linux/drivers/net/can/c_can/c_can.c
<<
>>
Prefs
   1/*
   2 * CAN bus driver for Bosch C_CAN controller
   3 *
   4 * Copyright (C) 2010 ST Microelectronics
   5 * Bhupesh Sharma <bhupesh.sharma@st.com>
   6 *
   7 * Borrowed heavily from the C_CAN driver originally written by:
   8 * Copyright (C) 2007
   9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
  10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
  11 *
  12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
  13 * written by:
  14 * Copyright
  15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
  16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
  17 *
  18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
  19 * Bosch C_CAN user manual can be obtained from:
  20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
  21 * users_manual_c_can.pdf
  22 *
  23 * This file is licensed under the terms of the GNU General Public
  24 * License version 2. This program is licensed "as is" without any
  25 * warranty of any kind, whether express or implied.
  26 */
  27
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/interrupt.h>
  31#include <linux/delay.h>
  32#include <linux/netdevice.h>
  33#include <linux/if_arp.h>
  34#include <linux/if_ether.h>
  35#include <linux/list.h>
  36#include <linux/io.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/pinctrl/consumer.h>
  39
  40#include <linux/can.h>
  41#include <linux/can/dev.h>
  42#include <linux/can/error.h>
  43#include <linux/can/led.h>
  44
  45#include "c_can.h"
  46
  47/* Number of interface registers */
  48#define IF_ENUM_REG_LEN         11
  49#define C_CAN_IFACE(reg, iface) (C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
  50
  51/* control extension register D_CAN specific */
  52#define CONTROL_EX_PDR          BIT(8)
  53
  54/* control register */
  55#define CONTROL_TEST            BIT(7)
  56#define CONTROL_CCE             BIT(6)
  57#define CONTROL_DISABLE_AR      BIT(5)
  58#define CONTROL_ENABLE_AR       (0 << 5)
  59#define CONTROL_EIE             BIT(3)
  60#define CONTROL_SIE             BIT(2)
  61#define CONTROL_IE              BIT(1)
  62#define CONTROL_INIT            BIT(0)
  63
  64#define CONTROL_IRQMSK          (CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
  65
  66/* test register */
  67#define TEST_RX                 BIT(7)
  68#define TEST_TX1                BIT(6)
  69#define TEST_TX2                BIT(5)
  70#define TEST_LBACK              BIT(4)
  71#define TEST_SILENT             BIT(3)
  72#define TEST_BASIC              BIT(2)
  73
  74/* status register */
  75#define STATUS_PDA              BIT(10)
  76#define STATUS_BOFF             BIT(7)
  77#define STATUS_EWARN            BIT(6)
  78#define STATUS_EPASS            BIT(5)
  79#define STATUS_RXOK             BIT(4)
  80#define STATUS_TXOK             BIT(3)
  81
  82/* error counter register */
  83#define ERR_CNT_TEC_MASK        0xff
  84#define ERR_CNT_TEC_SHIFT       0
  85#define ERR_CNT_REC_SHIFT       8
  86#define ERR_CNT_REC_MASK        (0x7f << ERR_CNT_REC_SHIFT)
  87#define ERR_CNT_RP_SHIFT        15
  88#define ERR_CNT_RP_MASK         (0x1 << ERR_CNT_RP_SHIFT)
  89
  90/* bit-timing register */
  91#define BTR_BRP_MASK            0x3f
  92#define BTR_BRP_SHIFT           0
  93#define BTR_SJW_SHIFT           6
  94#define BTR_SJW_MASK            (0x3 << BTR_SJW_SHIFT)
  95#define BTR_TSEG1_SHIFT         8
  96#define BTR_TSEG1_MASK          (0xf << BTR_TSEG1_SHIFT)
  97#define BTR_TSEG2_SHIFT         12
  98#define BTR_TSEG2_MASK          (0x7 << BTR_TSEG2_SHIFT)
  99
 100/* brp extension register */
 101#define BRP_EXT_BRPE_MASK       0x0f
 102#define BRP_EXT_BRPE_SHIFT      0
 103
 104/* IFx command request */
 105#define IF_COMR_BUSY            BIT(15)
 106
 107/* IFx command mask */
 108#define IF_COMM_WR              BIT(7)
 109#define IF_COMM_MASK            BIT(6)
 110#define IF_COMM_ARB             BIT(5)
 111#define IF_COMM_CONTROL         BIT(4)
 112#define IF_COMM_CLR_INT_PND     BIT(3)
 113#define IF_COMM_TXRQST          BIT(2)
 114#define IF_COMM_CLR_NEWDAT      IF_COMM_TXRQST
 115#define IF_COMM_DATAA           BIT(1)
 116#define IF_COMM_DATAB           BIT(0)
 117
 118/* TX buffer setup */
 119#define IF_COMM_TX              (IF_COMM_ARB | IF_COMM_CONTROL | \
 120                                 IF_COMM_TXRQST |                \
 121                                 IF_COMM_DATAA | IF_COMM_DATAB)
 122
 123/* For the low buffers we clear the interrupt bit, but keep newdat */
 124#define IF_COMM_RCV_LOW         (IF_COMM_MASK | IF_COMM_ARB | \
 125                                 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
 126                                 IF_COMM_DATAA | IF_COMM_DATAB)
 127
 128/* For the high buffers we clear the interrupt bit and newdat */
 129#define IF_COMM_RCV_HIGH        (IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
 130
 131
 132/* Receive setup of message objects */
 133#define IF_COMM_RCV_SETUP       (IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
 134
 135/* Invalidation of message objects */
 136#define IF_COMM_INVAL           (IF_COMM_ARB | IF_COMM_CONTROL)
 137
 138/* IFx arbitration */
 139#define IF_ARB_MSGVAL           BIT(31)
 140#define IF_ARB_MSGXTD           BIT(30)
 141#define IF_ARB_TRANSMIT         BIT(29)
 142
 143/* IFx message control */
 144#define IF_MCONT_NEWDAT         BIT(15)
 145#define IF_MCONT_MSGLST         BIT(14)
 146#define IF_MCONT_INTPND         BIT(13)
 147#define IF_MCONT_UMASK          BIT(12)
 148#define IF_MCONT_TXIE           BIT(11)
 149#define IF_MCONT_RXIE           BIT(10)
 150#define IF_MCONT_RMTEN          BIT(9)
 151#define IF_MCONT_TXRQST         BIT(8)
 152#define IF_MCONT_EOB            BIT(7)
 153#define IF_MCONT_DLC_MASK       0xf
 154
 155#define IF_MCONT_RCV            (IF_MCONT_RXIE | IF_MCONT_UMASK)
 156#define IF_MCONT_RCV_EOB        (IF_MCONT_RCV | IF_MCONT_EOB)
 157
 158#define IF_MCONT_TX             (IF_MCONT_TXIE | IF_MCONT_EOB)
 159
 160/*
 161 * Use IF1 for RX and IF2 for TX
 162 */
 163#define IF_RX                   0
 164#define IF_TX                   1
 165
 166/* minimum timeout for checking BUSY status */
 167#define MIN_TIMEOUT_VALUE       6
 168
 169/* Wait for ~1 sec for INIT bit */
 170#define INIT_WAIT_MS            1000
 171
 172/* napi related */
 173#define C_CAN_NAPI_WEIGHT       C_CAN_MSG_OBJ_RX_NUM
 174
 175/* c_can lec values */
 176enum c_can_lec_type {
 177        LEC_NO_ERROR = 0,
 178        LEC_STUFF_ERROR,
 179        LEC_FORM_ERROR,
 180        LEC_ACK_ERROR,
 181        LEC_BIT1_ERROR,
 182        LEC_BIT0_ERROR,
 183        LEC_CRC_ERROR,
 184        LEC_UNUSED,
 185        LEC_MASK = LEC_UNUSED,
 186};
 187
 188/*
 189 * c_can error types:
 190 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
 191 */
 192enum c_can_bus_error_types {
 193        C_CAN_NO_ERROR = 0,
 194        C_CAN_BUS_OFF,
 195        C_CAN_ERROR_WARNING,
 196        C_CAN_ERROR_PASSIVE,
 197};
 198
 199static const struct can_bittiming_const c_can_bittiming_const = {
 200        .name = KBUILD_MODNAME,
 201        .tseg1_min = 2,         /* Time segment 1 = prop_seg + phase_seg1 */
 202        .tseg1_max = 16,
 203        .tseg2_min = 1,         /* Time segment 2 = phase_seg2 */
 204        .tseg2_max = 8,
 205        .sjw_max = 4,
 206        .brp_min = 1,
 207        .brp_max = 1024,        /* 6-bit BRP field + 4-bit BRPE field*/
 208        .brp_inc = 1,
 209};
 210
 211static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
 212{
 213        if (priv->device)
 214                pm_runtime_enable(priv->device);
 215}
 216
 217static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
 218{
 219        if (priv->device)
 220                pm_runtime_disable(priv->device);
 221}
 222
 223static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
 224{
 225        if (priv->device)
 226                pm_runtime_get_sync(priv->device);
 227}
 228
 229static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
 230{
 231        if (priv->device)
 232                pm_runtime_put_sync(priv->device);
 233}
 234
 235static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
 236{
 237        if (priv->raminit)
 238                priv->raminit(priv, enable);
 239}
 240
 241static void c_can_irq_control(struct c_can_priv *priv, bool enable)
 242{
 243        u32 ctrl = priv->read_reg(priv, C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
 244
 245        if (enable)
 246                ctrl |= CONTROL_IRQMSK;
 247
 248        priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
 249}
 250
 251static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
 252{
 253        struct c_can_priv *priv = netdev_priv(dev);
 254        int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
 255
 256        priv->write_reg32(priv, reg, (cmd << 16) | obj);
 257
 258        for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
 259                if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
 260                        return;
 261                udelay(1);
 262        }
 263        netdev_err(dev, "Updating object timed out\n");
 264
 265}
 266
 267static inline void c_can_object_get(struct net_device *dev, int iface,
 268                                    u32 obj, u32 cmd)
 269{
 270        c_can_obj_update(dev, iface, cmd, obj);
 271}
 272
 273static inline void c_can_object_put(struct net_device *dev, int iface,
 274                                    u32 obj, u32 cmd)
 275{
 276        c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
 277}
 278
 279/*
 280 * Note: According to documentation clearing TXIE while MSGVAL is set
 281 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
 282 * load significantly.
 283 */
 284static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
 285{
 286        struct c_can_priv *priv = netdev_priv(dev);
 287
 288        priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
 289        c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
 290}
 291
 292static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
 293{
 294        struct c_can_priv *priv = netdev_priv(dev);
 295
 296        priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
 297        priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
 298        c_can_inval_tx_object(dev, iface, obj);
 299}
 300
 301static void c_can_setup_tx_object(struct net_device *dev, int iface,
 302                                  struct can_frame *frame, int idx)
 303{
 304        struct c_can_priv *priv = netdev_priv(dev);
 305        u16 ctrl = IF_MCONT_TX | frame->can_dlc;
 306        bool rtr = frame->can_id & CAN_RTR_FLAG;
 307        u32 arb = IF_ARB_MSGVAL;
 308        int i;
 309
 310        if (frame->can_id & CAN_EFF_FLAG) {
 311                arb |= frame->can_id & CAN_EFF_MASK;
 312                arb |= IF_ARB_MSGXTD;
 313        } else {
 314                arb |= (frame->can_id & CAN_SFF_MASK) << 18;
 315        }
 316
 317        if (!rtr)
 318                arb |= IF_ARB_TRANSMIT;
 319
 320        /*
 321         * If we change the DIR bit, we need to invalidate the buffer
 322         * first, i.e. clear the MSGVAL flag in the arbiter.
 323         */
 324        if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
 325                u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 326
 327                c_can_inval_msg_object(dev, iface, obj);
 328                change_bit(idx, &priv->tx_dir);
 329        }
 330
 331        priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
 332
 333        priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
 334
 335        for (i = 0; i < frame->can_dlc; i += 2) {
 336                priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
 337                                frame->data[i] | (frame->data[i + 1] << 8));
 338        }
 339}
 340
 341static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
 342                                                       int iface)
 343{
 344        int i;
 345
 346        for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
 347                c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
 348}
 349
 350static int c_can_handle_lost_msg_obj(struct net_device *dev,
 351                                     int iface, int objno, u32 ctrl)
 352{
 353        struct net_device_stats *stats = &dev->stats;
 354        struct c_can_priv *priv = netdev_priv(dev);
 355        struct can_frame *frame;
 356        struct sk_buff *skb;
 357
 358        ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
 359        priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
 360        c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
 361
 362        stats->rx_errors++;
 363        stats->rx_over_errors++;
 364
 365        /* create an error msg */
 366        skb = alloc_can_err_skb(dev, &frame);
 367        if (unlikely(!skb))
 368                return 0;
 369
 370        frame->can_id |= CAN_ERR_CRTL;
 371        frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
 372
 373        netif_receive_skb(skb);
 374        return 1;
 375}
 376
 377static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
 378{
 379        struct net_device_stats *stats = &dev->stats;
 380        struct c_can_priv *priv = netdev_priv(dev);
 381        struct can_frame *frame;
 382        struct sk_buff *skb;
 383        u32 arb, data;
 384
 385        skb = alloc_can_skb(dev, &frame);
 386        if (!skb) {
 387                stats->rx_dropped++;
 388                return -ENOMEM;
 389        }
 390
 391        frame->can_dlc = get_can_dlc(ctrl & 0x0F);
 392
 393        arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
 394
 395        if (arb & IF_ARB_MSGXTD)
 396                frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
 397        else
 398                frame->can_id = (arb >> 18) & CAN_SFF_MASK;
 399
 400        if (arb & IF_ARB_TRANSMIT) {
 401                frame->can_id |= CAN_RTR_FLAG;
 402        } else {
 403                int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
 404
 405                for (i = 0; i < frame->can_dlc; i += 2, dreg ++) {
 406                        data = priv->read_reg(priv, dreg);
 407                        frame->data[i] = data;
 408                        frame->data[i + 1] = data >> 8;
 409                }
 410        }
 411
 412        stats->rx_packets++;
 413        stats->rx_bytes += frame->can_dlc;
 414
 415        netif_receive_skb(skb);
 416        return 0;
 417}
 418
 419static void c_can_setup_receive_object(struct net_device *dev, int iface,
 420                                       u32 obj, u32 mask, u32 id, u32 mcont)
 421{
 422        struct c_can_priv *priv = netdev_priv(dev);
 423
 424        mask |= BIT(29);
 425        priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
 426
 427        id |= IF_ARB_MSGVAL;
 428        priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
 429
 430        priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
 431        c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
 432}
 433
 434static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
 435                                    struct net_device *dev)
 436{
 437        struct can_frame *frame = (struct can_frame *)skb->data;
 438        struct c_can_priv *priv = netdev_priv(dev);
 439        u32 idx, obj;
 440
 441        if (can_dropped_invalid_skb(dev, skb))
 442                return NETDEV_TX_OK;
 443        /*
 444         * This is not a FIFO. C/D_CAN sends out the buffers
 445         * prioritized. The lowest buffer number wins.
 446         */
 447        idx = fls(atomic_read(&priv->tx_active));
 448        obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 449
 450        /* If this is the last buffer, stop the xmit queue */
 451        if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
 452                netif_stop_queue(dev);
 453        /*
 454         * Store the message in the interface so we can call
 455         * can_put_echo_skb(). We must do this before we enable
 456         * transmit as we might race against do_tx().
 457         */
 458        c_can_setup_tx_object(dev, IF_TX, frame, idx);
 459        priv->dlc[idx] = frame->can_dlc;
 460        can_put_echo_skb(skb, dev, idx);
 461
 462        /* Update the active bits */
 463        atomic_add((1 << idx), &priv->tx_active);
 464        /* Start transmission */
 465        c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
 466
 467        return NETDEV_TX_OK;
 468}
 469
 470static int c_can_wait_for_ctrl_init(struct net_device *dev,
 471                                    struct c_can_priv *priv, u32 init)
 472{
 473        int retry = 0;
 474
 475        while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
 476                udelay(10);
 477                if (retry++ > 1000) {
 478                        netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
 479                        return -EIO;
 480                }
 481        }
 482        return 0;
 483}
 484
 485static int c_can_set_bittiming(struct net_device *dev)
 486{
 487        unsigned int reg_btr, reg_brpe, ctrl_save;
 488        u8 brp, brpe, sjw, tseg1, tseg2;
 489        u32 ten_bit_brp;
 490        struct c_can_priv *priv = netdev_priv(dev);
 491        const struct can_bittiming *bt = &priv->can.bittiming;
 492        int res;
 493
 494        /* c_can provides a 6-bit brp and 4-bit brpe fields */
 495        ten_bit_brp = bt->brp - 1;
 496        brp = ten_bit_brp & BTR_BRP_MASK;
 497        brpe = ten_bit_brp >> 6;
 498
 499        sjw = bt->sjw - 1;
 500        tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
 501        tseg2 = bt->phase_seg2 - 1;
 502        reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
 503                        (tseg2 << BTR_TSEG2_SHIFT);
 504        reg_brpe = brpe & BRP_EXT_BRPE_MASK;
 505
 506        netdev_info(dev,
 507                "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
 508
 509        ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
 510        ctrl_save &= ~CONTROL_INIT;
 511        priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
 512        res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
 513        if (res)
 514                return res;
 515
 516        priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
 517        priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
 518        priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
 519
 520        return c_can_wait_for_ctrl_init(dev, priv, 0);
 521}
 522
 523/*
 524 * Configure C_CAN message objects for Tx and Rx purposes:
 525 * C_CAN provides a total of 32 message objects that can be configured
 526 * either for Tx or Rx purposes. Here the first 16 message objects are used as
 527 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
 528 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
 529 * See user guide document for further details on configuring message
 530 * objects.
 531 */
 532static void c_can_configure_msg_objects(struct net_device *dev)
 533{
 534        int i;
 535
 536        /* first invalidate all message objects */
 537        for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
 538                c_can_inval_msg_object(dev, IF_RX, i);
 539
 540        /* setup receive message objects */
 541        for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
 542                c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
 543
 544        c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
 545                                   IF_MCONT_RCV_EOB);
 546}
 547
 548/*
 549 * Configure C_CAN chip:
 550 * - enable/disable auto-retransmission
 551 * - set operating mode
 552 * - configure message objects
 553 */
 554static int c_can_chip_config(struct net_device *dev)
 555{
 556        struct c_can_priv *priv = netdev_priv(dev);
 557
 558        /* enable automatic retransmission */
 559        priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
 560
 561        if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
 562            (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
 563                /* loopback + silent mode : useful for hot self-test */
 564                priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 565                priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
 566        } else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 567                /* loopback mode : useful for self-test function */
 568                priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 569                priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
 570        } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 571                /* silent mode : bus-monitoring mode */
 572                priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 573                priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
 574        }
 575
 576        /* configure message objects */
 577        c_can_configure_msg_objects(dev);
 578
 579        /* set a `lec` value so that we can check for updates later */
 580        priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
 581
 582        /* Clear all internal status */
 583        atomic_set(&priv->tx_active, 0);
 584        priv->rxmasked = 0;
 585        priv->tx_dir = 0;
 586
 587        /* set bittiming params */
 588        return c_can_set_bittiming(dev);
 589}
 590
 591static int c_can_start(struct net_device *dev)
 592{
 593        struct c_can_priv *priv = netdev_priv(dev);
 594        int err;
 595
 596        /* basic c_can configuration */
 597        err = c_can_chip_config(dev);
 598        if (err)
 599                return err;
 600
 601        /* Setup the command for new messages */
 602        priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
 603                IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
 604
 605        priv->can.state = CAN_STATE_ERROR_ACTIVE;
 606
 607        /* activate pins */
 608        pinctrl_pm_select_default_state(dev->dev.parent);
 609        return 0;
 610}
 611
 612static void c_can_stop(struct net_device *dev)
 613{
 614        struct c_can_priv *priv = netdev_priv(dev);
 615
 616        c_can_irq_control(priv, false);
 617
 618        /* put ctrl to init on stop to end ongoing transmission */
 619        priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
 620
 621        /* deactivate pins */
 622        pinctrl_pm_select_sleep_state(dev->dev.parent);
 623        priv->can.state = CAN_STATE_STOPPED;
 624}
 625
 626static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
 627{
 628        struct c_can_priv *priv = netdev_priv(dev);
 629        int err;
 630
 631        switch (mode) {
 632        case CAN_MODE_START:
 633                err = c_can_start(dev);
 634                if (err)
 635                        return err;
 636                netif_wake_queue(dev);
 637                c_can_irq_control(priv, true);
 638                break;
 639        default:
 640                return -EOPNOTSUPP;
 641        }
 642
 643        return 0;
 644}
 645
 646static int __c_can_get_berr_counter(const struct net_device *dev,
 647                                    struct can_berr_counter *bec)
 648{
 649        unsigned int reg_err_counter;
 650        struct c_can_priv *priv = netdev_priv(dev);
 651
 652        reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
 653        bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
 654                                ERR_CNT_REC_SHIFT;
 655        bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
 656
 657        return 0;
 658}
 659
 660static int c_can_get_berr_counter(const struct net_device *dev,
 661                                  struct can_berr_counter *bec)
 662{
 663        struct c_can_priv *priv = netdev_priv(dev);
 664        int err;
 665
 666        c_can_pm_runtime_get_sync(priv);
 667        err = __c_can_get_berr_counter(dev, bec);
 668        c_can_pm_runtime_put_sync(priv);
 669
 670        return err;
 671}
 672
 673static void c_can_do_tx(struct net_device *dev)
 674{
 675        struct c_can_priv *priv = netdev_priv(dev);
 676        struct net_device_stats *stats = &dev->stats;
 677        u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
 678
 679        clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
 680
 681        while ((idx = ffs(pend))) {
 682                idx--;
 683                pend &= ~(1 << idx);
 684                obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 685                c_can_inval_tx_object(dev, IF_RX, obj);
 686                can_get_echo_skb(dev, idx);
 687                bytes += priv->dlc[idx];
 688                pkts++;
 689        }
 690
 691        /* Clear the bits in the tx_active mask */
 692        atomic_sub(clr, &priv->tx_active);
 693
 694        if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
 695                netif_wake_queue(dev);
 696
 697        if (pkts) {
 698                stats->tx_bytes += bytes;
 699                stats->tx_packets += pkts;
 700                can_led_event(dev, CAN_LED_EVENT_TX);
 701        }
 702}
 703
 704/*
 705 * If we have a gap in the pending bits, that means we either
 706 * raced with the hardware or failed to readout all upper
 707 * objects in the last run due to quota limit.
 708 */
 709static u32 c_can_adjust_pending(u32 pend)
 710{
 711        u32 weight, lasts;
 712
 713        if (pend == RECEIVE_OBJECT_BITS)
 714                return pend;
 715
 716        /*
 717         * If the last set bit is larger than the number of pending
 718         * bits we have a gap.
 719         */
 720        weight = hweight32(pend);
 721        lasts = fls(pend);
 722
 723        /* If the bits are linear, nothing to do */
 724        if (lasts == weight)
 725                return pend;
 726
 727        /*
 728         * Find the first set bit after the gap. We walk backwards
 729         * from the last set bit.
 730         */
 731        for (lasts--; pend & (1 << (lasts - 1)); lasts--);
 732
 733        return pend & ~((1 << lasts) - 1);
 734}
 735
 736static inline void c_can_rx_object_get(struct net_device *dev,
 737                                       struct c_can_priv *priv, u32 obj)
 738{
 739                c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
 740}
 741
 742static inline void c_can_rx_finalize(struct net_device *dev,
 743                                     struct c_can_priv *priv, u32 obj)
 744{
 745        if (priv->type != BOSCH_D_CAN)
 746                c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
 747}
 748
 749static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
 750                              u32 pend, int quota)
 751{
 752        u32 pkts = 0, ctrl, obj;
 753
 754        while ((obj = ffs(pend)) && quota > 0) {
 755                pend &= ~BIT(obj - 1);
 756
 757                c_can_rx_object_get(dev, priv, obj);
 758                ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
 759
 760                if (ctrl & IF_MCONT_MSGLST) {
 761                        int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
 762
 763                        pkts += n;
 764                        quota -= n;
 765                        continue;
 766                }
 767
 768                /*
 769                 * This really should not happen, but this covers some
 770                 * odd HW behaviour. Do not remove that unless you
 771                 * want to brick your machine.
 772                 */
 773                if (!(ctrl & IF_MCONT_NEWDAT))
 774                        continue;
 775
 776                /* read the data from the message object */
 777                c_can_read_msg_object(dev, IF_RX, ctrl);
 778
 779                c_can_rx_finalize(dev, priv, obj);
 780
 781                pkts++;
 782                quota--;
 783        }
 784
 785        return pkts;
 786}
 787
 788static inline u32 c_can_get_pending(struct c_can_priv *priv)
 789{
 790        u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
 791
 792        return pend;
 793}
 794
 795/*
 796 * theory of operation:
 797 *
 798 * c_can core saves a received CAN message into the first free message
 799 * object it finds free (starting with the lowest). Bits NEWDAT and
 800 * INTPND are set for this message object indicating that a new message
 801 * has arrived. To work-around this issue, we keep two groups of message
 802 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
 803 *
 804 * We clear the newdat bit right away.
 805 *
 806 * This can result in packet reordering when the readout is slow.
 807 */
 808static int c_can_do_rx_poll(struct net_device *dev, int quota)
 809{
 810        struct c_can_priv *priv = netdev_priv(dev);
 811        u32 pkts = 0, pend = 0, toread, n;
 812
 813        /*
 814         * It is faster to read only one 16bit register. This is only possible
 815         * for a maximum number of 16 objects.
 816         */
 817        BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
 818                        "Implementation does not support more message objects than 16");
 819
 820        while (quota > 0) {
 821                if (!pend) {
 822                        pend = c_can_get_pending(priv);
 823                        if (!pend)
 824                                break;
 825                        /*
 826                         * If the pending field has a gap, handle the
 827                         * bits above the gap first.
 828                         */
 829                        toread = c_can_adjust_pending(pend);
 830                } else {
 831                        toread = pend;
 832                }
 833                /* Remove the bits from pend */
 834                pend &= ~toread;
 835                /* Read the objects */
 836                n = c_can_read_objects(dev, priv, toread, quota);
 837                pkts += n;
 838                quota -= n;
 839        }
 840
 841        if (pkts)
 842                can_led_event(dev, CAN_LED_EVENT_RX);
 843
 844        return pkts;
 845}
 846
 847static int c_can_handle_state_change(struct net_device *dev,
 848                                enum c_can_bus_error_types error_type)
 849{
 850        unsigned int reg_err_counter;
 851        unsigned int rx_err_passive;
 852        struct c_can_priv *priv = netdev_priv(dev);
 853        struct net_device_stats *stats = &dev->stats;
 854        struct can_frame *cf;
 855        struct sk_buff *skb;
 856        struct can_berr_counter bec;
 857
 858        switch (error_type) {
 859        case C_CAN_ERROR_WARNING:
 860                /* error warning state */
 861                priv->can.can_stats.error_warning++;
 862                priv->can.state = CAN_STATE_ERROR_WARNING;
 863                break;
 864        case C_CAN_ERROR_PASSIVE:
 865                /* error passive state */
 866                priv->can.can_stats.error_passive++;
 867                priv->can.state = CAN_STATE_ERROR_PASSIVE;
 868                break;
 869        case C_CAN_BUS_OFF:
 870                /* bus-off state */
 871                priv->can.state = CAN_STATE_BUS_OFF;
 872                priv->can.can_stats.bus_off++;
 873                break;
 874        default:
 875                break;
 876        }
 877
 878        /* propagate the error condition to the CAN stack */
 879        skb = alloc_can_err_skb(dev, &cf);
 880        if (unlikely(!skb))
 881                return 0;
 882
 883        __c_can_get_berr_counter(dev, &bec);
 884        reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
 885        rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
 886                                ERR_CNT_RP_SHIFT;
 887
 888        switch (error_type) {
 889        case C_CAN_ERROR_WARNING:
 890                /* error warning state */
 891                cf->can_id |= CAN_ERR_CRTL;
 892                cf->data[1] = (bec.txerr > bec.rxerr) ?
 893                        CAN_ERR_CRTL_TX_WARNING :
 894                        CAN_ERR_CRTL_RX_WARNING;
 895                cf->data[6] = bec.txerr;
 896                cf->data[7] = bec.rxerr;
 897
 898                break;
 899        case C_CAN_ERROR_PASSIVE:
 900                /* error passive state */
 901                cf->can_id |= CAN_ERR_CRTL;
 902                if (rx_err_passive)
 903                        cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
 904                if (bec.txerr > 127)
 905                        cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
 906
 907                cf->data[6] = bec.txerr;
 908                cf->data[7] = bec.rxerr;
 909                break;
 910        case C_CAN_BUS_OFF:
 911                /* bus-off state */
 912                cf->can_id |= CAN_ERR_BUSOFF;
 913                can_bus_off(dev);
 914                break;
 915        default:
 916                break;
 917        }
 918
 919        stats->rx_packets++;
 920        stats->rx_bytes += cf->can_dlc;
 921        netif_receive_skb(skb);
 922
 923        return 1;
 924}
 925
 926static int c_can_handle_bus_err(struct net_device *dev,
 927                                enum c_can_lec_type lec_type)
 928{
 929        struct c_can_priv *priv = netdev_priv(dev);
 930        struct net_device_stats *stats = &dev->stats;
 931        struct can_frame *cf;
 932        struct sk_buff *skb;
 933
 934        /*
 935         * early exit if no lec update or no error.
 936         * no lec update means that no CAN bus event has been detected
 937         * since CPU wrote 0x7 value to status reg.
 938         */
 939        if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
 940                return 0;
 941
 942        if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
 943                return 0;
 944
 945        /* common for all type of bus errors */
 946        priv->can.can_stats.bus_error++;
 947        stats->rx_errors++;
 948
 949        /* propagate the error condition to the CAN stack */
 950        skb = alloc_can_err_skb(dev, &cf);
 951        if (unlikely(!skb))
 952                return 0;
 953
 954        /*
 955         * check for 'last error code' which tells us the
 956         * type of the last error to occur on the CAN bus
 957         */
 958        cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
 959        cf->data[2] |= CAN_ERR_PROT_UNSPEC;
 960
 961        switch (lec_type) {
 962        case LEC_STUFF_ERROR:
 963                netdev_dbg(dev, "stuff error\n");
 964                cf->data[2] |= CAN_ERR_PROT_STUFF;
 965                break;
 966        case LEC_FORM_ERROR:
 967                netdev_dbg(dev, "form error\n");
 968                cf->data[2] |= CAN_ERR_PROT_FORM;
 969                break;
 970        case LEC_ACK_ERROR:
 971                netdev_dbg(dev, "ack error\n");
 972                cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
 973                                CAN_ERR_PROT_LOC_ACK_DEL);
 974                break;
 975        case LEC_BIT1_ERROR:
 976                netdev_dbg(dev, "bit1 error\n");
 977                cf->data[2] |= CAN_ERR_PROT_BIT1;
 978                break;
 979        case LEC_BIT0_ERROR:
 980                netdev_dbg(dev, "bit0 error\n");
 981                cf->data[2] |= CAN_ERR_PROT_BIT0;
 982                break;
 983        case LEC_CRC_ERROR:
 984                netdev_dbg(dev, "CRC error\n");
 985                cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
 986                                CAN_ERR_PROT_LOC_CRC_DEL);
 987                break;
 988        default:
 989                break;
 990        }
 991
 992        stats->rx_packets++;
 993        stats->rx_bytes += cf->can_dlc;
 994        netif_receive_skb(skb);
 995        return 1;
 996}
 997
 998static int c_can_poll(struct napi_struct *napi, int quota)
 999{
1000        struct net_device *dev = napi->dev;
1001        struct c_can_priv *priv = netdev_priv(dev);
1002        u16 curr, last = priv->last_status;
1003        int work_done = 0;
1004
1005        priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1006        /* Ack status on C_CAN. D_CAN is self clearing */
1007        if (priv->type != BOSCH_D_CAN)
1008                priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1009
1010        /* handle state changes */
1011        if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1012                netdev_dbg(dev, "entered error warning state\n");
1013                work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1014        }
1015
1016        if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1017                netdev_dbg(dev, "entered error passive state\n");
1018                work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1019        }
1020
1021        if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1022                netdev_dbg(dev, "entered bus off state\n");
1023                work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1024                goto end;
1025        }
1026
1027        /* handle bus recovery events */
1028        if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1029                netdev_dbg(dev, "left bus off state\n");
1030                priv->can.state = CAN_STATE_ERROR_ACTIVE;
1031        }
1032        if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1033                netdev_dbg(dev, "left error passive state\n");
1034                priv->can.state = CAN_STATE_ERROR_ACTIVE;
1035        }
1036
1037        /* handle lec errors on the bus */
1038        work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1039
1040        /* Handle Tx/Rx events. We do this unconditionally */
1041        work_done += c_can_do_rx_poll(dev, (quota - work_done));
1042        c_can_do_tx(dev);
1043
1044end:
1045        if (work_done < quota) {
1046                napi_complete(napi);
1047                /* enable all IRQs if we are not in bus off state */
1048                if (priv->can.state != CAN_STATE_BUS_OFF)
1049                        c_can_irq_control(priv, true);
1050        }
1051
1052        return work_done;
1053}
1054
1055static irqreturn_t c_can_isr(int irq, void *dev_id)
1056{
1057        struct net_device *dev = (struct net_device *)dev_id;
1058        struct c_can_priv *priv = netdev_priv(dev);
1059
1060        if (!priv->read_reg(priv, C_CAN_INT_REG))
1061                return IRQ_NONE;
1062
1063        /* disable all interrupts and schedule the NAPI */
1064        c_can_irq_control(priv, false);
1065        napi_schedule(&priv->napi);
1066
1067        return IRQ_HANDLED;
1068}
1069
1070static int c_can_open(struct net_device *dev)
1071{
1072        int err;
1073        struct c_can_priv *priv = netdev_priv(dev);
1074
1075        c_can_pm_runtime_get_sync(priv);
1076        c_can_reset_ram(priv, true);
1077
1078        /* open the can device */
1079        err = open_candev(dev);
1080        if (err) {
1081                netdev_err(dev, "failed to open can device\n");
1082                goto exit_open_fail;
1083        }
1084
1085        /* register interrupt handler */
1086        err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1087                                dev);
1088        if (err < 0) {
1089                netdev_err(dev, "failed to request interrupt\n");
1090                goto exit_irq_fail;
1091        }
1092
1093        /* start the c_can controller */
1094        err = c_can_start(dev);
1095        if (err)
1096                goto exit_start_fail;
1097
1098        can_led_event(dev, CAN_LED_EVENT_OPEN);
1099
1100        napi_enable(&priv->napi);
1101        /* enable status change, error and module interrupts */
1102        c_can_irq_control(priv, true);
1103        netif_start_queue(dev);
1104
1105        return 0;
1106
1107exit_start_fail:
1108        free_irq(dev->irq, dev);
1109exit_irq_fail:
1110        close_candev(dev);
1111exit_open_fail:
1112        c_can_reset_ram(priv, false);
1113        c_can_pm_runtime_put_sync(priv);
1114        return err;
1115}
1116
1117static int c_can_close(struct net_device *dev)
1118{
1119        struct c_can_priv *priv = netdev_priv(dev);
1120
1121        netif_stop_queue(dev);
1122        napi_disable(&priv->napi);
1123        c_can_stop(dev);
1124        free_irq(dev->irq, dev);
1125        close_candev(dev);
1126
1127        c_can_reset_ram(priv, false);
1128        c_can_pm_runtime_put_sync(priv);
1129
1130        can_led_event(dev, CAN_LED_EVENT_STOP);
1131
1132        return 0;
1133}
1134
1135struct net_device *alloc_c_can_dev(void)
1136{
1137        struct net_device *dev;
1138        struct c_can_priv *priv;
1139
1140        dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1141        if (!dev)
1142                return NULL;
1143
1144        priv = netdev_priv(dev);
1145        netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1146
1147        priv->dev = dev;
1148        priv->can.bittiming_const = &c_can_bittiming_const;
1149        priv->can.do_set_mode = c_can_set_mode;
1150        priv->can.do_get_berr_counter = c_can_get_berr_counter;
1151        priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1152                                        CAN_CTRLMODE_LISTENONLY |
1153                                        CAN_CTRLMODE_BERR_REPORTING;
1154
1155        return dev;
1156}
1157EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1158
1159#ifdef CONFIG_PM
1160int c_can_power_down(struct net_device *dev)
1161{
1162        u32 val;
1163        unsigned long time_out;
1164        struct c_can_priv *priv = netdev_priv(dev);
1165
1166        if (!(dev->flags & IFF_UP))
1167                return 0;
1168
1169        WARN_ON(priv->type != BOSCH_D_CAN);
1170
1171        /* set PDR value so the device goes to power down mode */
1172        val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1173        val |= CONTROL_EX_PDR;
1174        priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1175
1176        /* Wait for the PDA bit to get set */
1177        time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1178        while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1179                                time_after(time_out, jiffies))
1180                cpu_relax();
1181
1182        if (time_after(jiffies, time_out))
1183                return -ETIMEDOUT;
1184
1185        c_can_stop(dev);
1186
1187        c_can_reset_ram(priv, false);
1188        c_can_pm_runtime_put_sync(priv);
1189
1190        return 0;
1191}
1192EXPORT_SYMBOL_GPL(c_can_power_down);
1193
1194int c_can_power_up(struct net_device *dev)
1195{
1196        u32 val;
1197        unsigned long time_out;
1198        struct c_can_priv *priv = netdev_priv(dev);
1199        int ret;
1200
1201        if (!(dev->flags & IFF_UP))
1202                return 0;
1203
1204        WARN_ON(priv->type != BOSCH_D_CAN);
1205
1206        c_can_pm_runtime_get_sync(priv);
1207        c_can_reset_ram(priv, true);
1208
1209        /* Clear PDR and INIT bits */
1210        val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1211        val &= ~CONTROL_EX_PDR;
1212        priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1213        val = priv->read_reg(priv, C_CAN_CTRL_REG);
1214        val &= ~CONTROL_INIT;
1215        priv->write_reg(priv, C_CAN_CTRL_REG, val);
1216
1217        /* Wait for the PDA bit to get clear */
1218        time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1219        while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1220                                time_after(time_out, jiffies))
1221                cpu_relax();
1222
1223        if (time_after(jiffies, time_out))
1224                return -ETIMEDOUT;
1225
1226        ret = c_can_start(dev);
1227        if (!ret)
1228                c_can_irq_control(priv, true);
1229
1230        return ret;
1231}
1232EXPORT_SYMBOL_GPL(c_can_power_up);
1233#endif
1234
1235void free_c_can_dev(struct net_device *dev)
1236{
1237        struct c_can_priv *priv = netdev_priv(dev);
1238
1239        netif_napi_del(&priv->napi);
1240        free_candev(dev);
1241}
1242EXPORT_SYMBOL_GPL(free_c_can_dev);
1243
1244static const struct net_device_ops c_can_netdev_ops = {
1245        .ndo_open = c_can_open,
1246        .ndo_stop = c_can_close,
1247        .ndo_start_xmit = c_can_start_xmit,
1248        .ndo_change_mtu = can_change_mtu,
1249};
1250
1251int register_c_can_dev(struct net_device *dev)
1252{
1253        struct c_can_priv *priv = netdev_priv(dev);
1254        int err;
1255
1256        /* Deactivate pins to prevent DRA7 DCAN IP from being
1257         * stuck in transition when module is disabled.
1258         * Pins are activated in c_can_start() and deactivated
1259         * in c_can_stop()
1260         */
1261        pinctrl_pm_select_sleep_state(dev->dev.parent);
1262
1263        c_can_pm_runtime_enable(priv);
1264
1265        dev->flags |= IFF_ECHO; /* we support local echo */
1266        dev->netdev_ops = &c_can_netdev_ops;
1267
1268        err = register_candev(dev);
1269        if (err)
1270                c_can_pm_runtime_disable(priv);
1271        else
1272                devm_can_led_init(dev);
1273
1274        return err;
1275}
1276EXPORT_SYMBOL_GPL(register_c_can_dev);
1277
1278void unregister_c_can_dev(struct net_device *dev)
1279{
1280        struct c_can_priv *priv = netdev_priv(dev);
1281
1282        unregister_candev(dev);
1283
1284        c_can_pm_runtime_disable(priv);
1285}
1286EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1287
1288MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1289MODULE_LICENSE("GPL v2");
1290MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1291