linux/drivers/net/can/spi/mcp251x.c
<<
>>
Prefs
   1/*
   2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
   3 *
   4 * MCP2510 support and bug fixes by Christian Pellegrin
   5 * <chripell@evolware.org>
   6 *
   7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
   8 *
   9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10 * Written under contract by:
  11 *   Chris Elston, Katalix Systems, Ltd.
  12 *
  13 * Based on Microchip MCP251x CAN controller driver written by
  14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15 *
  16 * Based on CAN bus driver for the CCAN controller written by
  17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18 * - Simon Kallweit, intefo AG
  19 * Copyright 2007
  20 *
  21 * This program is free software; you can redistribute it and/or modify
  22 * it under the terms of the version 2 of the GNU General Public License
  23 * as published by the Free Software Foundation
  24 *
  25 * This program is distributed in the hope that it will be useful,
  26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28 * GNU General Public License for more details.
  29 *
  30 * You should have received a copy of the GNU General Public License
  31 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  32 *
  33 *
  34 *
  35 * Your platform definition file should specify something like:
  36 *
  37 * static struct mcp251x_platform_data mcp251x_info = {
  38 *         .oscillator_frequency = 8000000,
  39 * };
  40 *
  41 * static struct spi_board_info spi_board_info[] = {
  42 *         {
  43 *                 .modalias = "mcp2510",
  44 *                      // or "mcp2515" depending on your controller
  45 *                 .platform_data = &mcp251x_info,
  46 *                 .irq = IRQ_EINT13,
  47 *                 .max_speed_hz = 2*1000*1000,
  48 *                 .chip_select = 2,
  49 *         },
  50 * };
  51 *
  52 * Please see mcp251x.h for a description of the fields in
  53 * struct mcp251x_platform_data.
  54 *
  55 */
  56
  57#include <linux/can/core.h>
  58#include <linux/can/dev.h>
  59#include <linux/can/led.h>
  60#include <linux/can/platform/mcp251x.h>
  61#include <linux/clk.h>
  62#include <linux/completion.h>
  63#include <linux/delay.h>
  64#include <linux/device.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/freezer.h>
  67#include <linux/interrupt.h>
  68#include <linux/io.h>
  69#include <linux/kernel.h>
  70#include <linux/module.h>
  71#include <linux/netdevice.h>
  72#include <linux/of.h>
  73#include <linux/of_device.h>
  74#include <linux/platform_device.h>
  75#include <linux/slab.h>
  76#include <linux/spi/spi.h>
  77#include <linux/uaccess.h>
  78#include <linux/regulator/consumer.h>
  79
  80/* SPI interface instruction set */
  81#define INSTRUCTION_WRITE       0x02
  82#define INSTRUCTION_READ        0x03
  83#define INSTRUCTION_BIT_MODIFY  0x05
  84#define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
  85#define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
  86#define INSTRUCTION_RESET       0xC0
  87#define RTS_TXB0                0x01
  88#define RTS_TXB1                0x02
  89#define RTS_TXB2                0x04
  90#define INSTRUCTION_RTS(n)      (0x80 | ((n) & 0x07))
  91
  92
  93/* MPC251x registers */
  94#define CANSTAT       0x0e
  95#define CANCTRL       0x0f
  96#  define CANCTRL_REQOP_MASK        0xe0
  97#  define CANCTRL_REQOP_CONF        0x80
  98#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
  99#  define CANCTRL_REQOP_LOOPBACK    0x40
 100#  define CANCTRL_REQOP_SLEEP       0x20
 101#  define CANCTRL_REQOP_NORMAL      0x00
 102#  define CANCTRL_OSM               0x08
 103#  define CANCTRL_ABAT              0x10
 104#define TEC           0x1c
 105#define REC           0x1d
 106#define CNF1          0x2a
 107#  define CNF1_SJW_SHIFT   6
 108#define CNF2          0x29
 109#  define CNF2_BTLMODE     0x80
 110#  define CNF2_SAM         0x40
 111#  define CNF2_PS1_SHIFT   3
 112#define CNF3          0x28
 113#  define CNF3_SOF         0x08
 114#  define CNF3_WAKFIL      0x04
 115#  define CNF3_PHSEG2_MASK 0x07
 116#define CANINTE       0x2b
 117#  define CANINTE_MERRE 0x80
 118#  define CANINTE_WAKIE 0x40
 119#  define CANINTE_ERRIE 0x20
 120#  define CANINTE_TX2IE 0x10
 121#  define CANINTE_TX1IE 0x08
 122#  define CANINTE_TX0IE 0x04
 123#  define CANINTE_RX1IE 0x02
 124#  define CANINTE_RX0IE 0x01
 125#define CANINTF       0x2c
 126#  define CANINTF_MERRF 0x80
 127#  define CANINTF_WAKIF 0x40
 128#  define CANINTF_ERRIF 0x20
 129#  define CANINTF_TX2IF 0x10
 130#  define CANINTF_TX1IF 0x08
 131#  define CANINTF_TX0IF 0x04
 132#  define CANINTF_RX1IF 0x02
 133#  define CANINTF_RX0IF 0x01
 134#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
 135#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
 136#  define CANINTF_ERR (CANINTF_ERRIF)
 137#define EFLG          0x2d
 138#  define EFLG_EWARN    0x01
 139#  define EFLG_RXWAR    0x02
 140#  define EFLG_TXWAR    0x04
 141#  define EFLG_RXEP     0x08
 142#  define EFLG_TXEP     0x10
 143#  define EFLG_TXBO     0x20
 144#  define EFLG_RX0OVR   0x40
 145#  define EFLG_RX1OVR   0x80
 146#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
 147#  define TXBCTRL_ABTF  0x40
 148#  define TXBCTRL_MLOA  0x20
 149#  define TXBCTRL_TXERR 0x10
 150#  define TXBCTRL_TXREQ 0x08
 151#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
 152#  define SIDH_SHIFT    3
 153#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
 154#  define SIDL_SID_MASK    7
 155#  define SIDL_SID_SHIFT   5
 156#  define SIDL_EXIDE_SHIFT 3
 157#  define SIDL_EID_SHIFT   16
 158#  define SIDL_EID_MASK    3
 159#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
 160#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
 161#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
 162#  define DLC_RTR_SHIFT    6
 163#define TXBCTRL_OFF 0
 164#define TXBSIDH_OFF 1
 165#define TXBSIDL_OFF 2
 166#define TXBEID8_OFF 3
 167#define TXBEID0_OFF 4
 168#define TXBDLC_OFF  5
 169#define TXBDAT_OFF  6
 170#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
 171#  define RXBCTRL_BUKT  0x04
 172#  define RXBCTRL_RXM0  0x20
 173#  define RXBCTRL_RXM1  0x40
 174#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
 175#  define RXBSIDH_SHIFT 3
 176#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
 177#  define RXBSIDL_IDE   0x08
 178#  define RXBSIDL_SRR   0x10
 179#  define RXBSIDL_EID   3
 180#  define RXBSIDL_SHIFT 5
 181#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
 182#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
 183#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
 184#  define RXBDLC_LEN_MASK  0x0f
 185#  define RXBDLC_RTR       0x40
 186#define RXBCTRL_OFF 0
 187#define RXBSIDH_OFF 1
 188#define RXBSIDL_OFF 2
 189#define RXBEID8_OFF 3
 190#define RXBEID0_OFF 4
 191#define RXBDLC_OFF  5
 192#define RXBDAT_OFF  6
 193#define RXFSIDH(n) ((n) * 4)
 194#define RXFSIDL(n) ((n) * 4 + 1)
 195#define RXFEID8(n) ((n) * 4 + 2)
 196#define RXFEID0(n) ((n) * 4 + 3)
 197#define RXMSIDH(n) ((n) * 4 + 0x20)
 198#define RXMSIDL(n) ((n) * 4 + 0x21)
 199#define RXMEID8(n) ((n) * 4 + 0x22)
 200#define RXMEID0(n) ((n) * 4 + 0x23)
 201
 202#define GET_BYTE(val, byte)                     \
 203        (((val) >> ((byte) * 8)) & 0xff)
 204#define SET_BYTE(val, byte)                     \
 205        (((val) & 0xff) << ((byte) * 8))
 206
 207/*
 208 * Buffer size required for the largest SPI transfer (i.e., reading a
 209 * frame)
 210 */
 211#define CAN_FRAME_MAX_DATA_LEN  8
 212#define SPI_TRANSFER_BUF_LEN    (6 + CAN_FRAME_MAX_DATA_LEN)
 213#define CAN_FRAME_MAX_BITS      128
 214
 215#define TX_ECHO_SKB_MAX 1
 216
 217#define MCP251X_OST_DELAY_MS    (5)
 218
 219#define DEVICE_NAME "mcp251x"
 220
 221static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
 222module_param(mcp251x_enable_dma, int, S_IRUGO);
 223MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
 224
 225static const struct can_bittiming_const mcp251x_bittiming_const = {
 226        .name = DEVICE_NAME,
 227        .tseg1_min = 3,
 228        .tseg1_max = 16,
 229        .tseg2_min = 2,
 230        .tseg2_max = 8,
 231        .sjw_max = 4,
 232        .brp_min = 1,
 233        .brp_max = 64,
 234        .brp_inc = 1,
 235};
 236
 237enum mcp251x_model {
 238        CAN_MCP251X_MCP2510     = 0x2510,
 239        CAN_MCP251X_MCP2515     = 0x2515,
 240};
 241
 242struct mcp251x_priv {
 243        struct can_priv    can;
 244        struct net_device *net;
 245        struct spi_device *spi;
 246        enum mcp251x_model model;
 247
 248        struct mutex mcp_lock; /* SPI device lock */
 249
 250        u8 *spi_tx_buf;
 251        u8 *spi_rx_buf;
 252        dma_addr_t spi_tx_dma;
 253        dma_addr_t spi_rx_dma;
 254
 255        struct sk_buff *tx_skb;
 256        int tx_len;
 257
 258        struct workqueue_struct *wq;
 259        struct work_struct tx_work;
 260        struct work_struct restart_work;
 261
 262        int force_quit;
 263        int after_suspend;
 264#define AFTER_SUSPEND_UP 1
 265#define AFTER_SUSPEND_DOWN 2
 266#define AFTER_SUSPEND_POWER 4
 267#define AFTER_SUSPEND_RESTART 8
 268        int restart_tx;
 269        struct regulator *power;
 270        struct regulator *transceiver;
 271        struct clk *clk;
 272};
 273
 274#define MCP251X_IS(_model) \
 275static inline int mcp251x_is_##_model(struct spi_device *spi) \
 276{ \
 277        struct mcp251x_priv *priv = spi_get_drvdata(spi); \
 278        return priv->model == CAN_MCP251X_MCP##_model; \
 279}
 280
 281MCP251X_IS(2510);
 282MCP251X_IS(2515);
 283
 284static void mcp251x_clean(struct net_device *net)
 285{
 286        struct mcp251x_priv *priv = netdev_priv(net);
 287
 288        if (priv->tx_skb || priv->tx_len)
 289                net->stats.tx_errors++;
 290        if (priv->tx_skb)
 291                dev_kfree_skb(priv->tx_skb);
 292        if (priv->tx_len)
 293                can_free_echo_skb(priv->net, 0);
 294        priv->tx_skb = NULL;
 295        priv->tx_len = 0;
 296}
 297
 298/*
 299 * Note about handling of error return of mcp251x_spi_trans: accessing
 300 * registers via SPI is not really different conceptually than using
 301 * normal I/O assembler instructions, although it's much more
 302 * complicated from a practical POV. So it's not advisable to always
 303 * check the return value of this function. Imagine that every
 304 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 305 * error();", it would be a great mess (well there are some situation
 306 * when exception handling C++ like could be useful after all). So we
 307 * just check that transfers are OK at the beginning of our
 308 * conversation with the chip and to avoid doing really nasty things
 309 * (like injecting bogus packets in the network stack).
 310 */
 311static int mcp251x_spi_trans(struct spi_device *spi, int len)
 312{
 313        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 314        struct spi_transfer t = {
 315                .tx_buf = priv->spi_tx_buf,
 316                .rx_buf = priv->spi_rx_buf,
 317                .len = len,
 318                .cs_change = 0,
 319        };
 320        struct spi_message m;
 321        int ret;
 322
 323        spi_message_init(&m);
 324
 325        if (mcp251x_enable_dma) {
 326                t.tx_dma = priv->spi_tx_dma;
 327                t.rx_dma = priv->spi_rx_dma;
 328                m.is_dma_mapped = 1;
 329        }
 330
 331        spi_message_add_tail(&t, &m);
 332
 333        ret = spi_sync(spi, &m);
 334        if (ret)
 335                dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
 336        return ret;
 337}
 338
 339static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
 340{
 341        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 342        u8 val = 0;
 343
 344        priv->spi_tx_buf[0] = INSTRUCTION_READ;
 345        priv->spi_tx_buf[1] = reg;
 346
 347        mcp251x_spi_trans(spi, 3);
 348        val = priv->spi_rx_buf[2];
 349
 350        return val;
 351}
 352
 353static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
 354                uint8_t *v1, uint8_t *v2)
 355{
 356        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 357
 358        priv->spi_tx_buf[0] = INSTRUCTION_READ;
 359        priv->spi_tx_buf[1] = reg;
 360
 361        mcp251x_spi_trans(spi, 4);
 362
 363        *v1 = priv->spi_rx_buf[2];
 364        *v2 = priv->spi_rx_buf[3];
 365}
 366
 367static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
 368{
 369        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 370
 371        priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 372        priv->spi_tx_buf[1] = reg;
 373        priv->spi_tx_buf[2] = val;
 374
 375        mcp251x_spi_trans(spi, 3);
 376}
 377
 378static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
 379                               u8 mask, uint8_t val)
 380{
 381        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 382
 383        priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
 384        priv->spi_tx_buf[1] = reg;
 385        priv->spi_tx_buf[2] = mask;
 386        priv->spi_tx_buf[3] = val;
 387
 388        mcp251x_spi_trans(spi, 4);
 389}
 390
 391static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
 392                                int len, int tx_buf_idx)
 393{
 394        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 395
 396        if (mcp251x_is_2510(spi)) {
 397                int i;
 398
 399                for (i = 1; i < TXBDAT_OFF + len; i++)
 400                        mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
 401                                          buf[i]);
 402        } else {
 403                memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
 404                mcp251x_spi_trans(spi, TXBDAT_OFF + len);
 405        }
 406}
 407
 408static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
 409                          int tx_buf_idx)
 410{
 411        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 412        u32 sid, eid, exide, rtr;
 413        u8 buf[SPI_TRANSFER_BUF_LEN];
 414
 415        exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
 416        if (exide)
 417                sid = (frame->can_id & CAN_EFF_MASK) >> 18;
 418        else
 419                sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
 420        eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
 421        rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
 422
 423        buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
 424        buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
 425        buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
 426                (exide << SIDL_EXIDE_SHIFT) |
 427                ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
 428        buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
 429        buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
 430        buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
 431        memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
 432        mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
 433
 434        /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
 435        priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
 436        mcp251x_spi_trans(priv->spi, 1);
 437}
 438
 439static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
 440                                int buf_idx)
 441{
 442        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 443
 444        if (mcp251x_is_2510(spi)) {
 445                int i, len;
 446
 447                for (i = 1; i < RXBDAT_OFF; i++)
 448                        buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 449
 450                len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 451                for (; i < (RXBDAT_OFF + len); i++)
 452                        buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 453        } else {
 454                priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
 455                mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
 456                memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
 457        }
 458}
 459
 460static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
 461{
 462        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 463        struct sk_buff *skb;
 464        struct can_frame *frame;
 465        u8 buf[SPI_TRANSFER_BUF_LEN];
 466
 467        skb = alloc_can_skb(priv->net, &frame);
 468        if (!skb) {
 469                dev_err(&spi->dev, "cannot allocate RX skb\n");
 470                priv->net->stats.rx_dropped++;
 471                return;
 472        }
 473
 474        mcp251x_hw_rx_frame(spi, buf, buf_idx);
 475        if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
 476                /* Extended ID format */
 477                frame->can_id = CAN_EFF_FLAG;
 478                frame->can_id |=
 479                        /* Extended ID part */
 480                        SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
 481                        SET_BYTE(buf[RXBEID8_OFF], 1) |
 482                        SET_BYTE(buf[RXBEID0_OFF], 0) |
 483                        /* Standard ID part */
 484                        (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 485                          (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
 486                /* Remote transmission request */
 487                if (buf[RXBDLC_OFF] & RXBDLC_RTR)
 488                        frame->can_id |= CAN_RTR_FLAG;
 489        } else {
 490                /* Standard ID format */
 491                frame->can_id =
 492                        (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 493                        (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
 494                if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
 495                        frame->can_id |= CAN_RTR_FLAG;
 496        }
 497        /* Data length */
 498        frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 499        memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
 500
 501        priv->net->stats.rx_packets++;
 502        priv->net->stats.rx_bytes += frame->can_dlc;
 503
 504        can_led_event(priv->net, CAN_LED_EVENT_RX);
 505
 506        netif_rx_ni(skb);
 507}
 508
 509static void mcp251x_hw_sleep(struct spi_device *spi)
 510{
 511        mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
 512}
 513
 514static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
 515                                           struct net_device *net)
 516{
 517        struct mcp251x_priv *priv = netdev_priv(net);
 518        struct spi_device *spi = priv->spi;
 519
 520        if (priv->tx_skb || priv->tx_len) {
 521                dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
 522                return NETDEV_TX_BUSY;
 523        }
 524
 525        if (can_dropped_invalid_skb(net, skb))
 526                return NETDEV_TX_OK;
 527
 528        netif_stop_queue(net);
 529        priv->tx_skb = skb;
 530        queue_work(priv->wq, &priv->tx_work);
 531
 532        return NETDEV_TX_OK;
 533}
 534
 535static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
 536{
 537        struct mcp251x_priv *priv = netdev_priv(net);
 538
 539        switch (mode) {
 540        case CAN_MODE_START:
 541                mcp251x_clean(net);
 542                /* We have to delay work since SPI I/O may sleep */
 543                priv->can.state = CAN_STATE_ERROR_ACTIVE;
 544                priv->restart_tx = 1;
 545                if (priv->can.restart_ms == 0)
 546                        priv->after_suspend = AFTER_SUSPEND_RESTART;
 547                queue_work(priv->wq, &priv->restart_work);
 548                break;
 549        default:
 550                return -EOPNOTSUPP;
 551        }
 552
 553        return 0;
 554}
 555
 556static int mcp251x_set_normal_mode(struct spi_device *spi)
 557{
 558        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 559        unsigned long timeout;
 560
 561        /* Enable interrupts */
 562        mcp251x_write_reg(spi, CANINTE,
 563                          CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
 564                          CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
 565
 566        if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 567                /* Put device into loopback mode */
 568                mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
 569        } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 570                /* Put device into listen-only mode */
 571                mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
 572        } else {
 573                /* Put device into normal mode */
 574                mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
 575
 576                /* Wait for the device to enter normal mode */
 577                timeout = jiffies + HZ;
 578                while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
 579                        schedule();
 580                        if (time_after(jiffies, timeout)) {
 581                                dev_err(&spi->dev, "MCP251x didn't"
 582                                        " enter in normal mode\n");
 583                                return -EBUSY;
 584                        }
 585                }
 586        }
 587        priv->can.state = CAN_STATE_ERROR_ACTIVE;
 588        return 0;
 589}
 590
 591static int mcp251x_do_set_bittiming(struct net_device *net)
 592{
 593        struct mcp251x_priv *priv = netdev_priv(net);
 594        struct can_bittiming *bt = &priv->can.bittiming;
 595        struct spi_device *spi = priv->spi;
 596
 597        mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
 598                          (bt->brp - 1));
 599        mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
 600                          (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
 601                           CNF2_SAM : 0) |
 602                          ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
 603                          (bt->prop_seg - 1));
 604        mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
 605                           (bt->phase_seg2 - 1));
 606        dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
 607                mcp251x_read_reg(spi, CNF1),
 608                mcp251x_read_reg(spi, CNF2),
 609                mcp251x_read_reg(spi, CNF3));
 610
 611        return 0;
 612}
 613
 614static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
 615                         struct spi_device *spi)
 616{
 617        mcp251x_do_set_bittiming(net);
 618
 619        mcp251x_write_reg(spi, RXBCTRL(0),
 620                          RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
 621        mcp251x_write_reg(spi, RXBCTRL(1),
 622                          RXBCTRL_RXM0 | RXBCTRL_RXM1);
 623        return 0;
 624}
 625
 626static int mcp251x_hw_reset(struct spi_device *spi)
 627{
 628        struct mcp251x_priv *priv = spi_get_drvdata(spi);
 629        u8 reg;
 630        int ret;
 631
 632        /* Wait for oscillator startup timer after power up */
 633        mdelay(MCP251X_OST_DELAY_MS);
 634
 635        priv->spi_tx_buf[0] = INSTRUCTION_RESET;
 636        ret = mcp251x_spi_trans(spi, 1);
 637        if (ret)
 638                return ret;
 639
 640        /* Wait for oscillator startup timer after reset */
 641        mdelay(MCP251X_OST_DELAY_MS);
 642        
 643        reg = mcp251x_read_reg(spi, CANSTAT);
 644        if ((reg & CANCTRL_REQOP_MASK) != CANCTRL_REQOP_CONF)
 645                return -ENODEV;
 646
 647        return 0;
 648}
 649
 650static int mcp251x_hw_probe(struct spi_device *spi)
 651{
 652        u8 ctrl;
 653        int ret;
 654
 655        ret = mcp251x_hw_reset(spi);
 656        if (ret)
 657                return ret;
 658
 659        ctrl = mcp251x_read_reg(spi, CANCTRL);
 660
 661        dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
 662
 663        /* Check for power up default value */
 664        if ((ctrl & 0x17) != 0x07)
 665                return -ENODEV;
 666
 667        return 0;
 668}
 669
 670static int mcp251x_power_enable(struct regulator *reg, int enable)
 671{
 672        if (IS_ERR_OR_NULL(reg))
 673                return 0;
 674
 675        if (enable)
 676                return regulator_enable(reg);
 677        else
 678                return regulator_disable(reg);
 679}
 680
 681static void mcp251x_open_clean(struct net_device *net)
 682{
 683        struct mcp251x_priv *priv = netdev_priv(net);
 684        struct spi_device *spi = priv->spi;
 685
 686        free_irq(spi->irq, priv);
 687        mcp251x_hw_sleep(spi);
 688        mcp251x_power_enable(priv->transceiver, 0);
 689        close_candev(net);
 690}
 691
 692static int mcp251x_stop(struct net_device *net)
 693{
 694        struct mcp251x_priv *priv = netdev_priv(net);
 695        struct spi_device *spi = priv->spi;
 696
 697        close_candev(net);
 698
 699        priv->force_quit = 1;
 700        free_irq(spi->irq, priv);
 701        destroy_workqueue(priv->wq);
 702        priv->wq = NULL;
 703
 704        mutex_lock(&priv->mcp_lock);
 705
 706        /* Disable and clear pending interrupts */
 707        mcp251x_write_reg(spi, CANINTE, 0x00);
 708        mcp251x_write_reg(spi, CANINTF, 0x00);
 709
 710        mcp251x_write_reg(spi, TXBCTRL(0), 0);
 711        mcp251x_clean(net);
 712
 713        mcp251x_hw_sleep(spi);
 714
 715        mcp251x_power_enable(priv->transceiver, 0);
 716
 717        priv->can.state = CAN_STATE_STOPPED;
 718
 719        mutex_unlock(&priv->mcp_lock);
 720
 721        can_led_event(net, CAN_LED_EVENT_STOP);
 722
 723        return 0;
 724}
 725
 726static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
 727{
 728        struct sk_buff *skb;
 729        struct can_frame *frame;
 730
 731        skb = alloc_can_err_skb(net, &frame);
 732        if (skb) {
 733                frame->can_id |= can_id;
 734                frame->data[1] = data1;
 735                netif_rx_ni(skb);
 736        } else {
 737                netdev_err(net, "cannot allocate error skb\n");
 738        }
 739}
 740
 741static void mcp251x_tx_work_handler(struct work_struct *ws)
 742{
 743        struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 744                                                 tx_work);
 745        struct spi_device *spi = priv->spi;
 746        struct net_device *net = priv->net;
 747        struct can_frame *frame;
 748
 749        mutex_lock(&priv->mcp_lock);
 750        if (priv->tx_skb) {
 751                if (priv->can.state == CAN_STATE_BUS_OFF) {
 752                        mcp251x_clean(net);
 753                } else {
 754                        frame = (struct can_frame *)priv->tx_skb->data;
 755
 756                        if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
 757                                frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
 758                        mcp251x_hw_tx(spi, frame, 0);
 759                        priv->tx_len = 1 + frame->can_dlc;
 760                        can_put_echo_skb(priv->tx_skb, net, 0);
 761                        priv->tx_skb = NULL;
 762                }
 763        }
 764        mutex_unlock(&priv->mcp_lock);
 765}
 766
 767static void mcp251x_restart_work_handler(struct work_struct *ws)
 768{
 769        struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 770                                                 restart_work);
 771        struct spi_device *spi = priv->spi;
 772        struct net_device *net = priv->net;
 773
 774        mutex_lock(&priv->mcp_lock);
 775        if (priv->after_suspend) {
 776                mcp251x_hw_reset(spi);
 777                mcp251x_setup(net, priv, spi);
 778                if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
 779                        mcp251x_set_normal_mode(spi);
 780                } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
 781                        netif_device_attach(net);
 782                        mcp251x_clean(net);
 783                        mcp251x_set_normal_mode(spi);
 784                        netif_wake_queue(net);
 785                } else {
 786                        mcp251x_hw_sleep(spi);
 787                }
 788                priv->after_suspend = 0;
 789                priv->force_quit = 0;
 790        }
 791
 792        if (priv->restart_tx) {
 793                priv->restart_tx = 0;
 794                mcp251x_write_reg(spi, TXBCTRL(0), 0);
 795                mcp251x_clean(net);
 796                netif_wake_queue(net);
 797                mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
 798        }
 799        mutex_unlock(&priv->mcp_lock);
 800}
 801
 802static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
 803{
 804        struct mcp251x_priv *priv = dev_id;
 805        struct spi_device *spi = priv->spi;
 806        struct net_device *net = priv->net;
 807
 808        mutex_lock(&priv->mcp_lock);
 809        while (!priv->force_quit) {
 810                enum can_state new_state;
 811                u8 intf, eflag;
 812                u8 clear_intf = 0;
 813                int can_id = 0, data1 = 0;
 814
 815                mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
 816
 817                /* mask out flags we don't care about */
 818                intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
 819
 820                /* receive buffer 0 */
 821                if (intf & CANINTF_RX0IF) {
 822                        mcp251x_hw_rx(spi, 0);
 823                        /*
 824                         * Free one buffer ASAP
 825                         * (The MCP2515 does this automatically.)
 826                         */
 827                        if (mcp251x_is_2510(spi))
 828                                mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
 829                }
 830
 831                /* receive buffer 1 */
 832                if (intf & CANINTF_RX1IF) {
 833                        mcp251x_hw_rx(spi, 1);
 834                        /* the MCP2515 does this automatically */
 835                        if (mcp251x_is_2510(spi))
 836                                clear_intf |= CANINTF_RX1IF;
 837                }
 838
 839                /* any error or tx interrupt we need to clear? */
 840                if (intf & (CANINTF_ERR | CANINTF_TX))
 841                        clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
 842                if (clear_intf)
 843                        mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
 844
 845                if (eflag)
 846                        mcp251x_write_bits(spi, EFLG, eflag, 0x00);
 847
 848                /* Update can state */
 849                if (eflag & EFLG_TXBO) {
 850                        new_state = CAN_STATE_BUS_OFF;
 851                        can_id |= CAN_ERR_BUSOFF;
 852                } else if (eflag & EFLG_TXEP) {
 853                        new_state = CAN_STATE_ERROR_PASSIVE;
 854                        can_id |= CAN_ERR_CRTL;
 855                        data1 |= CAN_ERR_CRTL_TX_PASSIVE;
 856                } else if (eflag & EFLG_RXEP) {
 857                        new_state = CAN_STATE_ERROR_PASSIVE;
 858                        can_id |= CAN_ERR_CRTL;
 859                        data1 |= CAN_ERR_CRTL_RX_PASSIVE;
 860                } else if (eflag & EFLG_TXWAR) {
 861                        new_state = CAN_STATE_ERROR_WARNING;
 862                        can_id |= CAN_ERR_CRTL;
 863                        data1 |= CAN_ERR_CRTL_TX_WARNING;
 864                } else if (eflag & EFLG_RXWAR) {
 865                        new_state = CAN_STATE_ERROR_WARNING;
 866                        can_id |= CAN_ERR_CRTL;
 867                        data1 |= CAN_ERR_CRTL_RX_WARNING;
 868                } else {
 869                        new_state = CAN_STATE_ERROR_ACTIVE;
 870                }
 871
 872                /* Update can state statistics */
 873                switch (priv->can.state) {
 874                case CAN_STATE_ERROR_ACTIVE:
 875                        if (new_state >= CAN_STATE_ERROR_WARNING &&
 876                            new_state <= CAN_STATE_BUS_OFF)
 877                                priv->can.can_stats.error_warning++;
 878                case CAN_STATE_ERROR_WARNING:   /* fallthrough */
 879                        if (new_state >= CAN_STATE_ERROR_PASSIVE &&
 880                            new_state <= CAN_STATE_BUS_OFF)
 881                                priv->can.can_stats.error_passive++;
 882                        break;
 883                default:
 884                        break;
 885                }
 886                priv->can.state = new_state;
 887
 888                if (intf & CANINTF_ERRIF) {
 889                        /* Handle overflow counters */
 890                        if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
 891                                if (eflag & EFLG_RX0OVR) {
 892                                        net->stats.rx_over_errors++;
 893                                        net->stats.rx_errors++;
 894                                }
 895                                if (eflag & EFLG_RX1OVR) {
 896                                        net->stats.rx_over_errors++;
 897                                        net->stats.rx_errors++;
 898                                }
 899                                can_id |= CAN_ERR_CRTL;
 900                                data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
 901                        }
 902                        mcp251x_error_skb(net, can_id, data1);
 903                }
 904
 905                if (priv->can.state == CAN_STATE_BUS_OFF) {
 906                        if (priv->can.restart_ms == 0) {
 907                                priv->force_quit = 1;
 908                                priv->can.can_stats.bus_off++;
 909                                can_bus_off(net);
 910                                mcp251x_hw_sleep(spi);
 911                                break;
 912                        }
 913                }
 914
 915                if (intf == 0)
 916                        break;
 917
 918                if (intf & CANINTF_TX) {
 919                        net->stats.tx_packets++;
 920                        net->stats.tx_bytes += priv->tx_len - 1;
 921                        can_led_event(net, CAN_LED_EVENT_TX);
 922                        if (priv->tx_len) {
 923                                can_get_echo_skb(net, 0);
 924                                priv->tx_len = 0;
 925                        }
 926                        netif_wake_queue(net);
 927                }
 928
 929        }
 930        mutex_unlock(&priv->mcp_lock);
 931        return IRQ_HANDLED;
 932}
 933
 934static int mcp251x_open(struct net_device *net)
 935{
 936        struct mcp251x_priv *priv = netdev_priv(net);
 937        struct spi_device *spi = priv->spi;
 938        unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_FALLING;
 939        int ret;
 940
 941        ret = open_candev(net);
 942        if (ret) {
 943                dev_err(&spi->dev, "unable to set initial baudrate!\n");
 944                return ret;
 945        }
 946
 947        mutex_lock(&priv->mcp_lock);
 948        mcp251x_power_enable(priv->transceiver, 1);
 949
 950        priv->force_quit = 0;
 951        priv->tx_skb = NULL;
 952        priv->tx_len = 0;
 953
 954        ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
 955                                   flags | IRQF_ONESHOT, DEVICE_NAME, priv);
 956        if (ret) {
 957                dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
 958                mcp251x_power_enable(priv->transceiver, 0);
 959                close_candev(net);
 960                goto open_unlock;
 961        }
 962
 963        priv->wq = create_freezable_workqueue("mcp251x_wq");
 964        INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
 965        INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
 966
 967        ret = mcp251x_hw_reset(spi);
 968        if (ret) {
 969                mcp251x_open_clean(net);
 970                goto open_unlock;
 971        }
 972        ret = mcp251x_setup(net, priv, spi);
 973        if (ret) {
 974                mcp251x_open_clean(net);
 975                goto open_unlock;
 976        }
 977        ret = mcp251x_set_normal_mode(spi);
 978        if (ret) {
 979                mcp251x_open_clean(net);
 980                goto open_unlock;
 981        }
 982
 983        can_led_event(net, CAN_LED_EVENT_OPEN);
 984
 985        netif_wake_queue(net);
 986
 987open_unlock:
 988        mutex_unlock(&priv->mcp_lock);
 989        return ret;
 990}
 991
 992static const struct net_device_ops mcp251x_netdev_ops = {
 993        .ndo_open = mcp251x_open,
 994        .ndo_stop = mcp251x_stop,
 995        .ndo_start_xmit = mcp251x_hard_start_xmit,
 996        .ndo_change_mtu = can_change_mtu,
 997};
 998
 999static const struct of_device_id mcp251x_of_match[] = {
1000        {
1001                .compatible     = "microchip,mcp2510",
1002                .data           = (void *)CAN_MCP251X_MCP2510,
1003        },
1004        {
1005                .compatible     = "microchip,mcp2515",
1006                .data           = (void *)CAN_MCP251X_MCP2515,
1007        },
1008        { }
1009};
1010MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1011
1012static const struct spi_device_id mcp251x_id_table[] = {
1013        {
1014                .name           = "mcp2510",
1015                .driver_data    = (kernel_ulong_t)CAN_MCP251X_MCP2510,
1016        },
1017        {
1018                .name           = "mcp2515",
1019                .driver_data    = (kernel_ulong_t)CAN_MCP251X_MCP2515,
1020        },
1021        { }
1022};
1023MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1024
1025static int mcp251x_can_probe(struct spi_device *spi)
1026{
1027        const struct of_device_id *of_id = of_match_device(mcp251x_of_match,
1028                                                           &spi->dev);
1029        struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev);
1030        struct net_device *net;
1031        struct mcp251x_priv *priv;
1032        struct clk *clk;
1033        int freq, ret;
1034
1035        clk = devm_clk_get(&spi->dev, NULL);
1036        if (IS_ERR(clk)) {
1037                if (pdata)
1038                        freq = pdata->oscillator_frequency;
1039                else
1040                        return PTR_ERR(clk);
1041        } else {
1042                freq = clk_get_rate(clk);
1043        }
1044
1045        /* Sanity check */
1046        if (freq < 1000000 || freq > 25000000)
1047                return -ERANGE;
1048
1049        /* Allocate can/net device */
1050        net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1051        if (!net)
1052                return -ENOMEM;
1053
1054        if (!IS_ERR(clk)) {
1055                ret = clk_prepare_enable(clk);
1056                if (ret)
1057                        goto out_free;
1058        }
1059
1060        net->netdev_ops = &mcp251x_netdev_ops;
1061        net->flags |= IFF_ECHO;
1062
1063        priv = netdev_priv(net);
1064        priv->can.bittiming_const = &mcp251x_bittiming_const;
1065        priv->can.do_set_mode = mcp251x_do_set_mode;
1066        priv->can.clock.freq = freq / 2;
1067        priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1068                CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1069        if (of_id)
1070                priv->model = (enum mcp251x_model)of_id->data;
1071        else
1072                priv->model = spi_get_device_id(spi)->driver_data;
1073        priv->net = net;
1074        priv->clk = clk;
1075
1076        spi_set_drvdata(spi, priv);
1077
1078        /* Configure the SPI bus */
1079        spi->bits_per_word = 8;
1080        if (mcp251x_is_2510(spi))
1081                spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1082        else
1083                spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1084        ret = spi_setup(spi);
1085        if (ret)
1086                goto out_clk;
1087
1088        priv->power = devm_regulator_get(&spi->dev, "vdd");
1089        priv->transceiver = devm_regulator_get(&spi->dev, "xceiver");
1090        if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1091            (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1092                ret = -EPROBE_DEFER;
1093                goto out_clk;
1094        }
1095
1096        ret = mcp251x_power_enable(priv->power, 1);
1097        if (ret)
1098                goto out_clk;
1099
1100        priv->spi = spi;
1101        mutex_init(&priv->mcp_lock);
1102
1103        /* If requested, allocate DMA buffers */
1104        if (mcp251x_enable_dma) {
1105                spi->dev.coherent_dma_mask = ~0;
1106
1107                /*
1108                 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1109                 * that much and share it between Tx and Rx DMA buffers.
1110                 */
1111                priv->spi_tx_buf = dmam_alloc_coherent(&spi->dev,
1112                                                       PAGE_SIZE,
1113                                                       &priv->spi_tx_dma,
1114                                                       GFP_DMA);
1115
1116                if (priv->spi_tx_buf) {
1117                        priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
1118                        priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
1119                                                        (PAGE_SIZE / 2));
1120                } else {
1121                        /* Fall back to non-DMA */
1122                        mcp251x_enable_dma = 0;
1123                }
1124        }
1125
1126        /* Allocate non-DMA buffers */
1127        if (!mcp251x_enable_dma) {
1128                priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1129                                                GFP_KERNEL);
1130                if (!priv->spi_tx_buf) {
1131                        ret = -ENOMEM;
1132                        goto error_probe;
1133                }
1134                priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1135                                                GFP_KERNEL);
1136                if (!priv->spi_rx_buf) {
1137                        ret = -ENOMEM;
1138                        goto error_probe;
1139                }
1140        }
1141
1142        SET_NETDEV_DEV(net, &spi->dev);
1143
1144        /* Here is OK to not lock the MCP, no one knows about it yet */
1145        ret = mcp251x_hw_probe(spi);
1146        if (ret)
1147                goto error_probe;
1148
1149        mcp251x_hw_sleep(spi);
1150
1151        ret = register_candev(net);
1152        if (ret)
1153                goto error_probe;
1154
1155        devm_can_led_init(net);
1156
1157        return 0;
1158
1159error_probe:
1160        mcp251x_power_enable(priv->power, 0);
1161
1162out_clk:
1163        if (!IS_ERR(clk))
1164                clk_disable_unprepare(clk);
1165
1166out_free:
1167        free_candev(net);
1168
1169        return ret;
1170}
1171
1172static int mcp251x_can_remove(struct spi_device *spi)
1173{
1174        struct mcp251x_priv *priv = spi_get_drvdata(spi);
1175        struct net_device *net = priv->net;
1176
1177        unregister_candev(net);
1178
1179        mcp251x_power_enable(priv->power, 0);
1180
1181        if (!IS_ERR(priv->clk))
1182                clk_disable_unprepare(priv->clk);
1183
1184        free_candev(net);
1185
1186        return 0;
1187}
1188
1189static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1190{
1191        struct spi_device *spi = to_spi_device(dev);
1192        struct mcp251x_priv *priv = spi_get_drvdata(spi);
1193        struct net_device *net = priv->net;
1194
1195        priv->force_quit = 1;
1196        disable_irq(spi->irq);
1197        /*
1198         * Note: at this point neither IST nor workqueues are running.
1199         * open/stop cannot be called anyway so locking is not needed
1200         */
1201        if (netif_running(net)) {
1202                netif_device_detach(net);
1203
1204                mcp251x_hw_sleep(spi);
1205                mcp251x_power_enable(priv->transceiver, 0);
1206                priv->after_suspend = AFTER_SUSPEND_UP;
1207        } else {
1208                priv->after_suspend = AFTER_SUSPEND_DOWN;
1209        }
1210
1211        if (!IS_ERR_OR_NULL(priv->power)) {
1212                regulator_disable(priv->power);
1213                priv->after_suspend |= AFTER_SUSPEND_POWER;
1214        }
1215
1216        return 0;
1217}
1218
1219static int __maybe_unused mcp251x_can_resume(struct device *dev)
1220{
1221        struct spi_device *spi = to_spi_device(dev);
1222        struct mcp251x_priv *priv = spi_get_drvdata(spi);
1223
1224        if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1225                mcp251x_power_enable(priv->power, 1);
1226                queue_work(priv->wq, &priv->restart_work);
1227        } else {
1228                if (priv->after_suspend & AFTER_SUSPEND_UP) {
1229                        mcp251x_power_enable(priv->transceiver, 1);
1230                        queue_work(priv->wq, &priv->restart_work);
1231                } else {
1232                        priv->after_suspend = 0;
1233                }
1234        }
1235        priv->force_quit = 0;
1236        enable_irq(spi->irq);
1237        return 0;
1238}
1239
1240static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1241        mcp251x_can_resume);
1242
1243static struct spi_driver mcp251x_can_driver = {
1244        .driver = {
1245                .name = DEVICE_NAME,
1246                .owner = THIS_MODULE,
1247                .of_match_table = mcp251x_of_match,
1248                .pm = &mcp251x_can_pm_ops,
1249        },
1250        .id_table = mcp251x_id_table,
1251        .probe = mcp251x_can_probe,
1252        .remove = mcp251x_can_remove,
1253};
1254module_spi_driver(mcp251x_can_driver);
1255
1256MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1257              "Christian Pellegrin <chripell@evolware.org>");
1258MODULE_DESCRIPTION("Microchip 251x CAN driver");
1259MODULE_LICENSE("GPL v2");
1260