linux/drivers/mtd/nand/omap2.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
   3 * Copyright © 2004 Micron Technology Inc.
   4 * Copyright © 2004 David Brownell
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/platform_device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/delay.h>
  15#include <linux/module.h>
  16#include <linux/interrupt.h>
  17#include <linux/jiffies.h>
  18#include <linux/sched.h>
  19#include <linux/mtd/mtd.h>
  20#include <linux/mtd/nand.h>
  21#include <linux/mtd/partitions.h>
  22#include <linux/omap-dma.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
  25#include <linux/of.h>
  26#include <linux/of_device.h>
  27
  28#include <linux/mtd/nand_bch.h>
  29#include <linux/platform_data/elm.h>
  30
  31#include <linux/platform_data/mtd-nand-omap2.h>
  32
  33#define DRIVER_NAME     "omap2-nand"
  34#define OMAP_NAND_TIMEOUT_MS    5000
  35
  36#define NAND_Ecc_P1e            (1 << 0)
  37#define NAND_Ecc_P2e            (1 << 1)
  38#define NAND_Ecc_P4e            (1 << 2)
  39#define NAND_Ecc_P8e            (1 << 3)
  40#define NAND_Ecc_P16e           (1 << 4)
  41#define NAND_Ecc_P32e           (1 << 5)
  42#define NAND_Ecc_P64e           (1 << 6)
  43#define NAND_Ecc_P128e          (1 << 7)
  44#define NAND_Ecc_P256e          (1 << 8)
  45#define NAND_Ecc_P512e          (1 << 9)
  46#define NAND_Ecc_P1024e         (1 << 10)
  47#define NAND_Ecc_P2048e         (1 << 11)
  48
  49#define NAND_Ecc_P1o            (1 << 16)
  50#define NAND_Ecc_P2o            (1 << 17)
  51#define NAND_Ecc_P4o            (1 << 18)
  52#define NAND_Ecc_P8o            (1 << 19)
  53#define NAND_Ecc_P16o           (1 << 20)
  54#define NAND_Ecc_P32o           (1 << 21)
  55#define NAND_Ecc_P64o           (1 << 22)
  56#define NAND_Ecc_P128o          (1 << 23)
  57#define NAND_Ecc_P256o          (1 << 24)
  58#define NAND_Ecc_P512o          (1 << 25)
  59#define NAND_Ecc_P1024o         (1 << 26)
  60#define NAND_Ecc_P2048o         (1 << 27)
  61
  62#define TF(value)       (value ? 1 : 0)
  63
  64#define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
  65#define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
  66#define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
  67#define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
  68#define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
  69#define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
  70#define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
  71#define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
  72
  73#define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
  74#define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
  75#define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
  76#define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
  77#define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
  78#define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
  79#define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
  80#define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
  81
  82#define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
  83#define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
  84#define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
  85#define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
  86#define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
  87#define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
  88#define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
  89#define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
  90
  91#define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
  92#define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
  93#define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
  94#define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
  95#define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
  96#define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
  97#define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
  98#define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
  99
 100#define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
 101#define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
 102
 103#define PREFETCH_CONFIG1_CS_SHIFT       24
 104#define ECC_CONFIG_CS_SHIFT             1
 105#define CS_MASK                         0x7
 106#define ENABLE_PREFETCH                 (0x1 << 7)
 107#define DMA_MPU_MODE_SHIFT              2
 108#define ECCSIZE0_SHIFT                  12
 109#define ECCSIZE1_SHIFT                  22
 110#define ECC1RESULTSIZE                  0x1
 111#define ECCCLEAR                        0x100
 112#define ECC1                            0x1
 113#define PREFETCH_FIFOTHRESHOLD_MAX      0x40
 114#define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
 115#define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
 116#define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
 117#define STATUS_BUFF_EMPTY               0x00000001
 118
 119#define OMAP24XX_DMA_GPMC               4
 120
 121#define SECTOR_BYTES            512
 122/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
 123#define BCH4_BIT_PAD            4
 124
 125/* GPMC ecc engine settings for read */
 126#define BCH_WRAPMODE_1          1       /* BCH wrap mode 1 */
 127#define BCH8R_ECC_SIZE0         0x1a    /* ecc_size0 = 26 */
 128#define BCH8R_ECC_SIZE1         0x2     /* ecc_size1 = 2 */
 129#define BCH4R_ECC_SIZE0         0xd     /* ecc_size0 = 13 */
 130#define BCH4R_ECC_SIZE1         0x3     /* ecc_size1 = 3 */
 131
 132/* GPMC ecc engine settings for write */
 133#define BCH_WRAPMODE_6          6       /* BCH wrap mode 6 */
 134#define BCH_ECC_SIZE0           0x0     /* ecc_size0 = 0, no oob protection */
 135#define BCH_ECC_SIZE1           0x20    /* ecc_size1 = 32 */
 136
 137#define BADBLOCK_MARKER_LENGTH          2
 138
 139static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
 140                                0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
 141                                0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
 142                                0x07, 0x0e};
 143static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
 144        0xac, 0x6b, 0xff, 0x99, 0x7b};
 145static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
 146
 147/* Shared among all NAND instances to synchronize access to the ECC Engine */
 148static struct nand_hw_control omap_gpmc_controller = {
 149        .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
 150        .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
 151};
 152
 153struct omap_nand_info {
 154        struct omap_nand_platform_data  *pdata;
 155        struct mtd_info                 mtd;
 156        struct nand_chip                nand;
 157        struct platform_device          *pdev;
 158
 159        int                             gpmc_cs;
 160        unsigned long                   phys_base;
 161        enum omap_ecc                   ecc_opt;
 162        struct completion               comp;
 163        struct dma_chan                 *dma;
 164        int                             gpmc_irq_fifo;
 165        int                             gpmc_irq_count;
 166        enum {
 167                OMAP_NAND_IO_READ = 0,  /* read */
 168                OMAP_NAND_IO_WRITE,     /* write */
 169        } iomode;
 170        u_char                          *buf;
 171        int                                     buf_len;
 172        struct gpmc_nand_regs           reg;
 173        /* generated at runtime depending on ECC algorithm and layout selected */
 174        struct nand_ecclayout           oobinfo;
 175        /* fields specific for BCHx_HW ECC scheme */
 176        struct device                   *elm_dev;
 177        struct device_node              *of_node;
 178};
 179
 180/**
 181 * omap_prefetch_enable - configures and starts prefetch transfer
 182 * @cs: cs (chip select) number
 183 * @fifo_th: fifo threshold to be used for read/ write
 184 * @dma_mode: dma mode enable (1) or disable (0)
 185 * @u32_count: number of bytes to be transferred
 186 * @is_write: prefetch read(0) or write post(1) mode
 187 */
 188static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
 189        unsigned int u32_count, int is_write, struct omap_nand_info *info)
 190{
 191        u32 val;
 192
 193        if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
 194                return -1;
 195
 196        if (readl(info->reg.gpmc_prefetch_control))
 197                return -EBUSY;
 198
 199        /* Set the amount of bytes to be prefetched */
 200        writel(u32_count, info->reg.gpmc_prefetch_config2);
 201
 202        /* Set dma/mpu mode, the prefetch read / post write and
 203         * enable the engine. Set which cs is has requested for.
 204         */
 205        val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
 206                PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
 207                (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
 208        writel(val, info->reg.gpmc_prefetch_config1);
 209
 210        /*  Start the prefetch engine */
 211        writel(0x1, info->reg.gpmc_prefetch_control);
 212
 213        return 0;
 214}
 215
 216/**
 217 * omap_prefetch_reset - disables and stops the prefetch engine
 218 */
 219static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
 220{
 221        u32 config1;
 222
 223        /* check if the same module/cs is trying to reset */
 224        config1 = readl(info->reg.gpmc_prefetch_config1);
 225        if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
 226                return -EINVAL;
 227
 228        /* Stop the PFPW engine */
 229        writel(0x0, info->reg.gpmc_prefetch_control);
 230
 231        /* Reset/disable the PFPW engine */
 232        writel(0x0, info->reg.gpmc_prefetch_config1);
 233
 234        return 0;
 235}
 236
 237/**
 238 * omap_hwcontrol - hardware specific access to control-lines
 239 * @mtd: MTD device structure
 240 * @cmd: command to device
 241 * @ctrl:
 242 * NAND_NCE: bit 0 -> don't care
 243 * NAND_CLE: bit 1 -> Command Latch
 244 * NAND_ALE: bit 2 -> Address Latch
 245 *
 246 * NOTE: boards may use different bits for these!!
 247 */
 248static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 249{
 250        struct omap_nand_info *info = container_of(mtd,
 251                                        struct omap_nand_info, mtd);
 252
 253        if (cmd != NAND_CMD_NONE) {
 254                if (ctrl & NAND_CLE)
 255                        writeb(cmd, info->reg.gpmc_nand_command);
 256
 257                else if (ctrl & NAND_ALE)
 258                        writeb(cmd, info->reg.gpmc_nand_address);
 259
 260                else /* NAND_NCE */
 261                        writeb(cmd, info->reg.gpmc_nand_data);
 262        }
 263}
 264
 265/**
 266 * omap_read_buf8 - read data from NAND controller into buffer
 267 * @mtd: MTD device structure
 268 * @buf: buffer to store date
 269 * @len: number of bytes to read
 270 */
 271static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
 272{
 273        struct nand_chip *nand = mtd->priv;
 274
 275        ioread8_rep(nand->IO_ADDR_R, buf, len);
 276}
 277
 278/**
 279 * omap_write_buf8 - write buffer to NAND controller
 280 * @mtd: MTD device structure
 281 * @buf: data buffer
 282 * @len: number of bytes to write
 283 */
 284static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
 285{
 286        struct omap_nand_info *info = container_of(mtd,
 287                                                struct omap_nand_info, mtd);
 288        u_char *p = (u_char *)buf;
 289        u32     status = 0;
 290
 291        while (len--) {
 292                iowrite8(*p++, info->nand.IO_ADDR_W);
 293                /* wait until buffer is available for write */
 294                do {
 295                        status = readl(info->reg.gpmc_status) &
 296                                        STATUS_BUFF_EMPTY;
 297                } while (!status);
 298        }
 299}
 300
 301/**
 302 * omap_read_buf16 - read data from NAND controller into buffer
 303 * @mtd: MTD device structure
 304 * @buf: buffer to store date
 305 * @len: number of bytes to read
 306 */
 307static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
 308{
 309        struct nand_chip *nand = mtd->priv;
 310
 311        ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
 312}
 313
 314/**
 315 * omap_write_buf16 - write buffer to NAND controller
 316 * @mtd: MTD device structure
 317 * @buf: data buffer
 318 * @len: number of bytes to write
 319 */
 320static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
 321{
 322        struct omap_nand_info *info = container_of(mtd,
 323                                                struct omap_nand_info, mtd);
 324        u16 *p = (u16 *) buf;
 325        u32     status = 0;
 326        /* FIXME try bursts of writesw() or DMA ... */
 327        len >>= 1;
 328
 329        while (len--) {
 330                iowrite16(*p++, info->nand.IO_ADDR_W);
 331                /* wait until buffer is available for write */
 332                do {
 333                        status = readl(info->reg.gpmc_status) &
 334                                        STATUS_BUFF_EMPTY;
 335                } while (!status);
 336        }
 337}
 338
 339/**
 340 * omap_read_buf_pref - read data from NAND controller into buffer
 341 * @mtd: MTD device structure
 342 * @buf: buffer to store date
 343 * @len: number of bytes to read
 344 */
 345static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
 346{
 347        struct omap_nand_info *info = container_of(mtd,
 348                                                struct omap_nand_info, mtd);
 349        uint32_t r_count = 0;
 350        int ret = 0;
 351        u32 *p = (u32 *)buf;
 352
 353        /* take care of subpage reads */
 354        if (len % 4) {
 355                if (info->nand.options & NAND_BUSWIDTH_16)
 356                        omap_read_buf16(mtd, buf, len % 4);
 357                else
 358                        omap_read_buf8(mtd, buf, len % 4);
 359                p = (u32 *) (buf + len % 4);
 360                len -= len % 4;
 361        }
 362
 363        /* configure and start prefetch transfer */
 364        ret = omap_prefetch_enable(info->gpmc_cs,
 365                        PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
 366        if (ret) {
 367                /* PFPW engine is busy, use cpu copy method */
 368                if (info->nand.options & NAND_BUSWIDTH_16)
 369                        omap_read_buf16(mtd, (u_char *)p, len);
 370                else
 371                        omap_read_buf8(mtd, (u_char *)p, len);
 372        } else {
 373                do {
 374                        r_count = readl(info->reg.gpmc_prefetch_status);
 375                        r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
 376                        r_count = r_count >> 2;
 377                        ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
 378                        p += r_count;
 379                        len -= r_count << 2;
 380                } while (len);
 381                /* disable and stop the PFPW engine */
 382                omap_prefetch_reset(info->gpmc_cs, info);
 383        }
 384}
 385
 386/**
 387 * omap_write_buf_pref - write buffer to NAND controller
 388 * @mtd: MTD device structure
 389 * @buf: data buffer
 390 * @len: number of bytes to write
 391 */
 392static void omap_write_buf_pref(struct mtd_info *mtd,
 393                                        const u_char *buf, int len)
 394{
 395        struct omap_nand_info *info = container_of(mtd,
 396                                                struct omap_nand_info, mtd);
 397        uint32_t w_count = 0;
 398        int i = 0, ret = 0;
 399        u16 *p = (u16 *)buf;
 400        unsigned long tim, limit;
 401        u32 val;
 402
 403        /* take care of subpage writes */
 404        if (len % 2 != 0) {
 405                writeb(*buf, info->nand.IO_ADDR_W);
 406                p = (u16 *)(buf + 1);
 407                len--;
 408        }
 409
 410        /*  configure and start prefetch transfer */
 411        ret = omap_prefetch_enable(info->gpmc_cs,
 412                        PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
 413        if (ret) {
 414                /* PFPW engine is busy, use cpu copy method */
 415                if (info->nand.options & NAND_BUSWIDTH_16)
 416                        omap_write_buf16(mtd, (u_char *)p, len);
 417                else
 418                        omap_write_buf8(mtd, (u_char *)p, len);
 419        } else {
 420                while (len) {
 421                        w_count = readl(info->reg.gpmc_prefetch_status);
 422                        w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
 423                        w_count = w_count >> 1;
 424                        for (i = 0; (i < w_count) && len; i++, len -= 2)
 425                                iowrite16(*p++, info->nand.IO_ADDR_W);
 426                }
 427                /* wait for data to flushed-out before reset the prefetch */
 428                tim = 0;
 429                limit = (loops_per_jiffy *
 430                                        msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 431                do {
 432                        cpu_relax();
 433                        val = readl(info->reg.gpmc_prefetch_status);
 434                        val = PREFETCH_STATUS_COUNT(val);
 435                } while (val && (tim++ < limit));
 436
 437                /* disable and stop the PFPW engine */
 438                omap_prefetch_reset(info->gpmc_cs, info);
 439        }
 440}
 441
 442/*
 443 * omap_nand_dma_callback: callback on the completion of dma transfer
 444 * @data: pointer to completion data structure
 445 */
 446static void omap_nand_dma_callback(void *data)
 447{
 448        complete((struct completion *) data);
 449}
 450
 451/*
 452 * omap_nand_dma_transfer: configure and start dma transfer
 453 * @mtd: MTD device structure
 454 * @addr: virtual address in RAM of source/destination
 455 * @len: number of data bytes to be transferred
 456 * @is_write: flag for read/write operation
 457 */
 458static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
 459                                        unsigned int len, int is_write)
 460{
 461        struct omap_nand_info *info = container_of(mtd,
 462                                        struct omap_nand_info, mtd);
 463        struct dma_async_tx_descriptor *tx;
 464        enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
 465                                                        DMA_FROM_DEVICE;
 466        struct scatterlist sg;
 467        unsigned long tim, limit;
 468        unsigned n;
 469        int ret;
 470        u32 val;
 471
 472        if (addr >= high_memory) {
 473                struct page *p1;
 474
 475                if (((size_t)addr & PAGE_MASK) !=
 476                        ((size_t)(addr + len - 1) & PAGE_MASK))
 477                        goto out_copy;
 478                p1 = vmalloc_to_page(addr);
 479                if (!p1)
 480                        goto out_copy;
 481                addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
 482        }
 483
 484        sg_init_one(&sg, addr, len);
 485        n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
 486        if (n == 0) {
 487                dev_err(&info->pdev->dev,
 488                        "Couldn't DMA map a %d byte buffer\n", len);
 489                goto out_copy;
 490        }
 491
 492        tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
 493                is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
 494                DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 495        if (!tx)
 496                goto out_copy_unmap;
 497
 498        tx->callback = omap_nand_dma_callback;
 499        tx->callback_param = &info->comp;
 500        dmaengine_submit(tx);
 501
 502        /*  configure and start prefetch transfer */
 503        ret = omap_prefetch_enable(info->gpmc_cs,
 504                PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
 505        if (ret)
 506                /* PFPW engine is busy, use cpu copy method */
 507                goto out_copy_unmap;
 508
 509        init_completion(&info->comp);
 510        dma_async_issue_pending(info->dma);
 511
 512        /* setup and start DMA using dma_addr */
 513        wait_for_completion(&info->comp);
 514        tim = 0;
 515        limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 516
 517        do {
 518                cpu_relax();
 519                val = readl(info->reg.gpmc_prefetch_status);
 520                val = PREFETCH_STATUS_COUNT(val);
 521        } while (val && (tim++ < limit));
 522
 523        /* disable and stop the PFPW engine */
 524        omap_prefetch_reset(info->gpmc_cs, info);
 525
 526        dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 527        return 0;
 528
 529out_copy_unmap:
 530        dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 531out_copy:
 532        if (info->nand.options & NAND_BUSWIDTH_16)
 533                is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
 534                        : omap_write_buf16(mtd, (u_char *) addr, len);
 535        else
 536                is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
 537                        : omap_write_buf8(mtd, (u_char *) addr, len);
 538        return 0;
 539}
 540
 541/**
 542 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 543 * @mtd: MTD device structure
 544 * @buf: buffer to store date
 545 * @len: number of bytes to read
 546 */
 547static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
 548{
 549        if (len <= mtd->oobsize)
 550                omap_read_buf_pref(mtd, buf, len);
 551        else
 552                /* start transfer in DMA mode */
 553                omap_nand_dma_transfer(mtd, buf, len, 0x0);
 554}
 555
 556/**
 557 * omap_write_buf_dma_pref - write buffer to NAND controller
 558 * @mtd: MTD device structure
 559 * @buf: data buffer
 560 * @len: number of bytes to write
 561 */
 562static void omap_write_buf_dma_pref(struct mtd_info *mtd,
 563                                        const u_char *buf, int len)
 564{
 565        if (len <= mtd->oobsize)
 566                omap_write_buf_pref(mtd, buf, len);
 567        else
 568                /* start transfer in DMA mode */
 569                omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
 570}
 571
 572/*
 573 * omap_nand_irq - GPMC irq handler
 574 * @this_irq: gpmc irq number
 575 * @dev: omap_nand_info structure pointer is passed here
 576 */
 577static irqreturn_t omap_nand_irq(int this_irq, void *dev)
 578{
 579        struct omap_nand_info *info = (struct omap_nand_info *) dev;
 580        u32 bytes;
 581
 582        bytes = readl(info->reg.gpmc_prefetch_status);
 583        bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
 584        bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
 585        if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
 586                if (this_irq == info->gpmc_irq_count)
 587                        goto done;
 588
 589                if (info->buf_len && (info->buf_len < bytes))
 590                        bytes = info->buf_len;
 591                else if (!info->buf_len)
 592                        bytes = 0;
 593                iowrite32_rep(info->nand.IO_ADDR_W,
 594                                                (u32 *)info->buf, bytes >> 2);
 595                info->buf = info->buf + bytes;
 596                info->buf_len -= bytes;
 597
 598        } else {
 599                ioread32_rep(info->nand.IO_ADDR_R,
 600                                                (u32 *)info->buf, bytes >> 2);
 601                info->buf = info->buf + bytes;
 602
 603                if (this_irq == info->gpmc_irq_count)
 604                        goto done;
 605        }
 606
 607        return IRQ_HANDLED;
 608
 609done:
 610        complete(&info->comp);
 611
 612        disable_irq_nosync(info->gpmc_irq_fifo);
 613        disable_irq_nosync(info->gpmc_irq_count);
 614
 615        return IRQ_HANDLED;
 616}
 617
 618/*
 619 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 620 * @mtd: MTD device structure
 621 * @buf: buffer to store date
 622 * @len: number of bytes to read
 623 */
 624static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
 625{
 626        struct omap_nand_info *info = container_of(mtd,
 627                                                struct omap_nand_info, mtd);
 628        int ret = 0;
 629
 630        if (len <= mtd->oobsize) {
 631                omap_read_buf_pref(mtd, buf, len);
 632                return;
 633        }
 634
 635        info->iomode = OMAP_NAND_IO_READ;
 636        info->buf = buf;
 637        init_completion(&info->comp);
 638
 639        /*  configure and start prefetch transfer */
 640        ret = omap_prefetch_enable(info->gpmc_cs,
 641                        PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
 642        if (ret)
 643                /* PFPW engine is busy, use cpu copy method */
 644                goto out_copy;
 645
 646        info->buf_len = len;
 647
 648        enable_irq(info->gpmc_irq_count);
 649        enable_irq(info->gpmc_irq_fifo);
 650
 651        /* waiting for read to complete */
 652        wait_for_completion(&info->comp);
 653
 654        /* disable and stop the PFPW engine */
 655        omap_prefetch_reset(info->gpmc_cs, info);
 656        return;
 657
 658out_copy:
 659        if (info->nand.options & NAND_BUSWIDTH_16)
 660                omap_read_buf16(mtd, buf, len);
 661        else
 662                omap_read_buf8(mtd, buf, len);
 663}
 664
 665/*
 666 * omap_write_buf_irq_pref - write buffer to NAND controller
 667 * @mtd: MTD device structure
 668 * @buf: data buffer
 669 * @len: number of bytes to write
 670 */
 671static void omap_write_buf_irq_pref(struct mtd_info *mtd,
 672                                        const u_char *buf, int len)
 673{
 674        struct omap_nand_info *info = container_of(mtd,
 675                                                struct omap_nand_info, mtd);
 676        int ret = 0;
 677        unsigned long tim, limit;
 678        u32 val;
 679
 680        if (len <= mtd->oobsize) {
 681                omap_write_buf_pref(mtd, buf, len);
 682                return;
 683        }
 684
 685        info->iomode = OMAP_NAND_IO_WRITE;
 686        info->buf = (u_char *) buf;
 687        init_completion(&info->comp);
 688
 689        /* configure and start prefetch transfer : size=24 */
 690        ret = omap_prefetch_enable(info->gpmc_cs,
 691                (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
 692        if (ret)
 693                /* PFPW engine is busy, use cpu copy method */
 694                goto out_copy;
 695
 696        info->buf_len = len;
 697
 698        enable_irq(info->gpmc_irq_count);
 699        enable_irq(info->gpmc_irq_fifo);
 700
 701        /* waiting for write to complete */
 702        wait_for_completion(&info->comp);
 703
 704        /* wait for data to flushed-out before reset the prefetch */
 705        tim = 0;
 706        limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 707        do {
 708                val = readl(info->reg.gpmc_prefetch_status);
 709                val = PREFETCH_STATUS_COUNT(val);
 710                cpu_relax();
 711        } while (val && (tim++ < limit));
 712
 713        /* disable and stop the PFPW engine */
 714        omap_prefetch_reset(info->gpmc_cs, info);
 715        return;
 716
 717out_copy:
 718        if (info->nand.options & NAND_BUSWIDTH_16)
 719                omap_write_buf16(mtd, buf, len);
 720        else
 721                omap_write_buf8(mtd, buf, len);
 722}
 723
 724/**
 725 * gen_true_ecc - This function will generate true ECC value
 726 * @ecc_buf: buffer to store ecc code
 727 *
 728 * This generated true ECC value can be used when correcting
 729 * data read from NAND flash memory core
 730 */
 731static void gen_true_ecc(u8 *ecc_buf)
 732{
 733        u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
 734                ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
 735
 736        ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
 737                        P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
 738        ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
 739                        P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
 740        ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
 741                        P1e(tmp) | P2048o(tmp) | P2048e(tmp));
 742}
 743
 744/**
 745 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 746 * @ecc_data1:  ecc code from nand spare area
 747 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 748 * @page_data:  page data
 749 *
 750 * This function compares two ECC's and indicates if there is an error.
 751 * If the error can be corrected it will be corrected to the buffer.
 752 * If there is no error, %0 is returned. If there is an error but it
 753 * was corrected, %1 is returned. Otherwise, %-1 is returned.
 754 */
 755static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
 756                            u8 *ecc_data2,      /* read from register */
 757                            u8 *page_data)
 758{
 759        uint    i;
 760        u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
 761        u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
 762        u8      ecc_bit[24];
 763        u8      ecc_sum = 0;
 764        u8      find_bit = 0;
 765        uint    find_byte = 0;
 766        int     isEccFF;
 767
 768        isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
 769
 770        gen_true_ecc(ecc_data1);
 771        gen_true_ecc(ecc_data2);
 772
 773        for (i = 0; i <= 2; i++) {
 774                *(ecc_data1 + i) = ~(*(ecc_data1 + i));
 775                *(ecc_data2 + i) = ~(*(ecc_data2 + i));
 776        }
 777
 778        for (i = 0; i < 8; i++) {
 779                tmp0_bit[i]     = *ecc_data1 % 2;
 780                *ecc_data1      = *ecc_data1 / 2;
 781        }
 782
 783        for (i = 0; i < 8; i++) {
 784                tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
 785                *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
 786        }
 787
 788        for (i = 0; i < 8; i++) {
 789                tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
 790                *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
 791        }
 792
 793        for (i = 0; i < 8; i++) {
 794                comp0_bit[i]     = *ecc_data2 % 2;
 795                *ecc_data2       = *ecc_data2 / 2;
 796        }
 797
 798        for (i = 0; i < 8; i++) {
 799                comp1_bit[i]     = *(ecc_data2 + 1) % 2;
 800                *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
 801        }
 802
 803        for (i = 0; i < 8; i++) {
 804                comp2_bit[i]     = *(ecc_data2 + 2) % 2;
 805                *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
 806        }
 807
 808        for (i = 0; i < 6; i++)
 809                ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
 810
 811        for (i = 0; i < 8; i++)
 812                ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
 813
 814        for (i = 0; i < 8; i++)
 815                ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
 816
 817        ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
 818        ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
 819
 820        for (i = 0; i < 24; i++)
 821                ecc_sum += ecc_bit[i];
 822
 823        switch (ecc_sum) {
 824        case 0:
 825                /* Not reached because this function is not called if
 826                 *  ECC values are equal
 827                 */
 828                return 0;
 829
 830        case 1:
 831                /* Uncorrectable error */
 832                pr_debug("ECC UNCORRECTED_ERROR 1\n");
 833                return -1;
 834
 835        case 11:
 836                /* UN-Correctable error */
 837                pr_debug("ECC UNCORRECTED_ERROR B\n");
 838                return -1;
 839
 840        case 12:
 841                /* Correctable error */
 842                find_byte = (ecc_bit[23] << 8) +
 843                            (ecc_bit[21] << 7) +
 844                            (ecc_bit[19] << 6) +
 845                            (ecc_bit[17] << 5) +
 846                            (ecc_bit[15] << 4) +
 847                            (ecc_bit[13] << 3) +
 848                            (ecc_bit[11] << 2) +
 849                            (ecc_bit[9]  << 1) +
 850                            ecc_bit[7];
 851
 852                find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
 853
 854                pr_debug("Correcting single bit ECC error at offset: "
 855                                "%d, bit: %d\n", find_byte, find_bit);
 856
 857                page_data[find_byte] ^= (1 << find_bit);
 858
 859                return 1;
 860        default:
 861                if (isEccFF) {
 862                        if (ecc_data2[0] == 0 &&
 863                            ecc_data2[1] == 0 &&
 864                            ecc_data2[2] == 0)
 865                                return 0;
 866                }
 867                pr_debug("UNCORRECTED_ERROR default\n");
 868                return -1;
 869        }
 870}
 871
 872/**
 873 * omap_correct_data - Compares the ECC read with HW generated ECC
 874 * @mtd: MTD device structure
 875 * @dat: page data
 876 * @read_ecc: ecc read from nand flash
 877 * @calc_ecc: ecc read from HW ECC registers
 878 *
 879 * Compares the ecc read from nand spare area with ECC registers values
 880 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 881 * detection and correction. If there are no errors, %0 is returned. If
 882 * there were errors and all of the errors were corrected, the number of
 883 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 884 * returned.
 885 */
 886static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
 887                                u_char *read_ecc, u_char *calc_ecc)
 888{
 889        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 890                                                        mtd);
 891        int blockCnt = 0, i = 0, ret = 0;
 892        int stat = 0;
 893
 894        /* Ex NAND_ECC_HW12_2048 */
 895        if ((info->nand.ecc.mode == NAND_ECC_HW) &&
 896                        (info->nand.ecc.size  == 2048))
 897                blockCnt = 4;
 898        else
 899                blockCnt = 1;
 900
 901        for (i = 0; i < blockCnt; i++) {
 902                if (memcmp(read_ecc, calc_ecc, 3) != 0) {
 903                        ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
 904                        if (ret < 0)
 905                                return ret;
 906                        /* keep track of the number of corrected errors */
 907                        stat += ret;
 908                }
 909                read_ecc += 3;
 910                calc_ecc += 3;
 911                dat      += 512;
 912        }
 913        return stat;
 914}
 915
 916/**
 917 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 918 * @mtd: MTD device structure
 919 * @dat: The pointer to data on which ecc is computed
 920 * @ecc_code: The ecc_code buffer
 921 *
 922 * Using noninverted ECC can be considered ugly since writing a blank
 923 * page ie. padding will clear the ECC bytes. This is no problem as long
 924 * nobody is trying to write data on the seemingly unused page. Reading
 925 * an erased page will produce an ECC mismatch between generated and read
 926 * ECC bytes that has to be dealt with separately.
 927 */
 928static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 929                                u_char *ecc_code)
 930{
 931        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 932                                                        mtd);
 933        u32 val;
 934
 935        val = readl(info->reg.gpmc_ecc_config);
 936        if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
 937                return -EINVAL;
 938
 939        /* read ecc result */
 940        val = readl(info->reg.gpmc_ecc1_result);
 941        *ecc_code++ = val;          /* P128e, ..., P1e */
 942        *ecc_code++ = val >> 16;    /* P128o, ..., P1o */
 943        /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
 944        *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
 945
 946        return 0;
 947}
 948
 949/**
 950 * omap_enable_hwecc - This function enables the hardware ecc functionality
 951 * @mtd: MTD device structure
 952 * @mode: Read/Write mode
 953 */
 954static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
 955{
 956        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 957                                                        mtd);
 958        struct nand_chip *chip = mtd->priv;
 959        unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 960        u32 val;
 961
 962        /* clear ecc and enable bits */
 963        val = ECCCLEAR | ECC1;
 964        writel(val, info->reg.gpmc_ecc_control);
 965
 966        /* program ecc and result sizes */
 967        val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
 968                         ECC1RESULTSIZE);
 969        writel(val, info->reg.gpmc_ecc_size_config);
 970
 971        switch (mode) {
 972        case NAND_ECC_READ:
 973        case NAND_ECC_WRITE:
 974                writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
 975                break;
 976        case NAND_ECC_READSYN:
 977                writel(ECCCLEAR, info->reg.gpmc_ecc_control);
 978                break;
 979        default:
 980                dev_info(&info->pdev->dev,
 981                        "error: unrecognized Mode[%d]!\n", mode);
 982                break;
 983        }
 984
 985        /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
 986        val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
 987        writel(val, info->reg.gpmc_ecc_config);
 988}
 989
 990/**
 991 * omap_wait - wait until the command is done
 992 * @mtd: MTD device structure
 993 * @chip: NAND Chip structure
 994 *
 995 * Wait function is called during Program and erase operations and
 996 * the way it is called from MTD layer, we should wait till the NAND
 997 * chip is ready after the programming/erase operation has completed.
 998 *
 999 * Erase can take up to 400ms and program up to 20ms according to
1000 * general NAND and SmartMedia specs
1001 */
1002static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
1003{
1004        struct nand_chip *this = mtd->priv;
1005        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1006                                                        mtd);
1007        unsigned long timeo = jiffies;
1008        int status, state = this->state;
1009
1010        if (state == FL_ERASING)
1011                timeo += msecs_to_jiffies(400);
1012        else
1013                timeo += msecs_to_jiffies(20);
1014
1015        writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1016        while (time_before(jiffies, timeo)) {
1017                status = readb(info->reg.gpmc_nand_data);
1018                if (status & NAND_STATUS_READY)
1019                        break;
1020                cond_resched();
1021        }
1022
1023        status = readb(info->reg.gpmc_nand_data);
1024        return status;
1025}
1026
1027/**
1028 * omap_dev_ready - calls the platform specific dev_ready function
1029 * @mtd: MTD device structure
1030 */
1031static int omap_dev_ready(struct mtd_info *mtd)
1032{
1033        unsigned int val = 0;
1034        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1035                                                        mtd);
1036
1037        val = readl(info->reg.gpmc_status);
1038
1039        if ((val & 0x100) == 0x100) {
1040                return 1;
1041        } else {
1042                return 0;
1043        }
1044}
1045
1046/**
1047 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1048 * @mtd: MTD device structure
1049 * @mode: Read/Write mode
1050 *
1051 * When using BCH with SW correction (i.e. no ELM), sector size is set
1052 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1053 * for both reading and writing with:
1054 * eccsize0 = 0  (no additional protected byte in spare area)
1055 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1056 */
1057static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1058{
1059        unsigned int bch_type;
1060        unsigned int dev_width, nsectors;
1061        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1062                                                   mtd);
1063        enum omap_ecc ecc_opt = info->ecc_opt;
1064        struct nand_chip *chip = mtd->priv;
1065        u32 val, wr_mode;
1066        unsigned int ecc_size1, ecc_size0;
1067
1068        /* GPMC configurations for calculating ECC */
1069        switch (ecc_opt) {
1070        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1071                bch_type = 0;
1072                nsectors = 1;
1073                wr_mode   = BCH_WRAPMODE_6;
1074                ecc_size0 = BCH_ECC_SIZE0;
1075                ecc_size1 = BCH_ECC_SIZE1;
1076                break;
1077        case OMAP_ECC_BCH4_CODE_HW:
1078                bch_type = 0;
1079                nsectors = chip->ecc.steps;
1080                if (mode == NAND_ECC_READ) {
1081                        wr_mode   = BCH_WRAPMODE_1;
1082                        ecc_size0 = BCH4R_ECC_SIZE0;
1083                        ecc_size1 = BCH4R_ECC_SIZE1;
1084                } else {
1085                        wr_mode   = BCH_WRAPMODE_6;
1086                        ecc_size0 = BCH_ECC_SIZE0;
1087                        ecc_size1 = BCH_ECC_SIZE1;
1088                }
1089                break;
1090        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1091                bch_type = 1;
1092                nsectors = 1;
1093                wr_mode   = BCH_WRAPMODE_6;
1094                ecc_size0 = BCH_ECC_SIZE0;
1095                ecc_size1 = BCH_ECC_SIZE1;
1096                break;
1097        case OMAP_ECC_BCH8_CODE_HW:
1098                bch_type = 1;
1099                nsectors = chip->ecc.steps;
1100                if (mode == NAND_ECC_READ) {
1101                        wr_mode   = BCH_WRAPMODE_1;
1102                        ecc_size0 = BCH8R_ECC_SIZE0;
1103                        ecc_size1 = BCH8R_ECC_SIZE1;
1104                } else {
1105                        wr_mode   = BCH_WRAPMODE_6;
1106                        ecc_size0 = BCH_ECC_SIZE0;
1107                        ecc_size1 = BCH_ECC_SIZE1;
1108                }
1109                break;
1110        case OMAP_ECC_BCH16_CODE_HW:
1111                bch_type = 0x2;
1112                nsectors = chip->ecc.steps;
1113                if (mode == NAND_ECC_READ) {
1114                        wr_mode   = 0x01;
1115                        ecc_size0 = 52; /* ECC bits in nibbles per sector */
1116                        ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
1117                } else {
1118                        wr_mode   = 0x01;
1119                        ecc_size0 = 0;  /* extra bits in nibbles per sector */
1120                        ecc_size1 = 52; /* OOB bits in nibbles per sector */
1121                }
1122                break;
1123        default:
1124                return;
1125        }
1126
1127        writel(ECC1, info->reg.gpmc_ecc_control);
1128
1129        /* Configure ecc size for BCH */
1130        val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1131        writel(val, info->reg.gpmc_ecc_size_config);
1132
1133        dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1134
1135        /* BCH configuration */
1136        val = ((1                        << 16) | /* enable BCH */
1137               (bch_type                 << 12) | /* BCH4/BCH8/BCH16 */
1138               (wr_mode                  <<  8) | /* wrap mode */
1139               (dev_width                <<  7) | /* bus width */
1140               (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
1141               (info->gpmc_cs            <<  1) | /* ECC CS */
1142               (0x1));                            /* enable ECC */
1143
1144        writel(val, info->reg.gpmc_ecc_config);
1145
1146        /* Clear ecc and enable bits */
1147        writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1148}
1149
1150static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1151static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1152                                0x97, 0x79, 0xe5, 0x24, 0xb5};
1153
1154/**
1155 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1156 * @mtd:        MTD device structure
1157 * @dat:        The pointer to data on which ecc is computed
1158 * @ecc_code:   The ecc_code buffer
1159 *
1160 * Support calculating of BCH4/8 ecc vectors for the page
1161 */
1162static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
1163                                        const u_char *dat, u_char *ecc_calc)
1164{
1165        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1166                                                   mtd);
1167        int eccbytes    = info->nand.ecc.bytes;
1168        struct gpmc_nand_regs   *gpmc_regs = &info->reg;
1169        u8 *ecc_code;
1170        unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1171        u32 val;
1172        int i, j;
1173
1174        nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1175        for (i = 0; i < nsectors; i++) {
1176                ecc_code = ecc_calc;
1177                switch (info->ecc_opt) {
1178                case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1179                case OMAP_ECC_BCH8_CODE_HW:
1180                        bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1181                        bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1182                        bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1183                        bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1184                        *ecc_code++ = (bch_val4 & 0xFF);
1185                        *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1186                        *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1187                        *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1188                        *ecc_code++ = (bch_val3 & 0xFF);
1189                        *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1190                        *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1191                        *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1192                        *ecc_code++ = (bch_val2 & 0xFF);
1193                        *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1194                        *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1195                        *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1196                        *ecc_code++ = (bch_val1 & 0xFF);
1197                        break;
1198                case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1199                case OMAP_ECC_BCH4_CODE_HW:
1200                        bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1201                        bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1202                        *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1203                        *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1204                        *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1205                                ((bch_val1 >> 28) & 0xF);
1206                        *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1207                        *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1208                        *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1209                        *ecc_code++ = ((bch_val1 & 0xF) << 4);
1210                        break;
1211                case OMAP_ECC_BCH16_CODE_HW:
1212                        val = readl(gpmc_regs->gpmc_bch_result6[i]);
1213                        ecc_code[0]  = ((val >>  8) & 0xFF);
1214                        ecc_code[1]  = ((val >>  0) & 0xFF);
1215                        val = readl(gpmc_regs->gpmc_bch_result5[i]);
1216                        ecc_code[2]  = ((val >> 24) & 0xFF);
1217                        ecc_code[3]  = ((val >> 16) & 0xFF);
1218                        ecc_code[4]  = ((val >>  8) & 0xFF);
1219                        ecc_code[5]  = ((val >>  0) & 0xFF);
1220                        val = readl(gpmc_regs->gpmc_bch_result4[i]);
1221                        ecc_code[6]  = ((val >> 24) & 0xFF);
1222                        ecc_code[7]  = ((val >> 16) & 0xFF);
1223                        ecc_code[8]  = ((val >>  8) & 0xFF);
1224                        ecc_code[9]  = ((val >>  0) & 0xFF);
1225                        val = readl(gpmc_regs->gpmc_bch_result3[i]);
1226                        ecc_code[10] = ((val >> 24) & 0xFF);
1227                        ecc_code[11] = ((val >> 16) & 0xFF);
1228                        ecc_code[12] = ((val >>  8) & 0xFF);
1229                        ecc_code[13] = ((val >>  0) & 0xFF);
1230                        val = readl(gpmc_regs->gpmc_bch_result2[i]);
1231                        ecc_code[14] = ((val >> 24) & 0xFF);
1232                        ecc_code[15] = ((val >> 16) & 0xFF);
1233                        ecc_code[16] = ((val >>  8) & 0xFF);
1234                        ecc_code[17] = ((val >>  0) & 0xFF);
1235                        val = readl(gpmc_regs->gpmc_bch_result1[i]);
1236                        ecc_code[18] = ((val >> 24) & 0xFF);
1237                        ecc_code[19] = ((val >> 16) & 0xFF);
1238                        ecc_code[20] = ((val >>  8) & 0xFF);
1239                        ecc_code[21] = ((val >>  0) & 0xFF);
1240                        val = readl(gpmc_regs->gpmc_bch_result0[i]);
1241                        ecc_code[22] = ((val >> 24) & 0xFF);
1242                        ecc_code[23] = ((val >> 16) & 0xFF);
1243                        ecc_code[24] = ((val >>  8) & 0xFF);
1244                        ecc_code[25] = ((val >>  0) & 0xFF);
1245                        break;
1246                default:
1247                        return -EINVAL;
1248                }
1249
1250                /* ECC scheme specific syndrome customizations */
1251                switch (info->ecc_opt) {
1252                case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1253                        /* Add constant polynomial to remainder, so that
1254                         * ECC of blank pages results in 0x0 on reading back */
1255                        for (j = 0; j < eccbytes; j++)
1256                                ecc_calc[j] ^= bch4_polynomial[j];
1257                        break;
1258                case OMAP_ECC_BCH4_CODE_HW:
1259                        /* Set  8th ECC byte as 0x0 for ROM compatibility */
1260                        ecc_calc[eccbytes - 1] = 0x0;
1261                        break;
1262                case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1263                        /* Add constant polynomial to remainder, so that
1264                         * ECC of blank pages results in 0x0 on reading back */
1265                        for (j = 0; j < eccbytes; j++)
1266                                ecc_calc[j] ^= bch8_polynomial[j];
1267                        break;
1268                case OMAP_ECC_BCH8_CODE_HW:
1269                        /* Set 14th ECC byte as 0x0 for ROM compatibility */
1270                        ecc_calc[eccbytes - 1] = 0x0;
1271                        break;
1272                case OMAP_ECC_BCH16_CODE_HW:
1273                        break;
1274                default:
1275                        return -EINVAL;
1276                }
1277
1278        ecc_calc += eccbytes;
1279        }
1280
1281        return 0;
1282}
1283
1284/**
1285 * erased_sector_bitflips - count bit flips
1286 * @data:       data sector buffer
1287 * @oob:        oob buffer
1288 * @info:       omap_nand_info
1289 *
1290 * Check the bit flips in erased page falls below correctable level.
1291 * If falls below, report the page as erased with correctable bit
1292 * flip, else report as uncorrectable page.
1293 */
1294static int erased_sector_bitflips(u_char *data, u_char *oob,
1295                struct omap_nand_info *info)
1296{
1297        int flip_bits = 0, i;
1298
1299        for (i = 0; i < info->nand.ecc.size; i++) {
1300                flip_bits += hweight8(~data[i]);
1301                if (flip_bits > info->nand.ecc.strength)
1302                        return 0;
1303        }
1304
1305        for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1306                flip_bits += hweight8(~oob[i]);
1307                if (flip_bits > info->nand.ecc.strength)
1308                        return 0;
1309        }
1310
1311        /*
1312         * Bit flips falls in correctable level.
1313         * Fill data area with 0xFF
1314         */
1315        if (flip_bits) {
1316                memset(data, 0xFF, info->nand.ecc.size);
1317                memset(oob, 0xFF, info->nand.ecc.bytes);
1318        }
1319
1320        return flip_bits;
1321}
1322
1323/**
1324 * omap_elm_correct_data - corrects page data area in case error reported
1325 * @mtd:        MTD device structure
1326 * @data:       page data
1327 * @read_ecc:   ecc read from nand flash
1328 * @calc_ecc:   ecc read from HW ECC registers
1329 *
1330 * Calculated ecc vector reported as zero in case of non-error pages.
1331 * In case of non-zero ecc vector, first filter out erased-pages, and
1332 * then process data via ELM to detect bit-flips.
1333 */
1334static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1335                                u_char *read_ecc, u_char *calc_ecc)
1336{
1337        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1338                        mtd);
1339        struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1340        int eccsteps = info->nand.ecc.steps;
1341        int i , j, stat = 0;
1342        int eccflag, actual_eccbytes;
1343        struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1344        u_char *ecc_vec = calc_ecc;
1345        u_char *spare_ecc = read_ecc;
1346        u_char *erased_ecc_vec;
1347        u_char *buf;
1348        int bitflip_count;
1349        bool is_error_reported = false;
1350        u32 bit_pos, byte_pos, error_max, pos;
1351        int err;
1352
1353        switch (info->ecc_opt) {
1354        case OMAP_ECC_BCH4_CODE_HW:
1355                /* omit  7th ECC byte reserved for ROM code compatibility */
1356                actual_eccbytes = ecc->bytes - 1;
1357                erased_ecc_vec = bch4_vector;
1358                break;
1359        case OMAP_ECC_BCH8_CODE_HW:
1360                /* omit 14th ECC byte reserved for ROM code compatibility */
1361                actual_eccbytes = ecc->bytes - 1;
1362                erased_ecc_vec = bch8_vector;
1363                break;
1364        case OMAP_ECC_BCH16_CODE_HW:
1365                actual_eccbytes = ecc->bytes;
1366                erased_ecc_vec = bch16_vector;
1367                break;
1368        default:
1369                dev_err(&info->pdev->dev, "invalid driver configuration\n");
1370                return -EINVAL;
1371        }
1372
1373        /* Initialize elm error vector to zero */
1374        memset(err_vec, 0, sizeof(err_vec));
1375
1376        for (i = 0; i < eccsteps ; i++) {
1377                eccflag = 0;    /* initialize eccflag */
1378
1379                /*
1380                 * Check any error reported,
1381                 * In case of error, non zero ecc reported.
1382                 */
1383                for (j = 0; j < actual_eccbytes; j++) {
1384                        if (calc_ecc[j] != 0) {
1385                                eccflag = 1; /* non zero ecc, error present */
1386                                break;
1387                        }
1388                }
1389
1390                if (eccflag == 1) {
1391                        if (memcmp(calc_ecc, erased_ecc_vec,
1392                                                actual_eccbytes) == 0) {
1393                                /*
1394                                 * calc_ecc[] matches pattern for ECC(all 0xff)
1395                                 * so this is definitely an erased-page
1396                                 */
1397                        } else {
1398                                buf = &data[info->nand.ecc.size * i];
1399                                /*
1400                                 * count number of 0-bits in read_buf.
1401                                 * This check can be removed once a similar
1402                                 * check is introduced in generic NAND driver
1403                                 */
1404                                bitflip_count = erased_sector_bitflips(
1405                                                buf, read_ecc, info);
1406                                if (bitflip_count) {
1407                                        /*
1408                                         * number of 0-bits within ECC limits
1409                                         * So this may be an erased-page
1410                                         */
1411                                        stat += bitflip_count;
1412                                } else {
1413                                        /*
1414                                         * Too many 0-bits. It may be a
1415                                         * - programmed-page, OR
1416                                         * - erased-page with many bit-flips
1417                                         * So this page requires check by ELM
1418                                         */
1419                                        err_vec[i].error_reported = true;
1420                                        is_error_reported = true;
1421                                }
1422                        }
1423                }
1424
1425                /* Update the ecc vector */
1426                calc_ecc += ecc->bytes;
1427                read_ecc += ecc->bytes;
1428        }
1429
1430        /* Check if any error reported */
1431        if (!is_error_reported)
1432                return stat;
1433
1434        /* Decode BCH error using ELM module */
1435        elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1436
1437        err = 0;
1438        for (i = 0; i < eccsteps; i++) {
1439                if (err_vec[i].error_uncorrectable) {
1440                        dev_err(&info->pdev->dev,
1441                                "uncorrectable bit-flips found\n");
1442                        err = -EBADMSG;
1443                } else if (err_vec[i].error_reported) {
1444                        for (j = 0; j < err_vec[i].error_count; j++) {
1445                                switch (info->ecc_opt) {
1446                                case OMAP_ECC_BCH4_CODE_HW:
1447                                        /* Add 4 bits to take care of padding */
1448                                        pos = err_vec[i].error_loc[j] +
1449                                                BCH4_BIT_PAD;
1450                                        break;
1451                                case OMAP_ECC_BCH8_CODE_HW:
1452                                case OMAP_ECC_BCH16_CODE_HW:
1453                                        pos = err_vec[i].error_loc[j];
1454                                        break;
1455                                default:
1456                                        return -EINVAL;
1457                                }
1458                                error_max = (ecc->size + actual_eccbytes) * 8;
1459                                /* Calculate bit position of error */
1460                                bit_pos = pos % 8;
1461
1462                                /* Calculate byte position of error */
1463                                byte_pos = (error_max - pos - 1) / 8;
1464
1465                                if (pos < error_max) {
1466                                        if (byte_pos < 512) {
1467                                                pr_debug("bitflip@dat[%d]=%x\n",
1468                                                     byte_pos, data[byte_pos]);
1469                                                data[byte_pos] ^= 1 << bit_pos;
1470                                        } else {
1471                                                pr_debug("bitflip@oob[%d]=%x\n",
1472                                                        (byte_pos - 512),
1473                                                     spare_ecc[byte_pos - 512]);
1474                                                spare_ecc[byte_pos - 512] ^=
1475                                                        1 << bit_pos;
1476                                        }
1477                                } else {
1478                                        dev_err(&info->pdev->dev,
1479                                                "invalid bit-flip @ %d:%d\n",
1480                                                byte_pos, bit_pos);
1481                                        err = -EBADMSG;
1482                                }
1483                        }
1484                }
1485
1486                /* Update number of correctable errors */
1487                stat += err_vec[i].error_count;
1488
1489                /* Update page data with sector size */
1490                data += ecc->size;
1491                spare_ecc += ecc->bytes;
1492        }
1493
1494        return (err) ? err : stat;
1495}
1496
1497/**
1498 * omap_write_page_bch - BCH ecc based write page function for entire page
1499 * @mtd:                mtd info structure
1500 * @chip:               nand chip info structure
1501 * @buf:                data buffer
1502 * @oob_required:       must write chip->oob_poi to OOB
1503 *
1504 * Custom write page method evolved to support multi sector writing in one shot
1505 */
1506static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1507                                  const uint8_t *buf, int oob_required)
1508{
1509        int i;
1510        uint8_t *ecc_calc = chip->buffers->ecccalc;
1511        uint32_t *eccpos = chip->ecc.layout->eccpos;
1512
1513        /* Enable GPMC ecc engine */
1514        chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1515
1516        /* Write data */
1517        chip->write_buf(mtd, buf, mtd->writesize);
1518
1519        /* Update ecc vector from GPMC result registers */
1520        chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1521
1522        for (i = 0; i < chip->ecc.total; i++)
1523                chip->oob_poi[eccpos[i]] = ecc_calc[i];
1524
1525        /* Write ecc vector to OOB area */
1526        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1527        return 0;
1528}
1529
1530/**
1531 * omap_read_page_bch - BCH ecc based page read function for entire page
1532 * @mtd:                mtd info structure
1533 * @chip:               nand chip info structure
1534 * @buf:                buffer to store read data
1535 * @oob_required:       caller requires OOB data read to chip->oob_poi
1536 * @page:               page number to read
1537 *
1538 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1539 * used for error correction.
1540 * Custom method evolved to support ELM error correction & multi sector
1541 * reading. On reading page data area is read along with OOB data with
1542 * ecc engine enabled. ecc vector updated after read of OOB data.
1543 * For non error pages ecc vector reported as zero.
1544 */
1545static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1546                                uint8_t *buf, int oob_required, int page)
1547{
1548        uint8_t *ecc_calc = chip->buffers->ecccalc;
1549        uint8_t *ecc_code = chip->buffers->ecccode;
1550        uint32_t *eccpos = chip->ecc.layout->eccpos;
1551        uint8_t *oob = &chip->oob_poi[eccpos[0]];
1552        uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
1553        int stat;
1554        unsigned int max_bitflips = 0;
1555
1556        /* Enable GPMC ecc engine */
1557        chip->ecc.hwctl(mtd, NAND_ECC_READ);
1558
1559        /* Read data */
1560        chip->read_buf(mtd, buf, mtd->writesize);
1561
1562        /* Read oob bytes */
1563        chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
1564        chip->read_buf(mtd, oob, chip->ecc.total);
1565
1566        /* Calculate ecc bytes */
1567        chip->ecc.calculate(mtd, buf, ecc_calc);
1568
1569        memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
1570
1571        stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1572
1573        if (stat < 0) {
1574                mtd->ecc_stats.failed++;
1575        } else {
1576                mtd->ecc_stats.corrected += stat;
1577                max_bitflips = max_t(unsigned int, max_bitflips, stat);
1578        }
1579
1580        return max_bitflips;
1581}
1582
1583/**
1584 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1585 * @omap_nand_info: NAND device structure containing platform data
1586 */
1587static bool is_elm_present(struct omap_nand_info *info,
1588                           struct device_node *elm_node)
1589{
1590        struct platform_device *pdev;
1591
1592        /* check whether elm-id is passed via DT */
1593        if (!elm_node) {
1594                dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1595                return false;
1596        }
1597        pdev = of_find_device_by_node(elm_node);
1598        /* check whether ELM device is registered */
1599        if (!pdev) {
1600                dev_err(&info->pdev->dev, "ELM device not found\n");
1601                return false;
1602        }
1603        /* ELM module available, now configure it */
1604        info->elm_dev = &pdev->dev;
1605        return true;
1606}
1607
1608static bool omap2_nand_ecc_check(struct omap_nand_info *info,
1609                                 struct omap_nand_platform_data *pdata)
1610{
1611        bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1612
1613        switch (info->ecc_opt) {
1614        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1615        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1616                ecc_needs_omap_bch = false;
1617                ecc_needs_bch = true;
1618                ecc_needs_elm = false;
1619                break;
1620        case OMAP_ECC_BCH4_CODE_HW:
1621        case OMAP_ECC_BCH8_CODE_HW:
1622        case OMAP_ECC_BCH16_CODE_HW:
1623                ecc_needs_omap_bch = true;
1624                ecc_needs_bch = false;
1625                ecc_needs_elm = true;
1626                break;
1627        default:
1628                ecc_needs_omap_bch = false;
1629                ecc_needs_bch = false;
1630                ecc_needs_elm = false;
1631                break;
1632        }
1633
1634        if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1635                dev_err(&info->pdev->dev,
1636                        "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1637                return false;
1638        }
1639        if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1640                dev_err(&info->pdev->dev,
1641                        "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1642                return false;
1643        }
1644        if (ecc_needs_elm && !is_elm_present(info, pdata->elm_of_node)) {
1645                dev_err(&info->pdev->dev, "ELM not available\n");
1646                return false;
1647        }
1648
1649        return true;
1650}
1651
1652static int omap_nand_probe(struct platform_device *pdev)
1653{
1654        struct omap_nand_info           *info;
1655        struct omap_nand_platform_data  *pdata;
1656        struct mtd_info                 *mtd;
1657        struct nand_chip                *nand_chip;
1658        struct nand_ecclayout           *ecclayout;
1659        int                             err;
1660        int                             i;
1661        dma_cap_mask_t                  mask;
1662        unsigned                        sig;
1663        unsigned                        oob_index;
1664        struct resource                 *res;
1665        struct mtd_part_parser_data     ppdata = {};
1666
1667        pdata = dev_get_platdata(&pdev->dev);
1668        if (pdata == NULL) {
1669                dev_err(&pdev->dev, "platform data missing\n");
1670                return -ENODEV;
1671        }
1672
1673        info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1674                                GFP_KERNEL);
1675        if (!info)
1676                return -ENOMEM;
1677
1678        platform_set_drvdata(pdev, info);
1679
1680        info->pdev              = pdev;
1681        info->gpmc_cs           = pdata->cs;
1682        info->reg               = pdata->reg;
1683        info->of_node           = pdata->of_node;
1684        info->ecc_opt           = pdata->ecc_opt;
1685        mtd                     = &info->mtd;
1686        mtd->priv               = &info->nand;
1687        mtd->name               = dev_name(&pdev->dev);
1688        mtd->owner              = THIS_MODULE;
1689        nand_chip               = &info->nand;
1690        nand_chip->ecc.priv     = NULL;
1691
1692        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1693        nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1694        if (IS_ERR(nand_chip->IO_ADDR_R))
1695                return PTR_ERR(nand_chip->IO_ADDR_R);
1696
1697        info->phys_base = res->start;
1698
1699        nand_chip->controller = &omap_gpmc_controller;
1700
1701        nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1702        nand_chip->cmd_ctrl  = omap_hwcontrol;
1703
1704        /*
1705         * If RDY/BSY line is connected to OMAP then use the omap ready
1706         * function and the generic nand_wait function which reads the status
1707         * register after monitoring the RDY/BSY line. Otherwise use a standard
1708         * chip delay which is slightly more than tR (AC Timing) of the NAND
1709         * device and read status register until you get a failure or success
1710         */
1711        if (pdata->dev_ready) {
1712                nand_chip->dev_ready = omap_dev_ready;
1713                nand_chip->chip_delay = 0;
1714        } else {
1715                nand_chip->waitfunc = omap_wait;
1716                nand_chip->chip_delay = 50;
1717        }
1718
1719        if (pdata->flash_bbt)
1720                nand_chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1721        else
1722                nand_chip->options |= NAND_SKIP_BBTSCAN;
1723
1724        /* scan NAND device connected to chip controller */
1725        nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
1726        if (nand_scan_ident(mtd, 1, NULL)) {
1727                dev_err(&info->pdev->dev, "scan failed, may be bus-width mismatch\n");
1728                err = -ENXIO;
1729                goto return_error;
1730        }
1731
1732        /* re-populate low-level callbacks based on xfer modes */
1733        switch (pdata->xfer_type) {
1734        case NAND_OMAP_PREFETCH_POLLED:
1735                nand_chip->read_buf   = omap_read_buf_pref;
1736                nand_chip->write_buf  = omap_write_buf_pref;
1737                break;
1738
1739        case NAND_OMAP_POLLED:
1740                /* Use nand_base defaults for {read,write}_buf */
1741                break;
1742
1743        case NAND_OMAP_PREFETCH_DMA:
1744                dma_cap_zero(mask);
1745                dma_cap_set(DMA_SLAVE, mask);
1746                sig = OMAP24XX_DMA_GPMC;
1747                info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1748                if (!info->dma) {
1749                        dev_err(&pdev->dev, "DMA engine request failed\n");
1750                        err = -ENXIO;
1751                        goto return_error;
1752                } else {
1753                        struct dma_slave_config cfg;
1754
1755                        memset(&cfg, 0, sizeof(cfg));
1756                        cfg.src_addr = info->phys_base;
1757                        cfg.dst_addr = info->phys_base;
1758                        cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1759                        cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1760                        cfg.src_maxburst = 16;
1761                        cfg.dst_maxburst = 16;
1762                        err = dmaengine_slave_config(info->dma, &cfg);
1763                        if (err) {
1764                                dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1765                                        err);
1766                                goto return_error;
1767                        }
1768                        nand_chip->read_buf   = omap_read_buf_dma_pref;
1769                        nand_chip->write_buf  = omap_write_buf_dma_pref;
1770                }
1771                break;
1772
1773        case NAND_OMAP_PREFETCH_IRQ:
1774                info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1775                if (info->gpmc_irq_fifo <= 0) {
1776                        dev_err(&pdev->dev, "error getting fifo irq\n");
1777                        err = -ENODEV;
1778                        goto return_error;
1779                }
1780                err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1781                                        omap_nand_irq, IRQF_SHARED,
1782                                        "gpmc-nand-fifo", info);
1783                if (err) {
1784                        dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1785                                                info->gpmc_irq_fifo, err);
1786                        info->gpmc_irq_fifo = 0;
1787                        goto return_error;
1788                }
1789
1790                info->gpmc_irq_count = platform_get_irq(pdev, 1);
1791                if (info->gpmc_irq_count <= 0) {
1792                        dev_err(&pdev->dev, "error getting count irq\n");
1793                        err = -ENODEV;
1794                        goto return_error;
1795                }
1796                err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1797                                        omap_nand_irq, IRQF_SHARED,
1798                                        "gpmc-nand-count", info);
1799                if (err) {
1800                        dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1801                                                info->gpmc_irq_count, err);
1802                        info->gpmc_irq_count = 0;
1803                        goto return_error;
1804                }
1805
1806                nand_chip->read_buf  = omap_read_buf_irq_pref;
1807                nand_chip->write_buf = omap_write_buf_irq_pref;
1808
1809                break;
1810
1811        default:
1812                dev_err(&pdev->dev,
1813                        "xfer_type(%d) not supported!\n", pdata->xfer_type);
1814                err = -EINVAL;
1815                goto return_error;
1816        }
1817
1818        if (!omap2_nand_ecc_check(info, pdata)) {
1819                err = -EINVAL;
1820                goto return_error;
1821        }
1822
1823        /* populate MTD interface based on ECC scheme */
1824        ecclayout               = &info->oobinfo;
1825        switch (info->ecc_opt) {
1826        case OMAP_ECC_HAM1_CODE_SW:
1827                nand_chip->ecc.mode = NAND_ECC_SOFT;
1828                break;
1829
1830        case OMAP_ECC_HAM1_CODE_HW:
1831                pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1832                nand_chip->ecc.mode             = NAND_ECC_HW;
1833                nand_chip->ecc.bytes            = 3;
1834                nand_chip->ecc.size             = 512;
1835                nand_chip->ecc.strength         = 1;
1836                nand_chip->ecc.calculate        = omap_calculate_ecc;
1837                nand_chip->ecc.hwctl            = omap_enable_hwecc;
1838                nand_chip->ecc.correct          = omap_correct_data;
1839                /* define ECC layout */
1840                ecclayout->eccbytes             = nand_chip->ecc.bytes *
1841                                                        (mtd->writesize /
1842                                                        nand_chip->ecc.size);
1843                if (nand_chip->options & NAND_BUSWIDTH_16)
1844                        oob_index               = BADBLOCK_MARKER_LENGTH;
1845                else
1846                        oob_index               = 1;
1847                for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1848                        ecclayout->eccpos[i]    = oob_index;
1849                /* no reserved-marker in ecclayout for this ecc-scheme */
1850                ecclayout->oobfree->offset      =
1851                                ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1852                break;
1853
1854        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1855                pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1856                nand_chip->ecc.mode             = NAND_ECC_HW;
1857                nand_chip->ecc.size             = 512;
1858                nand_chip->ecc.bytes            = 7;
1859                nand_chip->ecc.strength         = 4;
1860                nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1861                nand_chip->ecc.correct          = nand_bch_correct_data;
1862                nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1863                /* define ECC layout */
1864                ecclayout->eccbytes             = nand_chip->ecc.bytes *
1865                                                        (mtd->writesize /
1866                                                        nand_chip->ecc.size);
1867                oob_index                       = BADBLOCK_MARKER_LENGTH;
1868                for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1869                        ecclayout->eccpos[i] = oob_index;
1870                        if (((i + 1) % nand_chip->ecc.bytes) == 0)
1871                                oob_index++;
1872                }
1873                /* include reserved-marker in ecclayout->oobfree calculation */
1874                ecclayout->oobfree->offset      = 1 +
1875                                ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1876                /* software bch library is used for locating errors */
1877                nand_chip->ecc.priv             = nand_bch_init(mtd,
1878                                                        nand_chip->ecc.size,
1879                                                        nand_chip->ecc.bytes,
1880                                                        &ecclayout);
1881                if (!nand_chip->ecc.priv) {
1882                        dev_err(&info->pdev->dev, "unable to use BCH library\n");
1883                        err = -EINVAL;
1884                        goto return_error;
1885                }
1886                break;
1887
1888        case OMAP_ECC_BCH4_CODE_HW:
1889                pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1890                nand_chip->ecc.mode             = NAND_ECC_HW;
1891                nand_chip->ecc.size             = 512;
1892                /* 14th bit is kept reserved for ROM-code compatibility */
1893                nand_chip->ecc.bytes            = 7 + 1;
1894                nand_chip->ecc.strength         = 4;
1895                nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1896                nand_chip->ecc.correct          = omap_elm_correct_data;
1897                nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1898                nand_chip->ecc.read_page        = omap_read_page_bch;
1899                nand_chip->ecc.write_page       = omap_write_page_bch;
1900                /* define ECC layout */
1901                ecclayout->eccbytes             = nand_chip->ecc.bytes *
1902                                                        (mtd->writesize /
1903                                                        nand_chip->ecc.size);
1904                oob_index                       = BADBLOCK_MARKER_LENGTH;
1905                for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1906                        ecclayout->eccpos[i]    = oob_index;
1907                /* reserved marker already included in ecclayout->eccbytes */
1908                ecclayout->oobfree->offset      =
1909                                ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1910
1911                err = elm_config(info->elm_dev, BCH4_ECC,
1912                                 info->mtd.writesize / nand_chip->ecc.size,
1913                                 nand_chip->ecc.size, nand_chip->ecc.bytes);
1914                if (err < 0)
1915                        goto return_error;
1916                break;
1917
1918        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1919                pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1920                nand_chip->ecc.mode             = NAND_ECC_HW;
1921                nand_chip->ecc.size             = 512;
1922                nand_chip->ecc.bytes            = 13;
1923                nand_chip->ecc.strength         = 8;
1924                nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1925                nand_chip->ecc.correct          = nand_bch_correct_data;
1926                nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1927                /* define ECC layout */
1928                ecclayout->eccbytes             = nand_chip->ecc.bytes *
1929                                                        (mtd->writesize /
1930                                                        nand_chip->ecc.size);
1931                oob_index                       = BADBLOCK_MARKER_LENGTH;
1932                for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1933                        ecclayout->eccpos[i] = oob_index;
1934                        if (((i + 1) % nand_chip->ecc.bytes) == 0)
1935                                oob_index++;
1936                }
1937                /* include reserved-marker in ecclayout->oobfree calculation */
1938                ecclayout->oobfree->offset      = 1 +
1939                                ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1940                /* software bch library is used for locating errors */
1941                nand_chip->ecc.priv             = nand_bch_init(mtd,
1942                                                        nand_chip->ecc.size,
1943                                                        nand_chip->ecc.bytes,
1944                                                        &ecclayout);
1945                if (!nand_chip->ecc.priv) {
1946                        dev_err(&info->pdev->dev, "unable to use BCH library\n");
1947                        err = -EINVAL;
1948                        goto return_error;
1949                }
1950                break;
1951
1952        case OMAP_ECC_BCH8_CODE_HW:
1953                pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
1954                nand_chip->ecc.mode             = NAND_ECC_HW;
1955                nand_chip->ecc.size             = 512;
1956                /* 14th bit is kept reserved for ROM-code compatibility */
1957                nand_chip->ecc.bytes            = 13 + 1;
1958                nand_chip->ecc.strength         = 8;
1959                nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1960                nand_chip->ecc.correct          = omap_elm_correct_data;
1961                nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1962                nand_chip->ecc.read_page        = omap_read_page_bch;
1963                nand_chip->ecc.write_page       = omap_write_page_bch;
1964
1965                err = elm_config(info->elm_dev, BCH8_ECC,
1966                                 info->mtd.writesize / nand_chip->ecc.size,
1967                                 nand_chip->ecc.size, nand_chip->ecc.bytes);
1968                if (err < 0)
1969                        goto return_error;
1970
1971                /* define ECC layout */
1972                ecclayout->eccbytes             = nand_chip->ecc.bytes *
1973                                                        (mtd->writesize /
1974                                                        nand_chip->ecc.size);
1975                oob_index                       = BADBLOCK_MARKER_LENGTH;
1976                for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1977                        ecclayout->eccpos[i]    = oob_index;
1978                /* reserved marker already included in ecclayout->eccbytes */
1979                ecclayout->oobfree->offset      =
1980                                ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1981                break;
1982
1983        case OMAP_ECC_BCH16_CODE_HW:
1984                pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
1985                nand_chip->ecc.mode             = NAND_ECC_HW;
1986                nand_chip->ecc.size             = 512;
1987                nand_chip->ecc.bytes            = 26;
1988                nand_chip->ecc.strength         = 16;
1989                nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1990                nand_chip->ecc.correct          = omap_elm_correct_data;
1991                nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1992                nand_chip->ecc.read_page        = omap_read_page_bch;
1993                nand_chip->ecc.write_page       = omap_write_page_bch;
1994
1995                err = elm_config(info->elm_dev, BCH16_ECC,
1996                                 info->mtd.writesize / nand_chip->ecc.size,
1997                                 nand_chip->ecc.size, nand_chip->ecc.bytes);
1998                if (err < 0)
1999                        goto return_error;
2000
2001                /* define ECC layout */
2002                ecclayout->eccbytes             = nand_chip->ecc.bytes *
2003                                                        (mtd->writesize /
2004                                                        nand_chip->ecc.size);
2005                oob_index                       = BADBLOCK_MARKER_LENGTH;
2006                for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
2007                        ecclayout->eccpos[i]    = oob_index;
2008                /* reserved marker already included in ecclayout->eccbytes */
2009                ecclayout->oobfree->offset      =
2010                                ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
2011                break;
2012        default:
2013                dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
2014                err = -EINVAL;
2015                goto return_error;
2016        }
2017
2018        if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW)
2019                goto scan_tail;
2020
2021        /* all OOB bytes from oobfree->offset till end off OOB are free */
2022        ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
2023        /* check if NAND device's OOB is enough to store ECC signatures */
2024        if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
2025                dev_err(&info->pdev->dev,
2026                        "not enough OOB bytes required = %d, available=%d\n",
2027                        ecclayout->eccbytes, mtd->oobsize);
2028                err = -EINVAL;
2029                goto return_error;
2030        }
2031        nand_chip->ecc.layout = ecclayout;
2032
2033scan_tail:
2034        /* second phase scan */
2035        if (nand_scan_tail(mtd)) {
2036                err = -ENXIO;
2037                goto return_error;
2038        }
2039
2040        ppdata.of_node = pdata->of_node;
2041        mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts,
2042                                  pdata->nr_parts);
2043
2044        platform_set_drvdata(pdev, mtd);
2045
2046        return 0;
2047
2048return_error:
2049        if (info->dma)
2050                dma_release_channel(info->dma);
2051        if (nand_chip->ecc.priv) {
2052                nand_bch_free(nand_chip->ecc.priv);
2053                nand_chip->ecc.priv = NULL;
2054        }
2055        return err;
2056}
2057
2058static int omap_nand_remove(struct platform_device *pdev)
2059{
2060        struct mtd_info *mtd = platform_get_drvdata(pdev);
2061        struct nand_chip *nand_chip = mtd->priv;
2062        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
2063                                                        mtd);
2064        if (nand_chip->ecc.priv) {
2065                nand_bch_free(nand_chip->ecc.priv);
2066                nand_chip->ecc.priv = NULL;
2067        }
2068        if (info->dma)
2069                dma_release_channel(info->dma);
2070        nand_release(mtd);
2071        return 0;
2072}
2073
2074static struct platform_driver omap_nand_driver = {
2075        .probe          = omap_nand_probe,
2076        .remove         = omap_nand_remove,
2077        .driver         = {
2078                .name   = DRIVER_NAME,
2079        },
2080};
2081
2082module_platform_driver(omap_nand_driver);
2083
2084MODULE_ALIAS("platform:" DRIVER_NAME);
2085MODULE_LICENSE("GPL");
2086MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
2087