433
 434        host->dma_slave_config.direction = dir;
 435        host->dma_slave_config.src_addr = dma;
 436        host->dma_slave_config.dst_addr = dma;
 437        host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 438        host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 439        host->dma_slave_config.src_maxburst = 4;
 440        host->dma_slave_config.dst_maxburst = 4;
 441        /* DMA controller does flow control: */
 442        host->dma_slave_config.device_fc = false;
 443        if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
 444                dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
 445                return -ENXIO;
 446        }
 447
 448        sg_init_one(&host->sgl, mem, len);
 449
 450        res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
 451                         DMA_BIDIRECTIONAL);
 452        if (res != 1) {
 453                dev_err(mtd->dev.parent, "Failed to map sg list\n");
 454                return -ENXIO;
 455        }
 456        desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
 457                                       flags);
 458        if (!desc) {
 459                dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
 460                goto out1;
 461        }
 462
 463        init_completion(&host->comp);
 464        desc->callback = lpc32xx_dma_complete_func;
 465        desc->callback_param = &host->comp;
 466
 467        dmaengine_submit(desc);
 468        dma_async_issue_pending(host->dma_chan);
 469
 470        wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
 471
 472        dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
 473                     DMA_BIDIRECTIONAL);
 474
 475        return 0;
 476out1:
 477        dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
 478                     DMA_BIDIRECTIONAL);
 479        return -ENXIO;
 480}
 481
 482/*
 483 * DMA read/write transfers with ECC support
 484 */
 485static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
 486                        int read)
 487{
 488        struct nand_chip *chip = mtd->priv;
 489        struct lpc32xx_nand_host *host = chip->priv;
 490        int i, status = 0;
 491        unsigned long timeout;
 492        int res;
 493        enum dma_transfer_direction dir =
 494                read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
 495        uint8_t *dma_buf;
 496        bool dma_mapped;
 497
 498        if ((void *)buf <= high_memory) {
 499                dma_buf = buf;
 500                dma_mapped = true;
 501        } else {
 502                dma_buf = host->data_buf;
 503                dma_mapped = false;
 504                if (!read)
 505                        memcpy(host->data_buf, buf, mtd->writesize);
 506        }
 507
 508        if (read) {
 509                writel(readl(SLC_CFG(host->io_base)) |
 510                       SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
 511                       SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
 512        } else {
 513                writel((readl(SLC_CFG(host->io_base)) |
 514                        SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
 515                       ~SLCCFG_DMA_DIR,
 516                        SLC_CFG(host->io_base));
 517        }
 518
 519        /* Clear initial ECC */
 520        writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
 521
 522        /* Transfer size is data area only */
 523        writel(mtd->writesize, SLC_TC(host->io_base));
 524
 525        /* Start transfer in the NAND controller */
 526        writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
 527               SLC_CTRL(host->io_base));
 528
 529        for (i = 0; i < chip->ecc.steps; i++) {
 530                /* Data */
 531                res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
 532                                       dma_buf + i * chip->ecc.size,
 533                                       mtd->writesize / chip->ecc.steps, dir);
 534                if (res)
 535                        return res;
 536
 537                /* Always _read_ ECC */
 538                if (i == chip->ecc.steps - 1)
 539                        break;
 540                if (!read) /* ECC availability delayed on write */
 541                        udelay(10);
 542                res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
 543                                       &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
 544                if (res)
 545                        return res;
 546        }
 547
 548        /*
 549         * According to NXP, the DMA can be finished here, but the NAND
 550         * controller may still have buffered data. After porting to using the
 551         * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
 552         * appears to be always true, according to tests. Keeping the check for
 553         * safety reasons for now.
 554         */
 555        if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
 556                dev_warn(mtd->dev.parent, "FIFO not empty!\n");
 557                timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
 558                while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
 559                       time_before(jiffies, timeout))
 560                        cpu_relax();
 561                if (!time_before(jiffies, timeout)) {
 562                        dev_err(mtd->dev.parent, "FIFO held data too long\n");
 563                        status = -EIO;
 564                }
 565        }
 566
 567        /* Read last calculated ECC value */
 568        if (!read)
 569                udelay(10);
 570        host->ecc_buf[chip->ecc.steps - 1] =
 571                readl(SLC_ECC(host->io_base));
 572
 573        /* Flush DMA */
 574        dmaengine_terminate_all(host->dma_chan);
 575
 576        if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
 577            readl(SLC_TC(host->io_base))) {
 578                /* Something is left in the FIFO, something is wrong */
 579                dev_err(mtd->dev.parent, "DMA FIFO failure\n");
 580                status = -EIO;
 581        }
 582
 583        /* Stop DMA & HW ECC */
 584        writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
 585               SLC_CTRL(host->io_base));
 586        writel(readl(SLC_CFG(host->io_base)) &
 587               ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
 588                 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
 589
 590        if (!dma_mapped && read)
 591                memcpy(buf, host->data_buf, mtd->writesize);
 592
 593        return status;
 594}
 595
 596/*
 597 * Read the data and OOB data from the device, use ECC correction with the
 598 * data, disable ECC for the OOB data
 599 */
 600static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
 601                                           struct nand_chip *chip, uint8_t *buf,
 602                                           int oob_required, int page)
 603{
 604        struct lpc32xx_nand_host *host = chip->priv;
 605        int stat, i, status;
 606        uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
 607
 608        /* Issue read command */
 609        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
 610
 611        /* Read data and oob, calculate ECC */
 612        status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
 613
 614        /* Get OOB data */
 615        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 616
 617        /* Convert to stored ECC format */
 618        lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
 619
 620        /* Pointer to ECC data retrieved from NAND spare area */
 621        oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0];
 622
 623        for (i = 0; i < chip->ecc.steps; i++) {
 624                stat = chip->ecc.correct(mtd, buf, oobecc,
 625                                         &tmpecc[i * chip->ecc.bytes]);
 626                if (stat < 0)
 627                        mtd->ecc_stats.failed++;
 628                else
 629                        mtd->ecc_stats.corrected += stat;
 630
 631                buf += chip->ecc.size;
 632                oobecc += chip->ecc.bytes;
 633        }
 634
 635        return status;
 636}
 637
 638/*
 639 * Read the data and OOB data from the device, no ECC correction with the
 640 * data or OOB data
 641 */
 642static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
 643                                               struct nand_chip *chip,
 644                                               uint8_t *buf, int oob_required,
 645                                               int page)
 646{
 647        /* Issue read command */
 648        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
 649
 650        /* Raw reads can just use the FIFO interface */
 651        chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
 652        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 653
 654        return 0;
 655}
 656
 657/*
 658 * Write the data and OOB data to the device, use ECC with the data,
 659 * disable ECC for the OOB data
 660 */
 661static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
 662                                            struct nand_chip *chip,
 663                                            const uint8_t *buf, int oob_required)
 664{
 665        struct lpc32xx_nand_host *host = chip->priv;
 666        uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0];
 667        int error;
 668
 669        /* Write data, calculate ECC on outbound data */
 670        error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
 671        if (error)
 672                return error;
 673
 674        /*
 675         * The calculated ECC needs some manual work done to it before
 676         * committing it to NAND. Process the calculated ECC and place
 677         * the resultant values directly into the OOB buffer. */
 678        lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
 679
 680        /* Write ECC data to device */
 681        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 682        return 0;
 683}
 684
 685/*
 686 * Write the data and OOB data to the device, no ECC correction with the
 687 * data or OOB data
 688 */
 689static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
 690                                                struct nand_chip *chip,
 691                                                const uint8_t *buf,
 692                                                int oob_required)
 693{
 694        /* Raw writes can just use the FIFO interface */
 695        chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
 696        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 697        return 0;
 698}
 699
 700static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
 701{
 702        struct mtd_info *mtd = &host->mtd;
 703        dma_cap_mask_t mask;
 704
 705        if (!host->pdata || !host->pdata->dma_filter) {
 706                dev_err(mtd->dev.parent, "no DMA platform data\n");
 707                return -ENOENT;
 708        }
 709
 710        dma_cap_zero(mask);
 711        dma_cap_set(DMA_SLAVE, mask);
 712        host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
 713                                             "nand-slc");
 714        if (!host->dma_chan) {
 715                dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
 716                return -EBUSY;
 717        }
 718
 719        return 0;
 720}
 721
 722static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
 723{
 724        struct lpc32xx_nand_cfg_slc *ncfg;
 725        struct device_node *np = dev->of_node;
 726
 727        ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
 728        if (!ncfg)
 729                return NULL;
 730
 731        of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
 732        of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
 733        of_property_read_u32(np, "nxp,whold", &ncfg->whold);
 734        of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
 735        of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
 736        of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
 737        of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
 738        of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
 739
 740        if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
 741            !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
 742            !ncfg->rhold || !ncfg->rsetup) {
 743                dev_err(dev, "chip parameters not specified correctly\n");
 744                return NULL;
 745        }
 746
 747        ncfg->use_bbt = of_get_nand_on_flash_bbt(np);
 748        ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
 749
 750        return ncfg;
 751}
 752
 753/*
 754 * Probe for NAND controller
 755 */
 756static int lpc32xx_nand_probe(struct platform_device *pdev)
 757{
 758        struct lpc32xx_nand_host *host;
 759        struct mtd_info *mtd;
 760        struct nand_chip *chip;
 761        struct resource *rc;
 762        struct mtd_part_parser_data ppdata = {};
 763        int res;
 764
 765        rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 766        if (rc == NULL) {
 767                dev_err(&pdev->dev, "No memory resource found for device\n");
 768                return -EBUSY;
 769        }
 770
 771        /* Allocate memory for the device structure (and zero it) */
 772        host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
 773        if (!host)
 774                return -ENOMEM;
 775        host->io_base_dma = rc->start;
 776
 777        host->io_base = devm_ioremap_resource(&pdev->dev, rc);
 778        if (IS_ERR(host->io_base))
 779                return PTR_ERR(host->io_base);
 780
 781        if (pdev->dev.of_node)
 782                host->ncfg = lpc32xx_parse_dt(&pdev->dev);
 783        if (!host->ncfg) {
 784                dev_err(&pdev->dev,
 785                        "Missing or bad NAND config from device tree\n");
 786                return -ENOENT;
 787        }
 788        if (host->ncfg->wp_gpio == -EPROBE_DEFER)
 789                return -EPROBE_DEFER;
 790        if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
 791                        host->ncfg->wp_gpio, "NAND WP")) {
 792                dev_err(&pdev->dev, "GPIO not available\n");
 793                return -EBUSY;
 794        }
 795        lpc32xx_wp_disable(host);
 796
 797        host->pdata = dev_get_platdata(&pdev->dev);
 798
 799        mtd = &host->mtd;
 800        chip = &host->nand_chip;
 801        chip->priv = host;
 802        mtd->priv = chip;
 803        mtd->owner = THIS_MODULE;
 804        mtd->dev.parent = &pdev->dev;
 805
 806        /* Get NAND clock */
 807        host->clk = devm_clk_get(&pdev->dev, NULL);
 808        if (IS_ERR(host->clk)) {
 809                dev_err(&pdev->dev, "Clock failure\n");
 810                res = -ENOENT;
 811                goto err_exit1;
 812        }
 813        clk_enable(host->clk);
 814
 815        /* Set NAND IO addresses and command/ready functions */
 816        chip->IO_ADDR_R = SLC_DATA(host->io_base);
 817        chip->IO_ADDR_W = SLC_DATA(host->io_base);
 818        chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
 819        chip->dev_ready = lpc32xx_nand_device_ready;
 820        chip->chip_delay = 20; /* 20us command delay time */
 821
 822        /* Init NAND controller */
 823        lpc32xx_nand_setup(host);
 824
 825        platform_set_drvdata(pdev, host);
 826
 827        /* NAND callbacks for LPC32xx SLC hardware */
 828        chip->ecc.mode = NAND_ECC_HW_SYNDROME;
 829        chip->read_byte = lpc32xx_nand_read_byte;
 830        chip->read_buf = lpc32xx_nand_read_buf;
 831        chip->write_buf = lpc32xx_nand_write_buf;
 832        chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
 833        chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
 834        chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
 835        chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
 836        chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
 837        chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
 838        chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
 839        chip->ecc.correct = nand_correct_data;
 840        chip->ecc.strength = 1;
 841        chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
 842
 843        /*
 844         * Allocate a large enough buffer for a single huge page plus
 845         * extra space for the spare area and ECC storage area
 846         */
 847        host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
 848        host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
 849                                      GFP_KERNEL);
 850        if (host->data_buf == NULL) {
 851                res = -ENOMEM;
 852                goto err_exit2;
 853        }
 854
 855        res = lpc32xx_nand_dma_setup(host);
 856        if (res) {
 857                res = -EIO;
 858                goto err_exit2;
 859        }
 860
 861        /* Find NAND device */
 862        if (nand_scan_ident(mtd, 1, NULL)) {
 863                res = -ENXIO;
 864                goto err_exit3;
 865        }
 866
 867        /* OOB and ECC CPU and DMA work areas */
 868        host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
 869
 870        /*
 871         * Small page FLASH has a unique OOB layout, but large and huge
 872         * page FLASH use the standard layout. Small page FLASH uses a
 873         * custom BBT marker layout.
 874         */
 875        if (mtd->writesize <= 512)
 876                chip->ecc.layout = &lpc32xx_nand_oob_16;
 877
 878        /* These sizes remain the same regardless of page size */
 879        chip->ecc.size = 256;
 880        chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
 881        chip->ecc.prepad = chip->ecc.postpad = 0;
 882
 883        /* Avoid extra scan if using BBT, setup BBT support */
 884        if (host->ncfg->use_bbt) {
 885                chip->bbt_options |= NAND_BBT_USE_FLASH;
 886
 887                /*
 888                 * Use a custom BBT marker setup for small page FLASH that
 889                 * won't interfere with the ECC layout. Large and huge page
 890                 * FLASH use the standard layout.
 891                 */
 892                if (mtd->writesize <= 512) {
 893                        chip->bbt_td = &bbt_smallpage_main_descr;
 894                        chip->bbt_md = &bbt_smallpage_mirror_descr;
 895                }
 896        }
 897
 898        /*
 899         * Fills out all the uninitialized function pointers with the defaults
 900         */
 901        if (nand_scan_tail(mtd)) {
 902                res = -ENXIO;
 903                goto err_exit3;
 904        }
 905
 906        mtd->name = "nxp_lpc3220_slc";
 907        ppdata.of_node = pdev->dev.of_node;
 908        res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts,
 909                                        host->ncfg->num_parts);
 910        if (!res)
 911                return res;
 912
 913        nand_release(mtd);
 914
 915err_exit3:
 916        dma_release_channel(host->dma_chan);
 917err_exit2:
 918        clk_disable(host->clk);
 919err_exit1:
 920        lpc32xx_wp_enable(host);
 921
 922        return res;
 923}
 924
 925/*
 926 * Remove NAND device.
 927 */
 928static int lpc32xx_nand_remove(struct platform_device *pdev)
 929{
 930        uint32_t tmp;
 931        struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 932        struct mtd_info *mtd = &host->mtd;
 933
 934        nand_release(mtd);
 935        dma_release_channel(host->dma_chan);
 936
 937        /* Force CE high */
 938        tmp = readl(SLC_CTRL(host->io_base));
 939        tmp &= ~SLCCFG_CE_LOW;
 940        writel(tmp, SLC_CTRL(host->io_base));
 941
 942        clk_disable(host->clk);
 943        lpc32xx_wp_enable(host);
 944
 945        return 0;
 946}
 947
 948#ifdef CONFIG_PM
 949static int lpc32xx_nand_resume(struct platform_device *pdev)
 950{
 951        struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 952
 953        /* Re-enable NAND clock */
 954        clk_enable(host->clk);
 955
 956        /* Fresh init of NAND controller */
 957        lpc32xx_nand_setup(host);
 958
 959        /* Disable write protect */
 960        lpc32xx_wp_disable(host);
 961
 962        return 0;
 963}
 964
 965static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
 966{
 967        uint32_t tmp;
 968        struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 969
 970        /* Force CE high */
 971        tmp = readl(SLC_CTRL(host->io_base));
 972        tmp &= ~SLCCFG_CE_LOW;
 973        writel(tmp, SLC_CTRL(host->io_base));
 974
 975        /* Enable write protect for safety */
 976        lpc32xx_wp_enable(host);
 977
 978        /* Disable clock */
 979        clk_disable(host->clk);
 980
 981        return 0;
 982}
 983
 984#else
 985#define lpc32xx_nand_resume NULL
 986#define lpc32xx_nand_suspend NULL
 987#endif
 988
 989static const struct of_device_id lpc32xx_nand_match[] = {
 990        { .compatible = "nxp,lpc3220-slc" },
 991        { /* sentinel */ },
 992};
 993MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
 994
 995static struct platform_driver lpc32xx_nand_driver = {
 996        .probe          = lpc32xx_nand_probe,
 997        .remove         = lpc32xx_nand_remove,
 998        .resume         = lpc32xx_nand_resume,
 999        .suspend        = lpc32xx_nand_suspend,
1000        .driver         = {
1001                .name   = LPC32XX_MODNAME,
1002                .of_match_table = lpc32xx_nand_match,
1003        },
1004};
1005
1006module_platform_driver(lpc32xx_nand_driver);
1007
1008MODULE_LICENSE("GPL");
1009MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1010MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1011MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");
1012