linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
<<
>>
Prefs
   1/* bnx2x_main.c: Broadcom Everest network driver.
   2 *
   3 * Copyright (c) 2007-2013 Broadcom Corporation
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation.
   8 *
   9 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
  10 * Written by: Eliezer Tamir
  11 * Based on code from Michael Chan's bnx2 driver
  12 * UDP CSUM errata workaround by Arik Gendelman
  13 * Slowpath and fastpath rework by Vladislav Zolotarov
  14 * Statistics and Link management by Yitchak Gertner
  15 *
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/module.h>
  21#include <linux/moduleparam.h>
  22#include <linux/kernel.h>
  23#include <linux/device.h>  /* for dev_info() */
  24#include <linux/timer.h>
  25#include <linux/errno.h>
  26#include <linux/ioport.h>
  27#include <linux/slab.h>
  28#include <linux/interrupt.h>
  29#include <linux/pci.h>
  30#include <linux/aer.h>
  31#include <linux/init.h>
  32#include <linux/netdevice.h>
  33#include <linux/etherdevice.h>
  34#include <linux/skbuff.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/bitops.h>
  37#include <linux/irq.h>
  38#include <linux/delay.h>
  39#include <asm/byteorder.h>
  40#include <linux/time.h>
  41#include <linux/ethtool.h>
  42#include <linux/mii.h>
  43#include <linux/if_vlan.h>
  44#include <linux/crash_dump.h>
  45#include <net/ip.h>
  46#include <net/ipv6.h>
  47#include <net/tcp.h>
  48#include <net/vxlan.h>
  49#include <net/checksum.h>
  50#include <net/ip6_checksum.h>
  51#include <linux/workqueue.h>
  52#include <linux/crc32.h>
  53#include <linux/crc32c.h>
  54#include <linux/prefetch.h>
  55#include <linux/zlib.h>
  56#include <linux/io.h>
  57#include <linux/semaphore.h>
  58#include <linux/stringify.h>
  59#include <linux/vmalloc.h>
  60
  61#include "bnx2x.h"
  62#include "bnx2x_init.h"
  63#include "bnx2x_init_ops.h"
  64#include "bnx2x_cmn.h"
  65#include "bnx2x_vfpf.h"
  66#include "bnx2x_dcb.h"
  67#include "bnx2x_sp.h"
  68#include <linux/firmware.h>
  69#include "bnx2x_fw_file_hdr.h"
  70/* FW files */
  71#define FW_FILE_VERSION                                 \
  72        __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
  73        __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
  74        __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
  75        __stringify(BCM_5710_FW_ENGINEERING_VERSION)
  76#define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
  77#define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
  78#define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
  79
  80/* Time in jiffies before concluding the transmitter is hung */
  81#define TX_TIMEOUT              (5*HZ)
  82
  83static char version[] =
  84        "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
  85        DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  86
  87MODULE_AUTHOR("Eliezer Tamir");
  88MODULE_DESCRIPTION("Broadcom NetXtreme II "
  89                   "BCM57710/57711/57711E/"
  90                   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
  91                   "57840/57840_MF Driver");
  92MODULE_LICENSE("GPL");
  93MODULE_VERSION(DRV_MODULE_VERSION);
  94MODULE_FIRMWARE(FW_FILE_NAME_E1);
  95MODULE_FIRMWARE(FW_FILE_NAME_E1H);
  96MODULE_FIRMWARE(FW_FILE_NAME_E2);
  97
  98int bnx2x_num_queues;
  99module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
 100MODULE_PARM_DESC(num_queues,
 101                 " Set number of queues (default is as a number of CPUs)");
 102
 103static int disable_tpa;
 104module_param(disable_tpa, int, S_IRUGO);
 105MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
 106
 107static int int_mode;
 108module_param(int_mode, int, S_IRUGO);
 109MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
 110                                "(1 INT#x; 2 MSI)");
 111
 112static int dropless_fc;
 113module_param(dropless_fc, int, S_IRUGO);
 114MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
 115
 116static int mrrs = -1;
 117module_param(mrrs, int, S_IRUGO);
 118MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
 119
 120static int debug;
 121module_param(debug, int, S_IRUGO);
 122MODULE_PARM_DESC(debug, " Default debug msglevel");
 123
 124static struct workqueue_struct *bnx2x_wq;
 125struct workqueue_struct *bnx2x_iov_wq;
 126
 127struct bnx2x_mac_vals {
 128        u32 xmac_addr;
 129        u32 xmac_val;
 130        u32 emac_addr;
 131        u32 emac_val;
 132        u32 umac_addr[2];
 133        u32 umac_val[2];
 134        u32 bmac_addr;
 135        u32 bmac_val[2];
 136};
 137
 138enum bnx2x_board_type {
 139        BCM57710 = 0,
 140        BCM57711,
 141        BCM57711E,
 142        BCM57712,
 143        BCM57712_MF,
 144        BCM57712_VF,
 145        BCM57800,
 146        BCM57800_MF,
 147        BCM57800_VF,
 148        BCM57810,
 149        BCM57810_MF,
 150        BCM57810_VF,
 151        BCM57840_4_10,
 152        BCM57840_2_20,
 153        BCM57840_MF,
 154        BCM57840_VF,
 155        BCM57811,
 156        BCM57811_MF,
 157        BCM57840_O,
 158        BCM57840_MFO,
 159        BCM57811_VF
 160};
 161
 162/* indexed by board_type, above */
 163static struct {
 164        char *name;
 165} board_info[] = {
 166        [BCM57710]      = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
 167        [BCM57711]      = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
 168        [BCM57711E]     = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
 169        [BCM57712]      = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
 170        [BCM57712_MF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
 171        [BCM57712_VF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
 172        [BCM57800]      = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
 173        [BCM57800_MF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
 174        [BCM57800_VF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
 175        [BCM57810]      = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
 176        [BCM57810_MF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
 177        [BCM57810_VF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
 178        [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
 179        [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
 180        [BCM57840_MF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
 181        [BCM57840_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
 182        [BCM57811]      = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
 183        [BCM57811_MF]   = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
 184        [BCM57840_O]    = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
 185        [BCM57840_MFO]  = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
 186        [BCM57811_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
 187};
 188
 189#ifndef PCI_DEVICE_ID_NX2_57710
 190#define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
 191#endif
 192#ifndef PCI_DEVICE_ID_NX2_57711
 193#define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
 194#endif
 195#ifndef PCI_DEVICE_ID_NX2_57711E
 196#define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
 197#endif
 198#ifndef PCI_DEVICE_ID_NX2_57712
 199#define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
 200#endif
 201#ifndef PCI_DEVICE_ID_NX2_57712_MF
 202#define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
 203#endif
 204#ifndef PCI_DEVICE_ID_NX2_57712_VF
 205#define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
 206#endif
 207#ifndef PCI_DEVICE_ID_NX2_57800
 208#define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
 209#endif
 210#ifndef PCI_DEVICE_ID_NX2_57800_MF
 211#define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
 212#endif
 213#ifndef PCI_DEVICE_ID_NX2_57800_VF
 214#define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
 215#endif
 216#ifndef PCI_DEVICE_ID_NX2_57810
 217#define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
 218#endif
 219#ifndef PCI_DEVICE_ID_NX2_57810_MF
 220#define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
 221#endif
 222#ifndef PCI_DEVICE_ID_NX2_57840_O
 223#define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
 224#endif
 225#ifndef PCI_DEVICE_ID_NX2_57810_VF
 226#define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
 227#endif
 228#ifndef PCI_DEVICE_ID_NX2_57840_4_10
 229#define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
 230#endif
 231#ifndef PCI_DEVICE_ID_NX2_57840_2_20
 232#define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
 233#endif
 234#ifndef PCI_DEVICE_ID_NX2_57840_MFO
 235#define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
 236#endif
 237#ifndef PCI_DEVICE_ID_NX2_57840_MF
 238#define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
 239#endif
 240#ifndef PCI_DEVICE_ID_NX2_57840_VF
 241#define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
 242#endif
 243#ifndef PCI_DEVICE_ID_NX2_57811
 244#define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
 245#endif
 246#ifndef PCI_DEVICE_ID_NX2_57811_MF
 247#define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
 248#endif
 249#ifndef PCI_DEVICE_ID_NX2_57811_VF
 250#define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
 251#endif
 252
 253static const struct pci_device_id bnx2x_pci_tbl[] = {
 254        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
 255        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
 256        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
 257        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
 258        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
 259        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
 260        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
 261        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
 262        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
 263        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
 264        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
 265        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
 266        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
 267        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
 268        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
 269        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
 270        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
 271        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
 272        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
 273        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
 274        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
 275        { 0 }
 276};
 277
 278MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
 279
 280/* Global resources for unloading a previously loaded device */
 281#define BNX2X_PREV_WAIT_NEEDED 1
 282static DEFINE_SEMAPHORE(bnx2x_prev_sem);
 283static LIST_HEAD(bnx2x_prev_list);
 284
 285/* Forward declaration */
 286static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
 287static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
 288static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
 289
 290/****************************************************************************
 291* General service functions
 292****************************************************************************/
 293
 294static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
 295
 296static void __storm_memset_dma_mapping(struct bnx2x *bp,
 297                                       u32 addr, dma_addr_t mapping)
 298{
 299        REG_WR(bp,  addr, U64_LO(mapping));
 300        REG_WR(bp,  addr + 4, U64_HI(mapping));
 301}
 302
 303static void storm_memset_spq_addr(struct bnx2x *bp,
 304                                  dma_addr_t mapping, u16 abs_fid)
 305{
 306        u32 addr = XSEM_REG_FAST_MEMORY +
 307                        XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
 308
 309        __storm_memset_dma_mapping(bp, addr, mapping);
 310}
 311
 312static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
 313                                  u16 pf_id)
 314{
 315        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
 316                pf_id);
 317        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
 318                pf_id);
 319        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
 320                pf_id);
 321        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
 322                pf_id);
 323}
 324
 325static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
 326                                 u8 enable)
 327{
 328        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
 329                enable);
 330        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
 331                enable);
 332        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
 333                enable);
 334        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
 335                enable);
 336}
 337
 338static void storm_memset_eq_data(struct bnx2x *bp,
 339                                 struct event_ring_data *eq_data,
 340                                u16 pfid)
 341{
 342        size_t size = sizeof(struct event_ring_data);
 343
 344        u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
 345
 346        __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
 347}
 348
 349static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
 350                                 u16 pfid)
 351{
 352        u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
 353        REG_WR16(bp, addr, eq_prod);
 354}
 355
 356/* used only at init
 357 * locking is done by mcp
 358 */
 359static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
 360{
 361        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
 362        pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
 363        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
 364                               PCICFG_VENDOR_ID_OFFSET);
 365}
 366
 367static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
 368{
 369        u32 val;
 370
 371        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
 372        pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
 373        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
 374                               PCICFG_VENDOR_ID_OFFSET);
 375
 376        return val;
 377}
 378
 379#define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
 380#define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
 381#define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
 382#define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
 383#define DMAE_DP_DST_NONE        "dst_addr [none]"
 384
 385static void bnx2x_dp_dmae(struct bnx2x *bp,
 386                          struct dmae_command *dmae, int msglvl)
 387{
 388        u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
 389        int i;
 390
 391        switch (dmae->opcode & DMAE_COMMAND_DST) {
 392        case DMAE_CMD_DST_PCI:
 393                if (src_type == DMAE_CMD_SRC_PCI)
 394                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 395                           "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
 396                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 397                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 398                           dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
 399                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 400                           dmae->comp_val);
 401                else
 402                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 403                           "src [%08x], len [%d*4], dst [%x:%08x]\n"
 404                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 405                           dmae->opcode, dmae->src_addr_lo >> 2,
 406                           dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
 407                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 408                           dmae->comp_val);
 409                break;
 410        case DMAE_CMD_DST_GRC:
 411                if (src_type == DMAE_CMD_SRC_PCI)
 412                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 413                           "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
 414                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 415                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 416                           dmae->len, dmae->dst_addr_lo >> 2,
 417                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 418                           dmae->comp_val);
 419                else
 420                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 421                           "src [%08x], len [%d*4], dst [%08x]\n"
 422                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 423                           dmae->opcode, dmae->src_addr_lo >> 2,
 424                           dmae->len, dmae->dst_addr_lo >> 2,
 425                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 426                           dmae->comp_val);
 427                break;
 428        default:
 429                if (src_type == DMAE_CMD_SRC_PCI)
 430                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 431                           "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
 432                           "comp_addr [%x:%08x]  comp_val 0x%08x\n",
 433                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 434                           dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
 435                           dmae->comp_val);
 436                else
 437                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 438                           "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
 439                           "comp_addr [%x:%08x]  comp_val 0x%08x\n",
 440                           dmae->opcode, dmae->src_addr_lo >> 2,
 441                           dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
 442                           dmae->comp_val);
 443                break;
 444        }
 445
 446        for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
 447                DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
 448                   i, *(((u32 *)dmae) + i));
 449}
 450
 451/* copy command into DMAE command memory and set DMAE command go */
 452void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
 453{
 454        u32 cmd_offset;
 455        int i;
 456
 457        cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
 458        for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
 459                REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
 460        }
 461        REG_WR(bp, dmae_reg_go_c[idx], 1);
 462}
 463
 464u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
 465{
 466        return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
 467                           DMAE_CMD_C_ENABLE);
 468}
 469
 470u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
 471{
 472        return opcode & ~DMAE_CMD_SRC_RESET;
 473}
 474
 475u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
 476                             bool with_comp, u8 comp_type)
 477{
 478        u32 opcode = 0;
 479
 480        opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
 481                   (dst_type << DMAE_COMMAND_DST_SHIFT));
 482
 483        opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
 484
 485        opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
 486        opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
 487                   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
 488        opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
 489
 490#ifdef __BIG_ENDIAN
 491        opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
 492#else
 493        opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
 494#endif
 495        if (with_comp)
 496                opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
 497        return opcode;
 498}
 499
 500void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
 501                                      struct dmae_command *dmae,
 502                                      u8 src_type, u8 dst_type)
 503{
 504        memset(dmae, 0, sizeof(struct dmae_command));
 505
 506        /* set the opcode */
 507        dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
 508                                         true, DMAE_COMP_PCI);
 509
 510        /* fill in the completion parameters */
 511        dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
 512        dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
 513        dmae->comp_val = DMAE_COMP_VAL;
 514}
 515
 516/* issue a dmae command over the init-channel and wait for completion */
 517int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
 518                               u32 *comp)
 519{
 520        int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
 521        int rc = 0;
 522
 523        bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
 524
 525        /* Lock the dmae channel. Disable BHs to prevent a dead-lock
 526         * as long as this code is called both from syscall context and
 527         * from ndo_set_rx_mode() flow that may be called from BH.
 528         */
 529
 530        spin_lock_bh(&bp->dmae_lock);
 531
 532        /* reset completion */
 533        *comp = 0;
 534
 535        /* post the command on the channel used for initializations */
 536        bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
 537
 538        /* wait for completion */
 539        udelay(5);
 540        while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
 541
 542                if (!cnt ||
 543                    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
 544                     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
 545                        BNX2X_ERR("DMAE timeout!\n");
 546                        rc = DMAE_TIMEOUT;
 547                        goto unlock;
 548                }
 549                cnt--;
 550                udelay(50);
 551        }
 552        if (*comp & DMAE_PCI_ERR_FLAG) {
 553                BNX2X_ERR("DMAE PCI error!\n");
 554                rc = DMAE_PCI_ERROR;
 555        }
 556
 557unlock:
 558
 559        spin_unlock_bh(&bp->dmae_lock);
 560
 561        return rc;
 562}
 563
 564void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
 565                      u32 len32)
 566{
 567        int rc;
 568        struct dmae_command dmae;
 569
 570        if (!bp->dmae_ready) {
 571                u32 *data = bnx2x_sp(bp, wb_data[0]);
 572
 573                if (CHIP_IS_E1(bp))
 574                        bnx2x_init_ind_wr(bp, dst_addr, data, len32);
 575                else
 576                        bnx2x_init_str_wr(bp, dst_addr, data, len32);
 577                return;
 578        }
 579
 580        /* set opcode and fixed command fields */
 581        bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
 582
 583        /* fill in addresses and len */
 584        dmae.src_addr_lo = U64_LO(dma_addr);
 585        dmae.src_addr_hi = U64_HI(dma_addr);
 586        dmae.dst_addr_lo = dst_addr >> 2;
 587        dmae.dst_addr_hi = 0;
 588        dmae.len = len32;
 589
 590        /* issue the command and wait for completion */
 591        rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
 592        if (rc) {
 593                BNX2X_ERR("DMAE returned failure %d\n", rc);
 594#ifdef BNX2X_STOP_ON_ERROR
 595                bnx2x_panic();
 596#endif
 597        }
 598}
 599
 600void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
 601{
 602        int rc;
 603        struct dmae_command dmae;
 604
 605        if (!bp->dmae_ready) {
 606                u32 *data = bnx2x_sp(bp, wb_data[0]);
 607                int i;
 608
 609                if (CHIP_IS_E1(bp))
 610                        for (i = 0; i < len32; i++)
 611                                data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
 612                else
 613                        for (i = 0; i < len32; i++)
 614                                data[i] = REG_RD(bp, src_addr + i*4);
 615
 616                return;
 617        }
 618
 619        /* set opcode and fixed command fields */
 620        bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
 621
 622        /* fill in addresses and len */
 623        dmae.src_addr_lo = src_addr >> 2;
 624        dmae.src_addr_hi = 0;
 625        dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
 626        dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
 627        dmae.len = len32;
 628
 629        /* issue the command and wait for completion */
 630        rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
 631        if (rc) {
 632                BNX2X_ERR("DMAE returned failure %d\n", rc);
 633#ifdef BNX2X_STOP_ON_ERROR
 634                bnx2x_panic();
 635#endif
 636        }
 637}
 638
 639static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
 640                                      u32 addr, u32 len)
 641{
 642        int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
 643        int offset = 0;
 644
 645        while (len > dmae_wr_max) {
 646                bnx2x_write_dmae(bp, phys_addr + offset,
 647                                 addr + offset, dmae_wr_max);
 648                offset += dmae_wr_max * 4;
 649                len -= dmae_wr_max;
 650        }
 651
 652        bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
 653}
 654
 655enum storms {
 656           XSTORM,
 657           TSTORM,
 658           CSTORM,
 659           USTORM,
 660           MAX_STORMS
 661};
 662
 663#define STORMS_NUM 4
 664#define REGS_IN_ENTRY 4
 665
 666static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
 667                                              enum storms storm,
 668                                              int entry)
 669{
 670        switch (storm) {
 671        case XSTORM:
 672                return XSTORM_ASSERT_LIST_OFFSET(entry);
 673        case TSTORM:
 674                return TSTORM_ASSERT_LIST_OFFSET(entry);
 675        case CSTORM:
 676                return CSTORM_ASSERT_LIST_OFFSET(entry);
 677        case USTORM:
 678                return USTORM_ASSERT_LIST_OFFSET(entry);
 679        case MAX_STORMS:
 680        default:
 681                BNX2X_ERR("unknown storm\n");
 682        }
 683        return -EINVAL;
 684}
 685
 686static int bnx2x_mc_assert(struct bnx2x *bp)
 687{
 688        char last_idx;
 689        int i, j, rc = 0;
 690        enum storms storm;
 691        u32 regs[REGS_IN_ENTRY];
 692        u32 bar_storm_intmem[STORMS_NUM] = {
 693                BAR_XSTRORM_INTMEM,
 694                BAR_TSTRORM_INTMEM,
 695                BAR_CSTRORM_INTMEM,
 696                BAR_USTRORM_INTMEM
 697        };
 698        u32 storm_assert_list_index[STORMS_NUM] = {
 699                XSTORM_ASSERT_LIST_INDEX_OFFSET,
 700                TSTORM_ASSERT_LIST_INDEX_OFFSET,
 701                CSTORM_ASSERT_LIST_INDEX_OFFSET,
 702                USTORM_ASSERT_LIST_INDEX_OFFSET
 703        };
 704        char *storms_string[STORMS_NUM] = {
 705                "XSTORM",
 706                "TSTORM",
 707                "CSTORM",
 708                "USTORM"
 709        };
 710
 711        for (storm = XSTORM; storm < MAX_STORMS; storm++) {
 712                last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
 713                                   storm_assert_list_index[storm]);
 714                if (last_idx)
 715                        BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
 716                                  storms_string[storm], last_idx);
 717
 718                /* print the asserts */
 719                for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
 720                        /* read a single assert entry */
 721                        for (j = 0; j < REGS_IN_ENTRY; j++)
 722                                regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
 723                                          bnx2x_get_assert_list_entry(bp,
 724                                                                      storm,
 725                                                                      i) +
 726                                          sizeof(u32) * j);
 727
 728                        /* log entry if it contains a valid assert */
 729                        if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
 730                                BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
 731                                          storms_string[storm], i, regs[3],
 732                                          regs[2], regs[1], regs[0]);
 733                                rc++;
 734                        } else {
 735                                break;
 736                        }
 737                }
 738        }
 739
 740        BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
 741                  CHIP_IS_E1(bp) ? "everest1" :
 742                  CHIP_IS_E1H(bp) ? "everest1h" :
 743                  CHIP_IS_E2(bp) ? "everest2" : "everest3",
 744                  BCM_5710_FW_MAJOR_VERSION,
 745                  BCM_5710_FW_MINOR_VERSION,
 746                  BCM_5710_FW_REVISION_VERSION);
 747
 748        return rc;
 749}
 750
 751#define MCPR_TRACE_BUFFER_SIZE  (0x800)
 752#define SCRATCH_BUFFER_SIZE(bp) \
 753        (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
 754
 755void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
 756{
 757        u32 addr, val;
 758        u32 mark, offset;
 759        __be32 data[9];
 760        int word;
 761        u32 trace_shmem_base;
 762        if (BP_NOMCP(bp)) {
 763                BNX2X_ERR("NO MCP - can not dump\n");
 764                return;
 765        }
 766        netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
 767                (bp->common.bc_ver & 0xff0000) >> 16,
 768                (bp->common.bc_ver & 0xff00) >> 8,
 769                (bp->common.bc_ver & 0xff));
 770
 771        val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
 772        if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
 773                BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
 774
 775        if (BP_PATH(bp) == 0)
 776                trace_shmem_base = bp->common.shmem_base;
 777        else
 778                trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
 779
 780        /* sanity */
 781        if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
 782            trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
 783                                SCRATCH_BUFFER_SIZE(bp)) {
 784                BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
 785                          trace_shmem_base);
 786                return;
 787        }
 788
 789        addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
 790
 791        /* validate TRCB signature */
 792        mark = REG_RD(bp, addr);
 793        if (mark != MFW_TRACE_SIGNATURE) {
 794                BNX2X_ERR("Trace buffer signature is missing.");
 795                return ;
 796        }
 797
 798        /* read cyclic buffer pointer */
 799        addr += 4;
 800        mark = REG_RD(bp, addr);
 801        mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
 802        if (mark >= trace_shmem_base || mark < addr + 4) {
 803                BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
 804                return;
 805        }
 806        printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
 807
 808        printk("%s", lvl);
 809
 810        /* dump buffer after the mark */
 811        for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
 812                for (word = 0; word < 8; word++)
 813                        data[word] = htonl(REG_RD(bp, offset + 4*word));
 814                data[8] = 0x0;
 815                pr_cont("%s", (char *)data);
 816        }
 817
 818        /* dump buffer before the mark */
 819        for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
 820                for (word = 0; word < 8; word++)
 821                        data[word] = htonl(REG_RD(bp, offset + 4*word));
 822                data[8] = 0x0;
 823                pr_cont("%s", (char *)data);
 824        }
 825        printk("%s" "end of fw dump\n", lvl);
 826}
 827
 828static void bnx2x_fw_dump(struct bnx2x *bp)
 829{
 830        bnx2x_fw_dump_lvl(bp, KERN_ERR);
 831}
 832
 833static void bnx2x_hc_int_disable(struct bnx2x *bp)
 834{
 835        int port = BP_PORT(bp);
 836        u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
 837        u32 val = REG_RD(bp, addr);
 838
 839        /* in E1 we must use only PCI configuration space to disable
 840         * MSI/MSIX capability
 841         * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
 842         */
 843        if (CHIP_IS_E1(bp)) {
 844                /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
 845                 * Use mask register to prevent from HC sending interrupts
 846                 * after we exit the function
 847                 */
 848                REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
 849
 850                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
 851                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
 852                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
 853        } else
 854                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
 855                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
 856                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
 857                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
 858
 859        DP(NETIF_MSG_IFDOWN,
 860           "write %x to HC %d (addr 0x%x)\n",
 861           val, port, addr);
 862
 863        /* flush all outstanding writes */
 864        mmiowb();
 865
 866        REG_WR(bp, addr, val);
 867        if (REG_RD(bp, addr) != val)
 868                BNX2X_ERR("BUG! Proper val not read from IGU!\n");
 869}
 870
 871static void bnx2x_igu_int_disable(struct bnx2x *bp)
 872{
 873        u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
 874
 875        val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
 876                 IGU_PF_CONF_INT_LINE_EN |
 877                 IGU_PF_CONF_ATTN_BIT_EN);
 878
 879        DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
 880
 881        /* flush all outstanding writes */
 882        mmiowb();
 883
 884        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
 885        if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
 886                BNX2X_ERR("BUG! Proper val not read from IGU!\n");
 887}
 888
 889static void bnx2x_int_disable(struct bnx2x *bp)
 890{
 891        if (bp->common.int_block == INT_BLOCK_HC)
 892                bnx2x_hc_int_disable(bp);
 893        else
 894                bnx2x_igu_int_disable(bp);
 895}
 896
 897void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
 898{
 899        int i;
 900        u16 j;
 901        struct hc_sp_status_block_data sp_sb_data;
 902        int func = BP_FUNC(bp);
 903#ifdef BNX2X_STOP_ON_ERROR
 904        u16 start = 0, end = 0;
 905        u8 cos;
 906#endif
 907        if (IS_PF(bp) && disable_int)
 908                bnx2x_int_disable(bp);
 909
 910        bp->stats_state = STATS_STATE_DISABLED;
 911        bp->eth_stats.unrecoverable_error++;
 912        DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
 913
 914        BNX2X_ERR("begin crash dump -----------------\n");
 915
 916        /* Indices */
 917        /* Common */
 918        if (IS_PF(bp)) {
 919                struct host_sp_status_block *def_sb = bp->def_status_blk;
 920                int data_size, cstorm_offset;
 921
 922                BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
 923                          bp->def_idx, bp->def_att_idx, bp->attn_state,
 924                          bp->spq_prod_idx, bp->stats_counter);
 925                BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
 926                          def_sb->atten_status_block.attn_bits,
 927                          def_sb->atten_status_block.attn_bits_ack,
 928                          def_sb->atten_status_block.status_block_id,
 929                          def_sb->atten_status_block.attn_bits_index);
 930                BNX2X_ERR("     def (");
 931                for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
 932                        pr_cont("0x%x%s",
 933                                def_sb->sp_sb.index_values[i],
 934                                (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
 935
 936                data_size = sizeof(struct hc_sp_status_block_data) /
 937                            sizeof(u32);
 938                cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
 939                for (i = 0; i < data_size; i++)
 940                        *((u32 *)&sp_sb_data + i) =
 941                                REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
 942                                           i * sizeof(u32));
 943
 944                pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
 945                        sp_sb_data.igu_sb_id,
 946                        sp_sb_data.igu_seg_id,
 947                        sp_sb_data.p_func.pf_id,
 948                        sp_sb_data.p_func.vnic_id,
 949                        sp_sb_data.p_func.vf_id,
 950                        sp_sb_data.p_func.vf_valid,
 951                        sp_sb_data.state);
 952        }
 953
 954        for_each_eth_queue(bp, i) {
 955                struct bnx2x_fastpath *fp = &bp->fp[i];
 956                int loop;
 957                struct hc_status_block_data_e2 sb_data_e2;
 958                struct hc_status_block_data_e1x sb_data_e1x;
 959                struct hc_status_block_sm  *hc_sm_p =
 960                        CHIP_IS_E1x(bp) ?
 961                        sb_data_e1x.common.state_machine :
 962                        sb_data_e2.common.state_machine;
 963                struct hc_index_data *hc_index_p =
 964                        CHIP_IS_E1x(bp) ?
 965                        sb_data_e1x.index_data :
 966                        sb_data_e2.index_data;
 967                u8 data_size, cos;
 968                u32 *sb_data_p;
 969                struct bnx2x_fp_txdata txdata;
 970
 971                if (!bp->fp)
 972                        break;
 973
 974                if (!fp->rx_cons_sb)
 975                        continue;
 976
 977                /* Rx */
 978                BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
 979                          i, fp->rx_bd_prod, fp->rx_bd_cons,
 980                          fp->rx_comp_prod,
 981                          fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
 982                BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
 983                          fp->rx_sge_prod, fp->last_max_sge,
 984                          le16_to_cpu(fp->fp_hc_idx));
 985
 986                /* Tx */
 987                for_each_cos_in_tx_queue(fp, cos)
 988                {
 989                        if (!fp->txdata_ptr[cos])
 990                                break;
 991
 992                        txdata = *fp->txdata_ptr[cos];
 993
 994                        if (!txdata.tx_cons_sb)
 995                                continue;
 996
 997                        BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
 998                                  i, txdata.tx_pkt_prod,
 999                                  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1000                                  txdata.tx_bd_cons,
1001                                  le16_to_cpu(*txdata.tx_cons_sb));
1002                }
1003
1004                loop = CHIP_IS_E1x(bp) ?
1005                        HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1006
1007                /* host sb data */
1008
1009                if (IS_FCOE_FP(fp))
1010                        continue;
1011
1012                BNX2X_ERR("     run indexes (");
1013                for (j = 0; j < HC_SB_MAX_SM; j++)
1014                        pr_cont("0x%x%s",
1015                               fp->sb_running_index[j],
1016                               (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1017
1018                BNX2X_ERR("     indexes (");
1019                for (j = 0; j < loop; j++)
1020                        pr_cont("0x%x%s",
1021                               fp->sb_index_values[j],
1022                               (j == loop - 1) ? ")" : " ");
1023
1024                /* VF cannot access FW refelection for status block */
1025                if (IS_VF(bp))
1026                        continue;
1027
1028                /* fw sb data */
1029                data_size = CHIP_IS_E1x(bp) ?
1030                        sizeof(struct hc_status_block_data_e1x) :
1031                        sizeof(struct hc_status_block_data_e2);
1032                data_size /= sizeof(u32);
1033                sb_data_p = CHIP_IS_E1x(bp) ?
1034                        (u32 *)&sb_data_e1x :
1035                        (u32 *)&sb_data_e2;
1036                /* copy sb data in here */
1037                for (j = 0; j < data_size; j++)
1038                        *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1039                                CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1040                                j * sizeof(u32));
1041
1042                if (!CHIP_IS_E1x(bp)) {
1043                        pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1044                                sb_data_e2.common.p_func.pf_id,
1045                                sb_data_e2.common.p_func.vf_id,
1046                                sb_data_e2.common.p_func.vf_valid,
1047                                sb_data_e2.common.p_func.vnic_id,
1048                                sb_data_e2.common.same_igu_sb_1b,
1049                                sb_data_e2.common.state);
1050                } else {
1051                        pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1052                                sb_data_e1x.common.p_func.pf_id,
1053                                sb_data_e1x.common.p_func.vf_id,
1054                                sb_data_e1x.common.p_func.vf_valid,
1055                                sb_data_e1x.common.p_func.vnic_id,
1056                                sb_data_e1x.common.same_igu_sb_1b,
1057                                sb_data_e1x.common.state);
1058                }
1059
1060                /* SB_SMs data */
1061                for (j = 0; j < HC_SB_MAX_SM; j++) {
1062                        pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1063                                j, hc_sm_p[j].__flags,
1064                                hc_sm_p[j].igu_sb_id,
1065                                hc_sm_p[j].igu_seg_id,
1066                                hc_sm_p[j].time_to_expire,
1067                                hc_sm_p[j].timer_value);
1068                }
1069
1070                /* Indices data */
1071                for (j = 0; j < loop; j++) {
1072                        pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1073                               hc_index_p[j].flags,
1074                               hc_index_p[j].timeout);
1075                }
1076        }
1077
1078#ifdef BNX2X_STOP_ON_ERROR
1079        if (IS_PF(bp)) {
1080                /* event queue */
1081                BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1082                for (i = 0; i < NUM_EQ_DESC; i++) {
1083                        u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1084
1085                        BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1086                                  i, bp->eq_ring[i].message.opcode,
1087                                  bp->eq_ring[i].message.error);
1088                        BNX2X_ERR("data: %x %x %x\n",
1089                                  data[0], data[1], data[2]);
1090                }
1091        }
1092
1093        /* Rings */
1094        /* Rx */
1095        for_each_valid_rx_queue(bp, i) {
1096                struct bnx2x_fastpath *fp = &bp->fp[i];
1097
1098                if (!bp->fp)
1099                        break;
1100
1101                if (!fp->rx_cons_sb)
1102                        continue;
1103
1104                start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1105                end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1106                for (j = start; j != end; j = RX_BD(j + 1)) {
1107                        u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1108                        struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1109
1110                        BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1111                                  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1112                }
1113
1114                start = RX_SGE(fp->rx_sge_prod);
1115                end = RX_SGE(fp->last_max_sge);
1116                for (j = start; j != end; j = RX_SGE(j + 1)) {
1117                        u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1118                        struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1119
1120                        BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1121                                  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1122                }
1123
1124                start = RCQ_BD(fp->rx_comp_cons - 10);
1125                end = RCQ_BD(fp->rx_comp_cons + 503);
1126                for (j = start; j != end; j = RCQ_BD(j + 1)) {
1127                        u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1128
1129                        BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1130                                  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1131                }
1132        }
1133
1134        /* Tx */
1135        for_each_valid_tx_queue(bp, i) {
1136                struct bnx2x_fastpath *fp = &bp->fp[i];
1137
1138                if (!bp->fp)
1139                        break;
1140
1141                for_each_cos_in_tx_queue(fp, cos) {
1142                        struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1143
1144                        if (!fp->txdata_ptr[cos])
1145                                break;
1146
1147                        if (!txdata->tx_cons_sb)
1148                                continue;
1149
1150                        start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1151                        end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1152                        for (j = start; j != end; j = TX_BD(j + 1)) {
1153                                struct sw_tx_bd *sw_bd =
1154                                        &txdata->tx_buf_ring[j];
1155
1156                                BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1157                                          i, cos, j, sw_bd->skb,
1158                                          sw_bd->first_bd);
1159                        }
1160
1161                        start = TX_BD(txdata->tx_bd_cons - 10);
1162                        end = TX_BD(txdata->tx_bd_cons + 254);
1163                        for (j = start; j != end; j = TX_BD(j + 1)) {
1164                                u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1165
1166                                BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1167                                          i, cos, j, tx_bd[0], tx_bd[1],
1168                                          tx_bd[2], tx_bd[3]);
1169                        }
1170                }
1171        }
1172#endif
1173        if (IS_PF(bp)) {
1174                bnx2x_fw_dump(bp);
1175                bnx2x_mc_assert(bp);
1176        }
1177        BNX2X_ERR("end crash dump -----------------\n");
1178}
1179
1180/*
1181 * FLR Support for E2
1182 *
1183 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1184 * initialization.
1185 */
1186#define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1187#define FLR_WAIT_INTERVAL       50      /* usec */
1188#define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1189
1190struct pbf_pN_buf_regs {
1191        int pN;
1192        u32 init_crd;
1193        u32 crd;
1194        u32 crd_freed;
1195};
1196
1197struct pbf_pN_cmd_regs {
1198        int pN;
1199        u32 lines_occup;
1200        u32 lines_freed;
1201};
1202
1203static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1204                                     struct pbf_pN_buf_regs *regs,
1205                                     u32 poll_count)
1206{
1207        u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1208        u32 cur_cnt = poll_count;
1209
1210        crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1211        crd = crd_start = REG_RD(bp, regs->crd);
1212        init_crd = REG_RD(bp, regs->init_crd);
1213
1214        DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1215        DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1216        DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1217
1218        while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1219               (init_crd - crd_start))) {
1220                if (cur_cnt--) {
1221                        udelay(FLR_WAIT_INTERVAL);
1222                        crd = REG_RD(bp, regs->crd);
1223                        crd_freed = REG_RD(bp, regs->crd_freed);
1224                } else {
1225                        DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1226                           regs->pN);
1227                        DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1228                           regs->pN, crd);
1229                        DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1230                           regs->pN, crd_freed);
1231                        break;
1232                }
1233        }
1234        DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1235           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1236}
1237
1238static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1239                                     struct pbf_pN_cmd_regs *regs,
1240                                     u32 poll_count)
1241{
1242        u32 occup, to_free, freed, freed_start;
1243        u32 cur_cnt = poll_count;
1244
1245        occup = to_free = REG_RD(bp, regs->lines_occup);
1246        freed = freed_start = REG_RD(bp, regs->lines_freed);
1247
1248        DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1249        DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1250
1251        while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1252                if (cur_cnt--) {
1253                        udelay(FLR_WAIT_INTERVAL);
1254                        occup = REG_RD(bp, regs->lines_occup);
1255                        freed = REG_RD(bp, regs->lines_freed);
1256                } else {
1257                        DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1258                           regs->pN);
1259                        DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1260                           regs->pN, occup);
1261                        DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1262                           regs->pN, freed);
1263                        break;
1264                }
1265        }
1266        DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1267           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1268}
1269
1270static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1271                                    u32 expected, u32 poll_count)
1272{
1273        u32 cur_cnt = poll_count;
1274        u32 val;
1275
1276        while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1277                udelay(FLR_WAIT_INTERVAL);
1278
1279        return val;
1280}
1281
1282int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1283                                    char *msg, u32 poll_cnt)
1284{
1285        u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1286        if (val != 0) {
1287                BNX2X_ERR("%s usage count=%d\n", msg, val);
1288                return 1;
1289        }
1290        return 0;
1291}
1292
1293/* Common routines with VF FLR cleanup */
1294u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1295{
1296        /* adjust polling timeout */
1297        if (CHIP_REV_IS_EMUL(bp))
1298                return FLR_POLL_CNT * 2000;
1299
1300        if (CHIP_REV_IS_FPGA(bp))
1301                return FLR_POLL_CNT * 120;
1302
1303        return FLR_POLL_CNT;
1304}
1305
1306void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1307{
1308        struct pbf_pN_cmd_regs cmd_regs[] = {
1309                {0, (CHIP_IS_E3B0(bp)) ?
1310                        PBF_REG_TQ_OCCUPANCY_Q0 :
1311                        PBF_REG_P0_TQ_OCCUPANCY,
1312                    (CHIP_IS_E3B0(bp)) ?
1313                        PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1314                        PBF_REG_P0_TQ_LINES_FREED_CNT},
1315                {1, (CHIP_IS_E3B0(bp)) ?
1316                        PBF_REG_TQ_OCCUPANCY_Q1 :
1317                        PBF_REG_P1_TQ_OCCUPANCY,
1318                    (CHIP_IS_E3B0(bp)) ?
1319                        PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1320                        PBF_REG_P1_TQ_LINES_FREED_CNT},
1321                {4, (CHIP_IS_E3B0(bp)) ?
1322                        PBF_REG_TQ_OCCUPANCY_LB_Q :
1323                        PBF_REG_P4_TQ_OCCUPANCY,
1324                    (CHIP_IS_E3B0(bp)) ?
1325                        PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1326                        PBF_REG_P4_TQ_LINES_FREED_CNT}
1327        };
1328
1329        struct pbf_pN_buf_regs buf_regs[] = {
1330                {0, (CHIP_IS_E3B0(bp)) ?
1331                        PBF_REG_INIT_CRD_Q0 :
1332                        PBF_REG_P0_INIT_CRD ,
1333                    (CHIP_IS_E3B0(bp)) ?
1334                        PBF_REG_CREDIT_Q0 :
1335                        PBF_REG_P0_CREDIT,
1336                    (CHIP_IS_E3B0(bp)) ?
1337                        PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1338                        PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1339                {1, (CHIP_IS_E3B0(bp)) ?
1340                        PBF_REG_INIT_CRD_Q1 :
1341                        PBF_REG_P1_INIT_CRD,
1342                    (CHIP_IS_E3B0(bp)) ?
1343                        PBF_REG_CREDIT_Q1 :
1344                        PBF_REG_P1_CREDIT,
1345                    (CHIP_IS_E3B0(bp)) ?
1346                        PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1347                        PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1348                {4, (CHIP_IS_E3B0(bp)) ?
1349                        PBF_REG_INIT_CRD_LB_Q :
1350                        PBF_REG_P4_INIT_CRD,
1351                    (CHIP_IS_E3B0(bp)) ?
1352                        PBF_REG_CREDIT_LB_Q :
1353                        PBF_REG_P4_CREDIT,
1354                    (CHIP_IS_E3B0(bp)) ?
1355                        PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1356                        PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1357        };
1358
1359        int i;
1360
1361        /* Verify the command queues are flushed P0, P1, P4 */
1362        for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1363                bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1364
1365        /* Verify the transmission buffers are flushed P0, P1, P4 */
1366        for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1367                bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1368}
1369
1370#define OP_GEN_PARAM(param) \
1371        (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1372
1373#define OP_GEN_TYPE(type) \
1374        (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1375
1376#define OP_GEN_AGG_VECT(index) \
1377        (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1378
1379int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1380{
1381        u32 op_gen_command = 0;
1382        u32 comp_addr = BAR_CSTRORM_INTMEM +
1383                        CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1384        int ret = 0;
1385
1386        if (REG_RD(bp, comp_addr)) {
1387                BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1388                return 1;
1389        }
1390
1391        op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1392        op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1393        op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1394        op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1395
1396        DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1397        REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1398
1399        if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1400                BNX2X_ERR("FW final cleanup did not succeed\n");
1401                DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1402                   (REG_RD(bp, comp_addr)));
1403                bnx2x_panic();
1404                return 1;
1405        }
1406        /* Zero completion for next FLR */
1407        REG_WR(bp, comp_addr, 0);
1408
1409        return ret;
1410}
1411
1412u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1413{
1414        u16 status;
1415
1416        pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1417        return status & PCI_EXP_DEVSTA_TRPND;
1418}
1419
1420/* PF FLR specific routines
1421*/
1422static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1423{
1424        /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1425        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1426                        CFC_REG_NUM_LCIDS_INSIDE_PF,
1427                        "CFC PF usage counter timed out",
1428                        poll_cnt))
1429                return 1;
1430
1431        /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1432        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1433                        DORQ_REG_PF_USAGE_CNT,
1434                        "DQ PF usage counter timed out",
1435                        poll_cnt))
1436                return 1;
1437
1438        /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1439        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1440                        QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1441                        "QM PF usage counter timed out",
1442                        poll_cnt))
1443                return 1;
1444
1445        /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1446        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1447                        TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1448                        "Timers VNIC usage counter timed out",
1449                        poll_cnt))
1450                return 1;
1451        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1452                        TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1453                        "Timers NUM_SCANS usage counter timed out",
1454                        poll_cnt))
1455                return 1;
1456
1457        /* Wait DMAE PF usage counter to zero */
1458        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1459                        dmae_reg_go_c[INIT_DMAE_C(bp)],
1460                        "DMAE command register timed out",
1461                        poll_cnt))
1462                return 1;
1463
1464        return 0;
1465}
1466
1467static void bnx2x_hw_enable_status(struct bnx2x *bp)
1468{
1469        u32 val;
1470
1471        val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1472        DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1473
1474        val = REG_RD(bp, PBF_REG_DISABLE_PF);
1475        DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1476
1477        val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1478        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1479
1480        val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1481        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1482
1483        val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1484        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1485
1486        val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1487        DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1488
1489        val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1490        DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1491
1492        val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1493        DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1494           val);
1495}
1496
1497static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1498{
1499        u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1500
1501        DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1502
1503        /* Re-enable PF target read access */
1504        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1505
1506        /* Poll HW usage counters */
1507        DP(BNX2X_MSG_SP, "Polling usage counters\n");
1508        if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1509                return -EBUSY;
1510
1511        /* Zero the igu 'trailing edge' and 'leading edge' */
1512
1513        /* Send the FW cleanup command */
1514        if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1515                return -EBUSY;
1516
1517        /* ATC cleanup */
1518
1519        /* Verify TX hw is flushed */
1520        bnx2x_tx_hw_flushed(bp, poll_cnt);
1521
1522        /* Wait 100ms (not adjusted according to platform) */
1523        msleep(100);
1524
1525        /* Verify no pending pci transactions */
1526        if (bnx2x_is_pcie_pending(bp->pdev))
1527                BNX2X_ERR("PCIE Transactions still pending\n");
1528
1529        /* Debug */
1530        bnx2x_hw_enable_status(bp);
1531
1532        /*
1533         * Master enable - Due to WB DMAE writes performed before this
1534         * register is re-initialized as part of the regular function init
1535         */
1536        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1537
1538        return 0;
1539}
1540
1541static void bnx2x_hc_int_enable(struct bnx2x *bp)
1542{
1543        int port = BP_PORT(bp);
1544        u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1545        u32 val = REG_RD(bp, addr);
1546        bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1547        bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1548        bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1549
1550        if (msix) {
1551                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1552                         HC_CONFIG_0_REG_INT_LINE_EN_0);
1553                val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1554                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1555                if (single_msix)
1556                        val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1557        } else if (msi) {
1558                val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1559                val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1560                        HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1561                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1562        } else {
1563                val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1564                        HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1565                        HC_CONFIG_0_REG_INT_LINE_EN_0 |
1566                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1567
1568                if (!CHIP_IS_E1(bp)) {
1569                        DP(NETIF_MSG_IFUP,
1570                           "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1571
1572                        REG_WR(bp, addr, val);
1573
1574                        val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1575                }
1576        }
1577
1578        if (CHIP_IS_E1(bp))
1579                REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1580
1581        DP(NETIF_MSG_IFUP,
1582           "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1583           (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1584
1585        REG_WR(bp, addr, val);
1586        /*
1587         * Ensure that HC_CONFIG is written before leading/trailing edge config
1588         */
1589        mmiowb();
1590        barrier();
1591
1592        if (!CHIP_IS_E1(bp)) {
1593                /* init leading/trailing edge */
1594                if (IS_MF(bp)) {
1595                        val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1596                        if (bp->port.pmf)
1597                                /* enable nig and gpio3 attention */
1598                                val |= 0x1100;
1599                } else
1600                        val = 0xffff;
1601
1602                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1603                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1604        }
1605
1606        /* Make sure that interrupts are indeed enabled from here on */
1607        mmiowb();
1608}
1609
1610static void bnx2x_igu_int_enable(struct bnx2x *bp)
1611{
1612        u32 val;
1613        bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1614        bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1615        bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1616
1617        val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1618
1619        if (msix) {
1620                val &= ~(IGU_PF_CONF_INT_LINE_EN |
1621                         IGU_PF_CONF_SINGLE_ISR_EN);
1622                val |= (IGU_PF_CONF_MSI_MSIX_EN |
1623                        IGU_PF_CONF_ATTN_BIT_EN);
1624
1625                if (single_msix)
1626                        val |= IGU_PF_CONF_SINGLE_ISR_EN;
1627        } else if (msi) {
1628                val &= ~IGU_PF_CONF_INT_LINE_EN;
1629                val |= (IGU_PF_CONF_MSI_MSIX_EN |
1630                        IGU_PF_CONF_ATTN_BIT_EN |
1631                        IGU_PF_CONF_SINGLE_ISR_EN);
1632        } else {
1633                val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1634                val |= (IGU_PF_CONF_INT_LINE_EN |
1635                        IGU_PF_CONF_ATTN_BIT_EN |
1636                        IGU_PF_CONF_SINGLE_ISR_EN);
1637        }
1638
1639        /* Clean previous status - need to configure igu prior to ack*/
1640        if ((!msix) || single_msix) {
1641                REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1642                bnx2x_ack_int(bp);
1643        }
1644
1645        val |= IGU_PF_CONF_FUNC_EN;
1646
1647        DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1648           val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1649
1650        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1651
1652        if (val & IGU_PF_CONF_INT_LINE_EN)
1653                pci_intx(bp->pdev, true);
1654
1655        barrier();
1656
1657        /* init leading/trailing edge */
1658        if (IS_MF(bp)) {
1659                val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1660                if (bp->port.pmf)
1661                        /* enable nig and gpio3 attention */
1662                        val |= 0x1100;
1663        } else
1664                val = 0xffff;
1665
1666        REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1667        REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1668
1669        /* Make sure that interrupts are indeed enabled from here on */
1670        mmiowb();
1671}
1672
1673void bnx2x_int_enable(struct bnx2x *bp)
1674{
1675        if (bp->common.int_block == INT_BLOCK_HC)
1676                bnx2x_hc_int_enable(bp);
1677        else
1678                bnx2x_igu_int_enable(bp);
1679}
1680
1681void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1682{
1683        int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1684        int i, offset;
1685
1686        if (disable_hw)
1687                /* prevent the HW from sending interrupts */
1688                bnx2x_int_disable(bp);
1689
1690        /* make sure all ISRs are done */
1691        if (msix) {
1692                synchronize_irq(bp->msix_table[0].vector);
1693                offset = 1;
1694                if (CNIC_SUPPORT(bp))
1695                        offset++;
1696                for_each_eth_queue(bp, i)
1697                        synchronize_irq(bp->msix_table[offset++].vector);
1698        } else
1699                synchronize_irq(bp->pdev->irq);
1700
1701        /* make sure sp_task is not running */
1702        cancel_delayed_work(&bp->sp_task);
1703        cancel_delayed_work(&bp->period_task);
1704        flush_workqueue(bnx2x_wq);
1705}
1706
1707/* fast path */
1708
1709/*
1710 * General service functions
1711 */
1712
1713/* Return true if succeeded to acquire the lock */
1714static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1715{
1716        u32 lock_status;
1717        u32 resource_bit = (1 << resource);
1718        int func = BP_FUNC(bp);
1719        u32 hw_lock_control_reg;
1720
1721        DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1722           "Trying to take a lock on resource %d\n", resource);
1723
1724        /* Validating that the resource is within range */
1725        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1726                DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1727                   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1728                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1729                return false;
1730        }
1731
1732        if (func <= 5)
1733                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1734        else
1735                hw_lock_control_reg =
1736                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1737
1738        /* Try to acquire the lock */
1739        REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1740        lock_status = REG_RD(bp, hw_lock_control_reg);
1741        if (lock_status & resource_bit)
1742                return true;
1743
1744        DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1745           "Failed to get a lock on resource %d\n", resource);
1746        return false;
1747}
1748
1749/**
1750 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1751 *
1752 * @bp: driver handle
1753 *
1754 * Returns the recovery leader resource id according to the engine this function
1755 * belongs to. Currently only only 2 engines is supported.
1756 */
1757static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1758{
1759        if (BP_PATH(bp))
1760                return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1761        else
1762                return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1763}
1764
1765/**
1766 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1767 *
1768 * @bp: driver handle
1769 *
1770 * Tries to acquire a leader lock for current engine.
1771 */
1772static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1773{
1774        return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1775}
1776
1777static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1778
1779/* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1780static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1781{
1782        /* Set the interrupt occurred bit for the sp-task to recognize it
1783         * must ack the interrupt and transition according to the IGU
1784         * state machine.
1785         */
1786        atomic_set(&bp->interrupt_occurred, 1);
1787
1788        /* The sp_task must execute only after this bit
1789         * is set, otherwise we will get out of sync and miss all
1790         * further interrupts. Hence, the barrier.
1791         */
1792        smp_wmb();
1793
1794        /* schedule sp_task to workqueue */
1795        return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1796}
1797
1798void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1799{
1800        struct bnx2x *bp = fp->bp;
1801        int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1802        int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1803        enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1804        struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1805
1806        DP(BNX2X_MSG_SP,
1807           "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1808           fp->index, cid, command, bp->state,
1809           rr_cqe->ramrod_cqe.ramrod_type);
1810
1811        /* If cid is within VF range, replace the slowpath object with the
1812         * one corresponding to this VF
1813         */
1814        if (cid >= BNX2X_FIRST_VF_CID  &&
1815            cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1816                bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1817
1818        switch (command) {
1819        case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1820                DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1821                drv_cmd = BNX2X_Q_CMD_UPDATE;
1822                break;
1823
1824        case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1825                DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1826                drv_cmd = BNX2X_Q_CMD_SETUP;
1827                break;
1828
1829        case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1830                DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1831                drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1832                break;
1833
1834        case (RAMROD_CMD_ID_ETH_HALT):
1835                DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1836                drv_cmd = BNX2X_Q_CMD_HALT;
1837                break;
1838
1839        case (RAMROD_CMD_ID_ETH_TERMINATE):
1840                DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1841                drv_cmd = BNX2X_Q_CMD_TERMINATE;
1842                break;
1843
1844        case (RAMROD_CMD_ID_ETH_EMPTY):
1845                DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1846                drv_cmd = BNX2X_Q_CMD_EMPTY;
1847                break;
1848
1849        case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1850                DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1851                drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1852                break;
1853
1854        default:
1855                BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1856                          command, fp->index);
1857                return;
1858        }
1859
1860        if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1861            q_obj->complete_cmd(bp, q_obj, drv_cmd))
1862                /* q_obj->complete_cmd() failure means that this was
1863                 * an unexpected completion.
1864                 *
1865                 * In this case we don't want to increase the bp->spq_left
1866                 * because apparently we haven't sent this command the first
1867                 * place.
1868                 */
1869#ifdef BNX2X_STOP_ON_ERROR
1870                bnx2x_panic();
1871#else
1872                return;
1873#endif
1874
1875        smp_mb__before_atomic();
1876        atomic_inc(&bp->cq_spq_left);
1877        /* push the change in bp->spq_left and towards the memory */
1878        smp_mb__after_atomic();
1879
1880        DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1881
1882        if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1883            (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1884                /* if Q update ramrod is completed for last Q in AFEX vif set
1885                 * flow, then ACK MCP at the end
1886                 *
1887                 * mark pending ACK to MCP bit.
1888                 * prevent case that both bits are cleared.
1889                 * At the end of load/unload driver checks that
1890                 * sp_state is cleared, and this order prevents
1891                 * races
1892                 */
1893                smp_mb__before_atomic();
1894                set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1895                wmb();
1896                clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1897                smp_mb__after_atomic();
1898
1899                /* schedule the sp task as mcp ack is required */
1900                bnx2x_schedule_sp_task(bp);
1901        }
1902
1903        return;
1904}
1905
1906irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1907{
1908        struct bnx2x *bp = netdev_priv(dev_instance);
1909        u16 status = bnx2x_ack_int(bp);
1910        u16 mask;
1911        int i;
1912        u8 cos;
1913
1914        /* Return here if interrupt is shared and it's not for us */
1915        if (unlikely(status == 0)) {
1916                DP(NETIF_MSG_INTR, "not our interrupt!\n");
1917                return IRQ_NONE;
1918        }
1919        DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1920
1921#ifdef BNX2X_STOP_ON_ERROR
1922        if (unlikely(bp->panic))
1923                return IRQ_HANDLED;
1924#endif
1925
1926        for_each_eth_queue(bp, i) {
1927                struct bnx2x_fastpath *fp = &bp->fp[i];
1928
1929                mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1930                if (status & mask) {
1931                        /* Handle Rx or Tx according to SB id */
1932                        for_each_cos_in_tx_queue(fp, cos)
1933                                prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1934                        prefetch(&fp->sb_running_index[SM_RX_ID]);
1935                        napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1936                        status &= ~mask;
1937                }
1938        }
1939
1940        if (CNIC_SUPPORT(bp)) {
1941                mask = 0x2;
1942                if (status & (mask | 0x1)) {
1943                        struct cnic_ops *c_ops = NULL;
1944
1945                        rcu_read_lock();
1946                        c_ops = rcu_dereference(bp->cnic_ops);
1947                        if (c_ops && (bp->cnic_eth_dev.drv_state &
1948                                      CNIC_DRV_STATE_HANDLES_IRQ))
1949                                c_ops->cnic_handler(bp->cnic_data, NULL);
1950                        rcu_read_unlock();
1951
1952                        status &= ~mask;
1953                }
1954        }
1955
1956        if (unlikely(status & 0x1)) {
1957
1958                /* schedule sp task to perform default status block work, ack
1959                 * attentions and enable interrupts.
1960                 */
1961                bnx2x_schedule_sp_task(bp);
1962
1963                status &= ~0x1;
1964                if (!status)
1965                        return IRQ_HANDLED;
1966        }
1967
1968        if (unlikely(status))
1969                DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1970                   status);
1971
1972        return IRQ_HANDLED;
1973}
1974
1975/* Link */
1976
1977/*
1978 * General service functions
1979 */
1980
1981int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1982{
1983        u32 lock_status;
1984        u32 resource_bit = (1 << resource);
1985        int func = BP_FUNC(bp);
1986        u32 hw_lock_control_reg;
1987        int cnt;
1988
1989        /* Validating that the resource is within range */
1990        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1991                BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1992                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1993                return -EINVAL;
1994        }
1995
1996        if (func <= 5) {
1997                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1998        } else {
1999                hw_lock_control_reg =
2000                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2001        }
2002
2003        /* Validating that the resource is not already taken */
2004        lock_status = REG_RD(bp, hw_lock_control_reg);
2005        if (lock_status & resource_bit) {
2006                BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2007                   lock_status, resource_bit);
2008                return -EEXIST;
2009        }
2010
2011        /* Try for 5 second every 5ms */
2012        for (cnt = 0; cnt < 1000; cnt++) {
2013                /* Try to acquire the lock */
2014                REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2015                lock_status = REG_RD(bp, hw_lock_control_reg);
2016                if (lock_status & resource_bit)
2017                        return 0;
2018
2019                usleep_range(5000, 10000);
2020        }
2021        BNX2X_ERR("Timeout\n");
2022        return -EAGAIN;
2023}
2024
2025int bnx2x_release_leader_lock(struct bnx2x *bp)
2026{
2027        return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2028}
2029
2030int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2031{
2032        u32 lock_status;
2033        u32 resource_bit = (1 << resource);
2034        int func = BP_FUNC(bp);
2035        u32 hw_lock_control_reg;
2036
2037        /* Validating that the resource is within range */
2038        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2039                BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2040                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2041                return -EINVAL;
2042        }
2043
2044        if (func <= 5) {
2045                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2046        } else {
2047                hw_lock_control_reg =
2048                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2049        }
2050
2051        /* Validating that the resource is currently taken */
2052        lock_status = REG_RD(bp, hw_lock_control_reg);
2053        if (!(lock_status & resource_bit)) {
2054                BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2055                          lock_status, resource_bit);
2056                return -EFAULT;
2057        }
2058
2059        REG_WR(bp, hw_lock_control_reg, resource_bit);
2060        return 0;
2061}
2062
2063int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2064{
2065        /* The GPIO should be swapped if swap register is set and active */
2066        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2067                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2068        int gpio_shift = gpio_num +
2069                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2070        u32 gpio_mask = (1 << gpio_shift);
2071        u32 gpio_reg;
2072        int value;
2073
2074        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2075                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2076                return -EINVAL;
2077        }
2078
2079        /* read GPIO value */
2080        gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2081
2082        /* get the requested pin value */
2083        if ((gpio_reg & gpio_mask) == gpio_mask)
2084                value = 1;
2085        else
2086                value = 0;
2087
2088        return value;
2089}
2090
2091int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2092{
2093        /* The GPIO should be swapped if swap register is set and active */
2094        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2095                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2096        int gpio_shift = gpio_num +
2097                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2098        u32 gpio_mask = (1 << gpio_shift);
2099        u32 gpio_reg;
2100
2101        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2102                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2103                return -EINVAL;
2104        }
2105
2106        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2107        /* read GPIO and mask except the float bits */
2108        gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2109
2110        switch (mode) {
2111        case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2112                DP(NETIF_MSG_LINK,
2113                   "Set GPIO %d (shift %d) -> output low\n",
2114                   gpio_num, gpio_shift);
2115                /* clear FLOAT and set CLR */
2116                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2117                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2118                break;
2119
2120        case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2121                DP(NETIF_MSG_LINK,
2122                   "Set GPIO %d (shift %d) -> output high\n",
2123                   gpio_num, gpio_shift);
2124                /* clear FLOAT and set SET */
2125                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2126                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2127                break;
2128
2129        case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2130                DP(NETIF_MSG_LINK,
2131                   "Set GPIO %d (shift %d) -> input\n",
2132                   gpio_num, gpio_shift);
2133                /* set FLOAT */
2134                gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2135                break;
2136
2137        default:
2138                break;
2139        }
2140
2141        REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2142        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2143
2144        return 0;
2145}
2146
2147int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2148{
2149        u32 gpio_reg = 0;
2150        int rc = 0;
2151
2152        /* Any port swapping should be handled by caller. */
2153
2154        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2155        /* read GPIO and mask except the float bits */
2156        gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2157        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2158        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2159        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2160
2161        switch (mode) {
2162        case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2163                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2164                /* set CLR */
2165                gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2166                break;
2167
2168        case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2169                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2170                /* set SET */
2171                gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2172                break;
2173
2174        case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2175                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2176                /* set FLOAT */
2177                gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2178                break;
2179
2180        default:
2181                BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2182                rc = -EINVAL;
2183                break;
2184        }
2185
2186        if (rc == 0)
2187                REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2188
2189        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2190
2191        return rc;
2192}
2193
2194int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2195{
2196        /* The GPIO should be swapped if swap register is set and active */
2197        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2198                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2199        int gpio_shift = gpio_num +
2200                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2201        u32 gpio_mask = (1 << gpio_shift);
2202        u32 gpio_reg;
2203
2204        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2205                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2206                return -EINVAL;
2207        }
2208
2209        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2210        /* read GPIO int */
2211        gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2212
2213        switch (mode) {
2214        case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2215                DP(NETIF_MSG_LINK,
2216                   "Clear GPIO INT %d (shift %d) -> output low\n",
2217                   gpio_num, gpio_shift);
2218                /* clear SET and set CLR */
2219                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2220                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2221                break;
2222
2223        case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2224                DP(NETIF_MSG_LINK,
2225                   "Set GPIO INT %d (shift %d) -> output high\n",
2226                   gpio_num, gpio_shift);
2227                /* clear CLR and set SET */
2228                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2229                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2230                break;
2231
2232        default:
2233                break;
2234        }
2235
2236        REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2237        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2238
2239        return 0;
2240}
2241
2242static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2243{
2244        u32 spio_reg;
2245
2246        /* Only 2 SPIOs are configurable */
2247        if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2248                BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2249                return -EINVAL;
2250        }
2251
2252        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2253        /* read SPIO and mask except the float bits */
2254        spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2255
2256        switch (mode) {
2257        case MISC_SPIO_OUTPUT_LOW:
2258                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2259                /* clear FLOAT and set CLR */
2260                spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2261                spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2262                break;
2263
2264        case MISC_SPIO_OUTPUT_HIGH:
2265                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2266                /* clear FLOAT and set SET */
2267                spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2268                spio_reg |=  (spio << MISC_SPIO_SET_POS);
2269                break;
2270
2271        case MISC_SPIO_INPUT_HI_Z:
2272                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2273                /* set FLOAT */
2274                spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2275                break;
2276
2277        default:
2278                break;
2279        }
2280
2281        REG_WR(bp, MISC_REG_SPIO, spio_reg);
2282        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2283
2284        return 0;
2285}
2286
2287void bnx2x_calc_fc_adv(struct bnx2x *bp)
2288{
2289        u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2290        switch (bp->link_vars.ieee_fc &
2291                MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2292        case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2293                bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2294                                                   ADVERTISED_Pause);
2295                break;
2296
2297        case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2298                bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2299                                                  ADVERTISED_Pause);
2300                break;
2301
2302        case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2303                bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2304                break;
2305
2306        default:
2307                bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2308                                                   ADVERTISED_Pause);
2309                break;
2310        }
2311}
2312
2313static void bnx2x_set_requested_fc(struct bnx2x *bp)
2314{
2315        /* Initialize link parameters structure variables
2316         * It is recommended to turn off RX FC for jumbo frames
2317         *  for better performance
2318         */
2319        if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2320                bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2321        else
2322                bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2323}
2324
2325static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2326{
2327        u32 pause_enabled = 0;
2328
2329        if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2330                if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2331                        pause_enabled = 1;
2332
2333                REG_WR(bp, BAR_USTRORM_INTMEM +
2334                           USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2335                       pause_enabled);
2336        }
2337
2338        DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2339           pause_enabled ? "enabled" : "disabled");
2340}
2341
2342int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2343{
2344        int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2345        u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2346
2347        if (!BP_NOMCP(bp)) {
2348                bnx2x_set_requested_fc(bp);
2349                bnx2x_acquire_phy_lock(bp);
2350
2351                if (load_mode == LOAD_DIAG) {
2352                        struct link_params *lp = &bp->link_params;
2353                        lp->loopback_mode = LOOPBACK_XGXS;
2354                        /* do PHY loopback at 10G speed, if possible */
2355                        if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2356                                if (lp->speed_cap_mask[cfx_idx] &
2357                                    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2358                                        lp->req_line_speed[cfx_idx] =
2359                                        SPEED_10000;
2360                                else
2361                                        lp->req_line_speed[cfx_idx] =
2362                                        SPEED_1000;
2363                        }
2364                }
2365
2366                if (load_mode == LOAD_LOOPBACK_EXT) {
2367                        struct link_params *lp = &bp->link_params;
2368                        lp->loopback_mode = LOOPBACK_EXT;
2369                }
2370
2371                rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2372
2373                bnx2x_release_phy_lock(bp);
2374
2375                bnx2x_init_dropless_fc(bp);
2376
2377                bnx2x_calc_fc_adv(bp);
2378
2379                if (bp->link_vars.link_up) {
2380                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2381                        bnx2x_link_report(bp);
2382                }
2383                queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2384                bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2385                return rc;
2386        }
2387        BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2388        return -EINVAL;
2389}
2390
2391void bnx2x_link_set(struct bnx2x *bp)
2392{
2393        if (!BP_NOMCP(bp)) {
2394                bnx2x_acquire_phy_lock(bp);
2395                bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2396                bnx2x_release_phy_lock(bp);
2397
2398                bnx2x_init_dropless_fc(bp);
2399
2400                bnx2x_calc_fc_adv(bp);
2401        } else
2402                BNX2X_ERR("Bootcode is missing - can not set link\n");
2403}
2404
2405static void bnx2x__link_reset(struct bnx2x *bp)
2406{
2407        if (!BP_NOMCP(bp)) {
2408                bnx2x_acquire_phy_lock(bp);
2409                bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2410                bnx2x_release_phy_lock(bp);
2411        } else
2412                BNX2X_ERR("Bootcode is missing - can not reset link\n");
2413}
2414
2415void bnx2x_force_link_reset(struct bnx2x *bp)
2416{
2417        bnx2x_acquire_phy_lock(bp);
2418        bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2419        bnx2x_release_phy_lock(bp);
2420}
2421
2422u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2423{
2424        u8 rc = 0;
2425
2426        if (!BP_NOMCP(bp)) {
2427                bnx2x_acquire_phy_lock(bp);
2428                rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2429                                     is_serdes);
2430                bnx2x_release_phy_lock(bp);
2431        } else
2432                BNX2X_ERR("Bootcode is missing - can not test link\n");
2433
2434        return rc;
2435}
2436
2437/* Calculates the sum of vn_min_rates.
2438   It's needed for further normalizing of the min_rates.
2439   Returns:
2440     sum of vn_min_rates.
2441       or
2442     0 - if all the min_rates are 0.
2443     In the later case fairness algorithm should be deactivated.
2444     If not all min_rates are zero then those that are zeroes will be set to 1.
2445 */
2446static void bnx2x_calc_vn_min(struct bnx2x *bp,
2447                                      struct cmng_init_input *input)
2448{
2449        int all_zero = 1;
2450        int vn;
2451
2452        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2453                u32 vn_cfg = bp->mf_config[vn];
2454                u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2455                                   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2456
2457                /* Skip hidden vns */
2458                if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2459                        vn_min_rate = 0;
2460                /* If min rate is zero - set it to 1 */
2461                else if (!vn_min_rate)
2462                        vn_min_rate = DEF_MIN_RATE;
2463                else
2464                        all_zero = 0;
2465
2466                input->vnic_min_rate[vn] = vn_min_rate;
2467        }
2468
2469        /* if ETS or all min rates are zeros - disable fairness */
2470        if (BNX2X_IS_ETS_ENABLED(bp)) {
2471                input->flags.cmng_enables &=
2472                                        ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2473                DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2474        } else if (all_zero) {
2475                input->flags.cmng_enables &=
2476                                        ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2477                DP(NETIF_MSG_IFUP,
2478                   "All MIN values are zeroes fairness will be disabled\n");
2479        } else
2480                input->flags.cmng_enables |=
2481                                        CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2482}
2483
2484static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2485                                    struct cmng_init_input *input)
2486{
2487        u16 vn_max_rate;
2488        u32 vn_cfg = bp->mf_config[vn];
2489
2490        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2491                vn_max_rate = 0;
2492        else {
2493                u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2494
2495                if (IS_MF_SI(bp)) {
2496                        /* maxCfg in percents of linkspeed */
2497                        vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2498                } else /* SD modes */
2499                        /* maxCfg is absolute in 100Mb units */
2500                        vn_max_rate = maxCfg * 100;
2501        }
2502
2503        DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2504
2505        input->vnic_max_rate[vn] = vn_max_rate;
2506}
2507
2508static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2509{
2510        if (CHIP_REV_IS_SLOW(bp))
2511                return CMNG_FNS_NONE;
2512        if (IS_MF(bp))
2513                return CMNG_FNS_MINMAX;
2514
2515        return CMNG_FNS_NONE;
2516}
2517
2518void bnx2x_read_mf_cfg(struct bnx2x *bp)
2519{
2520        int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2521
2522        if (BP_NOMCP(bp))
2523                return; /* what should be the default value in this case */
2524
2525        /* For 2 port configuration the absolute function number formula
2526         * is:
2527         *      abs_func = 2 * vn + BP_PORT + BP_PATH
2528         *
2529         *      and there are 4 functions per port
2530         *
2531         * For 4 port configuration it is
2532         *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2533         *
2534         *      and there are 2 functions per port
2535         */
2536        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2537                int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2538
2539                if (func >= E1H_FUNC_MAX)
2540                        break;
2541
2542                bp->mf_config[vn] =
2543                        MF_CFG_RD(bp, func_mf_config[func].config);
2544        }
2545        if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2546                DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2547                bp->flags |= MF_FUNC_DIS;
2548        } else {
2549                DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2550                bp->flags &= ~MF_FUNC_DIS;
2551        }
2552}
2553
2554static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2555{
2556        struct cmng_init_input input;
2557        memset(&input, 0, sizeof(struct cmng_init_input));
2558
2559        input.port_rate = bp->link_vars.line_speed;
2560
2561        if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2562                int vn;
2563
2564                /* read mf conf from shmem */
2565                if (read_cfg)
2566                        bnx2x_read_mf_cfg(bp);
2567
2568                /* vn_weight_sum and enable fairness if not 0 */
2569                bnx2x_calc_vn_min(bp, &input);
2570
2571                /* calculate and set min-max rate for each vn */
2572                if (bp->port.pmf)
2573                        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2574                                bnx2x_calc_vn_max(bp, vn, &input);
2575
2576                /* always enable rate shaping and fairness */
2577                input.flags.cmng_enables |=
2578                                        CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2579
2580                bnx2x_init_cmng(&input, &bp->cmng);
2581                return;
2582        }
2583
2584        /* rate shaping and fairness are disabled */
2585        DP(NETIF_MSG_IFUP,
2586           "rate shaping and fairness are disabled\n");
2587}
2588
2589static void storm_memset_cmng(struct bnx2x *bp,
2590                              struct cmng_init *cmng,
2591                              u8 port)
2592{
2593        int vn;
2594        size_t size = sizeof(struct cmng_struct_per_port);
2595
2596        u32 addr = BAR_XSTRORM_INTMEM +
2597                        XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2598
2599        __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2600
2601        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2602                int func = func_by_vn(bp, vn);
2603
2604                addr = BAR_XSTRORM_INTMEM +
2605                       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2606                size = sizeof(struct rate_shaping_vars_per_vn);
2607                __storm_memset_struct(bp, addr, size,
2608                                      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2609
2610                addr = BAR_XSTRORM_INTMEM +
2611                       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2612                size = sizeof(struct fairness_vars_per_vn);
2613                __storm_memset_struct(bp, addr, size,
2614                                      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2615        }
2616}
2617
2618/* init cmng mode in HW according to local configuration */
2619void bnx2x_set_local_cmng(struct bnx2x *bp)
2620{
2621        int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2622
2623        if (cmng_fns != CMNG_FNS_NONE) {
2624                bnx2x_cmng_fns_init(bp, false, cmng_fns);
2625                storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2626        } else {
2627                /* rate shaping and fairness are disabled */
2628                DP(NETIF_MSG_IFUP,
2629                   "single function mode without fairness\n");
2630        }
2631}
2632
2633/* This function is called upon link interrupt */
2634static void bnx2x_link_attn(struct bnx2x *bp)
2635{
2636        /* Make sure that we are synced with the current statistics */
2637        bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2638
2639        bnx2x_link_update(&bp->link_params, &bp->link_vars);
2640
2641        bnx2x_init_dropless_fc(bp);
2642
2643        if (bp->link_vars.link_up) {
2644
2645                if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2646                        struct host_port_stats *pstats;
2647
2648                        pstats = bnx2x_sp(bp, port_stats);
2649                        /* reset old mac stats */
2650                        memset(&(pstats->mac_stx[0]), 0,
2651                               sizeof(struct mac_stx));
2652                }
2653                if (bp->state == BNX2X_STATE_OPEN)
2654                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2655        }
2656
2657        if (bp->link_vars.link_up && bp->link_vars.line_speed)
2658                bnx2x_set_local_cmng(bp);
2659
2660        __bnx2x_link_report(bp);
2661
2662        if (IS_MF(bp))
2663                bnx2x_link_sync_notify(bp);
2664}
2665
2666void bnx2x__link_status_update(struct bnx2x *bp)
2667{
2668        if (bp->state != BNX2X_STATE_OPEN)
2669                return;
2670
2671        /* read updated dcb configuration */
2672        if (IS_PF(bp)) {
2673                bnx2x_dcbx_pmf_update(bp);
2674                bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2675                if (bp->link_vars.link_up)
2676                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2677                else
2678                        bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2679                        /* indicate link status */
2680                bnx2x_link_report(bp);
2681
2682        } else { /* VF */
2683                bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2684                                          SUPPORTED_10baseT_Full |
2685                                          SUPPORTED_100baseT_Half |
2686                                          SUPPORTED_100baseT_Full |
2687                                          SUPPORTED_1000baseT_Full |
2688                                          SUPPORTED_2500baseX_Full |
2689                                          SUPPORTED_10000baseT_Full |
2690                                          SUPPORTED_TP |
2691                                          SUPPORTED_FIBRE |
2692                                          SUPPORTED_Autoneg |
2693                                          SUPPORTED_Pause |
2694                                          SUPPORTED_Asym_Pause);
2695                bp->port.advertising[0] = bp->port.supported[0];
2696
2697                bp->link_params.bp = bp;
2698                bp->link_params.port = BP_PORT(bp);
2699                bp->link_params.req_duplex[0] = DUPLEX_FULL;
2700                bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2701                bp->link_params.req_line_speed[0] = SPEED_10000;
2702                bp->link_params.speed_cap_mask[0] = 0x7f0000;
2703                bp->link_params.switch_cfg = SWITCH_CFG_10G;
2704                bp->link_vars.mac_type = MAC_TYPE_BMAC;
2705                bp->link_vars.line_speed = SPEED_10000;
2706                bp->link_vars.link_status =
2707                        (LINK_STATUS_LINK_UP |
2708                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2709                bp->link_vars.link_up = 1;
2710                bp->link_vars.duplex = DUPLEX_FULL;
2711                bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2712                __bnx2x_link_report(bp);
2713
2714                bnx2x_sample_bulletin(bp);
2715
2716                /* if bulletin board did not have an update for link status
2717                 * __bnx2x_link_report will report current status
2718                 * but it will NOT duplicate report in case of already reported
2719                 * during sampling bulletin board.
2720                 */
2721                bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2722        }
2723}
2724
2725static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2726                                  u16 vlan_val, u8 allowed_prio)
2727{
2728        struct bnx2x_func_state_params func_params = {NULL};
2729        struct bnx2x_func_afex_update_params *f_update_params =
2730                &func_params.params.afex_update;
2731
2732        func_params.f_obj = &bp->func_obj;
2733        func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2734
2735        /* no need to wait for RAMROD completion, so don't
2736         * set RAMROD_COMP_WAIT flag
2737         */
2738
2739        f_update_params->vif_id = vifid;
2740        f_update_params->afex_default_vlan = vlan_val;
2741        f_update_params->allowed_priorities = allowed_prio;
2742
2743        /* if ramrod can not be sent, response to MCP immediately */
2744        if (bnx2x_func_state_change(bp, &func_params) < 0)
2745                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2746
2747        return 0;
2748}
2749
2750static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2751                                          u16 vif_index, u8 func_bit_map)
2752{
2753        struct bnx2x_func_state_params func_params = {NULL};
2754        struct bnx2x_func_afex_viflists_params *update_params =
2755                &func_params.params.afex_viflists;
2756        int rc;
2757        u32 drv_msg_code;
2758
2759        /* validate only LIST_SET and LIST_GET are received from switch */
2760        if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2761                BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2762                          cmd_type);
2763
2764        func_params.f_obj = &bp->func_obj;
2765        func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2766
2767        /* set parameters according to cmd_type */
2768        update_params->afex_vif_list_command = cmd_type;
2769        update_params->vif_list_index = vif_index;
2770        update_params->func_bit_map =
2771                (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2772        update_params->func_to_clear = 0;
2773        drv_msg_code =
2774                (cmd_type == VIF_LIST_RULE_GET) ?
2775                DRV_MSG_CODE_AFEX_LISTGET_ACK :
2776                DRV_MSG_CODE_AFEX_LISTSET_ACK;
2777
2778        /* if ramrod can not be sent, respond to MCP immediately for
2779         * SET and GET requests (other are not triggered from MCP)
2780         */
2781        rc = bnx2x_func_state_change(bp, &func_params);
2782        if (rc < 0)
2783                bnx2x_fw_command(bp, drv_msg_code, 0);
2784
2785        return 0;
2786}
2787
2788static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2789{
2790        struct afex_stats afex_stats;
2791        u32 func = BP_ABS_FUNC(bp);
2792        u32 mf_config;
2793        u16 vlan_val;
2794        u32 vlan_prio;
2795        u16 vif_id;
2796        u8 allowed_prio;
2797        u8 vlan_mode;
2798        u32 addr_to_write, vifid, addrs, stats_type, i;
2799
2800        if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2801                vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2802                DP(BNX2X_MSG_MCP,
2803                   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2804                bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2805        }
2806
2807        if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2808                vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2809                addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2810                DP(BNX2X_MSG_MCP,
2811                   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2812                   vifid, addrs);
2813                bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2814                                               addrs);
2815        }
2816
2817        if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2818                addr_to_write = SHMEM2_RD(bp,
2819                        afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2820                stats_type = SHMEM2_RD(bp,
2821                        afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2822
2823                DP(BNX2X_MSG_MCP,
2824                   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2825                   addr_to_write);
2826
2827                bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2828
2829                /* write response to scratchpad, for MCP */
2830                for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2831                        REG_WR(bp, addr_to_write + i*sizeof(u32),
2832                               *(((u32 *)(&afex_stats))+i));
2833
2834                /* send ack message to MCP */
2835                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2836        }
2837
2838        if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2839                mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2840                bp->mf_config[BP_VN(bp)] = mf_config;
2841                DP(BNX2X_MSG_MCP,
2842                   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2843                   mf_config);
2844
2845                /* if VIF_SET is "enabled" */
2846                if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2847                        /* set rate limit directly to internal RAM */
2848                        struct cmng_init_input cmng_input;
2849                        struct rate_shaping_vars_per_vn m_rs_vn;
2850                        size_t size = sizeof(struct rate_shaping_vars_per_vn);
2851                        u32 addr = BAR_XSTRORM_INTMEM +
2852                            XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2853
2854                        bp->mf_config[BP_VN(bp)] = mf_config;
2855
2856                        bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2857                        m_rs_vn.vn_counter.rate =
2858                                cmng_input.vnic_max_rate[BP_VN(bp)];
2859                        m_rs_vn.vn_counter.quota =
2860                                (m_rs_vn.vn_counter.rate *
2861                                 RS_PERIODIC_TIMEOUT_USEC) / 8;
2862
2863                        __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2864
2865                        /* read relevant values from mf_cfg struct in shmem */
2866                        vif_id =
2867                                (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2868                                 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2869                                FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2870                        vlan_val =
2871                                (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2872                                 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2873                                FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2874                        vlan_prio = (mf_config &
2875                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2876                                    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2877                        vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2878                        vlan_mode =
2879                                (MF_CFG_RD(bp,
2880                                           func_mf_config[func].afex_config) &
2881                                 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2882                                FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2883                        allowed_prio =
2884                                (MF_CFG_RD(bp,
2885                                           func_mf_config[func].afex_config) &
2886                                 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2887                                FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2888
2889                        /* send ramrod to FW, return in case of failure */
2890                        if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2891                                                   allowed_prio))
2892                                return;
2893
2894                        bp->afex_def_vlan_tag = vlan_val;
2895                        bp->afex_vlan_mode = vlan_mode;
2896                } else {
2897                        /* notify link down because BP->flags is disabled */
2898                        bnx2x_link_report(bp);
2899
2900                        /* send INVALID VIF ramrod to FW */
2901                        bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2902
2903                        /* Reset the default afex VLAN */
2904                        bp->afex_def_vlan_tag = -1;
2905                }
2906        }
2907}
2908
2909static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2910{
2911        struct bnx2x_func_switch_update_params *switch_update_params;
2912        struct bnx2x_func_state_params func_params;
2913
2914        memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2915        switch_update_params = &func_params.params.switch_update;
2916        func_params.f_obj = &bp->func_obj;
2917        func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2918
2919        if (IS_MF_UFP(bp)) {
2920                int func = BP_ABS_FUNC(bp);
2921                u32 val;
2922
2923                /* Re-learn the S-tag from shmem */
2924                val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2925                                FUNC_MF_CFG_E1HOV_TAG_MASK;
2926                if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2927                        bp->mf_ov = val;
2928                } else {
2929                        BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2930                        goto fail;
2931                }
2932
2933                /* Configure new S-tag in LLH */
2934                REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2935                       bp->mf_ov);
2936
2937                /* Send Ramrod to update FW of change */
2938                __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2939                          &switch_update_params->changes);
2940                switch_update_params->vlan = bp->mf_ov;
2941
2942                if (bnx2x_func_state_change(bp, &func_params) < 0) {
2943                        BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2944                                  bp->mf_ov);
2945                        goto fail;
2946                }
2947
2948                DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", bp->mf_ov);
2949
2950                bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2951
2952                return;
2953        }
2954
2955        /* not supported by SW yet */
2956fail:
2957        bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2958}
2959
2960static void bnx2x_pmf_update(struct bnx2x *bp)
2961{
2962        int port = BP_PORT(bp);
2963        u32 val;
2964
2965        bp->port.pmf = 1;
2966        DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2967
2968        /*
2969         * We need the mb() to ensure the ordering between the writing to
2970         * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2971         */
2972        smp_mb();
2973
2974        /* queue a periodic task */
2975        queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2976
2977        bnx2x_dcbx_pmf_update(bp);
2978
2979        /* enable nig attention */
2980        val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2981        if (bp->common.int_block == INT_BLOCK_HC) {
2982                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2983                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2984        } else if (!CHIP_IS_E1x(bp)) {
2985                REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2986                REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2987        }
2988
2989        bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2990}
2991
2992/* end of Link */
2993
2994/* slow path */
2995
2996/*
2997 * General service functions
2998 */
2999
3000/* send the MCP a request, block until there is a reply */
3001u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3002{
3003        int mb_idx = BP_FW_MB_IDX(bp);
3004        u32 seq;
3005        u32 rc = 0;
3006        u32 cnt = 1;
3007        u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3008
3009        mutex_lock(&bp->fw_mb_mutex);
3010        seq = ++bp->fw_seq;
3011        SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3012        SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3013
3014        DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3015                        (command | seq), param);
3016
3017        do {
3018                /* let the FW do it's magic ... */
3019                msleep(delay);
3020
3021                rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3022
3023                /* Give the FW up to 5 second (500*10ms) */
3024        } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3025
3026        DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3027           cnt*delay, rc, seq);
3028
3029        /* is this a reply to our command? */
3030        if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3031                rc &= FW_MSG_CODE_MASK;
3032        else {
3033                /* FW BUG! */
3034                BNX2X_ERR("FW failed to respond!\n");
3035                bnx2x_fw_dump(bp);
3036                rc = 0;
3037        }
3038        mutex_unlock(&bp->fw_mb_mutex);
3039
3040        return rc;
3041}
3042
3043static void storm_memset_func_cfg(struct bnx2x *bp,
3044                                 struct tstorm_eth_function_common_config *tcfg,
3045                                 u16 abs_fid)
3046{
3047        size_t size = sizeof(struct tstorm_eth_function_common_config);
3048
3049        u32 addr = BAR_TSTRORM_INTMEM +
3050                        TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3051
3052        __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3053}
3054
3055void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3056{
3057        if (CHIP_IS_E1x(bp)) {
3058                struct tstorm_eth_function_common_config tcfg = {0};
3059
3060                storm_memset_func_cfg(bp, &tcfg, p->func_id);
3061        }
3062
3063        /* Enable the function in the FW */
3064        storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3065        storm_memset_func_en(bp, p->func_id, 1);
3066
3067        /* spq */
3068        if (p->func_flgs & FUNC_FLG_SPQ) {
3069                storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3070                REG_WR(bp, XSEM_REG_FAST_MEMORY +
3071                       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3072        }
3073}
3074
3075/**
3076 * bnx2x_get_common_flags - Return common flags
3077 *
3078 * @bp          device handle
3079 * @fp          queue handle
3080 * @zero_stats  TRUE if statistics zeroing is needed
3081 *
3082 * Return the flags that are common for the Tx-only and not normal connections.
3083 */
3084static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3085                                            struct bnx2x_fastpath *fp,
3086                                            bool zero_stats)
3087{
3088        unsigned long flags = 0;
3089
3090        /* PF driver will always initialize the Queue to an ACTIVE state */
3091        __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3092
3093        /* tx only connections collect statistics (on the same index as the
3094         * parent connection). The statistics are zeroed when the parent
3095         * connection is initialized.
3096         */
3097
3098        __set_bit(BNX2X_Q_FLG_STATS, &flags);
3099        if (zero_stats)
3100                __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3101
3102        if (bp->flags & TX_SWITCHING)
3103                __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3104
3105        __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3106        __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3107
3108#ifdef BNX2X_STOP_ON_ERROR
3109        __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3110#endif
3111
3112        return flags;
3113}
3114
3115static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3116                                       struct bnx2x_fastpath *fp,
3117                                       bool leading)
3118{
3119        unsigned long flags = 0;
3120
3121        /* calculate other queue flags */
3122        if (IS_MF_SD(bp))
3123                __set_bit(BNX2X_Q_FLG_OV, &flags);
3124
3125        if (IS_FCOE_FP(fp)) {
3126                __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3127                /* For FCoE - force usage of default priority (for afex) */
3128                __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3129        }
3130
3131        if (fp->mode != TPA_MODE_DISABLED) {
3132                __set_bit(BNX2X_Q_FLG_TPA, &flags);
3133                __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3134                if (fp->mode == TPA_MODE_GRO)
3135                        __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3136        }
3137
3138        if (leading) {
3139                __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3140                __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3141        }
3142
3143        /* Always set HW VLAN stripping */
3144        __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3145
3146        /* configure silent vlan removal */
3147        if (IS_MF_AFEX(bp))
3148                __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3149
3150        return flags | bnx2x_get_common_flags(bp, fp, true);
3151}
3152
3153static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3154        struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3155        u8 cos)
3156{
3157        gen_init->stat_id = bnx2x_stats_id(fp);
3158        gen_init->spcl_id = fp->cl_id;
3159
3160        /* Always use mini-jumbo MTU for FCoE L2 ring */
3161        if (IS_FCOE_FP(fp))
3162                gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3163        else
3164                gen_init->mtu = bp->dev->mtu;
3165
3166        gen_init->cos = cos;
3167
3168        gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3169}
3170
3171static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3172        struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3173        struct bnx2x_rxq_setup_params *rxq_init)
3174{
3175        u8 max_sge = 0;
3176        u16 sge_sz = 0;
3177        u16 tpa_agg_size = 0;
3178
3179        if (fp->mode != TPA_MODE_DISABLED) {
3180                pause->sge_th_lo = SGE_TH_LO(bp);
3181                pause->sge_th_hi = SGE_TH_HI(bp);
3182
3183                /* validate SGE ring has enough to cross high threshold */
3184                WARN_ON(bp->dropless_fc &&
3185                                pause->sge_th_hi + FW_PREFETCH_CNT >
3186                                MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3187
3188                tpa_agg_size = TPA_AGG_SIZE;
3189                max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3190                        SGE_PAGE_SHIFT;
3191                max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3192                          (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3193                sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3194        }
3195
3196        /* pause - not for e1 */
3197        if (!CHIP_IS_E1(bp)) {
3198                pause->bd_th_lo = BD_TH_LO(bp);
3199                pause->bd_th_hi = BD_TH_HI(bp);
3200
3201                pause->rcq_th_lo = RCQ_TH_LO(bp);
3202                pause->rcq_th_hi = RCQ_TH_HI(bp);
3203                /*
3204                 * validate that rings have enough entries to cross
3205                 * high thresholds
3206                 */
3207                WARN_ON(bp->dropless_fc &&
3208                                pause->bd_th_hi + FW_PREFETCH_CNT >
3209                                bp->rx_ring_size);
3210                WARN_ON(bp->dropless_fc &&
3211                                pause->rcq_th_hi + FW_PREFETCH_CNT >
3212                                NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3213
3214                pause->pri_map = 1;
3215        }
3216
3217        /* rxq setup */
3218        rxq_init->dscr_map = fp->rx_desc_mapping;
3219        rxq_init->sge_map = fp->rx_sge_mapping;
3220        rxq_init->rcq_map = fp->rx_comp_mapping;
3221        rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3222
3223        /* This should be a maximum number of data bytes that may be
3224         * placed on the BD (not including paddings).
3225         */
3226        rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3227                           BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3228
3229        rxq_init->cl_qzone_id = fp->cl_qzone_id;
3230        rxq_init->tpa_agg_sz = tpa_agg_size;
3231        rxq_init->sge_buf_sz = sge_sz;
3232        rxq_init->max_sges_pkt = max_sge;
3233        rxq_init->rss_engine_id = BP_FUNC(bp);
3234        rxq_init->mcast_engine_id = BP_FUNC(bp);
3235
3236        /* Maximum number or simultaneous TPA aggregation for this Queue.
3237         *
3238         * For PF Clients it should be the maximum available number.
3239         * VF driver(s) may want to define it to a smaller value.
3240         */
3241        rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3242
3243        rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3244        rxq_init->fw_sb_id = fp->fw_sb_id;
3245
3246        if (IS_FCOE_FP(fp))
3247                rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3248        else
3249                rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3250        /* configure silent vlan removal
3251         * if multi function mode is afex, then mask default vlan
3252         */
3253        if (IS_MF_AFEX(bp)) {
3254                rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3255                rxq_init->silent_removal_mask = VLAN_VID_MASK;
3256        }
3257}
3258
3259static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3260        struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3261        u8 cos)
3262{
3263        txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3264        txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3265        txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3266        txq_init->fw_sb_id = fp->fw_sb_id;
3267
3268        /*
3269         * set the tss leading client id for TX classification ==
3270         * leading RSS client id
3271         */
3272        txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3273
3274        if (IS_FCOE_FP(fp)) {
3275                txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3276                txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3277        }
3278}
3279
3280static void bnx2x_pf_init(struct bnx2x *bp)
3281{
3282        struct bnx2x_func_init_params func_init = {0};
3283        struct event_ring_data eq_data = { {0} };
3284        u16 flags;
3285
3286        if (!CHIP_IS_E1x(bp)) {
3287                /* reset IGU PF statistics: MSIX + ATTN */
3288                /* PF */
3289                REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3290                           BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3291                           (CHIP_MODE_IS_4_PORT(bp) ?
3292                                BP_FUNC(bp) : BP_VN(bp))*4, 0);
3293                /* ATTN */
3294                REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3295                           BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3296                           BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3297                           (CHIP_MODE_IS_4_PORT(bp) ?
3298                                BP_FUNC(bp) : BP_VN(bp))*4, 0);
3299        }
3300
3301        /* function setup flags */
3302        flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3303
3304        /* This flag is relevant for E1x only.
3305         * E2 doesn't have a TPA configuration in a function level.
3306         */
3307        flags |= (bp->dev->features & NETIF_F_LRO) ? FUNC_FLG_TPA : 0;
3308
3309        func_init.func_flgs = flags;
3310        func_init.pf_id = BP_FUNC(bp);
3311        func_init.func_id = BP_FUNC(bp);
3312        func_init.spq_map = bp->spq_mapping;
3313        func_init.spq_prod = bp->spq_prod_idx;
3314
3315        bnx2x_func_init(bp, &func_init);
3316
3317        memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3318
3319        /*
3320         * Congestion management values depend on the link rate
3321         * There is no active link so initial link rate is set to 10 Gbps.
3322         * When the link comes up The congestion management values are
3323         * re-calculated according to the actual link rate.
3324         */
3325        bp->link_vars.line_speed = SPEED_10000;
3326        bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3327
3328        /* Only the PMF sets the HW */
3329        if (bp->port.pmf)
3330                storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3331
3332        /* init Event Queue - PCI bus guarantees correct endianity*/
3333        eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3334        eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3335        eq_data.producer = bp->eq_prod;
3336        eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3337        eq_data.sb_id = DEF_SB_ID;
3338        storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3339}
3340
3341static void bnx2x_e1h_disable(struct bnx2x *bp)
3342{
3343        int port = BP_PORT(bp);
3344
3345        bnx2x_tx_disable(bp);
3346
3347        REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3348}
3349
3350static void bnx2x_e1h_enable(struct bnx2x *bp)
3351{
3352        int port = BP_PORT(bp);
3353
3354        if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3355                REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3356
3357        /* Tx queue should be only re-enabled */
3358        netif_tx_wake_all_queues(bp->dev);
3359
3360        /*
3361         * Should not call netif_carrier_on since it will be called if the link
3362         * is up when checking for link state
3363         */
3364}
3365
3366#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3367
3368static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3369{
3370        struct eth_stats_info *ether_stat =
3371                &bp->slowpath->drv_info_to_mcp.ether_stat;
3372        struct bnx2x_vlan_mac_obj *mac_obj =
3373                &bp->sp_objs->mac_obj;
3374        int i;
3375
3376        strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3377                ETH_STAT_INFO_VERSION_LEN);
3378
3379        /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3380         * mac_local field in ether_stat struct. The base address is offset by 2
3381         * bytes to account for the field being 8 bytes but a mac address is
3382         * only 6 bytes. Likewise, the stride for the get_n_elements function is
3383         * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3384         * allocated by the ether_stat struct, so the macs will land in their
3385         * proper positions.
3386         */
3387        for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3388                memset(ether_stat->mac_local + i, 0,
3389                       sizeof(ether_stat->mac_local[0]));
3390        mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3391                                DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3392                                ether_stat->mac_local + MAC_PAD, MAC_PAD,
3393                                ETH_ALEN);
3394        ether_stat->mtu_size = bp->dev->mtu;
3395        if (bp->dev->features & NETIF_F_RXCSUM)
3396                ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3397        if (bp->dev->features & NETIF_F_TSO)
3398                ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3399        ether_stat->feature_flags |= bp->common.boot_mode;
3400
3401        ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3402
3403        ether_stat->txq_size = bp->tx_ring_size;
3404        ether_stat->rxq_size = bp->rx_ring_size;
3405
3406#ifdef CONFIG_BNX2X_SRIOV
3407        ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3408#endif
3409}
3410
3411static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3412{
3413        struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3414        struct fcoe_stats_info *fcoe_stat =
3415                &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3416
3417        if (!CNIC_LOADED(bp))
3418                return;
3419
3420        memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3421
3422        fcoe_stat->qos_priority =
3423                app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3424
3425        /* insert FCoE stats from ramrod response */
3426        if (!NO_FCOE(bp)) {
3427                struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3428                        &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3429                        tstorm_queue_statistics;
3430
3431                struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3432                        &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3433                        xstorm_queue_statistics;
3434
3435                struct fcoe_statistics_params *fw_fcoe_stat =
3436                        &bp->fw_stats_data->fcoe;
3437
3438                ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3439                          fcoe_stat->rx_bytes_lo,
3440                          fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3441
3442                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3443                          fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3444                          fcoe_stat->rx_bytes_lo,
3445                          fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3446
3447                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3448                          fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3449                          fcoe_stat->rx_bytes_lo,
3450                          fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3451
3452                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3453                          fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3454                          fcoe_stat->rx_bytes_lo,
3455                          fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3456
3457                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3458                          fcoe_stat->rx_frames_lo,
3459                          fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3460
3461                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3462                          fcoe_stat->rx_frames_lo,
3463                          fcoe_q_tstorm_stats->rcv_ucast_pkts);
3464
3465                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3466                          fcoe_stat->rx_frames_lo,
3467                          fcoe_q_tstorm_stats->rcv_bcast_pkts);
3468
3469                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3470                          fcoe_stat->rx_frames_lo,
3471                          fcoe_q_tstorm_stats->rcv_mcast_pkts);
3472
3473                ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3474                          fcoe_stat->tx_bytes_lo,
3475                          fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3476
3477                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3478                          fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3479                          fcoe_stat->tx_bytes_lo,
3480                          fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3481
3482                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3483                          fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3484                          fcoe_stat->tx_bytes_lo,
3485                          fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3486
3487                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3488                          fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3489                          fcoe_stat->tx_bytes_lo,
3490                          fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3491
3492                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3493                          fcoe_stat->tx_frames_lo,
3494                          fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3495
3496                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3497                          fcoe_stat->tx_frames_lo,
3498                          fcoe_q_xstorm_stats->ucast_pkts_sent);
3499
3500                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3501                          fcoe_stat->tx_frames_lo,
3502                          fcoe_q_xstorm_stats->bcast_pkts_sent);
3503
3504                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3505                          fcoe_stat->tx_frames_lo,
3506                          fcoe_q_xstorm_stats->mcast_pkts_sent);
3507        }
3508
3509        /* ask L5 driver to add data to the struct */
3510        bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3511}
3512
3513static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3514{
3515        struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3516        struct iscsi_stats_info *iscsi_stat =
3517                &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3518
3519        if (!CNIC_LOADED(bp))
3520                return;
3521
3522        memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3523               ETH_ALEN);
3524
3525        iscsi_stat->qos_priority =
3526                app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3527
3528        /* ask L5 driver to add data to the struct */
3529        bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3530}
3531
3532/* called due to MCP event (on pmf):
3533 *      reread new bandwidth configuration
3534 *      configure FW
3535 *      notify others function about the change
3536 */
3537static void bnx2x_config_mf_bw(struct bnx2x *bp)
3538{
3539        if (bp->link_vars.link_up) {
3540                bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3541                bnx2x_link_sync_notify(bp);
3542        }
3543        storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3544}
3545
3546static void bnx2x_set_mf_bw(struct bnx2x *bp)
3547{
3548        bnx2x_config_mf_bw(bp);
3549        bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3550}
3551
3552static void bnx2x_handle_eee_event(struct bnx2x *bp)
3553{
3554        DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3555        bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3556}
3557
3558#define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3559#define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3560
3561static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3562{
3563        enum drv_info_opcode op_code;
3564        u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3565        bool release = false;
3566        int wait;
3567
3568        /* if drv_info version supported by MFW doesn't match - send NACK */
3569        if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3570                bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3571                return;
3572        }
3573
3574        op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3575                  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3576
3577        /* Must prevent other flows from accessing drv_info_to_mcp */
3578        mutex_lock(&bp->drv_info_mutex);
3579
3580        memset(&bp->slowpath->drv_info_to_mcp, 0,
3581               sizeof(union drv_info_to_mcp));
3582
3583        switch (op_code) {
3584        case ETH_STATS_OPCODE:
3585                bnx2x_drv_info_ether_stat(bp);
3586                break;
3587        case FCOE_STATS_OPCODE:
3588                bnx2x_drv_info_fcoe_stat(bp);
3589                break;
3590        case ISCSI_STATS_OPCODE:
3591                bnx2x_drv_info_iscsi_stat(bp);
3592                break;
3593        default:
3594                /* if op code isn't supported - send NACK */
3595                bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3596                goto out;
3597        }
3598
3599        /* if we got drv_info attn from MFW then these fields are defined in
3600         * shmem2 for sure
3601         */
3602        SHMEM2_WR(bp, drv_info_host_addr_lo,
3603                U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3604        SHMEM2_WR(bp, drv_info_host_addr_hi,
3605                U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3606
3607        bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3608
3609        /* Since possible management wants both this and get_driver_version
3610         * need to wait until management notifies us it finished utilizing
3611         * the buffer.
3612         */
3613        if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3614                DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3615        } else if (!bp->drv_info_mng_owner) {
3616                u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3617
3618                for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3619                        u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3620
3621                        /* Management is done; need to clear indication */
3622                        if (indication & bit) {
3623                                SHMEM2_WR(bp, mfw_drv_indication,
3624                                          indication & ~bit);
3625                                release = true;
3626                                break;
3627                        }
3628
3629                        msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3630                }
3631        }
3632        if (!release) {
3633                DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3634                bp->drv_info_mng_owner = true;
3635        }
3636
3637out:
3638        mutex_unlock(&bp->drv_info_mutex);
3639}
3640
3641static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3642{
3643        u8 vals[4];
3644        int i = 0;
3645
3646        if (bnx2x_format) {
3647                i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3648                           &vals[0], &vals[1], &vals[2], &vals[3]);
3649                if (i > 0)
3650                        vals[0] -= '0';
3651        } else {
3652                i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3653                           &vals[0], &vals[1], &vals[2], &vals[3]);
3654        }
3655
3656        while (i < 4)
3657                vals[i++] = 0;
3658
3659        return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3660}
3661
3662void bnx2x_update_mng_version(struct bnx2x *bp)
3663{
3664        u32 iscsiver = DRV_VER_NOT_LOADED;
3665        u32 fcoever = DRV_VER_NOT_LOADED;
3666        u32 ethver = DRV_VER_NOT_LOADED;
3667        int idx = BP_FW_MB_IDX(bp);
3668        u8 *version;
3669
3670        if (!SHMEM2_HAS(bp, func_os_drv_ver))
3671                return;
3672
3673        mutex_lock(&bp->drv_info_mutex);
3674        /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3675        if (bp->drv_info_mng_owner)
3676                goto out;
3677
3678        if (bp->state != BNX2X_STATE_OPEN)
3679                goto out;
3680
3681        /* Parse ethernet driver version */
3682        ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3683        if (!CNIC_LOADED(bp))
3684                goto out;
3685
3686        /* Try getting storage driver version via cnic */
3687        memset(&bp->slowpath->drv_info_to_mcp, 0,
3688               sizeof(union drv_info_to_mcp));
3689        bnx2x_drv_info_iscsi_stat(bp);
3690        version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3691        iscsiver = bnx2x_update_mng_version_utility(version, false);
3692
3693        memset(&bp->slowpath->drv_info_to_mcp, 0,
3694               sizeof(union drv_info_to_mcp));
3695        bnx2x_drv_info_fcoe_stat(bp);
3696        version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3697        fcoever = bnx2x_update_mng_version_utility(version, false);
3698
3699out:
3700        SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3701        SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3702        SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3703
3704        mutex_unlock(&bp->drv_info_mutex);
3705
3706        DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3707           ethver, iscsiver, fcoever);
3708}
3709
3710static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3711{
3712        u32 cmd_ok, cmd_fail;
3713
3714        /* sanity */
3715        if (event & DRV_STATUS_DCC_EVENT_MASK &&
3716            event & DRV_STATUS_OEM_EVENT_MASK) {
3717                BNX2X_ERR("Received simultaneous events %08x\n", event);
3718                return;
3719        }
3720
3721        if (event & DRV_STATUS_DCC_EVENT_MASK) {
3722                cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3723                cmd_ok = DRV_MSG_CODE_DCC_OK;
3724        } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3725                cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3726                cmd_ok = DRV_MSG_CODE_OEM_OK;
3727        }
3728
3729        DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3730
3731        if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3732                     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3733                /* This is the only place besides the function initialization
3734                 * where the bp->flags can change so it is done without any
3735                 * locks
3736                 */
3737                if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3738                        DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3739                        bp->flags |= MF_FUNC_DIS;
3740
3741                        bnx2x_e1h_disable(bp);
3742                } else {
3743                        DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3744                        bp->flags &= ~MF_FUNC_DIS;
3745
3746                        bnx2x_e1h_enable(bp);
3747                }
3748                event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3749                           DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3750        }
3751
3752        if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3753                     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3754                bnx2x_config_mf_bw(bp);
3755                event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3756                           DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3757        }
3758
3759        /* Report results to MCP */
3760        if (event)
3761                bnx2x_fw_command(bp, cmd_fail, 0);
3762        else
3763                bnx2x_fw_command(bp, cmd_ok, 0);
3764}
3765
3766/* must be called under the spq lock */
3767static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3768{
3769        struct eth_spe *next_spe = bp->spq_prod_bd;
3770
3771        if (bp->spq_prod_bd == bp->spq_last_bd) {
3772                bp->spq_prod_bd = bp->spq;
3773                bp->spq_prod_idx = 0;
3774                DP(BNX2X_MSG_SP, "end of spq\n");
3775        } else {
3776                bp->spq_prod_bd++;
3777                bp->spq_prod_idx++;
3778        }
3779        return next_spe;
3780}
3781
3782/* must be called under the spq lock */
3783static void bnx2x_sp_prod_update(struct bnx2x *bp)
3784{
3785        int func = BP_FUNC(bp);
3786
3787        /*
3788         * Make sure that BD data is updated before writing the producer:
3789         * BD data is written to the memory, the producer is read from the
3790         * memory, thus we need a full memory barrier to ensure the ordering.
3791         */
3792        mb();
3793
3794        REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3795                 bp->spq_prod_idx);
3796        mmiowb();
3797}
3798
3799/**
3800 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3801 *
3802 * @cmd:        command to check
3803 * @cmd_type:   command type
3804 */
3805static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3806{
3807        if ((cmd_type == NONE_CONNECTION_TYPE) ||
3808            (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3809            (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3810            (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3811            (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3812            (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3813            (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3814                return true;
3815        else
3816                return false;
3817}
3818
3819/**
3820 * bnx2x_sp_post - place a single command on an SP ring
3821 *
3822 * @bp:         driver handle
3823 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3824 * @cid:        SW CID the command is related to
3825 * @data_hi:    command private data address (high 32 bits)
3826 * @data_lo:    command private data address (low 32 bits)
3827 * @cmd_type:   command type (e.g. NONE, ETH)
3828 *
3829 * SP data is handled as if it's always an address pair, thus data fields are
3830 * not swapped to little endian in upper functions. Instead this function swaps
3831 * data as if it's two u32 fields.
3832 */
3833int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3834                  u32 data_hi, u32 data_lo, int cmd_type)
3835{
3836        struct eth_spe *spe;
3837        u16 type;
3838        bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3839
3840#ifdef BNX2X_STOP_ON_ERROR
3841        if (unlikely(bp->panic)) {
3842                BNX2X_ERR("Can't post SP when there is panic\n");
3843                return -EIO;
3844        }
3845#endif
3846
3847        spin_lock_bh(&bp->spq_lock);
3848
3849        if (common) {
3850                if (!atomic_read(&bp->eq_spq_left)) {
3851                        BNX2X_ERR("BUG! EQ ring full!\n");
3852                        spin_unlock_bh(&bp->spq_lock);
3853                        bnx2x_panic();
3854                        return -EBUSY;
3855                }
3856        } else if (!atomic_read(&bp->cq_spq_left)) {
3857                        BNX2X_ERR("BUG! SPQ ring full!\n");
3858                        spin_unlock_bh(&bp->spq_lock);
3859                        bnx2x_panic();
3860                        return -EBUSY;
3861        }
3862
3863        spe = bnx2x_sp_get_next(bp);
3864
3865        /* CID needs port number to be encoded int it */
3866        spe->hdr.conn_and_cmd_data =
3867                        cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3868                                    HW_CID(bp, cid));
3869
3870        /* In some cases, type may already contain the func-id
3871         * mainly in SRIOV related use cases, so we add it here only
3872         * if it's not already set.
3873         */
3874        if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3875                type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3876                        SPE_HDR_CONN_TYPE;
3877                type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3878                         SPE_HDR_FUNCTION_ID);
3879        } else {
3880                type = cmd_type;
3881        }
3882
3883        spe->hdr.type = cpu_to_le16(type);
3884
3885        spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3886        spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3887
3888        /*
3889         * It's ok if the actual decrement is issued towards the memory
3890         * somewhere between the spin_lock and spin_unlock. Thus no
3891         * more explicit memory barrier is needed.
3892         */
3893        if (common)
3894                atomic_dec(&bp->eq_spq_left);
3895        else
3896                atomic_dec(&bp->cq_spq_left);
3897
3898        DP(BNX2X_MSG_SP,
3899           "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3900           bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3901           (u32)(U64_LO(bp->spq_mapping) +
3902           (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3903           HW_CID(bp, cid), data_hi, data_lo, type,
3904           atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3905
3906        bnx2x_sp_prod_update(bp);
3907        spin_unlock_bh(&bp->spq_lock);
3908        return 0;
3909}
3910
3911/* acquire split MCP access lock register */
3912static int bnx2x_acquire_alr(struct bnx2x *bp)
3913{
3914        u32 j, val;
3915        int rc = 0;
3916
3917        might_sleep();
3918        for (j = 0; j < 1000; j++) {
3919                REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3920                val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3921                if (val & MCPR_ACCESS_LOCK_LOCK)
3922                        break;
3923
3924                usleep_range(5000, 10000);
3925        }
3926        if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3927                BNX2X_ERR("Cannot acquire MCP access lock register\n");
3928                rc = -EBUSY;
3929        }
3930
3931        return rc;
3932}
3933
3934/* release split MCP access lock register */
3935static void bnx2x_release_alr(struct bnx2x *bp)
3936{
3937        REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3938}
3939
3940#define BNX2X_DEF_SB_ATT_IDX    0x0001
3941#define BNX2X_DEF_SB_IDX        0x0002
3942
3943static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3944{
3945        struct host_sp_status_block *def_sb = bp->def_status_blk;
3946        u16 rc = 0;
3947
3948        barrier(); /* status block is written to by the chip */
3949        if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3950                bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3951                rc |= BNX2X_DEF_SB_ATT_IDX;
3952        }
3953
3954        if (bp->def_idx != def_sb->sp_sb.running_index) {
3955                bp->def_idx = def_sb->sp_sb.running_index;
3956                rc |= BNX2X_DEF_SB_IDX;
3957        }
3958
3959        /* Do not reorder: indices reading should complete before handling */
3960        barrier();
3961        return rc;
3962}
3963
3964/*
3965 * slow path service functions
3966 */
3967
3968static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3969{
3970        int port = BP_PORT(bp);
3971        u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3972                              MISC_REG_AEU_MASK_ATTN_FUNC_0;
3973        u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3974                                       NIG_REG_MASK_INTERRUPT_PORT0;
3975        u32 aeu_mask;
3976        u32 nig_mask = 0;
3977        u32 reg_addr;
3978
3979        if (bp->attn_state & asserted)
3980                BNX2X_ERR("IGU ERROR\n");
3981
3982        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3983        aeu_mask = REG_RD(bp, aeu_addr);
3984
3985        DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3986           aeu_mask, asserted);
3987        aeu_mask &= ~(asserted & 0x3ff);
3988        DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3989
3990        REG_WR(bp, aeu_addr, aeu_mask);
3991        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3992
3993        DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3994        bp->attn_state |= asserted;
3995        DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3996
3997        if (asserted & ATTN_HARD_WIRED_MASK) {
3998                if (asserted & ATTN_NIG_FOR_FUNC) {
3999
4000                        bnx2x_acquire_phy_lock(bp);
4001
4002                        /* save nig interrupt mask */
4003                        nig_mask = REG_RD(bp, nig_int_mask_addr);
4004
4005                        /* If nig_mask is not set, no need to call the update
4006                         * function.
4007                         */
4008                        if (nig_mask) {
4009                                REG_WR(bp, nig_int_mask_addr, 0);
4010
4011                                bnx2x_link_attn(bp);
4012                        }
4013
4014                        /* handle unicore attn? */
4015                }
4016                if (asserted & ATTN_SW_TIMER_4_FUNC)
4017                        DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4018
4019                if (asserted & GPIO_2_FUNC)
4020                        DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4021
4022                if (asserted & GPIO_3_FUNC)
4023                        DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4024
4025                if (asserted & GPIO_4_FUNC)
4026                        DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4027
4028                if (port == 0) {
4029                        if (asserted & ATTN_GENERAL_ATTN_1) {
4030                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4031                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4032                        }
4033                        if (asserted & ATTN_GENERAL_ATTN_2) {
4034                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4035                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4036                        }
4037                        if (asserted & ATTN_GENERAL_ATTN_3) {
4038                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4039                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4040                        }
4041                } else {
4042                        if (asserted & ATTN_GENERAL_ATTN_4) {
4043                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4044                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4045                        }
4046                        if (asserted & ATTN_GENERAL_ATTN_5) {
4047                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4048                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4049                        }
4050                        if (asserted & ATTN_GENERAL_ATTN_6) {
4051                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4052                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4053                        }
4054                }
4055
4056        } /* if hardwired */
4057
4058        if (bp->common.int_block == INT_BLOCK_HC)
4059                reg_addr = (HC_REG_COMMAND_REG + port*32 +
4060                            COMMAND_REG_ATTN_BITS_SET);
4061        else
4062                reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4063
4064        DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4065           (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4066        REG_WR(bp, reg_addr, asserted);
4067
4068        /* now set back the mask */
4069        if (asserted & ATTN_NIG_FOR_FUNC) {
4070                /* Verify that IGU ack through BAR was written before restoring
4071                 * NIG mask. This loop should exit after 2-3 iterations max.
4072                 */
4073                if (bp->common.int_block != INT_BLOCK_HC) {
4074                        u32 cnt = 0, igu_acked;
4075                        do {
4076                                igu_acked = REG_RD(bp,
4077                                                   IGU_REG_ATTENTION_ACK_BITS);
4078                        } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4079                                 (++cnt < MAX_IGU_ATTN_ACK_TO));
4080                        if (!igu_acked)
4081                                DP(NETIF_MSG_HW,
4082                                   "Failed to verify IGU ack on time\n");
4083                        barrier();
4084                }
4085                REG_WR(bp, nig_int_mask_addr, nig_mask);
4086                bnx2x_release_phy_lock(bp);
4087        }
4088}
4089
4090static void bnx2x_fan_failure(struct bnx2x *bp)
4091{
4092        int port = BP_PORT(bp);
4093        u32 ext_phy_config;
4094        /* mark the failure */
4095        ext_phy_config =
4096                SHMEM_RD(bp,
4097                         dev_info.port_hw_config[port].external_phy_config);
4098
4099        ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4100        ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4101        SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4102                 ext_phy_config);
4103
4104        /* log the failure */
4105        netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4106                            "Please contact OEM Support for assistance\n");
4107
4108        /* Schedule device reset (unload)
4109         * This is due to some boards consuming sufficient power when driver is
4110         * up to overheat if fan fails.
4111         */
4112        bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4113}
4114
4115static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4116{
4117        int port = BP_PORT(bp);
4118        int reg_offset;
4119        u32 val;
4120
4121        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4122                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4123
4124        if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4125
4126                val = REG_RD(bp, reg_offset);
4127                val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4128                REG_WR(bp, reg_offset, val);
4129
4130                BNX2X_ERR("SPIO5 hw attention\n");
4131
4132                /* Fan failure attention */
4133                bnx2x_hw_reset_phy(&bp->link_params);
4134                bnx2x_fan_failure(bp);
4135        }
4136
4137        if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4138                bnx2x_acquire_phy_lock(bp);
4139                bnx2x_handle_module_detect_int(&bp->link_params);
4140                bnx2x_release_phy_lock(bp);
4141        }
4142
4143        if (attn & HW_INTERRUT_ASSERT_SET_0) {
4144
4145                val = REG_RD(bp, reg_offset);
4146                val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4147                REG_WR(bp, reg_offset, val);
4148
4149                BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4150                          (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4151                bnx2x_panic();
4152        }
4153}
4154
4155static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4156{
4157        u32 val;
4158
4159        if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4160
4161                val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4162                BNX2X_ERR("DB hw attention 0x%x\n", val);
4163                /* DORQ discard attention */
4164                if (val & 0x2)
4165                        BNX2X_ERR("FATAL error from DORQ\n");
4166        }
4167
4168        if (attn & HW_INTERRUT_ASSERT_SET_1) {
4169
4170                int port = BP_PORT(bp);
4171                int reg_offset;
4172
4173                reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4174                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4175
4176                val = REG_RD(bp, reg_offset);
4177                val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4178                REG_WR(bp, reg_offset, val);
4179
4180                BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4181                          (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4182                bnx2x_panic();
4183        }
4184}
4185
4186static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4187{
4188        u32 val;
4189
4190        if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4191
4192                val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4193                BNX2X_ERR("CFC hw attention 0x%x\n", val);
4194                /* CFC error attention */
4195                if (val & 0x2)
4196                        BNX2X_ERR("FATAL error from CFC\n");
4197        }
4198
4199        if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4200                val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4201                BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4202                /* RQ_USDMDP_FIFO_OVERFLOW */
4203                if (val & 0x18000)
4204                        BNX2X_ERR("FATAL error from PXP\n");
4205
4206                if (!CHIP_IS_E1x(bp)) {
4207                        val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4208                        BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4209                }
4210        }
4211
4212        if (attn & HW_INTERRUT_ASSERT_SET_2) {
4213
4214                int port = BP_PORT(bp);
4215                int reg_offset;
4216
4217                reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4218                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4219
4220                val = REG_RD(bp, reg_offset);
4221                val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4222                REG_WR(bp, reg_offset, val);
4223
4224                BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4225                          (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4226                bnx2x_panic();
4227        }
4228}
4229
4230static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4231{
4232        u32 val;
4233
4234        if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4235
4236                if (attn & BNX2X_PMF_LINK_ASSERT) {
4237                        int func = BP_FUNC(bp);
4238
4239                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4240                        bnx2x_read_mf_cfg(bp);
4241                        bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4242                                        func_mf_config[BP_ABS_FUNC(bp)].config);
4243                        val = SHMEM_RD(bp,
4244                                       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4245
4246                        if (val & (DRV_STATUS_DCC_EVENT_MASK |
4247                                   DRV_STATUS_OEM_EVENT_MASK))
4248                                bnx2x_oem_event(bp,
4249                                        (val & (DRV_STATUS_DCC_EVENT_MASK |
4250                                                DRV_STATUS_OEM_EVENT_MASK)));
4251
4252                        if (val & DRV_STATUS_SET_MF_BW)
4253                                bnx2x_set_mf_bw(bp);
4254
4255                        if (val & DRV_STATUS_DRV_INFO_REQ)
4256                                bnx2x_handle_drv_info_req(bp);
4257
4258                        if (val & DRV_STATUS_VF_DISABLED)
4259                                bnx2x_schedule_iov_task(bp,
4260                                                        BNX2X_IOV_HANDLE_FLR);
4261
4262                        if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4263                                bnx2x_pmf_update(bp);
4264
4265                        if (bp->port.pmf &&
4266                            (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4267                                bp->dcbx_enabled > 0)
4268                                /* start dcbx state machine */
4269                                bnx2x_dcbx_set_params(bp,
4270                                        BNX2X_DCBX_STATE_NEG_RECEIVED);
4271                        if (val & DRV_STATUS_AFEX_EVENT_MASK)
4272                                bnx2x_handle_afex_cmd(bp,
4273                                        val & DRV_STATUS_AFEX_EVENT_MASK);
4274                        if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4275                                bnx2x_handle_eee_event(bp);
4276
4277                        if (val & DRV_STATUS_OEM_UPDATE_SVID)
4278                                bnx2x_handle_update_svid_cmd(bp);
4279
4280                        if (bp->link_vars.periodic_flags &
4281                            PERIODIC_FLAGS_LINK_EVENT) {
4282                                /*  sync with link */
4283                                bnx2x_acquire_phy_lock(bp);
4284                                bp->link_vars.periodic_flags &=
4285                                        ~PERIODIC_FLAGS_LINK_EVENT;
4286                                bnx2x_release_phy_lock(bp);
4287                                if (IS_MF(bp))
4288                                        bnx2x_link_sync_notify(bp);
4289                                bnx2x_link_report(bp);
4290                        }
4291                        /* Always call it here: bnx2x_link_report() will
4292                         * prevent the link indication duplication.
4293                         */
4294                        bnx2x__link_status_update(bp);
4295                } else if (attn & BNX2X_MC_ASSERT_BITS) {
4296
4297                        BNX2X_ERR("MC assert!\n");
4298                        bnx2x_mc_assert(bp);
4299                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4300                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4301                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4302                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4303                        bnx2x_panic();
4304
4305                } else if (attn & BNX2X_MCP_ASSERT) {
4306
4307                        BNX2X_ERR("MCP assert!\n");
4308                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4309                        bnx2x_fw_dump(bp);
4310
4311                } else
4312                        BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4313        }
4314
4315        if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4316                BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4317                if (attn & BNX2X_GRC_TIMEOUT) {
4318                        val = CHIP_IS_E1(bp) ? 0 :
4319                                        REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4320                        BNX2X_ERR("GRC time-out 0x%08x\n", val);
4321                }
4322                if (attn & BNX2X_GRC_RSV) {
4323                        val = CHIP_IS_E1(bp) ? 0 :
4324                                        REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4325                        BNX2X_ERR("GRC reserved 0x%08x\n", val);
4326                }
4327                REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4328        }
4329}
4330
4331/*
4332 * Bits map:
4333 * 0-7   - Engine0 load counter.
4334 * 8-15  - Engine1 load counter.
4335 * 16    - Engine0 RESET_IN_PROGRESS bit.
4336 * 17    - Engine1 RESET_IN_PROGRESS bit.
4337 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4338 *         on the engine
4339 * 19    - Engine1 ONE_IS_LOADED.
4340 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4341 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4342 *         just the one belonging to its engine).
4343 *
4344 */
4345#define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4346
4347#define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4348#define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4349#define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4350#define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4351#define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4352#define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4353#define BNX2X_GLOBAL_RESET_BIT          0x00040000
4354
4355/*
4356 * Set the GLOBAL_RESET bit.
4357 *
4358 * Should be run under rtnl lock
4359 */
4360void bnx2x_set_reset_global(struct bnx2x *bp)
4361{
4362        u32 val;
4363        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4364        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4365        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4366        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4367}
4368
4369/*
4370 * Clear the GLOBAL_RESET bit.
4371 *
4372 * Should be run under rtnl lock
4373 */
4374static void bnx2x_clear_reset_global(struct bnx2x *bp)
4375{
4376        u32 val;
4377        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4378        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4379        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4380        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4381}
4382
4383/*
4384 * Checks the GLOBAL_RESET bit.
4385 *
4386 * should be run under rtnl lock
4387 */
4388static bool bnx2x_reset_is_global(struct bnx2x *bp)
4389{
4390        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4391
4392        DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4393        return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4394}
4395
4396/*
4397 * Clear RESET_IN_PROGRESS bit for the current engine.
4398 *
4399 * Should be run under rtnl lock
4400 */
4401static void bnx2x_set_reset_done(struct bnx2x *bp)
4402{
4403        u32 val;
4404        u32 bit = BP_PATH(bp) ?
4405                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4406        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4407        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4408
4409        /* Clear the bit */
4410        val &= ~bit;
4411        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4412
4413        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4414}
4415
4416/*
4417 * Set RESET_IN_PROGRESS for the current engine.
4418 *
4419 * should be run under rtnl lock
4420 */
4421void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4422{
4423        u32 val;
4424        u32 bit = BP_PATH(bp) ?
4425                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4426        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4427        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4428
4429        /* Set the bit */
4430        val |= bit;
4431        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4432        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4433}
4434
4435/*
4436 * Checks the RESET_IN_PROGRESS bit for the given engine.
4437 * should be run under rtnl lock
4438 */
4439bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4440{
4441        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4442        u32 bit = engine ?
4443                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4444
4445        /* return false if bit is set */
4446        return (val & bit) ? false : true;
4447}
4448
4449/*
4450 * set pf load for the current pf.
4451 *
4452 * should be run under rtnl lock
4453 */
4454void bnx2x_set_pf_load(struct bnx2x *bp)
4455{
4456        u32 val1, val;
4457        u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4458                             BNX2X_PATH0_LOAD_CNT_MASK;
4459        u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4460                             BNX2X_PATH0_LOAD_CNT_SHIFT;
4461
4462        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4463        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4464
4465        DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4466
4467        /* get the current counter value */
4468        val1 = (val & mask) >> shift;
4469
4470        /* set bit of that PF */
4471        val1 |= (1 << bp->pf_num);
4472
4473        /* clear the old value */
4474        val &= ~mask;
4475
4476        /* set the new one */
4477        val |= ((val1 << shift) & mask);
4478
4479        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4480        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4481}
4482
4483/**
4484 * bnx2x_clear_pf_load - clear pf load mark
4485 *
4486 * @bp:         driver handle
4487 *
4488 * Should be run under rtnl lock.
4489 * Decrements the load counter for the current engine. Returns
4490 * whether other functions are still loaded
4491 */
4492bool bnx2x_clear_pf_load(struct bnx2x *bp)
4493{
4494        u32 val1, val;
4495        u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4496                             BNX2X_PATH0_LOAD_CNT_MASK;
4497        u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4498                             BNX2X_PATH0_LOAD_CNT_SHIFT;
4499
4500        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4501        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4502        DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4503
4504        /* get the current counter value */
4505        val1 = (val & mask) >> shift;
4506
4507        /* clear bit of that PF */
4508        val1 &= ~(1 << bp->pf_num);
4509
4510        /* clear the old value */
4511        val &= ~mask;
4512
4513        /* set the new one */
4514        val |= ((val1 << shift) & mask);
4515
4516        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4517        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4518        return val1 != 0;
4519}
4520
4521/*
4522 * Read the load status for the current engine.
4523 *
4524 * should be run under rtnl lock
4525 */
4526static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4527{
4528        u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4529                             BNX2X_PATH0_LOAD_CNT_MASK);
4530        u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4531                             BNX2X_PATH0_LOAD_CNT_SHIFT);
4532        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4533
4534        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4535
4536        val = (val & mask) >> shift;
4537
4538        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4539           engine, val);
4540
4541        return val != 0;
4542}
4543
4544static void _print_parity(struct bnx2x *bp, u32 reg)
4545{
4546        pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4547}
4548
4549static void _print_next_block(int idx, const char *blk)
4550{
4551        pr_cont("%s%s", idx ? ", " : "", blk);
4552}
4553
4554static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4555                                            int *par_num, bool print)
4556{
4557        u32 cur_bit;
4558        bool res;
4559        int i;
4560
4561        res = false;
4562
4563        for (i = 0; sig; i++) {
4564                cur_bit = (0x1UL << i);
4565                if (sig & cur_bit) {
4566                        res |= true; /* Each bit is real error! */
4567
4568                        if (print) {
4569                                switch (cur_bit) {
4570                                case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4571                                        _print_next_block((*par_num)++, "BRB");
4572                                        _print_parity(bp,
4573                                                      BRB1_REG_BRB1_PRTY_STS);
4574                                        break;
4575                                case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4576                                        _print_next_block((*par_num)++,
4577                                                          "PARSER");
4578                                        _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4579                                        break;
4580                                case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4581                                        _print_next_block((*par_num)++, "TSDM");
4582                                        _print_parity(bp,
4583                                                      TSDM_REG_TSDM_PRTY_STS);
4584                                        break;
4585                                case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4586                                        _print_next_block((*par_num)++,
4587                                                          "SEARCHER");
4588                                        _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4589                                        break;
4590                                case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4591                                        _print_next_block((*par_num)++, "TCM");
4592                                        _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4593                                        break;
4594                                case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4595                                        _print_next_block((*par_num)++,
4596                                                          "TSEMI");
4597                                        _print_parity(bp,
4598                                                      TSEM_REG_TSEM_PRTY_STS_0);
4599                                        _print_parity(bp,
4600                                                      TSEM_REG_TSEM_PRTY_STS_1);
4601                                        break;
4602                                case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4603                                        _print_next_block((*par_num)++, "XPB");
4604                                        _print_parity(bp, GRCBASE_XPB +
4605                                                          PB_REG_PB_PRTY_STS);
4606                                        break;
4607                                }
4608                        }
4609
4610                        /* Clear the bit */
4611                        sig &= ~cur_bit;
4612                }
4613        }
4614
4615        return res;
4616}
4617
4618static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4619                                            int *par_num, bool *global,
4620                                            bool print)
4621{
4622        u32 cur_bit;
4623        bool res;
4624        int i;
4625
4626        res = false;
4627
4628        for (i = 0; sig; i++) {
4629                cur_bit = (0x1UL << i);
4630                if (sig & cur_bit) {
4631                        res |= true; /* Each bit is real error! */
4632                        switch (cur_bit) {
4633                        case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4634                                if (print) {
4635                                        _print_next_block((*par_num)++, "PBF");
4636                                        _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4637                                }
4638                                break;
4639                        case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4640                                if (print) {
4641                                        _print_next_block((*par_num)++, "QM");
4642                                        _print_parity(bp, QM_REG_QM_PRTY_STS);
4643                                }
4644                                break;
4645                        case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4646                                if (print) {
4647                                        _print_next_block((*par_num)++, "TM");
4648                                        _print_parity(bp, TM_REG_TM_PRTY_STS);
4649                                }
4650                                break;
4651                        case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4652                                if (print) {
4653                                        _print_next_block((*par_num)++, "XSDM");
4654                                        _print_parity(bp,
4655                                                      XSDM_REG_XSDM_PRTY_STS);
4656                                }
4657                                break;
4658                        case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4659                                if (print) {
4660                                        _print_next_block((*par_num)++, "XCM");
4661                                        _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4662                                }
4663                                break;
4664                        case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4665                                if (print) {
4666                                        _print_next_block((*par_num)++,
4667                                                          "XSEMI");
4668                                        _print_parity(bp,
4669                                                      XSEM_REG_XSEM_PRTY_STS_0);
4670                                        _print_parity(bp,
4671                                                      XSEM_REG_XSEM_PRTY_STS_1);
4672                                }
4673                                break;
4674                        case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4675                                if (print) {
4676                                        _print_next_block((*par_num)++,
4677                                                          "DOORBELLQ");
4678                                        _print_parity(bp,
4679                                                      DORQ_REG_DORQ_PRTY_STS);
4680                                }
4681                                break;
4682                        case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4683                                if (print) {
4684                                        _print_next_block((*par_num)++, "NIG");
4685                                        if (CHIP_IS_E1x(bp)) {
4686                                                _print_parity(bp,
4687                                                        NIG_REG_NIG_PRTY_STS);
4688                                        } else {
4689                                                _print_parity(bp,
4690                                                        NIG_REG_NIG_PRTY_STS_0);
4691                                                _print_parity(bp,
4692                                                        NIG_REG_NIG_PRTY_STS_1);
4693                                        }
4694                                }
4695                                break;
4696                        case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4697                                if (print)
4698                                        _print_next_block((*par_num)++,
4699                                                          "VAUX PCI CORE");
4700                                *global = true;
4701                                break;
4702                        case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4703                                if (print) {
4704                                        _print_next_block((*par_num)++,
4705                                                          "DEBUG");
4706                                        _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4707                                }
4708                                break;
4709                        case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4710                                if (print) {
4711                                        _print_next_block((*par_num)++, "USDM");
4712                                        _print_parity(bp,
4713                                                      USDM_REG_USDM_PRTY_STS);
4714                                }
4715                                break;
4716                        case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4717                                if (print) {
4718                                        _print_next_block((*par_num)++, "UCM");
4719                                        _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4720                                }
4721                                break;
4722                        case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4723                                if (print) {
4724                                        _print_next_block((*par_num)++,
4725                                                          "USEMI");
4726                                        _print_parity(bp,
4727                                                      USEM_REG_USEM_PRTY_STS_0);
4728                                        _print_parity(bp,
4729                                                      USEM_REG_USEM_PRTY_STS_1);
4730                                }
4731                                break;
4732                        case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4733                                if (print) {
4734                                        _print_next_block((*par_num)++, "UPB");
4735                                        _print_parity(bp, GRCBASE_UPB +
4736                                                          PB_REG_PB_PRTY_STS);
4737                                }
4738                                break;
4739                        case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4740                                if (print) {
4741                                        _print_next_block((*par_num)++, "CSDM");
4742                                        _print_parity(bp,
4743                                                      CSDM_REG_CSDM_PRTY_STS);
4744                                }
4745                                break;
4746                        case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4747                                if (print) {
4748                                        _print_next_block((*par_num)++, "CCM");
4749                                        _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4750                                }
4751                                break;
4752                        }
4753
4754                        /* Clear the bit */
4755                        sig &= ~cur_bit;
4756                }
4757        }
4758
4759        return res;
4760}
4761
4762static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4763                                            int *par_num, bool print)
4764{
4765        u32 cur_bit;
4766        bool res;
4767        int i;
4768
4769        res = false;
4770
4771        for (i = 0; sig; i++) {
4772                cur_bit = (0x1UL << i);
4773                if (sig & cur_bit) {
4774                        res = true; /* Each bit is real error! */
4775                        if (print) {
4776                                switch (cur_bit) {
4777                                case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4778                                        _print_next_block((*par_num)++,
4779                                                          "CSEMI");
4780                                        _print_parity(bp,
4781                                                      CSEM_REG_CSEM_PRTY_STS_0);
4782                                        _print_parity(bp,
4783                                                      CSEM_REG_CSEM_PRTY_STS_1);
4784                                        break;
4785                                case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4786                                        _print_next_block((*par_num)++, "PXP");
4787                                        _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4788                                        _print_parity(bp,
4789                                                      PXP2_REG_PXP2_PRTY_STS_0);
4790                                        _print_parity(bp,
4791                                                      PXP2_REG_PXP2_PRTY_STS_1);
4792                                        break;
4793                                case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4794                                        _print_next_block((*par_num)++,
4795                                                          "PXPPCICLOCKCLIENT");
4796                                        break;
4797                                case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4798                                        _print_next_block((*par_num)++, "CFC");
4799                                        _print_parity(bp,
4800                                                      CFC_REG_CFC_PRTY_STS);
4801                                        break;
4802                                case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4803                                        _print_next_block((*par_num)++, "CDU");
4804                                        _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4805                                        break;
4806                                case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4807                                        _print_next_block((*par_num)++, "DMAE");
4808                                        _print_parity(bp,
4809                                                      DMAE_REG_DMAE_PRTY_STS);
4810                                        break;
4811                                case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4812                                        _print_next_block((*par_num)++, "IGU");
4813                                        if (CHIP_IS_E1x(bp))
4814                                                _print_parity(bp,
4815                                                        HC_REG_HC_PRTY_STS);
4816                                        else
4817                                                _print_parity(bp,
4818                                                        IGU_REG_IGU_PRTY_STS);
4819                                        break;
4820                                case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4821                                        _print_next_block((*par_num)++, "MISC");
4822                                        _print_parity(bp,
4823                                                      MISC_REG_MISC_PRTY_STS);
4824                                        break;
4825                                }
4826                        }
4827
4828                        /* Clear the bit */
4829                        sig &= ~cur_bit;
4830                }
4831        }
4832
4833        return res;
4834}
4835
4836static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4837                                            int *par_num, bool *global,
4838                                            bool print)
4839{
4840        bool res = false;
4841        u32 cur_bit;
4842        int i;
4843
4844        for (i = 0; sig; i++) {
4845                cur_bit = (0x1UL << i);
4846                if (sig & cur_bit) {
4847                        switch (cur_bit) {
4848                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4849                                if (print)
4850                                        _print_next_block((*par_num)++,
4851                                                          "MCP ROM");
4852                                *global = true;
4853                                res = true;
4854                                break;
4855                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4856                                if (print)
4857                                        _print_next_block((*par_num)++,
4858                                                          "MCP UMP RX");
4859                                *global = true;
4860                                res = true;
4861                                break;
4862                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4863                                if (print)
4864                                        _print_next_block((*par_num)++,
4865                                                          "MCP UMP TX");
4866                                *global = true;
4867                                res = true;
4868                                break;
4869                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4870                                if (print)
4871                                        _print_next_block((*par_num)++,
4872                                                          "MCP SCPAD");
4873                                /* clear latched SCPAD PATIRY from MCP */
4874                                REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4875                                       1UL << 10);
4876                                break;
4877                        }
4878
4879                        /* Clear the bit */
4880                        sig &= ~cur_bit;
4881                }
4882        }
4883
4884        return res;
4885}
4886
4887static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4888                                            int *par_num, bool print)
4889{
4890        u32 cur_bit;
4891        bool res;
4892        int i;
4893
4894        res = false;
4895
4896        for (i = 0; sig; i++) {
4897                cur_bit = (0x1UL << i);
4898                if (sig & cur_bit) {
4899                        res = true; /* Each bit is real error! */
4900                        if (print) {
4901                                switch (cur_bit) {
4902                                case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4903                                        _print_next_block((*par_num)++,
4904                                                          "PGLUE_B");
4905                                        _print_parity(bp,
4906                                                      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4907                                        break;
4908                                case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4909                                        _print_next_block((*par_num)++, "ATC");
4910                                        _print_parity(bp,
4911                                                      ATC_REG_ATC_PRTY_STS);
4912                                        break;
4913                                }
4914                        }
4915                        /* Clear the bit */
4916                        sig &= ~cur_bit;
4917                }
4918        }
4919
4920        return res;
4921}
4922
4923static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4924                              u32 *sig)
4925{
4926        bool res = false;
4927
4928        if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4929            (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4930            (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4931            (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4932            (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4933                int par_num = 0;
4934                DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4935                                 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4936                          sig[0] & HW_PRTY_ASSERT_SET_0,
4937                          sig[1] & HW_PRTY_ASSERT_SET_1,
4938                          sig[2] & HW_PRTY_ASSERT_SET_2,
4939                          sig[3] & HW_PRTY_ASSERT_SET_3,
4940                          sig[4] & HW_PRTY_ASSERT_SET_4);
4941                if (print)
4942                        netdev_err(bp->dev,
4943                                   "Parity errors detected in blocks: ");
4944                res |= bnx2x_check_blocks_with_parity0(bp,
4945                        sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4946                res |= bnx2x_check_blocks_with_parity1(bp,
4947                        sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4948                res |= bnx2x_check_blocks_with_parity2(bp,
4949                        sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4950                res |= bnx2x_check_blocks_with_parity3(bp,
4951                        sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4952                res |= bnx2x_check_blocks_with_parity4(bp,
4953                        sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4954
4955                if (print)
4956                        pr_cont("\n");
4957        }
4958
4959        return res;
4960}
4961
4962/**
4963 * bnx2x_chk_parity_attn - checks for parity attentions.
4964 *
4965 * @bp:         driver handle
4966 * @global:     true if there was a global attention
4967 * @print:      show parity attention in syslog
4968 */
4969bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4970{
4971        struct attn_route attn = { {0} };
4972        int port = BP_PORT(bp);
4973
4974        attn.sig[0] = REG_RD(bp,
4975                MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4976                             port*4);
4977        attn.sig[1] = REG_RD(bp,
4978                MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4979                             port*4);
4980        attn.sig[2] = REG_RD(bp,
4981                MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4982                             port*4);
4983        attn.sig[3] = REG_RD(bp,
4984                MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4985                             port*4);
4986        /* Since MCP attentions can't be disabled inside the block, we need to
4987         * read AEU registers to see whether they're currently disabled
4988         */
4989        attn.sig[3] &= ((REG_RD(bp,
4990                                !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4991                                      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4992                         MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4993                        ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4994
4995        if (!CHIP_IS_E1x(bp))
4996                attn.sig[4] = REG_RD(bp,
4997                        MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4998                                     port*4);
4999
5000        return bnx2x_parity_attn(bp, global, print, attn.sig);
5001}
5002
5003static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5004{
5005        u32 val;
5006        if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5007
5008                val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5009                BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5010                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5011                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5012                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5013                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5014                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5015                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5016                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5017                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5018                if (val &
5019                    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5020                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5021                if (val &
5022                    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5023                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5024                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5025                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5026                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5027                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5028                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5029                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5030        }
5031        if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5032                val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5033                BNX2X_ERR("ATC hw attention 0x%x\n", val);
5034                if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5035                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5036                if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5037                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5038                if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5039                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5040                if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5041                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5042                if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5043                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5044                if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5045                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5046        }
5047
5048        if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5049                    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5050                BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5051                (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5052                    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5053        }
5054}
5055
5056static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5057{
5058        struct attn_route attn, *group_mask;
5059        int port = BP_PORT(bp);
5060        int index;
5061        u32 reg_addr;
5062        u32 val;
5063        u32 aeu_mask;
5064        bool global = false;
5065
5066        /* need to take HW lock because MCP or other port might also
5067           try to handle this event */
5068        bnx2x_acquire_alr(bp);
5069
5070        if (bnx2x_chk_parity_attn(bp, &global, true)) {
5071#ifndef BNX2X_STOP_ON_ERROR
5072                bp->recovery_state = BNX2X_RECOVERY_INIT;
5073                schedule_delayed_work(&bp->sp_rtnl_task, 0);
5074                /* Disable HW interrupts */
5075                bnx2x_int_disable(bp);
5076                /* In case of parity errors don't handle attentions so that
5077                 * other function would "see" parity errors.
5078                 */
5079#else
5080                bnx2x_panic();
5081#endif
5082                bnx2x_release_alr(bp);
5083                return;
5084        }
5085
5086        attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5087        attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5088        attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5089        attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5090        if (!CHIP_IS_E1x(bp))
5091                attn.sig[4] =
5092                      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5093        else
5094                attn.sig[4] = 0;
5095
5096        DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5097           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5098
5099        for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5100                if (deasserted & (1 << index)) {
5101                        group_mask = &bp->attn_group[index];
5102
5103                        DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5104                           index,
5105                           group_mask->sig[0], group_mask->sig[1],
5106                           group_mask->sig[2], group_mask->sig[3],
5107                           group_mask->sig[4]);
5108
5109                        bnx2x_attn_int_deasserted4(bp,
5110                                        attn.sig[4] & group_mask->sig[4]);
5111                        bnx2x_attn_int_deasserted3(bp,
5112                                        attn.sig[3] & group_mask->sig[3]);
5113                        bnx2x_attn_int_deasserted1(bp,
5114                                        attn.sig[1] & group_mask->sig[1]);
5115                        bnx2x_attn_int_deasserted2(bp,
5116                                        attn.sig[2] & group_mask->sig[2]);
5117                        bnx2x_attn_int_deasserted0(bp,
5118                                        attn.sig[0] & group_mask->sig[0]);
5119                }
5120        }
5121
5122        bnx2x_release_alr(bp);
5123
5124        if (bp->common.int_block == INT_BLOCK_HC)
5125                reg_addr = (HC_REG_COMMAND_REG + port*32 +
5126                            COMMAND_REG_ATTN_BITS_CLR);
5127        else
5128                reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5129
5130        val = ~deasserted;
5131        DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5132           (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5133        REG_WR(bp, reg_addr, val);
5134
5135        if (~bp->attn_state & deasserted)
5136                BNX2X_ERR("IGU ERROR\n");
5137
5138        reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5139                          MISC_REG_AEU_MASK_ATTN_FUNC_0;
5140
5141        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5142        aeu_mask = REG_RD(bp, reg_addr);
5143
5144        DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5145           aeu_mask, deasserted);
5146        aeu_mask |= (deasserted & 0x3ff);
5147        DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5148
5149        REG_WR(bp, reg_addr, aeu_mask);
5150        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5151
5152        DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5153        bp->attn_state &= ~deasserted;
5154        DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5155}
5156
5157static void bnx2x_attn_int(struct bnx2x *bp)
5158{
5159        /* read local copy of bits */
5160        u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5161                                                                attn_bits);
5162        u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5163                                                                attn_bits_ack);
5164        u32 attn_state = bp->attn_state;
5165
5166        /* look for changed bits */
5167        u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5168        u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5169
5170        DP(NETIF_MSG_HW,
5171           "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5172           attn_bits, attn_ack, asserted, deasserted);
5173
5174        if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5175                BNX2X_ERR("BAD attention state\n");
5176
5177        /* handle bits that were raised */
5178        if (asserted)
5179                bnx2x_attn_int_asserted(bp, asserted);
5180
5181        if (deasserted)
5182                bnx2x_attn_int_deasserted(bp, deasserted);
5183}
5184
5185void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5186                      u16 index, u8 op, u8 update)
5187{
5188        u32 igu_addr = bp->igu_base_addr;
5189        igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5190        bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5191                             igu_addr);
5192}
5193
5194static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5195{
5196        /* No memory barriers */
5197        storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5198        mmiowb(); /* keep prod updates ordered */
5199}
5200
5201static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5202                                      union event_ring_elem *elem)
5203{
5204        u8 err = elem->message.error;
5205
5206        if (!bp->cnic_eth_dev.starting_cid  ||
5207            (cid < bp->cnic_eth_dev.starting_cid &&
5208            cid != bp->cnic_eth_dev.iscsi_l2_cid))
5209                return 1;
5210
5211        DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5212
5213        if (unlikely(err)) {
5214
5215                BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5216                          cid);
5217                bnx2x_panic_dump(bp, false);
5218        }
5219        bnx2x_cnic_cfc_comp(bp, cid, err);
5220        return 0;
5221}
5222
5223static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5224{
5225        struct bnx2x_mcast_ramrod_params rparam;
5226        int rc;
5227
5228        memset(&rparam, 0, sizeof(rparam));
5229
5230        rparam.mcast_obj = &bp->mcast_obj;
5231
5232        netif_addr_lock_bh(bp->dev);
5233
5234        /* Clear pending state for the last command */
5235        bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5236
5237        /* If there are pending mcast commands - send them */
5238        if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5239                rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5240                if (rc < 0)
5241                        BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5242                                  rc);
5243        }
5244
5245        netif_addr_unlock_bh(bp->dev);
5246}
5247
5248static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5249                                            union event_ring_elem *elem)
5250{
5251        unsigned long ramrod_flags = 0;
5252        int rc = 0;
5253        u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5254        struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5255
5256        /* Always push next commands out, don't wait here */
5257        __set_bit(RAMROD_CONT, &ramrod_flags);
5258
5259        switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5260                            >> BNX2X_SWCID_SHIFT) {
5261        case BNX2X_FILTER_MAC_PENDING:
5262                DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5263                if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5264                        vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5265                else
5266                        vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5267
5268                break;
5269        case BNX2X_FILTER_MCAST_PENDING:
5270                DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5271                /* This is only relevant for 57710 where multicast MACs are
5272                 * configured as unicast MACs using the same ramrod.
5273                 */
5274                bnx2x_handle_mcast_eqe(bp);
5275                return;
5276        default:
5277                BNX2X_ERR("Unsupported classification command: %d\n",
5278                          elem->message.data.eth_event.echo);
5279                return;
5280        }
5281
5282        rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5283
5284        if (rc < 0)
5285                BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5286        else if (rc > 0)
5287                DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5288}
5289
5290static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5291
5292static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5293{
5294        netif_addr_lock_bh(bp->dev);
5295
5296        clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5297
5298        /* Send rx_mode command again if was requested */
5299        if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5300                bnx2x_set_storm_rx_mode(bp);
5301        else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5302                                    &bp->sp_state))
5303                bnx2x_set_iscsi_eth_rx_mode(bp, true);
5304        else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5305                                    &bp->sp_state))
5306                bnx2x_set_iscsi_eth_rx_mode(bp, false);
5307
5308        netif_addr_unlock_bh(bp->dev);
5309}
5310
5311static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5312                                              union event_ring_elem *elem)
5313{
5314        if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5315                DP(BNX2X_MSG_SP,
5316                   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5317                   elem->message.data.vif_list_event.func_bit_map);
5318                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5319                        elem->message.data.vif_list_event.func_bit_map);
5320        } else if (elem->message.data.vif_list_event.echo ==
5321                   VIF_LIST_RULE_SET) {
5322                DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5323                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5324        }
5325}
5326
5327/* called with rtnl_lock */
5328static void bnx2x_after_function_update(struct bnx2x *bp)
5329{
5330        int q, rc;
5331        struct bnx2x_fastpath *fp;
5332        struct bnx2x_queue_state_params queue_params = {NULL};
5333        struct bnx2x_queue_update_params *q_update_params =
5334                &queue_params.params.update;
5335
5336        /* Send Q update command with afex vlan removal values for all Qs */
5337        queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5338
5339        /* set silent vlan removal values according to vlan mode */
5340        __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5341                  &q_update_params->update_flags);
5342        __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5343                  &q_update_params->update_flags);
5344        __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5345
5346        /* in access mode mark mask and value are 0 to strip all vlans */
5347        if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5348                q_update_params->silent_removal_value = 0;
5349                q_update_params->silent_removal_mask = 0;
5350        } else {
5351                q_update_params->silent_removal_value =
5352                        (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5353                q_update_params->silent_removal_mask = VLAN_VID_MASK;
5354        }
5355
5356        for_each_eth_queue(bp, q) {
5357                /* Set the appropriate Queue object */
5358                fp = &bp->fp[q];
5359                queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5360
5361                /* send the ramrod */
5362                rc = bnx2x_queue_state_change(bp, &queue_params);
5363                if (rc < 0)
5364                        BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5365                                  q);
5366        }
5367
5368        if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5369                fp = &bp->fp[FCOE_IDX(bp)];
5370                queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5371
5372                /* clear pending completion bit */
5373                __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5374
5375                /* mark latest Q bit */
5376                smp_mb__before_atomic();
5377                set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5378                smp_mb__after_atomic();
5379
5380                /* send Q update ramrod for FCoE Q */
5381                rc = bnx2x_queue_state_change(bp, &queue_params);
5382                if (rc < 0)
5383                        BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5384                                  q);
5385        } else {
5386                /* If no FCoE ring - ACK MCP now */
5387                bnx2x_link_report(bp);
5388                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5389        }
5390}
5391
5392static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5393        struct bnx2x *bp, u32 cid)
5394{
5395        DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5396
5397        if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5398                return &bnx2x_fcoe_sp_obj(bp, q_obj);
5399        else
5400                return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5401}
5402
5403static void bnx2x_eq_int(struct bnx2x *bp)
5404{
5405        u16 hw_cons, sw_cons, sw_prod;
5406        union event_ring_elem *elem;
5407        u8 echo;
5408        u32 cid;
5409        u8 opcode;
5410        int rc, spqe_cnt = 0;
5411        struct bnx2x_queue_sp_obj *q_obj;
5412        struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5413        struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5414
5415        hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5416
5417        /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5418         * when we get the next-page we need to adjust so the loop
5419         * condition below will be met. The next element is the size of a
5420         * regular element and hence incrementing by 1
5421         */
5422        if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5423                hw_cons++;
5424
5425        /* This function may never run in parallel with itself for a
5426         * specific bp, thus there is no need in "paired" read memory
5427         * barrier here.
5428         */
5429        sw_cons = bp->eq_cons;
5430        sw_prod = bp->eq_prod;
5431
5432        DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5433                        hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5434
5435        for (; sw_cons != hw_cons;
5436              sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5437
5438                elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5439
5440                rc = bnx2x_iov_eq_sp_event(bp, elem);
5441                if (!rc) {
5442                        DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5443                           rc);
5444                        goto next_spqe;
5445                }
5446
5447                /* elem CID originates from FW; actually LE */
5448                cid = SW_CID((__force __le32)
5449                             elem->message.data.cfc_del_event.cid);
5450                opcode = elem->message.opcode;
5451
5452                /* handle eq element */
5453                switch (opcode) {
5454                case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5455                        bnx2x_vf_mbx_schedule(bp,
5456                                              &elem->message.data.vf_pf_event);
5457                        continue;
5458
5459                case EVENT_RING_OPCODE_STAT_QUERY:
5460                        DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5461                               "got statistics comp event %d\n",
5462                               bp->stats_comp++);
5463                        /* nothing to do with stats comp */
5464                        goto next_spqe;
5465
5466                case EVENT_RING_OPCODE_CFC_DEL:
5467                        /* handle according to cid range */
5468                        /*
5469                         * we may want to verify here that the bp state is
5470                         * HALTING
5471                         */
5472                        DP(BNX2X_MSG_SP,
5473                           "got delete ramrod for MULTI[%d]\n", cid);
5474
5475                        if (CNIC_LOADED(bp) &&
5476                            !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5477                                goto next_spqe;
5478
5479                        q_obj = bnx2x_cid_to_q_obj(bp, cid);
5480
5481                        if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5482                                break;
5483
5484                        goto next_spqe;
5485
5486                case EVENT_RING_OPCODE_STOP_TRAFFIC:
5487                        DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5488                        bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5489                        if (f_obj->complete_cmd(bp, f_obj,
5490                                                BNX2X_F_CMD_TX_STOP))
5491                                break;
5492                        goto next_spqe;
5493
5494                case EVENT_RING_OPCODE_START_TRAFFIC:
5495                        DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5496                        bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5497                        if (f_obj->complete_cmd(bp, f_obj,
5498                                                BNX2X_F_CMD_TX_START))
5499                                break;
5500                        goto next_spqe;
5501
5502                case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5503                        echo = elem->message.data.function_update_event.echo;
5504                        if (echo == SWITCH_UPDATE) {
5505                                DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5506                                   "got FUNC_SWITCH_UPDATE ramrod\n");
5507                                if (f_obj->complete_cmd(
5508                                        bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5509                                        break;
5510
5511                        } else {
5512                                int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5513
5514                                DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5515                                   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5516                                f_obj->complete_cmd(bp, f_obj,
5517                                                    BNX2X_F_CMD_AFEX_UPDATE);
5518
5519                                /* We will perform the Queues update from
5520                                 * sp_rtnl task as all Queue SP operations
5521                                 * should run under rtnl_lock.
5522                                 */
5523                                bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5524                        }
5525
5526                        goto next_spqe;
5527
5528                case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5529                        f_obj->complete_cmd(bp, f_obj,
5530                                            BNX2X_F_CMD_AFEX_VIFLISTS);
5531                        bnx2x_after_afex_vif_lists(bp, elem);
5532                        goto next_spqe;
5533                case EVENT_RING_OPCODE_FUNCTION_START:
5534                        DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5535                           "got FUNC_START ramrod\n");
5536                        if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5537                                break;
5538
5539                        goto next_spqe;
5540
5541                case EVENT_RING_OPCODE_FUNCTION_STOP:
5542                        DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5543                           "got FUNC_STOP ramrod\n");
5544                        if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5545                                break;
5546
5547                        goto next_spqe;
5548
5549                case EVENT_RING_OPCODE_SET_TIMESYNC:
5550                        DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5551                           "got set_timesync ramrod completion\n");
5552                        if (f_obj->complete_cmd(bp, f_obj,
5553                                                BNX2X_F_CMD_SET_TIMESYNC))
5554                                break;
5555                        goto next_spqe;
5556                }
5557
5558                switch (opcode | bp->state) {
5559                case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5560                      BNX2X_STATE_OPEN):
5561                case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5562                      BNX2X_STATE_OPENING_WAIT4_PORT):
5563                        cid = elem->message.data.eth_event.echo &
5564                                BNX2X_SWCID_MASK;
5565                        DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5566                           cid);
5567                        rss_raw->clear_pending(rss_raw);
5568                        break;
5569
5570                case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5571                case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5572                case (EVENT_RING_OPCODE_SET_MAC |
5573                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5574                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5575                      BNX2X_STATE_OPEN):
5576                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5577                      BNX2X_STATE_DIAG):
5578                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5579                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5580                        DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5581                        bnx2x_handle_classification_eqe(bp, elem);
5582                        break;
5583
5584                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5585                      BNX2X_STATE_OPEN):
5586                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5587                      BNX2X_STATE_DIAG):
5588                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5589                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5590                        DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5591                        bnx2x_handle_mcast_eqe(bp);
5592                        break;
5593
5594                case (EVENT_RING_OPCODE_FILTERS_RULES |
5595                      BNX2X_STATE_OPEN):
5596                case (EVENT_RING_OPCODE_FILTERS_RULES |
5597                      BNX2X_STATE_DIAG):
5598                case (EVENT_RING_OPCODE_FILTERS_RULES |
5599                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5600                        DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5601                        bnx2x_handle_rx_mode_eqe(bp);
5602                        break;
5603                default:
5604                        /* unknown event log error and continue */
5605                        BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5606                                  elem->message.opcode, bp->state);
5607                }
5608next_spqe:
5609                spqe_cnt++;
5610        } /* for */
5611
5612        smp_mb__before_atomic();
5613        atomic_add(spqe_cnt, &bp->eq_spq_left);
5614
5615        bp->eq_cons = sw_cons;
5616        bp->eq_prod = sw_prod;
5617        /* Make sure that above mem writes were issued towards the memory */
5618        smp_wmb();
5619
5620        /* update producer */
5621        bnx2x_update_eq_prod(bp, bp->eq_prod);
5622}
5623
5624static void bnx2x_sp_task(struct work_struct *work)
5625{
5626        struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5627
5628        DP(BNX2X_MSG_SP, "sp task invoked\n");
5629
5630        /* make sure the atomic interrupt_occurred has been written */
5631        smp_rmb();
5632        if (atomic_read(&bp->interrupt_occurred)) {
5633
5634                /* what work needs to be performed? */
5635                u16 status = bnx2x_update_dsb_idx(bp);
5636
5637                DP(BNX2X_MSG_SP, "status %x\n", status);
5638                DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5639                atomic_set(&bp->interrupt_occurred, 0);
5640
5641                /* HW attentions */
5642                if (status & BNX2X_DEF_SB_ATT_IDX) {
5643                        bnx2x_attn_int(bp);
5644                        status &= ~BNX2X_DEF_SB_ATT_IDX;
5645                }
5646
5647                /* SP events: STAT_QUERY and others */
5648                if (status & BNX2X_DEF_SB_IDX) {
5649                        struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5650
5651                if (FCOE_INIT(bp) &&
5652                            (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5653                                /* Prevent local bottom-halves from running as
5654                                 * we are going to change the local NAPI list.
5655                                 */
5656                                local_bh_disable();
5657                                napi_schedule(&bnx2x_fcoe(bp, napi));
5658                                local_bh_enable();
5659                        }
5660
5661                        /* Handle EQ completions */
5662                        bnx2x_eq_int(bp);
5663                        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5664                                     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5665
5666                        status &= ~BNX2X_DEF_SB_IDX;
5667                }
5668
5669                /* if status is non zero then perhaps something went wrong */
5670                if (unlikely(status))
5671                        DP(BNX2X_MSG_SP,
5672                           "got an unknown interrupt! (status 0x%x)\n", status);
5673
5674                /* ack status block only if something was actually handled */
5675                bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5676                             le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5677        }
5678
5679        /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5680        if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5681                               &bp->sp_state)) {
5682                bnx2x_link_report(bp);
5683                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5684        }
5685}
5686
5687irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5688{
5689        struct net_device *dev = dev_instance;
5690        struct bnx2x *bp = netdev_priv(dev);
5691
5692        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5693                     IGU_INT_DISABLE, 0);
5694
5695#ifdef BNX2X_STOP_ON_ERROR
5696        if (unlikely(bp->panic))
5697                return IRQ_HANDLED;
5698#endif
5699
5700        if (CNIC_LOADED(bp)) {
5701                struct cnic_ops *c_ops;
5702
5703                rcu_read_lock();
5704                c_ops = rcu_dereference(bp->cnic_ops);
5705                if (c_ops)
5706                        c_ops->cnic_handler(bp->cnic_data, NULL);
5707                rcu_read_unlock();
5708        }
5709
5710        /* schedule sp task to perform default status block work, ack
5711         * attentions and enable interrupts.
5712         */
5713        bnx2x_schedule_sp_task(bp);
5714
5715        return IRQ_HANDLED;
5716}
5717
5718/* end of slow path */
5719
5720void bnx2x_drv_pulse(struct bnx2x *bp)
5721{
5722        SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5723                 bp->fw_drv_pulse_wr_seq);
5724}
5725
5726static void bnx2x_timer(unsigned long data)
5727{
5728        struct bnx2x *bp = (struct bnx2x *) data;
5729
5730        if (!netif_running(bp->dev))
5731                return;
5732
5733        if (IS_PF(bp) &&
5734            !BP_NOMCP(bp)) {
5735                int mb_idx = BP_FW_MB_IDX(bp);
5736                u16 drv_pulse;
5737                u16 mcp_pulse;
5738
5739                ++bp->fw_drv_pulse_wr_seq;
5740                bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5741                drv_pulse = bp->fw_drv_pulse_wr_seq;
5742                bnx2x_drv_pulse(bp);
5743
5744                mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5745                             MCP_PULSE_SEQ_MASK);
5746                /* The delta between driver pulse and mcp response
5747                 * should not get too big. If the MFW is more than 5 pulses
5748                 * behind, we should worry about it enough to generate an error
5749                 * log.
5750                 */
5751                if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5752                        BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5753                                  drv_pulse, mcp_pulse);
5754        }
5755
5756        if (bp->state == BNX2X_STATE_OPEN)
5757                bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5758
5759        /* sample pf vf bulletin board for new posts from pf */
5760        if (IS_VF(bp))
5761                bnx2x_timer_sriov(bp);
5762
5763        mod_timer(&bp->timer, jiffies + bp->current_interval);
5764}
5765
5766/* end of Statistics */
5767
5768/* nic init */
5769
5770/*
5771 * nic init service functions
5772 */
5773
5774static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5775{
5776        u32 i;
5777        if (!(len%4) && !(addr%4))
5778                for (i = 0; i < len; i += 4)
5779                        REG_WR(bp, addr + i, fill);
5780        else
5781                for (i = 0; i < len; i++)
5782                        REG_WR8(bp, addr + i, fill);
5783}
5784
5785/* helper: writes FP SP data to FW - data_size in dwords */
5786static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5787                                int fw_sb_id,
5788                                u32 *sb_data_p,
5789                                u32 data_size)
5790{
5791        int index;
5792        for (index = 0; index < data_size; index++)
5793                REG_WR(bp, BAR_CSTRORM_INTMEM +
5794                        CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5795                        sizeof(u32)*index,
5796                        *(sb_data_p + index));
5797}
5798
5799static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5800{
5801        u32 *sb_data_p;
5802        u32 data_size = 0;
5803        struct hc_status_block_data_e2 sb_data_e2;
5804        struct hc_status_block_data_e1x sb_data_e1x;
5805
5806        /* disable the function first */
5807        if (!CHIP_IS_E1x(bp)) {
5808                memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5809                sb_data_e2.common.state = SB_DISABLED;
5810                sb_data_e2.common.p_func.vf_valid = false;
5811                sb_data_p = (u32 *)&sb_data_e2;
5812                data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5813        } else {
5814                memset(&sb_data_e1x, 0,
5815                       sizeof(struct hc_status_block_data_e1x));
5816                sb_data_e1x.common.state = SB_DISABLED;
5817                sb_data_e1x.common.p_func.vf_valid = false;
5818                sb_data_p = (u32 *)&sb_data_e1x;
5819                data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5820        }
5821        bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5822
5823        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5824                        CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5825                        CSTORM_STATUS_BLOCK_SIZE);
5826        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5827                        CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5828                        CSTORM_SYNC_BLOCK_SIZE);
5829}
5830
5831/* helper:  writes SP SB data to FW */
5832static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5833                struct hc_sp_status_block_data *sp_sb_data)
5834{
5835        int func = BP_FUNC(bp);
5836        int i;
5837        for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5838                REG_WR(bp, BAR_CSTRORM_INTMEM +
5839                        CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5840                        i*sizeof(u32),
5841                        *((u32 *)sp_sb_data + i));
5842}
5843
5844static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5845{
5846        int func = BP_FUNC(bp);
5847        struct hc_sp_status_block_data sp_sb_data;
5848        memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5849
5850        sp_sb_data.state = SB_DISABLED;
5851        sp_sb_data.p_func.vf_valid = false;
5852
5853        bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5854
5855        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5856                        CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5857                        CSTORM_SP_STATUS_BLOCK_SIZE);
5858        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5859                        CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5860                        CSTORM_SP_SYNC_BLOCK_SIZE);
5861}
5862
5863static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5864                                           int igu_sb_id, int igu_seg_id)
5865{
5866        hc_sm->igu_sb_id = igu_sb_id;
5867        hc_sm->igu_seg_id = igu_seg_id;
5868        hc_sm->timer_value = 0xFF;
5869        hc_sm->time_to_expire = 0xFFFFFFFF;
5870}
5871
5872/* allocates state machine ids. */
5873static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5874{
5875        /* zero out state machine indices */
5876        /* rx indices */
5877        index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5878
5879        /* tx indices */
5880        index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5881        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5882        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5883        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5884
5885        /* map indices */
5886        /* rx indices */
5887        index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5888                SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5889
5890        /* tx indices */
5891        index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5892                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5893        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5894                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5895        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5896                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5897        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5898                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5899}
5900
5901void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5902                          u8 vf_valid, int fw_sb_id, int igu_sb_id)
5903{
5904        int igu_seg_id;
5905
5906        struct hc_status_block_data_e2 sb_data_e2;
5907        struct hc_status_block_data_e1x sb_data_e1x;
5908        struct hc_status_block_sm  *hc_sm_p;
5909        int data_size;
5910        u32 *sb_data_p;
5911
5912        if (CHIP_INT_MODE_IS_BC(bp))
5913                igu_seg_id = HC_SEG_ACCESS_NORM;
5914        else
5915                igu_seg_id = IGU_SEG_ACCESS_NORM;
5916
5917        bnx2x_zero_fp_sb(bp, fw_sb_id);
5918
5919        if (!CHIP_IS_E1x(bp)) {
5920                memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5921                sb_data_e2.common.state = SB_ENABLED;
5922                sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5923                sb_data_e2.common.p_func.vf_id = vfid;
5924                sb_data_e2.common.p_func.vf_valid = vf_valid;
5925                sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5926                sb_data_e2.common.same_igu_sb_1b = true;
5927                sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5928                sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5929                hc_sm_p = sb_data_e2.common.state_machine;
5930                sb_data_p = (u32 *)&sb_data_e2;
5931                data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5932                bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5933        } else {
5934                memset(&sb_data_e1x, 0,
5935                       sizeof(struct hc_status_block_data_e1x));
5936                sb_data_e1x.common.state = SB_ENABLED;
5937                sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5938                sb_data_e1x.common.p_func.vf_id = 0xff;
5939                sb_data_e1x.common.p_func.vf_valid = false;
5940                sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5941                sb_data_e1x.common.same_igu_sb_1b = true;
5942                sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5943                sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5944                hc_sm_p = sb_data_e1x.common.state_machine;
5945                sb_data_p = (u32 *)&sb_data_e1x;
5946                data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5947                bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5948        }
5949
5950        bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5951                                       igu_sb_id, igu_seg_id);
5952        bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5953                                       igu_sb_id, igu_seg_id);
5954
5955        DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5956
5957        /* write indices to HW - PCI guarantees endianity of regpairs */
5958        bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5959}
5960
5961static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5962                                     u16 tx_usec, u16 rx_usec)
5963{
5964        bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5965                                    false, rx_usec);
5966        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5967                                       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5968                                       tx_usec);
5969        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5970                                       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5971                                       tx_usec);
5972        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5973                                       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5974                                       tx_usec);
5975}
5976
5977static void bnx2x_init_def_sb(struct bnx2x *bp)
5978{
5979        struct host_sp_status_block *def_sb = bp->def_status_blk;
5980        dma_addr_t mapping = bp->def_status_blk_mapping;
5981        int igu_sp_sb_index;
5982        int igu_seg_id;
5983        int port = BP_PORT(bp);
5984        int func = BP_FUNC(bp);
5985        int reg_offset, reg_offset_en5;
5986        u64 section;
5987        int index;
5988        struct hc_sp_status_block_data sp_sb_data;
5989        memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5990
5991        if (CHIP_INT_MODE_IS_BC(bp)) {
5992                igu_sp_sb_index = DEF_SB_IGU_ID;
5993                igu_seg_id = HC_SEG_ACCESS_DEF;
5994        } else {
5995                igu_sp_sb_index = bp->igu_dsb_id;
5996                igu_seg_id = IGU_SEG_ACCESS_DEF;
5997        }
5998
5999        /* ATTN */
6000        section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6001                                            atten_status_block);
6002        def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6003
6004        bp->attn_state = 0;
6005
6006        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6007                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6008        reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6009                                 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6010        for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6011                int sindex;
6012                /* take care of sig[0]..sig[4] */
6013                for (sindex = 0; sindex < 4; sindex++)
6014                        bp->attn_group[index].sig[sindex] =
6015                           REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6016
6017                if (!CHIP_IS_E1x(bp))
6018                        /*
6019                         * enable5 is separate from the rest of the registers,
6020                         * and therefore the address skip is 4
6021                         * and not 16 between the different groups
6022                         */
6023                        bp->attn_group[index].sig[4] = REG_RD(bp,
6024                                        reg_offset_en5 + 0x4*index);
6025                else
6026                        bp->attn_group[index].sig[4] = 0;
6027        }
6028
6029        if (bp->common.int_block == INT_BLOCK_HC) {
6030                reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6031                                     HC_REG_ATTN_MSG0_ADDR_L);
6032
6033                REG_WR(bp, reg_offset, U64_LO(section));
6034                REG_WR(bp, reg_offset + 4, U64_HI(section));
6035        } else if (!CHIP_IS_E1x(bp)) {
6036                REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6037                REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6038        }
6039
6040        section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6041                                            sp_sb);
6042
6043        bnx2x_zero_sp_sb(bp);
6044
6045        /* PCI guarantees endianity of regpairs */
6046        sp_sb_data.state                = SB_ENABLED;
6047        sp_sb_data.host_sb_addr.lo      = U64_LO(section);
6048        sp_sb_data.host_sb_addr.hi      = U64_HI(section);
6049        sp_sb_data.igu_sb_id            = igu_sp_sb_index;
6050        sp_sb_data.igu_seg_id           = igu_seg_id;
6051        sp_sb_data.p_func.pf_id         = func;
6052        sp_sb_data.p_func.vnic_id       = BP_VN(bp);
6053        sp_sb_data.p_func.vf_id         = 0xff;
6054
6055        bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6056
6057        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6058}
6059
6060void bnx2x_update_coalesce(struct bnx2x *bp)
6061{
6062        int i;
6063
6064        for_each_eth_queue(bp, i)
6065                bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6066                                         bp->tx_ticks, bp->rx_ticks);
6067}
6068
6069static void bnx2x_init_sp_ring(struct bnx2x *bp)
6070{
6071        spin_lock_init(&bp->spq_lock);
6072        atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6073
6074        bp->spq_prod_idx = 0;
6075        bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6076        bp->spq_prod_bd = bp->spq;
6077        bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6078}
6079
6080static void bnx2x_init_eq_ring(struct bnx2x *bp)
6081{
6082        int i;
6083        for (i = 1; i <= NUM_EQ_PAGES; i++) {
6084                union event_ring_elem *elem =
6085                        &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6086
6087                elem->next_page.addr.hi =
6088                        cpu_to_le32(U64_HI(bp->eq_mapping +
6089                                   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6090                elem->next_page.addr.lo =
6091                        cpu_to_le32(U64_LO(bp->eq_mapping +
6092                                   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6093        }
6094        bp->eq_cons = 0;
6095        bp->eq_prod = NUM_EQ_DESC;
6096        bp->eq_cons_sb = BNX2X_EQ_INDEX;
6097        /* we want a warning message before it gets wrought... */
6098        atomic_set(&bp->eq_spq_left,
6099                min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6100}
6101
6102/* called with netif_addr_lock_bh() */
6103static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6104                               unsigned long rx_mode_flags,
6105                               unsigned long rx_accept_flags,
6106                               unsigned long tx_accept_flags,
6107                               unsigned long ramrod_flags)
6108{
6109        struct bnx2x_rx_mode_ramrod_params ramrod_param;
6110        int rc;
6111
6112        memset(&ramrod_param, 0, sizeof(ramrod_param));
6113
6114        /* Prepare ramrod parameters */
6115        ramrod_param.cid = 0;
6116        ramrod_param.cl_id = cl_id;
6117        ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6118        ramrod_param.func_id = BP_FUNC(bp);
6119
6120        ramrod_param.pstate = &bp->sp_state;
6121        ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6122
6123        ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6124        ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6125
6126        set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6127
6128        ramrod_param.ramrod_flags = ramrod_flags;
6129        ramrod_param.rx_mode_flags = rx_mode_flags;
6130
6131        ramrod_param.rx_accept_flags = rx_accept_flags;
6132        ramrod_param.tx_accept_flags = tx_accept_flags;
6133
6134        rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6135        if (rc < 0) {
6136                BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6137                return rc;
6138        }
6139
6140        return 0;
6141}
6142
6143static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6144                                   unsigned long *rx_accept_flags,
6145                                   unsigned long *tx_accept_flags)
6146{
6147        /* Clear the flags first */
6148        *rx_accept_flags = 0;
6149        *tx_accept_flags = 0;
6150
6151        switch (rx_mode) {
6152        case BNX2X_RX_MODE_NONE:
6153                /*
6154                 * 'drop all' supersedes any accept flags that may have been
6155                 * passed to the function.
6156                 */
6157                break;
6158        case BNX2X_RX_MODE_NORMAL:
6159                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6160                __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6161                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6162
6163                /* internal switching mode */
6164                __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6165                __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6166                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6167
6168                break;
6169        case BNX2X_RX_MODE_ALLMULTI:
6170                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6171                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6172                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6173
6174                /* internal switching mode */
6175                __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6176                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6177                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6178
6179                break;
6180        case BNX2X_RX_MODE_PROMISC:
6181                /* According to definition of SI mode, iface in promisc mode
6182                 * should receive matched and unmatched (in resolution of port)
6183                 * unicast packets.
6184                 */
6185                __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6186                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6187                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6188                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6189
6190                /* internal switching mode */
6191                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6192                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6193
6194                if (IS_MF_SI(bp))
6195                        __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6196                else
6197                        __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6198
6199                break;
6200        default:
6201                BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6202                return -EINVAL;
6203        }
6204
6205        /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
6206        if (rx_mode != BNX2X_RX_MODE_NONE) {
6207                __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6208                __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6209        }
6210
6211        return 0;
6212}
6213
6214/* called with netif_addr_lock_bh() */
6215static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6216{
6217        unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6218        unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6219        int rc;
6220
6221        if (!NO_FCOE(bp))
6222                /* Configure rx_mode of FCoE Queue */
6223                __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6224
6225        rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6226                                     &tx_accept_flags);
6227        if (rc)
6228                return rc;
6229
6230        __set_bit(RAMROD_RX, &ramrod_flags);
6231        __set_bit(RAMROD_TX, &ramrod_flags);
6232
6233        return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6234                                   rx_accept_flags, tx_accept_flags,
6235                                   ramrod_flags);
6236}
6237
6238static void bnx2x_init_internal_common(struct bnx2x *bp)
6239{
6240        int i;
6241
6242        /* Zero this manually as its initialization is
6243           currently missing in the initTool */
6244        for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6245                REG_WR(bp, BAR_USTRORM_INTMEM +
6246                       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6247        if (!CHIP_IS_E1x(bp)) {
6248                REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6249                        CHIP_INT_MODE_IS_BC(bp) ?
6250                        HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6251        }
6252}
6253
6254static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6255{
6256        switch (load_code) {
6257        case FW_MSG_CODE_DRV_LOAD_COMMON:
6258        case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6259                bnx2x_init_internal_common(bp);
6260                /* no break */
6261
6262        case FW_MSG_CODE_DRV_LOAD_PORT:
6263                /* nothing to do */
6264                /* no break */
6265
6266        case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6267                /* internal memory per function is
6268                   initialized inside bnx2x_pf_init */
6269                break;
6270
6271        default:
6272                BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6273                break;
6274        }
6275}
6276
6277static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6278{
6279        return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6280}
6281
6282static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6283{
6284        return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6285}
6286
6287static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6288{
6289        if (CHIP_IS_E1x(fp->bp))
6290                return BP_L_ID(fp->bp) + fp->index;
6291        else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6292                return bnx2x_fp_igu_sb_id(fp);
6293}
6294
6295static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6296{
6297        struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6298        u8 cos;
6299        unsigned long q_type = 0;
6300        u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6301        fp->rx_queue = fp_idx;
6302        fp->cid = fp_idx;
6303        fp->cl_id = bnx2x_fp_cl_id(fp);
6304        fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6305        fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6306        /* qZone id equals to FW (per path) client id */
6307        fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6308
6309        /* init shortcut */
6310        fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6311
6312        /* Setup SB indices */
6313        fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6314
6315        /* Configure Queue State object */
6316        __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6317        __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6318
6319        BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6320
6321        /* init tx data */
6322        for_each_cos_in_tx_queue(fp, cos) {
6323                bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6324                                  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6325                                  FP_COS_TO_TXQ(fp, cos, bp),
6326                                  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6327                cids[cos] = fp->txdata_ptr[cos]->cid;
6328        }
6329
6330        /* nothing more for vf to do here */
6331        if (IS_VF(bp))
6332                return;
6333
6334        bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6335                      fp->fw_sb_id, fp->igu_sb_id);
6336        bnx2x_update_fpsb_idx(fp);
6337        bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6338                             fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6339                             bnx2x_sp_mapping(bp, q_rdata), q_type);
6340
6341        /**
6342         * Configure classification DBs: Always enable Tx switching
6343         */
6344        bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6345
6346        DP(NETIF_MSG_IFUP,
6347           "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6348           fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6349           fp->igu_sb_id);
6350}
6351
6352static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6353{
6354        int i;
6355
6356        for (i = 1; i <= NUM_TX_RINGS; i++) {
6357                struct eth_tx_next_bd *tx_next_bd =
6358                        &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6359
6360                tx_next_bd->addr_hi =
6361                        cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6362                                    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6363                tx_next_bd->addr_lo =
6364                        cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6365                                    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6366        }
6367
6368        *txdata->tx_cons_sb = cpu_to_le16(0);
6369
6370        SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6371        txdata->tx_db.data.zero_fill1 = 0;
6372        txdata->tx_db.data.prod = 0;
6373
6374        txdata->tx_pkt_prod = 0;
6375        txdata->tx_pkt_cons = 0;
6376        txdata->tx_bd_prod = 0;
6377        txdata->tx_bd_cons = 0;
6378        txdata->tx_pkt = 0;
6379}
6380
6381static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6382{
6383        int i;
6384
6385        for_each_tx_queue_cnic(bp, i)
6386                bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6387}
6388
6389static void bnx2x_init_tx_rings(struct bnx2x *bp)
6390{
6391        int i;
6392        u8 cos;
6393
6394        for_each_eth_queue(bp, i)
6395                for_each_cos_in_tx_queue(&bp->fp[i], cos)
6396                        bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6397}
6398
6399static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6400{
6401        struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6402        unsigned long q_type = 0;
6403
6404        bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6405        bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6406                                                     BNX2X_FCOE_ETH_CL_ID_IDX);
6407        bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6408        bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6409        bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6410        bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6411        bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6412                          fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6413                          fp);
6414
6415        DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6416
6417        /* qZone id equals to FW (per path) client id */
6418        bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6419        /* init shortcut */
6420        bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6421                bnx2x_rx_ustorm_prods_offset(fp);
6422
6423        /* Configure Queue State object */
6424        __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6425        __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6426
6427        /* No multi-CoS for FCoE L2 client */
6428        BUG_ON(fp->max_cos != 1);
6429
6430        bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6431                             &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6432                             bnx2x_sp_mapping(bp, q_rdata), q_type);
6433
6434        DP(NETIF_MSG_IFUP,
6435           "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6436           fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6437           fp->igu_sb_id);
6438}
6439
6440void bnx2x_nic_init_cnic(struct bnx2x *bp)
6441{
6442        if (!NO_FCOE(bp))
6443                bnx2x_init_fcoe_fp(bp);
6444
6445        bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6446                      BNX2X_VF_ID_INVALID, false,
6447                      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6448
6449        /* ensure status block indices were read */
6450        rmb();
6451        bnx2x_init_rx_rings_cnic(bp);
6452        bnx2x_init_tx_rings_cnic(bp);
6453
6454        /* flush all */
6455        mb();
6456        mmiowb();
6457}
6458
6459void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6460{
6461        int i;
6462
6463        /* Setup NIC internals and enable interrupts */
6464        for_each_eth_queue(bp, i)
6465                bnx2x_init_eth_fp(bp, i);
6466
6467        /* ensure status block indices were read */
6468        rmb();
6469        bnx2x_init_rx_rings(bp);
6470        bnx2x_init_tx_rings(bp);
6471
6472        if (IS_PF(bp)) {
6473                /* Initialize MOD_ABS interrupts */
6474                bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6475                                       bp->common.shmem_base,
6476                                       bp->common.shmem2_base, BP_PORT(bp));
6477
6478                /* initialize the default status block and sp ring */
6479                bnx2x_init_def_sb(bp);
6480                bnx2x_update_dsb_idx(bp);
6481                bnx2x_init_sp_ring(bp);
6482        } else {
6483                bnx2x_memset_stats(bp);
6484        }
6485}
6486
6487void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6488{
6489        bnx2x_init_eq_ring(bp);
6490        bnx2x_init_internal(bp, load_code);
6491        bnx2x_pf_init(bp);
6492        bnx2x_stats_init(bp);
6493
6494        /* flush all before enabling interrupts */
6495        mb();
6496        mmiowb();
6497
6498        bnx2x_int_enable(bp);
6499
6500        /* Check for SPIO5 */
6501        bnx2x_attn_int_deasserted0(bp,
6502                REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6503                                   AEU_INPUTS_ATTN_BITS_SPIO5);
6504}
6505
6506/* gzip service functions */
6507static int bnx2x_gunzip_init(struct bnx2x *bp)
6508{
6509        bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6510                                            &bp->gunzip_mapping, GFP_KERNEL);
6511        if (bp->gunzip_buf  == NULL)
6512                goto gunzip_nomem1;
6513
6514        bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6515        if (bp->strm  == NULL)
6516                goto gunzip_nomem2;
6517
6518        bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6519        if (bp->strm->workspace == NULL)
6520                goto gunzip_nomem3;
6521
6522        return 0;
6523
6524gunzip_nomem3:
6525        kfree(bp->strm);
6526        bp->strm = NULL;
6527
6528gunzip_nomem2:
6529        dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6530                          bp->gunzip_mapping);
6531        bp->gunzip_buf = NULL;
6532
6533gunzip_nomem1:
6534        BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6535        return -ENOMEM;
6536}
6537
6538static void bnx2x_gunzip_end(struct bnx2x *bp)
6539{
6540        if (bp->strm) {
6541                vfree(bp->strm->workspace);
6542                kfree(bp->strm);
6543                bp->strm = NULL;
6544        }
6545
6546        if (bp->gunzip_buf) {
6547                dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6548                                  bp->gunzip_mapping);
6549                bp->gunzip_buf = NULL;
6550        }
6551}
6552
6553static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6554{
6555        int n, rc;
6556
6557        /* check gzip header */
6558        if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6559                BNX2X_ERR("Bad gzip header\n");
6560                return -EINVAL;
6561        }
6562
6563        n = 10;
6564
6565#define FNAME                           0x8
6566
6567        if (zbuf[3] & FNAME)
6568                while ((zbuf[n++] != 0) && (n < len));
6569
6570        bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6571        bp->strm->avail_in = len - n;
6572        bp->strm->next_out = bp->gunzip_buf;
6573        bp->strm->avail_out = FW_BUF_SIZE;
6574
6575        rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6576        if (rc != Z_OK)
6577                return rc;
6578
6579        rc = zlib_inflate(bp->strm, Z_FINISH);
6580        if ((rc != Z_OK) && (rc != Z_STREAM_END))
6581                netdev_err(bp->dev, "Firmware decompression error: %s\n",
6582                           bp->strm->msg);
6583
6584        bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6585        if (bp->gunzip_outlen & 0x3)
6586                netdev_err(bp->dev,
6587                           "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6588                                bp->gunzip_outlen);
6589        bp->gunzip_outlen >>= 2;
6590
6591        zlib_inflateEnd(bp->strm);
6592
6593        if (rc == Z_STREAM_END)
6594                return 0;
6595
6596        return rc;
6597}
6598
6599/* nic load/unload */
6600
6601/*
6602 * General service functions
6603 */
6604
6605/* send a NIG loopback debug packet */
6606static void bnx2x_lb_pckt(struct bnx2x *bp)
6607{
6608        u32 wb_write[3];
6609
6610        /* Ethernet source and destination addresses */
6611        wb_write[0] = 0x55555555;
6612        wb_write[1] = 0x55555555;
6613        wb_write[2] = 0x20;             /* SOP */
6614        REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6615
6616        /* NON-IP protocol */
6617        wb_write[0] = 0x09000000;
6618        wb_write[1] = 0x55555555;
6619        wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6620        REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6621}
6622
6623/* some of the internal memories
6624 * are not directly readable from the driver
6625 * to test them we send debug packets
6626 */
6627static int bnx2x_int_mem_test(struct bnx2x *bp)
6628{
6629        int factor;
6630        int count, i;
6631        u32 val = 0;
6632
6633        if (CHIP_REV_IS_FPGA(bp))
6634                factor = 120;
6635        else if (CHIP_REV_IS_EMUL(bp))
6636                factor = 200;
6637        else
6638                factor = 1;
6639
6640        /* Disable inputs of parser neighbor blocks */
6641        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6642        REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6643        REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6644        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6645
6646        /*  Write 0 to parser credits for CFC search request */
6647        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6648
6649        /* send Ethernet packet */
6650        bnx2x_lb_pckt(bp);
6651
6652        /* TODO do i reset NIG statistic? */
6653        /* Wait until NIG register shows 1 packet of size 0x10 */
6654        count = 1000 * factor;
6655        while (count) {
6656
6657                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6658                val = *bnx2x_sp(bp, wb_data[0]);
6659                if (val == 0x10)
6660                        break;
6661
6662                usleep_range(10000, 20000);
6663                count--;
6664        }
6665        if (val != 0x10) {
6666                BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6667                return -1;
6668        }
6669
6670        /* Wait until PRS register shows 1 packet */
6671        count = 1000 * factor;
6672        while (count) {
6673                val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6674                if (val == 1)
6675                        break;
6676
6677                usleep_range(10000, 20000);
6678                count--;
6679        }
6680        if (val != 0x1) {
6681                BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6682                return -2;
6683        }
6684
6685        /* Reset and init BRB, PRS */
6686        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6687        msleep(50);
6688        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6689        msleep(50);
6690        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6691        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6692
6693        DP(NETIF_MSG_HW, "part2\n");
6694
6695        /* Disable inputs of parser neighbor blocks */
6696        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6697        REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6698        REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6699        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6700
6701        /* Write 0 to parser credits for CFC search request */
6702        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6703
6704        /* send 10 Ethernet packets */
6705        for (i = 0; i < 10; i++)
6706                bnx2x_lb_pckt(bp);
6707
6708        /* Wait until NIG register shows 10 + 1
6709           packets of size 11*0x10 = 0xb0 */
6710        count = 1000 * factor;
6711        while (count) {
6712
6713                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6714                val = *bnx2x_sp(bp, wb_data[0]);
6715                if (val == 0xb0)
6716                        break;
6717
6718                usleep_range(10000, 20000);
6719                count--;
6720        }
6721        if (val != 0xb0) {
6722                BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6723                return -3;
6724        }
6725
6726        /* Wait until PRS register shows 2 packets */
6727        val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6728        if (val != 2)
6729                BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6730
6731        /* Write 1 to parser credits for CFC search request */
6732        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6733
6734        /* Wait until PRS register shows 3 packets */
6735        msleep(10 * factor);
6736        /* Wait until NIG register shows 1 packet of size 0x10 */
6737        val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6738        if (val != 3)
6739                BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6740
6741        /* clear NIG EOP FIFO */
6742        for (i = 0; i < 11; i++)
6743                REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6744        val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6745        if (val != 1) {
6746                BNX2X_ERR("clear of NIG failed\n");
6747                return -4;
6748        }
6749
6750        /* Reset and init BRB, PRS, NIG */
6751        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6752        msleep(50);
6753        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6754        msleep(50);
6755        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6756        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6757        if (!CNIC_SUPPORT(bp))
6758                /* set NIC mode */
6759                REG_WR(bp, PRS_REG_NIC_MODE, 1);
6760
6761        /* Enable inputs of parser neighbor blocks */
6762        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6763        REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6764        REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6765        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6766
6767        DP(NETIF_MSG_HW, "done\n");
6768
6769        return 0; /* OK */
6770}
6771
6772static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6773{
6774        u32 val;
6775
6776        REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6777        if (!CHIP_IS_E1x(bp))
6778                REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6779        else
6780                REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6781        REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6782        REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6783        /*
6784         * mask read length error interrupts in brb for parser
6785         * (parsing unit and 'checksum and crc' unit)
6786         * these errors are legal (PU reads fixed length and CAC can cause
6787         * read length error on truncated packets)
6788         */
6789        REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6790        REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6791        REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6792        REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6793        REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6794        REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6795/*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6796/*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6797        REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6798        REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6799        REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6800/*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6801/*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6802        REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6803        REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6804        REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6805        REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6806/*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6807/*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6808
6809        val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6810                PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6811                PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6812        if (!CHIP_IS_E1x(bp))
6813                val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6814                        PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6815        REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6816
6817        REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6818        REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6819        REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6820/*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6821
6822        if (!CHIP_IS_E1x(bp))
6823                /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6824                REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6825
6826        REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6827        REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6828/*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6829        REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6830}
6831
6832static void bnx2x_reset_common(struct bnx2x *bp)
6833{
6834        u32 val = 0x1400;
6835
6836        /* reset_common */
6837        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6838               0xd3ffff7f);
6839
6840        if (CHIP_IS_E3(bp)) {
6841                val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6842                val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6843        }
6844
6845        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6846}
6847
6848static void bnx2x_setup_dmae(struct bnx2x *bp)
6849{
6850        bp->dmae_ready = 0;
6851        spin_lock_init(&bp->dmae_lock);
6852}
6853
6854static void bnx2x_init_pxp(struct bnx2x *bp)
6855{
6856        u16 devctl;
6857        int r_order, w_order;
6858
6859        pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6860        DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6861        w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6862        if (bp->mrrs == -1)
6863                r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6864        else {
6865                DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6866                r_order = bp->mrrs;
6867        }
6868
6869        bnx2x_init_pxp_arb(bp, r_order, w_order);
6870}
6871
6872static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6873{
6874        int is_required;
6875        u32 val;
6876        int port;
6877
6878        if (BP_NOMCP(bp))
6879                return;
6880
6881        is_required = 0;
6882        val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6883              SHARED_HW_CFG_FAN_FAILURE_MASK;
6884
6885        if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6886                is_required = 1;
6887
6888        /*
6889         * The fan failure mechanism is usually related to the PHY type since
6890         * the power consumption of the board is affected by the PHY. Currently,
6891         * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6892         */
6893        else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6894                for (port = PORT_0; port < PORT_MAX; port++) {
6895                        is_required |=
6896                                bnx2x_fan_failure_det_req(
6897                                        bp,
6898                                        bp->common.shmem_base,
6899                                        bp->common.shmem2_base,
6900                                        port);
6901                }
6902
6903        DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6904
6905        if (is_required == 0)
6906                return;
6907
6908        /* Fan failure is indicated by SPIO 5 */
6909        bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6910
6911        /* set to active low mode */
6912        val = REG_RD(bp, MISC_REG_SPIO_INT);
6913        val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6914        REG_WR(bp, MISC_REG_SPIO_INT, val);
6915
6916        /* enable interrupt to signal the IGU */
6917        val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6918        val |= MISC_SPIO_SPIO5;
6919        REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6920}
6921
6922void bnx2x_pf_disable(struct bnx2x *bp)
6923{
6924        u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6925        val &= ~IGU_PF_CONF_FUNC_EN;
6926
6927        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6928        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6929        REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6930}
6931
6932static void bnx2x__common_init_phy(struct bnx2x *bp)
6933{
6934        u32 shmem_base[2], shmem2_base[2];
6935        /* Avoid common init in case MFW supports LFA */
6936        if (SHMEM2_RD(bp, size) >
6937            (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6938                return;
6939        shmem_base[0] =  bp->common.shmem_base;
6940        shmem2_base[0] = bp->common.shmem2_base;
6941        if (!CHIP_IS_E1x(bp)) {
6942                shmem_base[1] =
6943                        SHMEM2_RD(bp, other_shmem_base_addr);
6944                shmem2_base[1] =
6945                        SHMEM2_RD(bp, other_shmem2_base_addr);
6946        }
6947        bnx2x_acquire_phy_lock(bp);
6948        bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6949                              bp->common.chip_id);
6950        bnx2x_release_phy_lock(bp);
6951}
6952
6953static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6954{
6955        REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6956        REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
6957        REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
6958        REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
6959        REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
6960
6961        /* make sure this value is 0 */
6962        REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6963
6964        REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
6965        REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
6966        REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
6967        REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
6968}
6969
6970static void bnx2x_set_endianity(struct bnx2x *bp)
6971{
6972#ifdef __BIG_ENDIAN
6973        bnx2x_config_endianity(bp, 1);
6974#else
6975        bnx2x_config_endianity(bp, 0);
6976#endif
6977}
6978
6979static void bnx2x_reset_endianity(struct bnx2x *bp)
6980{
6981        bnx2x_config_endianity(bp, 0);
6982}
6983
6984/**
6985 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6986 *
6987 * @bp:         driver handle
6988 */
6989static int bnx2x_init_hw_common(struct bnx2x *bp)
6990{
6991        u32 val;
6992
6993        DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6994
6995        /*
6996         * take the RESET lock to protect undi_unload flow from accessing
6997         * registers while we're resetting the chip
6998         */
6999        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7000
7001        bnx2x_reset_common(bp);
7002        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7003
7004        val = 0xfffc;
7005        if (CHIP_IS_E3(bp)) {
7006                val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7007                val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7008        }
7009        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7010
7011        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7012
7013        bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7014
7015        if (!CHIP_IS_E1x(bp)) {
7016                u8 abs_func_id;
7017
7018                /**
7019                 * 4-port mode or 2-port mode we need to turn of master-enable
7020                 * for everyone, after that, turn it back on for self.
7021                 * so, we disregard multi-function or not, and always disable
7022                 * for all functions on the given path, this means 0,2,4,6 for
7023                 * path 0 and 1,3,5,7 for path 1
7024                 */
7025                for (abs_func_id = BP_PATH(bp);
7026                     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7027                        if (abs_func_id == BP_ABS_FUNC(bp)) {
7028                                REG_WR(bp,
7029                                    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7030                                    1);
7031                                continue;
7032                        }
7033
7034                        bnx2x_pretend_func(bp, abs_func_id);
7035                        /* clear pf enable */
7036                        bnx2x_pf_disable(bp);
7037                        bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7038                }
7039        }
7040
7041        bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7042        if (CHIP_IS_E1(bp)) {
7043                /* enable HW interrupt from PXP on USDM overflow
7044                   bit 16 on INT_MASK_0 */
7045                REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7046        }
7047
7048        bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7049        bnx2x_init_pxp(bp);
7050        bnx2x_set_endianity(bp);
7051        bnx2x_ilt_init_page_size(bp, INITOP_SET);
7052
7053        if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7054                REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7055
7056        /* let the HW do it's magic ... */
7057        msleep(100);
7058        /* finish PXP init */
7059        val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7060        if (val != 1) {
7061                BNX2X_ERR("PXP2 CFG failed\n");
7062                return -EBUSY;
7063        }
7064        val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7065        if (val != 1) {
7066                BNX2X_ERR("PXP2 RD_INIT failed\n");
7067                return -EBUSY;
7068        }
7069
7070        /* Timers bug workaround E2 only. We need to set the entire ILT to
7071         * have entries with value "0" and valid bit on.
7072         * This needs to be done by the first PF that is loaded in a path
7073         * (i.e. common phase)
7074         */
7075        if (!CHIP_IS_E1x(bp)) {
7076/* In E2 there is a bug in the timers block that can cause function 6 / 7
7077 * (i.e. vnic3) to start even if it is marked as "scan-off".
7078 * This occurs when a different function (func2,3) is being marked
7079 * as "scan-off". Real-life scenario for example: if a driver is being
7080 * load-unloaded while func6,7 are down. This will cause the timer to access
7081 * the ilt, translate to a logical address and send a request to read/write.
7082 * Since the ilt for the function that is down is not valid, this will cause
7083 * a translation error which is unrecoverable.
7084 * The Workaround is intended to make sure that when this happens nothing fatal
7085 * will occur. The workaround:
7086 *      1.  First PF driver which loads on a path will:
7087 *              a.  After taking the chip out of reset, by using pretend,
7088 *                  it will write "0" to the following registers of
7089 *                  the other vnics.
7090 *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7091 *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7092 *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7093 *                  And for itself it will write '1' to
7094 *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7095 *                  dmae-operations (writing to pram for example.)
7096 *                  note: can be done for only function 6,7 but cleaner this
7097 *                        way.
7098 *              b.  Write zero+valid to the entire ILT.
7099 *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7100 *                  VNIC3 (of that port). The range allocated will be the
7101 *                  entire ILT. This is needed to prevent  ILT range error.
7102 *      2.  Any PF driver load flow:
7103 *              a.  ILT update with the physical addresses of the allocated
7104 *                  logical pages.
7105 *              b.  Wait 20msec. - note that this timeout is needed to make
7106 *                  sure there are no requests in one of the PXP internal
7107 *                  queues with "old" ILT addresses.
7108 *              c.  PF enable in the PGLC.
7109 *              d.  Clear the was_error of the PF in the PGLC. (could have
7110 *                  occurred while driver was down)
7111 *              e.  PF enable in the CFC (WEAK + STRONG)
7112 *              f.  Timers scan enable
7113 *      3.  PF driver unload flow:
7114 *              a.  Clear the Timers scan_en.
7115 *              b.  Polling for scan_on=0 for that PF.
7116 *              c.  Clear the PF enable bit in the PXP.
7117 *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7118 *              e.  Write zero+valid to all ILT entries (The valid bit must
7119 *                  stay set)
7120 *              f.  If this is VNIC 3 of a port then also init
7121 *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7122 *                  to the last entry in the ILT.
7123 *
7124 *      Notes:
7125 *      Currently the PF error in the PGLC is non recoverable.
7126 *      In the future the there will be a recovery routine for this error.
7127 *      Currently attention is masked.
7128 *      Having an MCP lock on the load/unload process does not guarantee that
7129 *      there is no Timer disable during Func6/7 enable. This is because the
7130 *      Timers scan is currently being cleared by the MCP on FLR.
7131 *      Step 2.d can be done only for PF6/7 and the driver can also check if
7132 *      there is error before clearing it. But the flow above is simpler and
7133 *      more general.
7134 *      All ILT entries are written by zero+valid and not just PF6/7
7135 *      ILT entries since in the future the ILT entries allocation for
7136 *      PF-s might be dynamic.
7137 */
7138                struct ilt_client_info ilt_cli;
7139                struct bnx2x_ilt ilt;
7140                memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7141                memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7142
7143                /* initialize dummy TM client */
7144                ilt_cli.start = 0;
7145                ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7146                ilt_cli.client_num = ILT_CLIENT_TM;
7147
7148                /* Step 1: set zeroes to all ilt page entries with valid bit on
7149                 * Step 2: set the timers first/last ilt entry to point
7150                 * to the entire range to prevent ILT range error for 3rd/4th
7151                 * vnic (this code assumes existence of the vnic)
7152                 *
7153                 * both steps performed by call to bnx2x_ilt_client_init_op()
7154                 * with dummy TM client
7155                 *
7156                 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7157                 * and his brother are split registers
7158                 */
7159                bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7160                bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7161                bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7162
7163                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7164                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7165                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7166        }
7167
7168        REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7169        REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7170
7171        if (!CHIP_IS_E1x(bp)) {
7172                int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7173                                (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7174                bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7175
7176                bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7177
7178                /* let the HW do it's magic ... */
7179                do {
7180                        msleep(200);
7181                        val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7182                } while (factor-- && (val != 1));
7183
7184                if (val != 1) {
7185                        BNX2X_ERR("ATC_INIT failed\n");
7186                        return -EBUSY;
7187                }
7188        }
7189
7190        bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7191
7192        bnx2x_iov_init_dmae(bp);
7193
7194        /* clean the DMAE memory */
7195        bp->dmae_ready = 1;
7196        bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7197
7198        bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7199
7200        bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7201
7202        bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7203
7204        bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7205
7206        bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7207        bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7208        bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7209        bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7210
7211        bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7212
7213        /* QM queues pointers table */
7214        bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7215
7216        /* soft reset pulse */
7217        REG_WR(bp, QM_REG_SOFT_RESET, 1);
7218        REG_WR(bp, QM_REG_SOFT_RESET, 0);
7219
7220        if (CNIC_SUPPORT(bp))
7221                bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7222
7223        bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7224
7225        if (!CHIP_REV_IS_SLOW(bp))
7226                /* enable hw interrupt from doorbell Q */
7227                REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7228
7229        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7230
7231        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7232        REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7233
7234        if (!CHIP_IS_E1(bp))
7235                REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7236
7237        if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7238                if (IS_MF_AFEX(bp)) {
7239                        /* configure that VNTag and VLAN headers must be
7240                         * received in afex mode
7241                         */
7242                        REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7243                        REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7244                        REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7245                        REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7246                        REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7247                } else {
7248                        /* Bit-map indicating which L2 hdrs may appear
7249                         * after the basic Ethernet header
7250                         */
7251                        REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7252                               bp->path_has_ovlan ? 7 : 6);
7253                }
7254        }
7255
7256        bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7257        bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7258        bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7259        bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7260
7261        if (!CHIP_IS_E1x(bp)) {
7262                /* reset VFC memories */
7263                REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7264                           VFC_MEMORIES_RST_REG_CAM_RST |
7265                           VFC_MEMORIES_RST_REG_RAM_RST);
7266                REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7267                           VFC_MEMORIES_RST_REG_CAM_RST |
7268                           VFC_MEMORIES_RST_REG_RAM_RST);
7269
7270                msleep(20);
7271        }
7272
7273        bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7274        bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7275        bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7276        bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7277
7278        /* sync semi rtc */
7279        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7280               0x80000000);
7281        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7282               0x80000000);
7283
7284        bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7285        bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7286        bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7287
7288        if (!CHIP_IS_E1x(bp)) {
7289                if (IS_MF_AFEX(bp)) {
7290                        /* configure that VNTag and VLAN headers must be
7291                         * sent in afex mode
7292                         */
7293                        REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7294                        REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7295                        REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7296                        REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7297                        REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7298                } else {
7299                        REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7300                               bp->path_has_ovlan ? 7 : 6);
7301                }
7302        }
7303
7304        REG_WR(bp, SRC_REG_SOFT_RST, 1);
7305
7306        bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7307
7308        if (CNIC_SUPPORT(bp)) {
7309                REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7310                REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7311                REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7312                REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7313                REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7314                REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7315                REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7316                REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7317                REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7318                REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7319        }
7320        REG_WR(bp, SRC_REG_SOFT_RST, 0);
7321
7322        if (sizeof(union cdu_context) != 1024)
7323                /* we currently assume that a context is 1024 bytes */
7324                dev_alert(&bp->pdev->dev,
7325                          "please adjust the size of cdu_context(%ld)\n",
7326                          (long)sizeof(union cdu_context));
7327
7328        bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7329        val = (4 << 24) + (0 << 12) + 1024;
7330        REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7331
7332        bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7333        REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7334        /* enable context validation interrupt from CFC */
7335        REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7336
7337        /* set the thresholds to prevent CFC/CDU race */
7338        REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7339
7340        bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7341
7342        if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7343                REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7344
7345        bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7346        bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7347
7348        /* Reset PCIE errors for debug */
7349        REG_WR(bp, 0x2814, 0xffffffff);
7350        REG_WR(bp, 0x3820, 0xffffffff);
7351
7352        if (!CHIP_IS_E1x(bp)) {
7353                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7354                           (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7355                                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7356                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7357                           (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7358                                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7359                                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7360                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7361                           (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7362                                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7363                                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7364        }
7365
7366        bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7367        if (!CHIP_IS_E1(bp)) {
7368                /* in E3 this done in per-port section */
7369                if (!CHIP_IS_E3(bp))
7370                        REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7371        }
7372        if (CHIP_IS_E1H(bp))
7373                /* not applicable for E2 (and above ...) */
7374                REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7375
7376        if (CHIP_REV_IS_SLOW(bp))
7377                msleep(200);
7378
7379        /* finish CFC init */
7380        val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7381        if (val != 1) {
7382                BNX2X_ERR("CFC LL_INIT failed\n");
7383                return -EBUSY;
7384        }
7385        val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7386        if (val != 1) {
7387                BNX2X_ERR("CFC AC_INIT failed\n");
7388                return -EBUSY;
7389        }
7390        val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7391        if (val != 1) {
7392                BNX2X_ERR("CFC CAM_INIT failed\n");
7393                return -EBUSY;
7394        }
7395        REG_WR(bp, CFC_REG_DEBUG0, 0);
7396
7397        if (CHIP_IS_E1(bp)) {
7398                /* read NIG statistic
7399                   to see if this is our first up since powerup */
7400                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7401                val = *bnx2x_sp(bp, wb_data[0]);
7402
7403                /* do internal memory self test */
7404                if ((val == 0) && bnx2x_int_mem_test(bp)) {
7405                        BNX2X_ERR("internal mem self test failed\n");
7406                        return -EBUSY;
7407                }
7408        }
7409
7410        bnx2x_setup_fan_failure_detection(bp);
7411
7412        /* clear PXP2 attentions */
7413        REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7414
7415        bnx2x_enable_blocks_attention(bp);
7416        bnx2x_enable_blocks_parity(bp);
7417
7418        if (!BP_NOMCP(bp)) {
7419                if (CHIP_IS_E1x(bp))
7420                        bnx2x__common_init_phy(bp);
7421        } else
7422                BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7423
7424        return 0;
7425}
7426
7427/**
7428 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7429 *
7430 * @bp:         driver handle
7431 */
7432static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7433{
7434        int rc = bnx2x_init_hw_common(bp);
7435
7436        if (rc)
7437                return rc;
7438
7439        /* In E2 2-PORT mode, same ext phy is used for the two paths */
7440        if (!BP_NOMCP(bp))
7441                bnx2x__common_init_phy(bp);
7442
7443        return 0;
7444}
7445
7446static int bnx2x_init_hw_port(struct bnx2x *bp)
7447{
7448        int port = BP_PORT(bp);
7449        int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7450        u32 low, high;
7451        u32 val, reg;
7452
7453        DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7454
7455        REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7456
7457        bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7458        bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7459        bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7460
7461        /* Timers bug workaround: disables the pf_master bit in pglue at
7462         * common phase, we need to enable it here before any dmae access are
7463         * attempted. Therefore we manually added the enable-master to the
7464         * port phase (it also happens in the function phase)
7465         */
7466        if (!CHIP_IS_E1x(bp))
7467                REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7468
7469        bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7470        bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7471        bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7472        bnx2x_init_block(bp, BLOCK_QM, init_phase);
7473
7474        bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7475        bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7476        bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7477        bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7478
7479        /* QM cid (connection) count */
7480        bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7481
7482        if (CNIC_SUPPORT(bp)) {
7483                bnx2x_init_block(bp, BLOCK_TM, init_phase);
7484                REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7485                REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7486        }
7487
7488        bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7489
7490        bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7491
7492        if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7493
7494                if (IS_MF(bp))
7495                        low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7496                else if (bp->dev->mtu > 4096) {
7497                        if (bp->flags & ONE_PORT_FLAG)
7498                                low = 160;
7499                        else {
7500                                val = bp->dev->mtu;
7501                                /* (24*1024 + val*4)/256 */
7502                                low = 96 + (val/64) +
7503                                                ((val % 64) ? 1 : 0);
7504                        }
7505                } else
7506                        low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7507                high = low + 56;        /* 14*1024/256 */
7508                REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7509                REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7510        }
7511
7512        if (CHIP_MODE_IS_4_PORT(bp))
7513                REG_WR(bp, (BP_PORT(bp) ?
7514                            BRB1_REG_MAC_GUARANTIED_1 :
7515                            BRB1_REG_MAC_GUARANTIED_0), 40);
7516
7517        bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7518        if (CHIP_IS_E3B0(bp)) {
7519                if (IS_MF_AFEX(bp)) {
7520                        /* configure headers for AFEX mode */
7521                        REG_WR(bp, BP_PORT(bp) ?
7522                               PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7523                               PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7524                        REG_WR(bp, BP_PORT(bp) ?
7525                               PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7526                               PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7527                        REG_WR(bp, BP_PORT(bp) ?
7528                               PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7529                               PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7530                } else {
7531                        /* Ovlan exists only if we are in multi-function +
7532                         * switch-dependent mode, in switch-independent there
7533                         * is no ovlan headers
7534                         */
7535                        REG_WR(bp, BP_PORT(bp) ?
7536                               PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7537                               PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7538                               (bp->path_has_ovlan ? 7 : 6));
7539                }
7540        }
7541
7542        bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7543        bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7544        bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7545        bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7546
7547        bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7548        bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7549        bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7550        bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7551
7552        bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7553        bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7554
7555        bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7556
7557        if (CHIP_IS_E1x(bp)) {
7558                /* configure PBF to work without PAUSE mtu 9000 */
7559                REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7560
7561                /* update threshold */
7562                REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7563                /* update init credit */
7564                REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7565
7566                /* probe changes */
7567                REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7568                udelay(50);
7569                REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7570        }
7571
7572        if (CNIC_SUPPORT(bp))
7573                bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7574
7575        bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7576        bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7577
7578        if (CHIP_IS_E1(bp)) {
7579                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7580                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7581        }
7582        bnx2x_init_block(bp, BLOCK_HC, init_phase);
7583
7584        bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7585
7586        bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7587        /* init aeu_mask_attn_func_0/1:
7588         *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7589         *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7590         *             bits 4-7 are used for "per vn group attention" */
7591        val = IS_MF(bp) ? 0xF7 : 0x7;
7592        /* Enable DCBX attention for all but E1 */
7593        val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7594        REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7595
7596        /* SCPAD_PARITY should NOT trigger close the gates */
7597        reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7598        REG_WR(bp, reg,
7599               REG_RD(bp, reg) &
7600               ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7601
7602        reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7603        REG_WR(bp, reg,
7604               REG_RD(bp, reg) &
7605               ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7606
7607        bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7608
7609        if (!CHIP_IS_E1x(bp)) {
7610                /* Bit-map indicating which L2 hdrs may appear after the
7611                 * basic Ethernet header
7612                 */
7613                if (IS_MF_AFEX(bp))
7614                        REG_WR(bp, BP_PORT(bp) ?
7615                               NIG_REG_P1_HDRS_AFTER_BASIC :
7616                               NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7617                else
7618                        REG_WR(bp, BP_PORT(bp) ?
7619                               NIG_REG_P1_HDRS_AFTER_BASIC :
7620                               NIG_REG_P0_HDRS_AFTER_BASIC,
7621                               IS_MF_SD(bp) ? 7 : 6);
7622
7623                if (CHIP_IS_E3(bp))
7624                        REG_WR(bp, BP_PORT(bp) ?
7625                                   NIG_REG_LLH1_MF_MODE :
7626                                   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7627        }
7628        if (!CHIP_IS_E3(bp))
7629                REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7630
7631        if (!CHIP_IS_E1(bp)) {
7632                /* 0x2 disable mf_ov, 0x1 enable */
7633                REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7634                       (IS_MF_SD(bp) ? 0x1 : 0x2));
7635
7636                if (!CHIP_IS_E1x(bp)) {
7637                        val = 0;
7638                        switch (bp->mf_mode) {
7639                        case MULTI_FUNCTION_SD:
7640                                val = 1;
7641                                break;
7642                        case MULTI_FUNCTION_SI:
7643                        case MULTI_FUNCTION_AFEX:
7644                                val = 2;
7645                                break;
7646                        }
7647
7648                        REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7649                                                  NIG_REG_LLH0_CLS_TYPE), val);
7650                }
7651                {
7652                        REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7653                        REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7654                        REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7655                }
7656        }
7657
7658        /* If SPIO5 is set to generate interrupts, enable it for this port */
7659        val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7660        if (val & MISC_SPIO_SPIO5) {
7661                u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7662                                       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7663                val = REG_RD(bp, reg_addr);
7664                val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7665                REG_WR(bp, reg_addr, val);
7666        }
7667
7668        return 0;
7669}
7670
7671static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7672{
7673        int reg;
7674        u32 wb_write[2];
7675
7676        if (CHIP_IS_E1(bp))
7677                reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7678        else
7679                reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7680
7681        wb_write[0] = ONCHIP_ADDR1(addr);
7682        wb_write[1] = ONCHIP_ADDR2(addr);
7683        REG_WR_DMAE(bp, reg, wb_write, 2);
7684}
7685
7686void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7687{
7688        u32 data, ctl, cnt = 100;
7689        u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7690        u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7691        u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7692        u32 sb_bit =  1 << (idu_sb_id%32);
7693        u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7694        u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7695
7696        /* Not supported in BC mode */
7697        if (CHIP_INT_MODE_IS_BC(bp))
7698                return;
7699
7700        data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7701                        << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7702                IGU_REGULAR_CLEANUP_SET                         |
7703                IGU_REGULAR_BCLEANUP;
7704
7705        ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7706              func_encode << IGU_CTRL_REG_FID_SHIFT             |
7707              IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7708
7709        DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7710                         data, igu_addr_data);
7711        REG_WR(bp, igu_addr_data, data);
7712        mmiowb();
7713        barrier();
7714        DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7715                          ctl, igu_addr_ctl);
7716        REG_WR(bp, igu_addr_ctl, ctl);
7717        mmiowb();
7718        barrier();
7719
7720        /* wait for clean up to finish */
7721        while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7722                msleep(20);
7723
7724        if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7725                DP(NETIF_MSG_HW,
7726                   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7727                          idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7728        }
7729}
7730
7731static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7732{
7733        bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7734}
7735
7736static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7737{
7738        u32 i, base = FUNC_ILT_BASE(func);
7739        for (i = base; i < base + ILT_PER_FUNC; i++)
7740                bnx2x_ilt_wr(bp, i, 0);
7741}
7742
7743static void bnx2x_init_searcher(struct bnx2x *bp)
7744{
7745        int port = BP_PORT(bp);
7746        bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7747        /* T1 hash bits value determines the T1 number of entries */
7748        REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7749}
7750
7751static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7752{
7753        int rc;
7754        struct bnx2x_func_state_params func_params = {NULL};
7755        struct bnx2x_func_switch_update_params *switch_update_params =
7756                &func_params.params.switch_update;
7757
7758        /* Prepare parameters for function state transitions */
7759        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7760        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7761
7762        func_params.f_obj = &bp->func_obj;
7763        func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7764
7765        /* Function parameters */
7766        __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7767                  &switch_update_params->changes);
7768        if (suspend)
7769                __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7770                          &switch_update_params->changes);
7771
7772        rc = bnx2x_func_state_change(bp, &func_params);
7773
7774        return rc;
7775}
7776
7777static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7778{
7779        int rc, i, port = BP_PORT(bp);
7780        int vlan_en = 0, mac_en[NUM_MACS];
7781
7782        /* Close input from network */
7783        if (bp->mf_mode == SINGLE_FUNCTION) {
7784                bnx2x_set_rx_filter(&bp->link_params, 0);
7785        } else {
7786                vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7787                                   NIG_REG_LLH0_FUNC_EN);
7788                REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7789                          NIG_REG_LLH0_FUNC_EN, 0);
7790                for (i = 0; i < NUM_MACS; i++) {
7791                        mac_en[i] = REG_RD(bp, port ?
7792                                             (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7793                                              4 * i) :
7794                                             (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7795                                              4 * i));
7796                        REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7797                                              4 * i) :
7798                                  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7799                }
7800        }
7801
7802        /* Close BMC to host */
7803        REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7804               NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7805
7806        /* Suspend Tx switching to the PF. Completion of this ramrod
7807         * further guarantees that all the packets of that PF / child
7808         * VFs in BRB were processed by the Parser, so it is safe to
7809         * change the NIC_MODE register.
7810         */
7811        rc = bnx2x_func_switch_update(bp, 1);
7812        if (rc) {
7813                BNX2X_ERR("Can't suspend tx-switching!\n");
7814                return rc;
7815        }
7816
7817        /* Change NIC_MODE register */
7818        REG_WR(bp, PRS_REG_NIC_MODE, 0);
7819
7820        /* Open input from network */
7821        if (bp->mf_mode == SINGLE_FUNCTION) {
7822                bnx2x_set_rx_filter(&bp->link_params, 1);
7823        } else {
7824                REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7825                          NIG_REG_LLH0_FUNC_EN, vlan_en);
7826                for (i = 0; i < NUM_MACS; i++) {
7827                        REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7828                                              4 * i) :
7829                                  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7830                                  mac_en[i]);
7831                }
7832        }
7833
7834        /* Enable BMC to host */
7835        REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7836               NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7837
7838        /* Resume Tx switching to the PF */
7839        rc = bnx2x_func_switch_update(bp, 0);
7840        if (rc) {
7841                BNX2X_ERR("Can't resume tx-switching!\n");
7842                return rc;
7843        }
7844
7845        DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7846        return 0;
7847}
7848
7849int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7850{
7851        int rc;
7852
7853        bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7854
7855        if (CONFIGURE_NIC_MODE(bp)) {
7856                /* Configure searcher as part of function hw init */
7857                bnx2x_init_searcher(bp);
7858
7859                /* Reset NIC mode */
7860                rc = bnx2x_reset_nic_mode(bp);
7861                if (rc)
7862                        BNX2X_ERR("Can't change NIC mode!\n");
7863                return rc;
7864        }
7865
7866        return 0;
7867}
7868
7869/* previous driver DMAE transaction may have occurred when pre-boot stage ended
7870 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7871 * the addresses of the transaction, resulting in was-error bit set in the pci
7872 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7873 * to clear the interrupt which detected this from the pglueb and the was done
7874 * bit
7875 */
7876static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7877{
7878        if (!CHIP_IS_E1x(bp))
7879                REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7880                       1 << BP_ABS_FUNC(bp));
7881}
7882
7883static int bnx2x_init_hw_func(struct bnx2x *bp)
7884{
7885        int port = BP_PORT(bp);
7886        int func = BP_FUNC(bp);
7887        int init_phase = PHASE_PF0 + func;
7888        struct bnx2x_ilt *ilt = BP_ILT(bp);
7889        u16 cdu_ilt_start;
7890        u32 addr, val;
7891        u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7892        int i, main_mem_width, rc;
7893
7894        DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7895
7896        /* FLR cleanup - hmmm */
7897        if (!CHIP_IS_E1x(bp)) {
7898                rc = bnx2x_pf_flr_clnup(bp);
7899                if (rc) {
7900                        bnx2x_fw_dump(bp);
7901                        return rc;
7902                }
7903        }
7904
7905        /* set MSI reconfigure capability */
7906        if (bp->common.int_block == INT_BLOCK_HC) {
7907                addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7908                val = REG_RD(bp, addr);
7909                val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7910                REG_WR(bp, addr, val);
7911        }
7912
7913        bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7914        bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7915
7916        ilt = BP_ILT(bp);
7917        cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7918
7919        if (IS_SRIOV(bp))
7920                cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7921        cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7922
7923        /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7924         * those of the VFs, so start line should be reset
7925         */
7926        cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7927        for (i = 0; i < L2_ILT_LINES(bp); i++) {
7928                ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7929                ilt->lines[cdu_ilt_start + i].page_mapping =
7930                        bp->context[i].cxt_mapping;
7931                ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7932        }
7933
7934        bnx2x_ilt_init_op(bp, INITOP_SET);
7935
7936        if (!CONFIGURE_NIC_MODE(bp)) {
7937                bnx2x_init_searcher(bp);
7938                REG_WR(bp, PRS_REG_NIC_MODE, 0);
7939                DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7940        } else {
7941                /* Set NIC mode */
7942                REG_WR(bp, PRS_REG_NIC_MODE, 1);
7943                DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7944        }
7945
7946        if (!CHIP_IS_E1x(bp)) {
7947                u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7948
7949                /* Turn on a single ISR mode in IGU if driver is going to use
7950                 * INT#x or MSI
7951                 */
7952                if (!(bp->flags & USING_MSIX_FLAG))
7953                        pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7954                /*
7955                 * Timers workaround bug: function init part.
7956                 * Need to wait 20msec after initializing ILT,
7957                 * needed to make sure there are no requests in
7958                 * one of the PXP internal queues with "old" ILT addresses
7959                 */
7960                msleep(20);
7961                /*
7962                 * Master enable - Due to WB DMAE writes performed before this
7963                 * register is re-initialized as part of the regular function
7964                 * init
7965                 */
7966                REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7967                /* Enable the function in IGU */
7968                REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7969        }
7970
7971        bp->dmae_ready = 1;
7972
7973        bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7974
7975        bnx2x_clean_pglue_errors(bp);
7976
7977        bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7978        bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7979        bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7980        bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7981        bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7982        bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7983        bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7984        bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7985        bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7986        bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7987        bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7988        bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7989        bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7990
7991        if (!CHIP_IS_E1x(bp))
7992                REG_WR(bp, QM_REG_PF_EN, 1);
7993
7994        if (!CHIP_IS_E1x(bp)) {
7995                REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7996                REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7997                REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7998                REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7999        }
8000        bnx2x_init_block(bp, BLOCK_QM, init_phase);
8001
8002        bnx2x_init_block(bp, BLOCK_TM, init_phase);
8003        bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8004        REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8005
8006        bnx2x_iov_init_dq(bp);
8007
8008        bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8009        bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8010        bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8011        bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8012        bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8013        bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8014        bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8015        bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8016        bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8017        if (!CHIP_IS_E1x(bp))
8018                REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8019
8020        bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8021
8022        bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8023
8024        if (!CHIP_IS_E1x(bp))
8025                REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8026
8027        if (IS_MF(bp)) {
8028                if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8029                        REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8030                        REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8031                               bp->mf_ov);
8032                }
8033        }
8034
8035        bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8036
8037        /* HC init per function */
8038        if (bp->common.int_block == INT_BLOCK_HC) {
8039                if (CHIP_IS_E1H(bp)) {
8040                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8041
8042                        REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8043                        REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8044                }
8045                bnx2x_init_block(bp, BLOCK_HC, init_phase);
8046
8047        } else {
8048                int num_segs, sb_idx, prod_offset;
8049
8050                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8051
8052                if (!CHIP_IS_E1x(bp)) {
8053                        REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8054                        REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8055                }
8056
8057                bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8058
8059                if (!CHIP_IS_E1x(bp)) {
8060                        int dsb_idx = 0;
8061                        /**
8062                         * Producer memory:
8063                         * E2 mode: address 0-135 match to the mapping memory;
8064                         * 136 - PF0 default prod; 137 - PF1 default prod;
8065                         * 138 - PF2 default prod; 139 - PF3 default prod;
8066                         * 140 - PF0 attn prod;    141 - PF1 attn prod;
8067                         * 142 - PF2 attn prod;    143 - PF3 attn prod;
8068                         * 144-147 reserved.
8069                         *
8070                         * E1.5 mode - In backward compatible mode;
8071                         * for non default SB; each even line in the memory
8072                         * holds the U producer and each odd line hold
8073                         * the C producer. The first 128 producers are for
8074                         * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8075                         * producers are for the DSB for each PF.
8076                         * Each PF has five segments: (the order inside each
8077                         * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8078                         * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8079                         * 144-147 attn prods;
8080                         */
8081                        /* non-default-status-blocks */
8082                        num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8083                                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8084                        for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8085                                prod_offset = (bp->igu_base_sb + sb_idx) *
8086                                        num_segs;
8087
8088                                for (i = 0; i < num_segs; i++) {
8089                                        addr = IGU_REG_PROD_CONS_MEMORY +
8090                                                        (prod_offset + i) * 4;
8091                                        REG_WR(bp, addr, 0);
8092                                }
8093                                /* send consumer update with value 0 */
8094                                bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8095                                             USTORM_ID, 0, IGU_INT_NOP, 1);
8096                                bnx2x_igu_clear_sb(bp,
8097                                                   bp->igu_base_sb + sb_idx);
8098                        }
8099
8100                        /* default-status-blocks */
8101                        num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8102                                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8103
8104                        if (CHIP_MODE_IS_4_PORT(bp))
8105                                dsb_idx = BP_FUNC(bp);
8106                        else
8107                                dsb_idx = BP_VN(bp);
8108
8109                        prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8110                                       IGU_BC_BASE_DSB_PROD + dsb_idx :
8111                                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8112
8113                        /*
8114                         * igu prods come in chunks of E1HVN_MAX (4) -
8115                         * does not matters what is the current chip mode
8116                         */
8117                        for (i = 0; i < (num_segs * E1HVN_MAX);
8118                             i += E1HVN_MAX) {
8119                                addr = IGU_REG_PROD_CONS_MEMORY +
8120                                                        (prod_offset + i)*4;
8121                                REG_WR(bp, addr, 0);
8122                        }
8123                        /* send consumer update with 0 */
8124                        if (CHIP_INT_MODE_IS_BC(bp)) {
8125                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8126                                             USTORM_ID, 0, IGU_INT_NOP, 1);
8127                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8128                                             CSTORM_ID, 0, IGU_INT_NOP, 1);
8129                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8130                                             XSTORM_ID, 0, IGU_INT_NOP, 1);
8131                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8132                                             TSTORM_ID, 0, IGU_INT_NOP, 1);
8133                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8134                                             ATTENTION_ID, 0, IGU_INT_NOP, 1);
8135                        } else {
8136                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8137                                             USTORM_ID, 0, IGU_INT_NOP, 1);
8138                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8139                                             ATTENTION_ID, 0, IGU_INT_NOP, 1);
8140                        }
8141                        bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8142
8143                        /* !!! These should become driver const once
8144                           rf-tool supports split-68 const */
8145                        REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8146                        REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8147                        REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8148                        REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8149                        REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8150                        REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8151                }
8152        }
8153
8154        /* Reset PCIE errors for debug */
8155        REG_WR(bp, 0x2114, 0xffffffff);
8156        REG_WR(bp, 0x2120, 0xffffffff);
8157
8158        if (CHIP_IS_E1x(bp)) {
8159                main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8160                main_mem_base = HC_REG_MAIN_MEMORY +
8161                                BP_PORT(bp) * (main_mem_size * 4);
8162                main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8163                main_mem_width = 8;
8164
8165                val = REG_RD(bp, main_mem_prty_clr);
8166                if (val)
8167                        DP(NETIF_MSG_HW,
8168                           "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8169                           val);
8170
8171                /* Clear "false" parity errors in MSI-X table */
8172                for (i = main_mem_base;
8173                     i < main_mem_base + main_mem_size * 4;
8174                     i += main_mem_width) {
8175                        bnx2x_read_dmae(bp, i, main_mem_width / 4);
8176                        bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8177                                         i, main_mem_width / 4);
8178                }
8179                /* Clear HC parity attention */
8180                REG_RD(bp, main_mem_prty_clr);
8181        }
8182
8183#ifdef BNX2X_STOP_ON_ERROR
8184        /* Enable STORMs SP logging */
8185        REG_WR8(bp, BAR_USTRORM_INTMEM +
8186               USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8187        REG_WR8(bp, BAR_TSTRORM_INTMEM +
8188               TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8189        REG_WR8(bp, BAR_CSTRORM_INTMEM +
8190               CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8191        REG_WR8(bp, BAR_XSTRORM_INTMEM +
8192               XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8193#endif
8194
8195        bnx2x_phy_probe(&bp->link_params);
8196
8197        return 0;
8198}
8199
8200void bnx2x_free_mem_cnic(struct bnx2x *bp)
8201{
8202        bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8203
8204        if (!CHIP_IS_E1x(bp))
8205                BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8206                               sizeof(struct host_hc_status_block_e2));
8207        else
8208                BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8209                               sizeof(struct host_hc_status_block_e1x));
8210
8211        BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8212}
8213
8214void bnx2x_free_mem(struct bnx2x *bp)
8215{
8216        int i;
8217
8218        BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8219                       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8220
8221        if (IS_VF(bp))
8222                return;
8223
8224        BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8225                       sizeof(struct host_sp_status_block));
8226
8227        BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8228                       sizeof(struct bnx2x_slowpath));
8229
8230        for (i = 0; i < L2_ILT_LINES(bp); i++)
8231                BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8232                               bp->context[i].size);
8233        bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8234
8235        BNX2X_FREE(bp->ilt->lines);
8236
8237        BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8238
8239        BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8240                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8241
8242        BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8243
8244        bnx2x_iov_free_mem(bp);
8245}
8246
8247int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8248{
8249        if (!CHIP_IS_E1x(bp)) {
8250                /* size = the status block + ramrod buffers */
8251                bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8252                                                    sizeof(struct host_hc_status_block_e2));
8253                if (!bp->cnic_sb.e2_sb)
8254                        goto alloc_mem_err;
8255        } else {
8256                bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8257                                                     sizeof(struct host_hc_status_block_e1x));
8258                if (!bp->cnic_sb.e1x_sb)
8259                        goto alloc_mem_err;
8260        }
8261
8262        if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8263                /* allocate searcher T2 table, as it wasn't allocated before */
8264                bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8265                if (!bp->t2)
8266                        goto alloc_mem_err;
8267        }
8268
8269        /* write address to which L5 should insert its values */
8270        bp->cnic_eth_dev.addr_drv_info_to_mcp =
8271                &bp->slowpath->drv_info_to_mcp;
8272
8273        if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8274                goto alloc_mem_err;
8275
8276        return 0;
8277
8278alloc_mem_err:
8279        bnx2x_free_mem_cnic(bp);
8280        BNX2X_ERR("Can't allocate memory\n");
8281        return -ENOMEM;
8282}
8283
8284int bnx2x_alloc_mem(struct bnx2x *bp)
8285{
8286        int i, allocated, context_size;
8287
8288        if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8289                /* allocate searcher T2 table */
8290                bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8291                if (!bp->t2)
8292                        goto alloc_mem_err;
8293        }
8294
8295        bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8296                                             sizeof(struct host_sp_status_block));
8297        if (!bp->def_status_blk)
8298                goto alloc_mem_err;
8299
8300        bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8301                                       sizeof(struct bnx2x_slowpath));
8302        if (!bp->slowpath)
8303                goto alloc_mem_err;
8304
8305        /* Allocate memory for CDU context:
8306         * This memory is allocated separately and not in the generic ILT
8307         * functions because CDU differs in few aspects:
8308         * 1. There are multiple entities allocating memory for context -
8309         * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8310         * its own ILT lines.
8311         * 2. Since CDU page-size is not a single 4KB page (which is the case
8312         * for the other ILT clients), to be efficient we want to support
8313         * allocation of sub-page-size in the last entry.
8314         * 3. Context pointers are used by the driver to pass to FW / update
8315         * the context (for the other ILT clients the pointers are used just to
8316         * free the memory during unload).
8317         */
8318        context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8319
8320        for (i = 0, allocated = 0; allocated < context_size; i++) {
8321                bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8322                                          (context_size - allocated));
8323                bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8324                                                      bp->context[i].size);
8325                if (!bp->context[i].vcxt)
8326                        goto alloc_mem_err;
8327                allocated += bp->context[i].size;
8328        }
8329        bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8330                                 GFP_KERNEL);
8331        if (!bp->ilt->lines)
8332                goto alloc_mem_err;
8333
8334        if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8335                goto alloc_mem_err;
8336
8337        if (bnx2x_iov_alloc_mem(bp))
8338                goto alloc_mem_err;
8339
8340        /* Slow path ring */
8341        bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8342        if (!bp->spq)
8343                goto alloc_mem_err;
8344
8345        /* EQ */
8346        bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8347                                      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8348        if (!bp->eq_ring)
8349                goto alloc_mem_err;
8350
8351        return 0;
8352
8353alloc_mem_err:
8354        bnx2x_free_mem(bp);
8355        BNX2X_ERR("Can't allocate memory\n");
8356        return -ENOMEM;
8357}
8358
8359/*
8360 * Init service functions
8361 */
8362
8363int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8364                      struct bnx2x_vlan_mac_obj *obj, bool set,
8365                      int mac_type, unsigned long *ramrod_flags)
8366{
8367        int rc;
8368        struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8369
8370        memset(&ramrod_param, 0, sizeof(ramrod_param));
8371
8372        /* Fill general parameters */
8373        ramrod_param.vlan_mac_obj = obj;
8374        ramrod_param.ramrod_flags = *ramrod_flags;
8375
8376        /* Fill a user request section if needed */
8377        if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8378                memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8379
8380                __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8381
8382                /* Set the command: ADD or DEL */
8383                if (set)
8384                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8385                else
8386                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8387        }
8388
8389        rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8390
8391        if (rc == -EEXIST) {
8392                DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8393                /* do not treat adding same MAC as error */
8394                rc = 0;
8395        } else if (rc < 0)
8396                BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8397
8398        return rc;
8399}
8400
8401int bnx2x_del_all_macs(struct bnx2x *bp,
8402                       struct bnx2x_vlan_mac_obj *mac_obj,
8403                       int mac_type, bool wait_for_comp)
8404{
8405        int rc;
8406        unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8407
8408        /* Wait for completion of requested */
8409        if (wait_for_comp)
8410                __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8411
8412        /* Set the mac type of addresses we want to clear */
8413        __set_bit(mac_type, &vlan_mac_flags);
8414
8415        rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8416        if (rc < 0)
8417                BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8418
8419        return rc;
8420}
8421
8422int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8423{
8424        if (IS_PF(bp)) {
8425                unsigned long ramrod_flags = 0;
8426
8427                DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8428                __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8429                return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8430                                         &bp->sp_objs->mac_obj, set,
8431                                         BNX2X_ETH_MAC, &ramrod_flags);
8432        } else { /* vf */
8433                return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8434                                             bp->fp->index, true);
8435        }
8436}
8437
8438int bnx2x_setup_leading(struct bnx2x *bp)
8439{
8440        if (IS_PF(bp))
8441                return bnx2x_setup_queue(bp, &bp->fp[0], true);
8442        else /* VF */
8443                return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8444}
8445
8446/**
8447 * bnx2x_set_int_mode - configure interrupt mode
8448 *
8449 * @bp:         driver handle
8450 *
8451 * In case of MSI-X it will also try to enable MSI-X.
8452 */
8453int bnx2x_set_int_mode(struct bnx2x *bp)
8454{
8455        int rc = 0;
8456
8457        if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8458                BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8459                return -EINVAL;
8460        }
8461
8462        switch (int_mode) {
8463        case BNX2X_INT_MODE_MSIX:
8464                /* attempt to enable msix */
8465                rc = bnx2x_enable_msix(bp);
8466
8467                /* msix attained */
8468                if (!rc)
8469                        return 0;
8470
8471                /* vfs use only msix */
8472                if (rc && IS_VF(bp))
8473                        return rc;
8474
8475                /* failed to enable multiple MSI-X */
8476                BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8477                               bp->num_queues,
8478                               1 + bp->num_cnic_queues);
8479
8480                /* falling through... */
8481        case BNX2X_INT_MODE_MSI:
8482                bnx2x_enable_msi(bp);
8483
8484                /* falling through... */
8485        case BNX2X_INT_MODE_INTX:
8486                bp->num_ethernet_queues = 1;
8487                bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8488                BNX2X_DEV_INFO("set number of queues to 1\n");
8489                break;
8490        default:
8491                BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8492                return -EINVAL;
8493        }
8494        return 0;
8495}
8496
8497/* must be called prior to any HW initializations */
8498static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8499{
8500        if (IS_SRIOV(bp))
8501                return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8502        return L2_ILT_LINES(bp);
8503}
8504
8505void bnx2x_ilt_set_info(struct bnx2x *bp)
8506{
8507        struct ilt_client_info *ilt_client;
8508        struct bnx2x_ilt *ilt = BP_ILT(bp);
8509        u16 line = 0;
8510
8511        ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8512        DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8513
8514        /* CDU */
8515        ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8516        ilt_client->client_num = ILT_CLIENT_CDU;
8517        ilt_client->page_size = CDU_ILT_PAGE_SZ;
8518        ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8519        ilt_client->start = line;
8520        line += bnx2x_cid_ilt_lines(bp);
8521
8522        if (CNIC_SUPPORT(bp))
8523                line += CNIC_ILT_LINES;
8524        ilt_client->end = line - 1;
8525
8526        DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8527           ilt_client->start,
8528           ilt_client->end,
8529           ilt_client->page_size,
8530           ilt_client->flags,
8531           ilog2(ilt_client->page_size >> 12));
8532
8533        /* QM */
8534        if (QM_INIT(bp->qm_cid_count)) {
8535                ilt_client = &ilt->clients[ILT_CLIENT_QM];
8536                ilt_client->client_num = ILT_CLIENT_QM;
8537                ilt_client->page_size = QM_ILT_PAGE_SZ;
8538                ilt_client->flags = 0;
8539                ilt_client->start = line;
8540
8541                /* 4 bytes for each cid */
8542                line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8543                                                         QM_ILT_PAGE_SZ);
8544
8545                ilt_client->end = line - 1;
8546
8547                DP(NETIF_MSG_IFUP,
8548                   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8549                   ilt_client->start,
8550                   ilt_client->end,
8551                   ilt_client->page_size,
8552                   ilt_client->flags,
8553                   ilog2(ilt_client->page_size >> 12));
8554        }
8555
8556        if (CNIC_SUPPORT(bp)) {
8557                /* SRC */
8558                ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8559                ilt_client->client_num = ILT_CLIENT_SRC;
8560                ilt_client->page_size = SRC_ILT_PAGE_SZ;
8561                ilt_client->flags = 0;
8562                ilt_client->start = line;
8563                line += SRC_ILT_LINES;
8564                ilt_client->end = line - 1;
8565
8566                DP(NETIF_MSG_IFUP,
8567                   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8568                   ilt_client->start,
8569                   ilt_client->end,
8570                   ilt_client->page_size,
8571                   ilt_client->flags,
8572                   ilog2(ilt_client->page_size >> 12));
8573
8574                /* TM */
8575                ilt_client = &ilt->clients[ILT_CLIENT_TM];
8576                ilt_client->client_num = ILT_CLIENT_TM;
8577                ilt_client->page_size = TM_ILT_PAGE_SZ;
8578                ilt_client->flags = 0;
8579                ilt_client->start = line;
8580                line += TM_ILT_LINES;
8581                ilt_client->end = line - 1;
8582
8583                DP(NETIF_MSG_IFUP,
8584                   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8585                   ilt_client->start,
8586                   ilt_client->end,
8587                   ilt_client->page_size,
8588                   ilt_client->flags,
8589                   ilog2(ilt_client->page_size >> 12));
8590        }
8591
8592        BUG_ON(line > ILT_MAX_LINES);
8593}
8594
8595/**
8596 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8597 *
8598 * @bp:                 driver handle
8599 * @fp:                 pointer to fastpath
8600 * @init_params:        pointer to parameters structure
8601 *
8602 * parameters configured:
8603 *      - HC configuration
8604 *      - Queue's CDU context
8605 */
8606static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8607        struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8608{
8609        u8 cos;
8610        int cxt_index, cxt_offset;
8611
8612        /* FCoE Queue uses Default SB, thus has no HC capabilities */
8613        if (!IS_FCOE_FP(fp)) {
8614                __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8615                __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8616
8617                /* If HC is supported, enable host coalescing in the transition
8618                 * to INIT state.
8619                 */
8620                __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8621                __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8622
8623                /* HC rate */
8624                init_params->rx.hc_rate = bp->rx_ticks ?
8625                        (1000000 / bp->rx_ticks) : 0;
8626                init_params->tx.hc_rate = bp->tx_ticks ?
8627                        (1000000 / bp->tx_ticks) : 0;
8628
8629                /* FW SB ID */
8630                init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8631                        fp->fw_sb_id;
8632
8633                /*
8634                 * CQ index among the SB indices: FCoE clients uses the default
8635                 * SB, therefore it's different.
8636                 */
8637                init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8638                init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8639        }
8640
8641        /* set maximum number of COSs supported by this queue */
8642        init_params->max_cos = fp->max_cos;
8643
8644        DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8645            fp->index, init_params->max_cos);
8646
8647        /* set the context pointers queue object */
8648        for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8649                cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8650                cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8651                                ILT_PAGE_CIDS);
8652                init_params->cxts[cos] =
8653                        &bp->context[cxt_index].vcxt[cxt_offset].eth;
8654        }
8655}
8656
8657static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8658                        struct bnx2x_queue_state_params *q_params,
8659                        struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8660                        int tx_index, bool leading)
8661{
8662        memset(tx_only_params, 0, sizeof(*tx_only_params));
8663
8664        /* Set the command */
8665        q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8666
8667        /* Set tx-only QUEUE flags: don't zero statistics */
8668        tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8669
8670        /* choose the index of the cid to send the slow path on */
8671        tx_only_params->cid_index = tx_index;
8672
8673        /* Set general TX_ONLY_SETUP parameters */
8674        bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8675
8676        /* Set Tx TX_ONLY_SETUP parameters */
8677        bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8678
8679        DP(NETIF_MSG_IFUP,
8680           "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8681           tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8682           q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8683           tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8684
8685        /* send the ramrod */
8686        return bnx2x_queue_state_change(bp, q_params);
8687}
8688
8689/**
8690 * bnx2x_setup_queue - setup queue
8691 *
8692 * @bp:         driver handle
8693 * @fp:         pointer to fastpath
8694 * @leading:    is leading
8695 *
8696 * This function performs 2 steps in a Queue state machine
8697 *      actually: 1) RESET->INIT 2) INIT->SETUP
8698 */
8699
8700int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8701                       bool leading)
8702{
8703        struct bnx2x_queue_state_params q_params = {NULL};
8704        struct bnx2x_queue_setup_params *setup_params =
8705                                                &q_params.params.setup;
8706        struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8707                                                &q_params.params.tx_only;
8708        int rc;
8709        u8 tx_index;
8710
8711        DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8712
8713        /* reset IGU state skip FCoE L2 queue */
8714        if (!IS_FCOE_FP(fp))
8715                bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8716                             IGU_INT_ENABLE, 0);
8717
8718        q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8719        /* We want to wait for completion in this context */
8720        __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8721
8722        /* Prepare the INIT parameters */
8723        bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8724
8725        /* Set the command */
8726        q_params.cmd = BNX2X_Q_CMD_INIT;
8727
8728        /* Change the state to INIT */
8729        rc = bnx2x_queue_state_change(bp, &q_params);
8730        if (rc) {
8731                BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8732                return rc;
8733        }
8734
8735        DP(NETIF_MSG_IFUP, "init complete\n");
8736
8737        /* Now move the Queue to the SETUP state... */
8738        memset(setup_params, 0, sizeof(*setup_params));
8739
8740        /* Set QUEUE flags */
8741        setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8742
8743        /* Set general SETUP parameters */
8744        bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8745                                FIRST_TX_COS_INDEX);
8746
8747        bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8748                            &setup_params->rxq_params);
8749
8750        bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8751                           FIRST_TX_COS_INDEX);
8752
8753        /* Set the command */
8754        q_params.cmd = BNX2X_Q_CMD_SETUP;
8755
8756        if (IS_FCOE_FP(fp))
8757                bp->fcoe_init = true;
8758
8759        /* Change the state to SETUP */
8760        rc = bnx2x_queue_state_change(bp, &q_params);
8761        if (rc) {
8762                BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8763                return rc;
8764        }
8765
8766        /* loop through the relevant tx-only indices */
8767        for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8768              tx_index < fp->max_cos;
8769              tx_index++) {
8770
8771                /* prepare and send tx-only ramrod*/
8772                rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8773                                          tx_only_params, tx_index, leading);
8774                if (rc) {
8775                        BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8776                                  fp->index, tx_index);
8777                        return rc;
8778                }
8779        }
8780
8781        return rc;
8782}
8783
8784static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8785{
8786        struct bnx2x_fastpath *fp = &bp->fp[index];
8787        struct bnx2x_fp_txdata *txdata;
8788        struct bnx2x_queue_state_params q_params = {NULL};
8789        int rc, tx_index;
8790
8791        DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8792
8793        q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8794        /* We want to wait for completion in this context */
8795        __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8796
8797        /* close tx-only connections */
8798        for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8799             tx_index < fp->max_cos;
8800             tx_index++){
8801
8802                /* ascertain this is a normal queue*/
8803                txdata = fp->txdata_ptr[tx_index];
8804
8805                DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8806                                                        txdata->txq_index);
8807
8808                /* send halt terminate on tx-only connection */
8809                q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8810                memset(&q_params.params.terminate, 0,
8811                       sizeof(q_params.params.terminate));
8812                q_params.params.terminate.cid_index = tx_index;
8813
8814                rc = bnx2x_queue_state_change(bp, &q_params);
8815                if (rc)
8816                        return rc;
8817
8818                /* send halt terminate on tx-only connection */
8819                q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8820                memset(&q_params.params.cfc_del, 0,
8821                       sizeof(q_params.params.cfc_del));
8822                q_params.params.cfc_del.cid_index = tx_index;
8823                rc = bnx2x_queue_state_change(bp, &q_params);
8824                if (rc)
8825                        return rc;
8826        }
8827        /* Stop the primary connection: */
8828        /* ...halt the connection */
8829        q_params.cmd = BNX2X_Q_CMD_HALT;
8830        rc = bnx2x_queue_state_change(bp, &q_params);
8831        if (rc)
8832                return rc;
8833
8834        /* ...terminate the connection */
8835        q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8836        memset(&q_params.params.terminate, 0,
8837               sizeof(q_params.params.terminate));
8838        q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8839        rc = bnx2x_queue_state_change(bp, &q_params);
8840        if (rc)
8841                return rc;
8842        /* ...delete cfc entry */
8843        q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8844        memset(&q_params.params.cfc_del, 0,
8845               sizeof(q_params.params.cfc_del));
8846        q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8847        return bnx2x_queue_state_change(bp, &q_params);
8848}
8849
8850static void bnx2x_reset_func(struct bnx2x *bp)
8851{
8852        int port = BP_PORT(bp);
8853        int func = BP_FUNC(bp);
8854        int i;
8855
8856        /* Disable the function in the FW */
8857        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8858        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8859        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8860        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8861
8862        /* FP SBs */
8863        for_each_eth_queue(bp, i) {
8864                struct bnx2x_fastpath *fp = &bp->fp[i];
8865                REG_WR8(bp, BAR_CSTRORM_INTMEM +
8866                           CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8867                           SB_DISABLED);
8868        }
8869
8870        if (CNIC_LOADED(bp))
8871                /* CNIC SB */
8872                REG_WR8(bp, BAR_CSTRORM_INTMEM +
8873                        CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8874                        (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8875
8876        /* SP SB */
8877        REG_WR8(bp, BAR_CSTRORM_INTMEM +
8878                CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8879                SB_DISABLED);
8880
8881        for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8882                REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8883                       0);
8884
8885        /* Configure IGU */
8886        if (bp->common.int_block == INT_BLOCK_HC) {
8887                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8888                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8889        } else {
8890                REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8891                REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8892        }
8893
8894        if (CNIC_LOADED(bp)) {
8895                /* Disable Timer scan */
8896                REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8897                /*
8898                 * Wait for at least 10ms and up to 2 second for the timers
8899                 * scan to complete
8900                 */
8901                for (i = 0; i < 200; i++) {
8902                        usleep_range(10000, 20000);
8903                        if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8904                                break;
8905                }
8906        }
8907        /* Clear ILT */
8908        bnx2x_clear_func_ilt(bp, func);
8909
8910        /* Timers workaround bug for E2: if this is vnic-3,
8911         * we need to set the entire ilt range for this timers.
8912         */
8913        if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8914                struct ilt_client_info ilt_cli;
8915                /* use dummy TM client */
8916                memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8917                ilt_cli.start = 0;
8918                ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8919                ilt_cli.client_num = ILT_CLIENT_TM;
8920
8921                bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8922        }
8923
8924        /* this assumes that reset_port() called before reset_func()*/
8925        if (!CHIP_IS_E1x(bp))
8926                bnx2x_pf_disable(bp);
8927
8928        bp->dmae_ready = 0;
8929}
8930
8931static void bnx2x_reset_port(struct bnx2x *bp)
8932{
8933        int port = BP_PORT(bp);
8934        u32 val;
8935
8936        /* Reset physical Link */
8937        bnx2x__link_reset(bp);
8938
8939        REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8940
8941        /* Do not rcv packets to BRB */
8942        REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8943        /* Do not direct rcv packets that are not for MCP to the BRB */
8944        REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8945                           NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8946
8947        /* Configure AEU */
8948        REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8949
8950        msleep(100);
8951        /* Check for BRB port occupancy */
8952        val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8953        if (val)
8954                DP(NETIF_MSG_IFDOWN,
8955                   "BRB1 is not empty  %d blocks are occupied\n", val);
8956
8957        /* TODO: Close Doorbell port? */
8958}
8959
8960static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8961{
8962        struct bnx2x_func_state_params func_params = {NULL};
8963
8964        /* Prepare parameters for function state transitions */
8965        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8966
8967        func_params.f_obj = &bp->func_obj;
8968        func_params.cmd = BNX2X_F_CMD_HW_RESET;
8969
8970        func_params.params.hw_init.load_phase = load_code;
8971
8972        return bnx2x_func_state_change(bp, &func_params);
8973}
8974
8975static int bnx2x_func_stop(struct bnx2x *bp)
8976{
8977        struct bnx2x_func_state_params func_params = {NULL};
8978        int rc;
8979
8980        /* Prepare parameters for function state transitions */
8981        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8982        func_params.f_obj = &bp->func_obj;
8983        func_params.cmd = BNX2X_F_CMD_STOP;
8984
8985        /*
8986         * Try to stop the function the 'good way'. If fails (in case
8987         * of a parity error during bnx2x_chip_cleanup()) and we are
8988         * not in a debug mode, perform a state transaction in order to
8989         * enable further HW_RESET transaction.
8990         */
8991        rc = bnx2x_func_state_change(bp, &func_params);
8992        if (rc) {
8993#ifdef BNX2X_STOP_ON_ERROR
8994                return rc;
8995#else
8996                BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8997                __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8998                return bnx2x_func_state_change(bp, &func_params);
8999#endif
9000        }
9001
9002        return 0;
9003}
9004
9005/**
9006 * bnx2x_send_unload_req - request unload mode from the MCP.
9007 *
9008 * @bp:                 driver handle
9009 * @unload_mode:        requested function's unload mode
9010 *
9011 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9012 */
9013u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9014{
9015        u32 reset_code = 0;
9016        int port = BP_PORT(bp);
9017
9018        /* Select the UNLOAD request mode */
9019        if (unload_mode == UNLOAD_NORMAL)
9020                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9021
9022        else if (bp->flags & NO_WOL_FLAG)
9023                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9024
9025        else if (bp->wol) {
9026                u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9027                u8 *mac_addr = bp->dev->dev_addr;
9028                struct pci_dev *pdev = bp->pdev;
9029                u32 val;
9030                u16 pmc;
9031
9032                /* The mac address is written to entries 1-4 to
9033                 * preserve entry 0 which is used by the PMF
9034                 */
9035                u8 entry = (BP_VN(bp) + 1)*8;
9036
9037                val = (mac_addr[0] << 8) | mac_addr[1];
9038                EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9039
9040                val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9041                      (mac_addr[4] << 8) | mac_addr[5];
9042                EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9043
9044                /* Enable the PME and clear the status */
9045                pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9046                pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9047                pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9048
9049                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9050
9051        } else
9052                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9053
9054        /* Send the request to the MCP */
9055        if (!BP_NOMCP(bp))
9056                reset_code = bnx2x_fw_command(bp, reset_code, 0);
9057        else {
9058                int path = BP_PATH(bp);
9059
9060                DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9061                   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9062                   bnx2x_load_count[path][2]);
9063                bnx2x_load_count[path][0]--;
9064                bnx2x_load_count[path][1 + port]--;
9065                DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9066                   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9067                   bnx2x_load_count[path][2]);
9068                if (bnx2x_load_count[path][0] == 0)
9069                        reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9070                else if (bnx2x_load_count[path][1 + port] == 0)
9071                        reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9072                else
9073                        reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9074        }
9075
9076        return reset_code;
9077}
9078
9079/**
9080 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9081 *
9082 * @bp:         driver handle
9083 * @keep_link:          true iff link should be kept up
9084 */
9085void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9086{
9087        u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9088
9089        /* Report UNLOAD_DONE to MCP */
9090        if (!BP_NOMCP(bp))
9091                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9092}
9093
9094static int bnx2x_func_wait_started(struct bnx2x *bp)
9095{
9096        int tout = 50;
9097        int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9098
9099        if (!bp->port.pmf)
9100                return 0;
9101
9102        /*
9103         * (assumption: No Attention from MCP at this stage)
9104         * PMF probably in the middle of TX disable/enable transaction
9105         * 1. Sync IRS for default SB
9106         * 2. Sync SP queue - this guarantees us that attention handling started
9107         * 3. Wait, that TX disable/enable transaction completes
9108         *
9109         * 1+2 guarantee that if DCBx attention was scheduled it already changed
9110         * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9111         * received completion for the transaction the state is TX_STOPPED.
9112         * State will return to STARTED after completion of TX_STOPPED-->STARTED
9113         * transaction.
9114         */
9115
9116        /* make sure default SB ISR is done */
9117        if (msix)
9118                synchronize_irq(bp->msix_table[0].vector);
9119        else
9120                synchronize_irq(bp->pdev->irq);
9121
9122        flush_workqueue(bnx2x_wq);
9123        flush_workqueue(bnx2x_iov_wq);
9124
9125        while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9126                                BNX2X_F_STATE_STARTED && tout--)
9127                msleep(20);
9128
9129        if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9130                                                BNX2X_F_STATE_STARTED) {
9131#ifdef BNX2X_STOP_ON_ERROR
9132                BNX2X_ERR("Wrong function state\n");
9133                return -EBUSY;
9134#else
9135                /*
9136                 * Failed to complete the transaction in a "good way"
9137                 * Force both transactions with CLR bit
9138                 */
9139                struct bnx2x_func_state_params func_params = {NULL};
9140
9141                DP(NETIF_MSG_IFDOWN,
9142                   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9143
9144                func_params.f_obj = &bp->func_obj;
9145                __set_bit(RAMROD_DRV_CLR_ONLY,
9146                                        &func_params.ramrod_flags);
9147
9148                /* STARTED-->TX_ST0PPED */
9149                func_params.cmd = BNX2X_F_CMD_TX_STOP;
9150                bnx2x_func_state_change(bp, &func_params);
9151
9152                /* TX_ST0PPED-->STARTED */
9153                func_params.cmd = BNX2X_F_CMD_TX_START;
9154                return bnx2x_func_state_change(bp, &func_params);
9155#endif
9156        }
9157
9158        return 0;
9159}
9160
9161static void bnx2x_disable_ptp(struct bnx2x *bp)
9162{
9163        int port = BP_PORT(bp);
9164
9165        /* Disable sending PTP packets to host */
9166        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9167               NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9168
9169        /* Reset PTP event detection rules */
9170        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9171               NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9172        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9173               NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9174        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9175               NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9176        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9177               NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9178
9179        /* Disable the PTP feature */
9180        REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9181               NIG_REG_P0_PTP_EN, 0x0);
9182}
9183
9184/* Called during unload, to stop PTP-related stuff */
9185static void bnx2x_stop_ptp(struct bnx2x *bp)
9186{
9187        /* Cancel PTP work queue. Should be done after the Tx queues are
9188         * drained to prevent additional scheduling.
9189         */
9190        cancel_work_sync(&bp->ptp_task);
9191
9192        if (bp->ptp_tx_skb) {
9193                dev_kfree_skb_any(bp->ptp_tx_skb);
9194                bp->ptp_tx_skb = NULL;
9195        }
9196
9197        /* Disable PTP in HW */
9198        bnx2x_disable_ptp(bp);
9199
9200        DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9201}
9202
9203void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9204{
9205        int port = BP_PORT(bp);
9206        int i, rc = 0;
9207        u8 cos;
9208        struct bnx2x_mcast_ramrod_params rparam = {NULL};
9209        u32 reset_code;
9210
9211        /* Wait until tx fastpath tasks complete */
9212        for_each_tx_queue(bp, i) {
9213                struct bnx2x_fastpath *fp = &bp->fp[i];
9214
9215                for_each_cos_in_tx_queue(fp, cos)
9216                        rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9217#ifdef BNX2X_STOP_ON_ERROR
9218                if (rc)
9219                        return;
9220#endif
9221        }
9222
9223        /* Give HW time to discard old tx messages */
9224        usleep_range(1000, 2000);
9225
9226        /* Clean all ETH MACs */
9227        rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9228                                false);
9229        if (rc < 0)
9230                BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9231
9232        /* Clean up UC list  */
9233        rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9234                                true);
9235        if (rc < 0)
9236                BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9237                          rc);
9238
9239        /* Disable LLH */
9240        if (!CHIP_IS_E1(bp))
9241                REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9242
9243        /* Set "drop all" (stop Rx).
9244         * We need to take a netif_addr_lock() here in order to prevent
9245         * a race between the completion code and this code.
9246         */
9247        netif_addr_lock_bh(bp->dev);
9248        /* Schedule the rx_mode command */
9249        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9250                set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9251        else
9252                bnx2x_set_storm_rx_mode(bp);
9253
9254        /* Cleanup multicast configuration */
9255        rparam.mcast_obj = &bp->mcast_obj;
9256        rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9257        if (rc < 0)
9258                BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9259
9260        netif_addr_unlock_bh(bp->dev);
9261
9262        bnx2x_iov_chip_cleanup(bp);
9263
9264        /*
9265         * Send the UNLOAD_REQUEST to the MCP. This will return if
9266         * this function should perform FUNC, PORT or COMMON HW
9267         * reset.
9268         */
9269        reset_code = bnx2x_send_unload_req(bp, unload_mode);
9270
9271        /*
9272         * (assumption: No Attention from MCP at this stage)
9273         * PMF probably in the middle of TX disable/enable transaction
9274         */
9275        rc = bnx2x_func_wait_started(bp);
9276        if (rc) {
9277                BNX2X_ERR("bnx2x_func_wait_started failed\n");
9278#ifdef BNX2X_STOP_ON_ERROR
9279                return;
9280#endif
9281        }
9282
9283        /* Close multi and leading connections
9284         * Completions for ramrods are collected in a synchronous way
9285         */
9286        for_each_eth_queue(bp, i)
9287                if (bnx2x_stop_queue(bp, i))
9288#ifdef BNX2X_STOP_ON_ERROR
9289                        return;
9290#else
9291                        goto unload_error;
9292#endif
9293
9294        if (CNIC_LOADED(bp)) {
9295                for_each_cnic_queue(bp, i)
9296                        if (bnx2x_stop_queue(bp, i))
9297#ifdef BNX2X_STOP_ON_ERROR
9298                                return;
9299#else
9300                                goto unload_error;
9301#endif
9302        }
9303
9304        /* If SP settings didn't get completed so far - something
9305         * very wrong has happen.
9306         */
9307        if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9308                BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9309
9310#ifndef BNX2X_STOP_ON_ERROR
9311unload_error:
9312#endif
9313        rc = bnx2x_func_stop(bp);
9314        if (rc) {
9315                BNX2X_ERR("Function stop failed!\n");
9316#ifdef BNX2X_STOP_ON_ERROR
9317                return;
9318#endif
9319        }
9320
9321        /* stop_ptp should be after the Tx queues are drained to prevent
9322         * scheduling to the cancelled PTP work queue. It should also be after
9323         * function stop ramrod is sent, since as part of this ramrod FW access
9324         * PTP registers.
9325         */
9326        bnx2x_stop_ptp(bp);
9327
9328        /* Disable HW interrupts, NAPI */
9329        bnx2x_netif_stop(bp, 1);
9330        /* Delete all NAPI objects */
9331        bnx2x_del_all_napi(bp);
9332        if (CNIC_LOADED(bp))
9333                bnx2x_del_all_napi_cnic(bp);
9334
9335        /* Release IRQs */
9336        bnx2x_free_irq(bp);
9337
9338        /* Reset the chip */
9339        rc = bnx2x_reset_hw(bp, reset_code);
9340        if (rc)
9341                BNX2X_ERR("HW_RESET failed\n");
9342
9343        /* Report UNLOAD_DONE to MCP */
9344        bnx2x_send_unload_done(bp, keep_link);
9345}
9346
9347void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9348{
9349        u32 val;
9350
9351        DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9352
9353        if (CHIP_IS_E1(bp)) {
9354                int port = BP_PORT(bp);
9355                u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9356                        MISC_REG_AEU_MASK_ATTN_FUNC_0;
9357
9358                val = REG_RD(bp, addr);
9359                val &= ~(0x300);
9360                REG_WR(bp, addr, val);
9361        } else {
9362                val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9363                val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9364                         MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9365                REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9366        }
9367}
9368
9369/* Close gates #2, #3 and #4: */
9370static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9371{
9372        u32 val;
9373
9374        /* Gates #2 and #4a are closed/opened for "not E1" only */
9375        if (!CHIP_IS_E1(bp)) {
9376                /* #4 */
9377                REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9378                /* #2 */
9379                REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9380        }
9381
9382        /* #3 */
9383        if (CHIP_IS_E1x(bp)) {
9384                /* Prevent interrupts from HC on both ports */
9385                val = REG_RD(bp, HC_REG_CONFIG_1);
9386                REG_WR(bp, HC_REG_CONFIG_1,
9387                       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9388                       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9389
9390                val = REG_RD(bp, HC_REG_CONFIG_0);
9391                REG_WR(bp, HC_REG_CONFIG_0,
9392                       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9393                       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9394        } else {
9395                /* Prevent incoming interrupts in IGU */
9396                val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9397
9398                REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9399                       (!close) ?
9400                       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9401                       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9402        }
9403
9404        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9405                close ? "closing" : "opening");
9406        mmiowb();
9407}
9408
9409#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9410
9411static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9412{
9413        /* Do some magic... */
9414        u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9415        *magic_val = val & SHARED_MF_CLP_MAGIC;
9416        MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9417}
9418
9419/**
9420 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9421 *
9422 * @bp:         driver handle
9423 * @magic_val:  old value of the `magic' bit.
9424 */
9425static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9426{
9427        /* Restore the `magic' bit value... */
9428        u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9429        MF_CFG_WR(bp, shared_mf_config.clp_mb,
9430                (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9431}
9432
9433/**
9434 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9435 *
9436 * @bp:         driver handle
9437 * @magic_val:  old value of 'magic' bit.
9438 *
9439 * Takes care of CLP configurations.
9440 */
9441static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9442{
9443        u32 shmem;
9444        u32 validity_offset;
9445
9446        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9447
9448        /* Set `magic' bit in order to save MF config */
9449        if (!CHIP_IS_E1(bp))
9450                bnx2x_clp_reset_prep(bp, magic_val);
9451
9452        /* Get shmem offset */
9453        shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9454        validity_offset =
9455                offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9456
9457        /* Clear validity map flags */
9458        if (shmem > 0)
9459                REG_WR(bp, shmem + validity_offset, 0);
9460}
9461
9462#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9463#define MCP_ONE_TIMEOUT  100    /* 100 ms */
9464
9465/**
9466 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9467 *
9468 * @bp: driver handle
9469 */
9470static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9471{
9472        /* special handling for emulation and FPGA,
9473           wait 10 times longer */
9474        if (CHIP_REV_IS_SLOW(bp))
9475                msleep(MCP_ONE_TIMEOUT*10);
9476        else
9477                msleep(MCP_ONE_TIMEOUT);
9478}
9479
9480/*
9481 * initializes bp->common.shmem_base and waits for validity signature to appear
9482 */
9483static int bnx2x_init_shmem(struct bnx2x *bp)
9484{
9485        int cnt = 0;
9486        u32 val = 0;
9487
9488        do {
9489                bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9490                if (bp->common.shmem_base) {
9491                        val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9492                        if (val & SHR_MEM_VALIDITY_MB)
9493                                return 0;
9494                }
9495
9496                bnx2x_mcp_wait_one(bp);
9497
9498        } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9499
9500        BNX2X_ERR("BAD MCP validity signature\n");
9501
9502        return -ENODEV;
9503}
9504
9505static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9506{
9507        int rc = bnx2x_init_shmem(bp);
9508
9509        /* Restore the `magic' bit value */
9510        if (!CHIP_IS_E1(bp))
9511                bnx2x_clp_reset_done(bp, magic_val);
9512
9513        return rc;
9514}
9515
9516static void bnx2x_pxp_prep(struct bnx2x *bp)
9517{
9518        if (!CHIP_IS_E1(bp)) {
9519                REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9520                REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9521                mmiowb();
9522        }
9523}
9524
9525/*
9526 * Reset the whole chip except for:
9527 *      - PCIE core
9528 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9529 *              one reset bit)
9530 *      - IGU
9531 *      - MISC (including AEU)
9532 *      - GRC
9533 *      - RBCN, RBCP
9534 */
9535static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9536{
9537        u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9538        u32 global_bits2, stay_reset2;
9539
9540        /*
9541         * Bits that have to be set in reset_mask2 if we want to reset 'global'
9542         * (per chip) blocks.
9543         */
9544        global_bits2 =
9545                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9546                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9547
9548        /* Don't reset the following blocks.
9549         * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9550         *            reset, as in 4 port device they might still be owned
9551         *            by the MCP (there is only one leader per path).
9552         */
9553        not_reset_mask1 =
9554                MISC_REGISTERS_RESET_REG_1_RST_HC |
9555                MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9556                MISC_REGISTERS_RESET_REG_1_RST_PXP;
9557
9558        not_reset_mask2 =
9559                MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9560                MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9561                MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9562                MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9563                MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9564                MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9565                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9566                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9567                MISC_REGISTERS_RESET_REG_2_RST_ATC |
9568                MISC_REGISTERS_RESET_REG_2_PGLC |
9569                MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9570                MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9571                MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9572                MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9573                MISC_REGISTERS_RESET_REG_2_UMAC0 |
9574                MISC_REGISTERS_RESET_REG_2_UMAC1;
9575
9576        /*
9577         * Keep the following blocks in reset:
9578         *  - all xxMACs are handled by the bnx2x_link code.
9579         */
9580        stay_reset2 =
9581                MISC_REGISTERS_RESET_REG_2_XMAC |
9582                MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9583
9584        /* Full reset masks according to the chip */
9585        reset_mask1 = 0xffffffff;
9586
9587        if (CHIP_IS_E1(bp))
9588                reset_mask2 = 0xffff;
9589        else if (CHIP_IS_E1H(bp))
9590                reset_mask2 = 0x1ffff;
9591        else if (CHIP_IS_E2(bp))
9592                reset_mask2 = 0xfffff;
9593        else /* CHIP_IS_E3 */
9594                reset_mask2 = 0x3ffffff;
9595
9596        /* Don't reset global blocks unless we need to */
9597        if (!global)
9598                reset_mask2 &= ~global_bits2;
9599
9600        /*
9601         * In case of attention in the QM, we need to reset PXP
9602         * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9603         * because otherwise QM reset would release 'close the gates' shortly
9604         * before resetting the PXP, then the PSWRQ would send a write
9605         * request to PGLUE. Then when PXP is reset, PGLUE would try to
9606         * read the payload data from PSWWR, but PSWWR would not
9607         * respond. The write queue in PGLUE would stuck, dmae commands
9608         * would not return. Therefore it's important to reset the second
9609         * reset register (containing the
9610         * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9611         * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9612         * bit).
9613         */
9614        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9615               reset_mask2 & (~not_reset_mask2));
9616
9617        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9618               reset_mask1 & (~not_reset_mask1));
9619
9620        barrier();
9621        mmiowb();
9622
9623        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9624               reset_mask2 & (~stay_reset2));
9625
9626        barrier();
9627        mmiowb();
9628
9629        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9630        mmiowb();
9631}
9632
9633/**
9634 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9635 * It should get cleared in no more than 1s.
9636 *
9637 * @bp: driver handle
9638 *
9639 * It should get cleared in no more than 1s. Returns 0 if
9640 * pending writes bit gets cleared.
9641 */
9642static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9643{
9644        u32 cnt = 1000;
9645        u32 pend_bits = 0;
9646
9647        do {
9648                pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9649
9650                if (pend_bits == 0)
9651                        break;
9652
9653                usleep_range(1000, 2000);
9654        } while (cnt-- > 0);
9655
9656        if (cnt <= 0) {
9657                BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9658                          pend_bits);
9659                return -EBUSY;
9660        }
9661
9662        return 0;
9663}
9664
9665static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9666{
9667        int cnt = 1000;
9668        u32 val = 0;
9669        u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9670        u32 tags_63_32 = 0;
9671
9672        /* Empty the Tetris buffer, wait for 1s */
9673        do {
9674                sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9675                blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9676                port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9677                port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9678                pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9679                if (CHIP_IS_E3(bp))
9680                        tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9681
9682                if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9683                    ((port_is_idle_0 & 0x1) == 0x1) &&
9684                    ((port_is_idle_1 & 0x1) == 0x1) &&
9685                    (pgl_exp_rom2 == 0xffffffff) &&
9686                    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9687                        break;
9688                usleep_range(1000, 2000);
9689        } while (cnt-- > 0);
9690
9691        if (cnt <= 0) {
9692                BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9693                BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9694                          sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9695                          pgl_exp_rom2);
9696                return -EAGAIN;
9697        }
9698
9699        barrier();
9700
9701        /* Close gates #2, #3 and #4 */
9702        bnx2x_set_234_gates(bp, true);
9703
9704        /* Poll for IGU VQs for 57712 and newer chips */
9705        if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9706                return -EAGAIN;
9707
9708        /* TBD: Indicate that "process kill" is in progress to MCP */
9709
9710        /* Clear "unprepared" bit */
9711        REG_WR(bp, MISC_REG_UNPREPARED, 0);
9712        barrier();
9713
9714        /* Make sure all is written to the chip before the reset */
9715        mmiowb();
9716
9717        /* Wait for 1ms to empty GLUE and PCI-E core queues,
9718         * PSWHST, GRC and PSWRD Tetris buffer.
9719         */
9720        usleep_range(1000, 2000);
9721
9722        /* Prepare to chip reset: */
9723        /* MCP */
9724        if (global)
9725                bnx2x_reset_mcp_prep(bp, &val);
9726
9727        /* PXP */
9728        bnx2x_pxp_prep(bp);
9729        barrier();
9730
9731        /* reset the chip */
9732        bnx2x_process_kill_chip_reset(bp, global);
9733        barrier();
9734
9735        /* clear errors in PGB */
9736        if (!CHIP_IS_E1x(bp))
9737                REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9738
9739        /* Recover after reset: */
9740        /* MCP */
9741        if (global && bnx2x_reset_mcp_comp(bp, val))
9742                return -EAGAIN;
9743
9744        /* TBD: Add resetting the NO_MCP mode DB here */
9745
9746        /* Open the gates #2, #3 and #4 */
9747        bnx2x_set_234_gates(bp, false);
9748
9749        /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9750         * reset state, re-enable attentions. */
9751
9752        return 0;
9753}
9754
9755static int bnx2x_leader_reset(struct bnx2x *bp)
9756{
9757        int rc = 0;
9758        bool global = bnx2x_reset_is_global(bp);
9759        u32 load_code;
9760
9761        /* if not going to reset MCP - load "fake" driver to reset HW while
9762         * driver is owner of the HW
9763         */
9764        if (!global && !BP_NOMCP(bp)) {
9765                load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9766                                             DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9767                if (!load_code) {
9768                        BNX2X_ERR("MCP response failure, aborting\n");
9769                        rc = -EAGAIN;
9770                        goto exit_leader_reset;
9771                }
9772                if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9773                    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9774                        BNX2X_ERR("MCP unexpected resp, aborting\n");
9775                        rc = -EAGAIN;
9776                        goto exit_leader_reset2;
9777                }
9778                load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9779                if (!load_code) {
9780                        BNX2X_ERR("MCP response failure, aborting\n");
9781                        rc = -EAGAIN;
9782                        goto exit_leader_reset2;
9783                }
9784        }
9785
9786        /* Try to recover after the failure */
9787        if (bnx2x_process_kill(bp, global)) {
9788                BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9789                          BP_PATH(bp));
9790                rc = -EAGAIN;
9791                goto exit_leader_reset2;
9792        }
9793
9794        /*
9795         * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9796         * state.
9797         */
9798        bnx2x_set_reset_done(bp);
9799        if (global)
9800                bnx2x_clear_reset_global(bp);
9801
9802exit_leader_reset2:
9803        /* unload "fake driver" if it was loaded */
9804        if (!global && !BP_NOMCP(bp)) {
9805                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9806                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9807        }
9808exit_leader_reset:
9809        bp->is_leader = 0;
9810        bnx2x_release_leader_lock(bp);
9811        smp_mb();
9812        return rc;
9813}
9814
9815static void bnx2x_recovery_failed(struct bnx2x *bp)
9816{
9817        netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9818
9819        /* Disconnect this device */
9820        netif_device_detach(bp->dev);
9821
9822        /*
9823         * Block ifup for all function on this engine until "process kill"
9824         * or power cycle.
9825         */
9826        bnx2x_set_reset_in_progress(bp);
9827
9828        /* Shut down the power */
9829        bnx2x_set_power_state(bp, PCI_D3hot);
9830
9831        bp->recovery_state = BNX2X_RECOVERY_FAILED;
9832
9833        smp_mb();
9834}
9835
9836/*
9837 * Assumption: runs under rtnl lock. This together with the fact
9838 * that it's called only from bnx2x_sp_rtnl() ensure that it
9839 * will never be called when netif_running(bp->dev) is false.
9840 */
9841static void bnx2x_parity_recover(struct bnx2x *bp)
9842{
9843        bool global = false;
9844        u32 error_recovered, error_unrecovered;
9845        bool is_parity;
9846
9847        DP(NETIF_MSG_HW, "Handling parity\n");
9848        while (1) {
9849                switch (bp->recovery_state) {
9850                case BNX2X_RECOVERY_INIT:
9851                        DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9852                        is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9853                        WARN_ON(!is_parity);
9854
9855                        /* Try to get a LEADER_LOCK HW lock */
9856                        if (bnx2x_trylock_leader_lock(bp)) {
9857                                bnx2x_set_reset_in_progress(bp);
9858                                /*
9859                                 * Check if there is a global attention and if
9860                                 * there was a global attention, set the global
9861                                 * reset bit.
9862                                 */
9863
9864                                if (global)
9865                                        bnx2x_set_reset_global(bp);
9866
9867                                bp->is_leader = 1;
9868                        }
9869
9870                        /* Stop the driver */
9871                        /* If interface has been removed - break */
9872                        if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9873                                return;
9874
9875                        bp->recovery_state = BNX2X_RECOVERY_WAIT;
9876
9877                        /* Ensure "is_leader", MCP command sequence and
9878                         * "recovery_state" update values are seen on other
9879                         * CPUs.
9880                         */
9881                        smp_mb();
9882                        break;
9883
9884                case BNX2X_RECOVERY_WAIT:
9885                        DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9886                        if (bp->is_leader) {
9887                                int other_engine = BP_PATH(bp) ? 0 : 1;
9888                                bool other_load_status =
9889                                        bnx2x_get_load_status(bp, other_engine);
9890                                bool load_status =
9891                                        bnx2x_get_load_status(bp, BP_PATH(bp));
9892                                global = bnx2x_reset_is_global(bp);
9893
9894                                /*
9895                                 * In case of a parity in a global block, let
9896                                 * the first leader that performs a
9897                                 * leader_reset() reset the global blocks in
9898                                 * order to clear global attentions. Otherwise
9899                                 * the gates will remain closed for that
9900                                 * engine.
9901                                 */
9902                                if (load_status ||
9903                                    (global && other_load_status)) {
9904                                        /* Wait until all other functions get
9905                                         * down.
9906                                         */
9907                                        schedule_delayed_work(&bp->sp_rtnl_task,
9908                                                                HZ/10);
9909                                        return;
9910                                } else {
9911                                        /* If all other functions got down -
9912                                         * try to bring the chip back to
9913                                         * normal. In any case it's an exit
9914                                         * point for a leader.
9915                                         */
9916                                        if (bnx2x_leader_reset(bp)) {
9917                                                bnx2x_recovery_failed(bp);
9918                                                return;
9919                                        }
9920
9921                                        /* If we are here, means that the
9922                                         * leader has succeeded and doesn't
9923                                         * want to be a leader any more. Try
9924                                         * to continue as a none-leader.
9925                                         */
9926                                        break;
9927                                }
9928                        } else { /* non-leader */
9929                                if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9930                                        /* Try to get a LEADER_LOCK HW lock as
9931                                         * long as a former leader may have
9932                                         * been unloaded by the user or
9933                                         * released a leadership by another
9934                                         * reason.
9935                                         */
9936                                        if (bnx2x_trylock_leader_lock(bp)) {
9937                                                /* I'm a leader now! Restart a
9938                                                 * switch case.
9939                                                 */
9940                                                bp->is_leader = 1;
9941                                                break;
9942                                        }
9943
9944                                        schedule_delayed_work(&bp->sp_rtnl_task,
9945                                                                HZ/10);
9946                                        return;
9947
9948                                } else {
9949                                        /*
9950                                         * If there was a global attention, wait
9951                                         * for it to be cleared.
9952                                         */
9953                                        if (bnx2x_reset_is_global(bp)) {
9954                                                schedule_delayed_work(
9955                                                        &bp->sp_rtnl_task,
9956                                                        HZ/10);
9957                                                return;
9958                                        }
9959
9960                                        error_recovered =
9961                                          bp->eth_stats.recoverable_error;
9962                                        error_unrecovered =
9963                                          bp->eth_stats.unrecoverable_error;
9964                                        bp->recovery_state =
9965                                                BNX2X_RECOVERY_NIC_LOADING;
9966                                        if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9967                                                error_unrecovered++;
9968                                                netdev_err(bp->dev,
9969                                                           "Recovery failed. Power cycle needed\n");
9970                                                /* Disconnect this device */
9971                                                netif_device_detach(bp->dev);
9972                                                /* Shut down the power */
9973                                                bnx2x_set_power_state(
9974                                                        bp, PCI_D3hot);
9975                                                smp_mb();
9976                                        } else {
9977                                                bp->recovery_state =
9978                                                        BNX2X_RECOVERY_DONE;
9979                                                error_recovered++;
9980                                                smp_mb();
9981                                        }
9982                                        bp->eth_stats.recoverable_error =
9983                                                error_recovered;
9984                                        bp->eth_stats.unrecoverable_error =
9985                                                error_unrecovered;
9986
9987                                        return;
9988                                }
9989                        }
9990                default:
9991                        return;
9992                }
9993        }
9994}
9995
9996static int bnx2x_close(struct net_device *dev);
9997
9998/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9999 * scheduled on a general queue in order to prevent a dead lock.
10000 */
10001static void bnx2x_sp_rtnl_task(struct work_struct *work)
10002{
10003        struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10004
10005        rtnl_lock();
10006
10007        if (!netif_running(bp->dev)) {
10008                rtnl_unlock();
10009                return;
10010        }
10011
10012        if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10013#ifdef BNX2X_STOP_ON_ERROR
10014                BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10015                          "you will need to reboot when done\n");
10016                goto sp_rtnl_not_reset;
10017#endif
10018                /*
10019                 * Clear all pending SP commands as we are going to reset the
10020                 * function anyway.
10021                 */
10022                bp->sp_rtnl_state = 0;
10023                smp_mb();
10024
10025                bnx2x_parity_recover(bp);
10026
10027                rtnl_unlock();
10028                return;
10029        }
10030
10031        if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10032#ifdef BNX2X_STOP_ON_ERROR
10033                BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10034                          "you will need to reboot when done\n");
10035                goto sp_rtnl_not_reset;
10036#endif
10037
10038                /*
10039                 * Clear all pending SP commands as we are going to reset the
10040                 * function anyway.
10041                 */
10042                bp->sp_rtnl_state = 0;
10043                smp_mb();
10044
10045                bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10046                bnx2x_nic_load(bp, LOAD_NORMAL);
10047
10048                rtnl_unlock();
10049                return;
10050        }
10051#ifdef BNX2X_STOP_ON_ERROR
10052sp_rtnl_not_reset:
10053#endif
10054        if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10055                bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10056        if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10057                bnx2x_after_function_update(bp);
10058        /*
10059         * in case of fan failure we need to reset id if the "stop on error"
10060         * debug flag is set, since we trying to prevent permanent overheating
10061         * damage
10062         */
10063        if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10064                DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10065                netif_device_detach(bp->dev);
10066                bnx2x_close(bp->dev);
10067                rtnl_unlock();
10068                return;
10069        }
10070
10071        if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10072                DP(BNX2X_MSG_SP,
10073                   "sending set mcast vf pf channel message from rtnl sp-task\n");
10074                bnx2x_vfpf_set_mcast(bp->dev);
10075        }
10076        if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10077                               &bp->sp_rtnl_state)){
10078                if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10079                        bnx2x_tx_disable(bp);
10080                        BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10081                }
10082        }
10083
10084        if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10085                DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10086                bnx2x_set_rx_mode_inner(bp);
10087        }
10088
10089        if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10090                               &bp->sp_rtnl_state))
10091                bnx2x_pf_set_vfs_vlan(bp);
10092
10093        if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10094                bnx2x_dcbx_stop_hw_tx(bp);
10095                bnx2x_dcbx_resume_hw_tx(bp);
10096        }
10097
10098        if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10099                               &bp->sp_rtnl_state))
10100                bnx2x_update_mng_version(bp);
10101
10102        /* work which needs rtnl lock not-taken (as it takes the lock itself and
10103         * can be called from other contexts as well)
10104         */
10105        rtnl_unlock();
10106
10107        /* enable SR-IOV if applicable */
10108        if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10109                                               &bp->sp_rtnl_state)) {
10110                bnx2x_disable_sriov(bp);
10111                bnx2x_enable_sriov(bp);
10112        }
10113}
10114
10115static void bnx2x_period_task(struct work_struct *work)
10116{
10117        struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10118
10119        if (!netif_running(bp->dev))
10120                goto period_task_exit;
10121
10122        if (CHIP_REV_IS_SLOW(bp)) {
10123                BNX2X_ERR("period task called on emulation, ignoring\n");
10124                goto period_task_exit;
10125        }
10126
10127        bnx2x_acquire_phy_lock(bp);
10128        /*
10129         * The barrier is needed to ensure the ordering between the writing to
10130         * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10131         * the reading here.
10132         */
10133        smp_mb();
10134        if (bp->port.pmf) {
10135                bnx2x_period_func(&bp->link_params, &bp->link_vars);
10136
10137                /* Re-queue task in 1 sec */
10138                queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10139        }
10140
10141        bnx2x_release_phy_lock(bp);
10142period_task_exit:
10143        return;
10144}
10145
10146/*
10147 * Init service functions
10148 */
10149
10150static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10151{
10152        u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10153        u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10154        return base + (BP_ABS_FUNC(bp)) * stride;
10155}
10156
10157static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10158                                         u8 port, u32 reset_reg,
10159                                         struct bnx2x_mac_vals *vals)
10160{
10161        u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10162        u32 base_addr;
10163
10164        if (!(mask & reset_reg))
10165                return false;
10166
10167        BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10168        base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10169        vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10170        vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10171        REG_WR(bp, vals->umac_addr[port], 0);
10172
10173        return true;
10174}
10175
10176static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10177                                        struct bnx2x_mac_vals *vals)
10178{
10179        u32 val, base_addr, offset, mask, reset_reg;
10180        bool mac_stopped = false;
10181        u8 port = BP_PORT(bp);
10182
10183        /* reset addresses as they also mark which values were changed */
10184        memset(vals, 0, sizeof(*vals));
10185
10186        reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10187
10188        if (!CHIP_IS_E3(bp)) {
10189                val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10190                mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10191                if ((mask & reset_reg) && val) {
10192                        u32 wb_data[2];
10193                        BNX2X_DEV_INFO("Disable bmac Rx\n");
10194                        base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10195                                                : NIG_REG_INGRESS_BMAC0_MEM;
10196                        offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10197                                                : BIGMAC_REGISTER_BMAC_CONTROL;
10198
10199                        /*
10200                         * use rd/wr since we cannot use dmae. This is safe
10201                         * since MCP won't access the bus due to the request
10202                         * to unload, and no function on the path can be
10203                         * loaded at this time.
10204                         */
10205                        wb_data[0] = REG_RD(bp, base_addr + offset);
10206                        wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10207                        vals->bmac_addr = base_addr + offset;
10208                        vals->bmac_val[0] = wb_data[0];
10209                        vals->bmac_val[1] = wb_data[1];
10210                        wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10211                        REG_WR(bp, vals->bmac_addr, wb_data[0]);
10212                        REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10213                }
10214                BNX2X_DEV_INFO("Disable emac Rx\n");
10215                vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10216                vals->emac_val = REG_RD(bp, vals->emac_addr);
10217                REG_WR(bp, vals->emac_addr, 0);
10218                mac_stopped = true;
10219        } else {
10220                if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10221                        BNX2X_DEV_INFO("Disable xmac Rx\n");
10222                        base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10223                        val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10224                        REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10225                               val & ~(1 << 1));
10226                        REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10227                               val | (1 << 1));
10228                        vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10229                        vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10230                        REG_WR(bp, vals->xmac_addr, 0);
10231                        mac_stopped = true;
10232                }
10233
10234                mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10235                                                            reset_reg, vals);
10236                mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10237                                                            reset_reg, vals);
10238        }
10239
10240        if (mac_stopped)
10241                msleep(20);
10242}
10243
10244#define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10245#define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10246                                        0x1848 + ((f) << 4))
10247#define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10248#define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10249#define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10250
10251#define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10252#define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10253#define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10254
10255static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10256{
10257        /* UNDI marks its presence in DORQ -
10258         * it initializes CID offset for normal bell to 0x7
10259         */
10260        if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10261            MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10262                return false;
10263
10264        if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10265                BNX2X_DEV_INFO("UNDI previously loaded\n");
10266                return true;
10267        }
10268
10269        return false;
10270}
10271
10272static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10273{
10274        u16 rcq, bd;
10275        u32 addr, tmp_reg;
10276
10277        if (BP_FUNC(bp) < 2)
10278                addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10279        else
10280                addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10281
10282        tmp_reg = REG_RD(bp, addr);
10283        rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10284        bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10285
10286        tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10287        REG_WR(bp, addr, tmp_reg);
10288
10289        BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10290                       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10291}
10292
10293static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10294{
10295        u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10296                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10297        if (!rc) {
10298                BNX2X_ERR("MCP response failure, aborting\n");
10299                return -EBUSY;
10300        }
10301
10302        return 0;
10303}
10304
10305static struct bnx2x_prev_path_list *
10306                bnx2x_prev_path_get_entry(struct bnx2x *bp)
10307{
10308        struct bnx2x_prev_path_list *tmp_list;
10309
10310        list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10311                if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10312                    bp->pdev->bus->number == tmp_list->bus &&
10313                    BP_PATH(bp) == tmp_list->path)
10314                        return tmp_list;
10315
10316        return NULL;
10317}
10318
10319static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10320{
10321        struct bnx2x_prev_path_list *tmp_list;
10322        int rc;
10323
10324        rc = down_interruptible(&bnx2x_prev_sem);
10325        if (rc) {
10326                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10327                return rc;
10328        }
10329
10330        tmp_list = bnx2x_prev_path_get_entry(bp);
10331        if (tmp_list) {
10332                tmp_list->aer = 1;
10333                rc = 0;
10334        } else {
10335                BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10336                          BP_PATH(bp));
10337        }
10338
10339        up(&bnx2x_prev_sem);
10340
10341        return rc;
10342}
10343
10344static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10345{
10346        struct bnx2x_prev_path_list *tmp_list;
10347        bool rc = false;
10348
10349        if (down_trylock(&bnx2x_prev_sem))
10350                return false;
10351
10352        tmp_list = bnx2x_prev_path_get_entry(bp);
10353        if (tmp_list) {
10354                if (tmp_list->aer) {
10355                        DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10356                           BP_PATH(bp));
10357                } else {
10358                        rc = true;
10359                        BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10360                                       BP_PATH(bp));
10361                }
10362        }
10363
10364        up(&bnx2x_prev_sem);
10365
10366        return rc;
10367}
10368
10369bool bnx2x_port_after_undi(struct bnx2x *bp)
10370{
10371        struct bnx2x_prev_path_list *entry;
10372        bool val;
10373
10374        down(&bnx2x_prev_sem);
10375
10376        entry = bnx2x_prev_path_get_entry(bp);
10377        val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10378
10379        up(&bnx2x_prev_sem);
10380
10381        return val;
10382}
10383
10384static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10385{
10386        struct bnx2x_prev_path_list *tmp_list;
10387        int rc;
10388
10389        rc = down_interruptible(&bnx2x_prev_sem);
10390        if (rc) {
10391                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10392                return rc;
10393        }
10394
10395        /* Check whether the entry for this path already exists */
10396        tmp_list = bnx2x_prev_path_get_entry(bp);
10397        if (tmp_list) {
10398                if (!tmp_list->aer) {
10399                        BNX2X_ERR("Re-Marking the path.\n");
10400                } else {
10401                        DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10402                           BP_PATH(bp));
10403                        tmp_list->aer = 0;
10404                }
10405                up(&bnx2x_prev_sem);
10406                return 0;
10407        }
10408        up(&bnx2x_prev_sem);
10409
10410        /* Create an entry for this path and add it */
10411        tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10412        if (!tmp_list) {
10413                BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10414                return -ENOMEM;
10415        }
10416
10417        tmp_list->bus = bp->pdev->bus->number;
10418        tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10419        tmp_list->path = BP_PATH(bp);
10420        tmp_list->aer = 0;
10421        tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10422
10423        rc = down_interruptible(&bnx2x_prev_sem);
10424        if (rc) {
10425                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10426                kfree(tmp_list);
10427        } else {
10428                DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10429                   BP_PATH(bp));
10430                list_add(&tmp_list->list, &bnx2x_prev_list);
10431                up(&bnx2x_prev_sem);
10432        }
10433
10434        return rc;
10435}
10436
10437static int bnx2x_do_flr(struct bnx2x *bp)
10438{
10439        struct pci_dev *dev = bp->pdev;
10440
10441        if (CHIP_IS_E1x(bp)) {
10442                BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10443                return -EINVAL;
10444        }
10445
10446        /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10447        if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10448                BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10449                          bp->common.bc_ver);
10450                return -EINVAL;
10451        }
10452
10453        if (!pci_wait_for_pending_transaction(dev))
10454                dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10455
10456        BNX2X_DEV_INFO("Initiating FLR\n");
10457        bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10458
10459        return 0;
10460}
10461
10462static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10463{
10464        int rc;
10465
10466        BNX2X_DEV_INFO("Uncommon unload Flow\n");
10467
10468        /* Test if previous unload process was already finished for this path */
10469        if (bnx2x_prev_is_path_marked(bp))
10470                return bnx2x_prev_mcp_done(bp);
10471
10472        BNX2X_DEV_INFO("Path is unmarked\n");
10473
10474        /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10475        if (bnx2x_prev_is_after_undi(bp))
10476                goto out;
10477
10478        /* If function has FLR capabilities, and existing FW version matches
10479         * the one required, then FLR will be sufficient to clean any residue
10480         * left by previous driver
10481         */
10482        rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10483
10484        if (!rc) {
10485                /* fw version is good */
10486                BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10487                rc = bnx2x_do_flr(bp);
10488        }
10489
10490        if (!rc) {
10491                /* FLR was performed */
10492                BNX2X_DEV_INFO("FLR successful\n");
10493                return 0;
10494        }
10495
10496        BNX2X_DEV_INFO("Could not FLR\n");
10497
10498out:
10499        /* Close the MCP request, return failure*/
10500        rc = bnx2x_prev_mcp_done(bp);
10501        if (!rc)
10502                rc = BNX2X_PREV_WAIT_NEEDED;
10503
10504        return rc;
10505}
10506
10507static int bnx2x_prev_unload_common(struct bnx2x *bp)
10508{
10509        u32 reset_reg, tmp_reg = 0, rc;
10510        bool prev_undi = false;
10511        struct bnx2x_mac_vals mac_vals;
10512
10513        /* It is possible a previous function received 'common' answer,
10514         * but hasn't loaded yet, therefore creating a scenario of
10515         * multiple functions receiving 'common' on the same path.
10516         */
10517        BNX2X_DEV_INFO("Common unload Flow\n");
10518
10519        memset(&mac_vals, 0, sizeof(mac_vals));
10520
10521        if (bnx2x_prev_is_path_marked(bp))
10522                return bnx2x_prev_mcp_done(bp);
10523
10524        reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10525
10526        /* Reset should be performed after BRB is emptied */
10527        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10528                u32 timer_count = 1000;
10529
10530                /* Close the MAC Rx to prevent BRB from filling up */
10531                bnx2x_prev_unload_close_mac(bp, &mac_vals);
10532
10533                /* close LLH filters for both ports towards the BRB */
10534                bnx2x_set_rx_filter(&bp->link_params, 0);
10535                bp->link_params.port ^= 1;
10536                bnx2x_set_rx_filter(&bp->link_params, 0);
10537                bp->link_params.port ^= 1;
10538
10539                /* Check if the UNDI driver was previously loaded */
10540                if (bnx2x_prev_is_after_undi(bp)) {
10541                        prev_undi = true;
10542                        /* clear the UNDI indication */
10543                        REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10544                        /* clear possible idle check errors */
10545                        REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10546                }
10547                if (!CHIP_IS_E1x(bp))
10548                        /* block FW from writing to host */
10549                        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10550
10551                /* wait until BRB is empty */
10552                tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10553                while (timer_count) {
10554                        u32 prev_brb = tmp_reg;
10555
10556                        tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10557                        if (!tmp_reg)
10558                                break;
10559
10560                        BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10561
10562                        /* reset timer as long as BRB actually gets emptied */
10563                        if (prev_brb > tmp_reg)
10564                                timer_count = 1000;
10565                        else
10566                                timer_count--;
10567
10568                        /* If UNDI resides in memory, manually increment it */
10569                        if (prev_undi)
10570                                bnx2x_prev_unload_undi_inc(bp, 1);
10571
10572                        udelay(10);
10573                }
10574
10575                if (!timer_count)
10576                        BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10577        }
10578
10579        /* No packets are in the pipeline, path is ready for reset */
10580        bnx2x_reset_common(bp);
10581
10582        if (mac_vals.xmac_addr)
10583                REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10584        if (mac_vals.umac_addr[0])
10585                REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10586        if (mac_vals.umac_addr[1])
10587                REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10588        if (mac_vals.emac_addr)
10589                REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10590        if (mac_vals.bmac_addr) {
10591                REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10592                REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10593        }
10594
10595        rc = bnx2x_prev_mark_path(bp, prev_undi);
10596        if (rc) {
10597                bnx2x_prev_mcp_done(bp);
10598                return rc;
10599        }
10600
10601        return bnx2x_prev_mcp_done(bp);
10602}
10603
10604static int bnx2x_prev_unload(struct bnx2x *bp)
10605{
10606        int time_counter = 10;
10607        u32 rc, fw, hw_lock_reg, hw_lock_val;
10608        BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10609
10610        /* clear hw from errors which may have resulted from an interrupted
10611         * dmae transaction.
10612         */
10613        bnx2x_clean_pglue_errors(bp);
10614
10615        /* Release previously held locks */
10616        hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10617                      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10618                      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10619
10620        hw_lock_val = REG_RD(bp, hw_lock_reg);
10621        if (hw_lock_val) {
10622                if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10623                        BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10624                        REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10625                               (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10626                }
10627
10628                BNX2X_DEV_INFO("Release Previously held hw lock\n");
10629                REG_WR(bp, hw_lock_reg, 0xffffffff);
10630        } else
10631                BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10632
10633        if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10634                BNX2X_DEV_INFO("Release previously held alr\n");
10635                bnx2x_release_alr(bp);
10636        }
10637
10638        do {
10639                int aer = 0;
10640                /* Lock MCP using an unload request */
10641                fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10642                if (!fw) {
10643                        BNX2X_ERR("MCP response failure, aborting\n");
10644                        rc = -EBUSY;
10645                        break;
10646                }
10647
10648                rc = down_interruptible(&bnx2x_prev_sem);
10649                if (rc) {
10650                        BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10651                                  rc);
10652                } else {
10653                        /* If Path is marked by EEH, ignore unload status */
10654                        aer = !!(bnx2x_prev_path_get_entry(bp) &&
10655                                 bnx2x_prev_path_get_entry(bp)->aer);
10656                        up(&bnx2x_prev_sem);
10657                }
10658
10659                if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10660                        rc = bnx2x_prev_unload_common(bp);
10661                        break;
10662                }
10663
10664                /* non-common reply from MCP might require looping */
10665                rc = bnx2x_prev_unload_uncommon(bp);
10666                if (rc != BNX2X_PREV_WAIT_NEEDED)
10667                        break;
10668
10669                msleep(20);
10670        } while (--time_counter);
10671
10672        if (!time_counter || rc) {
10673                BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10674                rc = -EPROBE_DEFER;
10675        }
10676
10677        /* Mark function if its port was used to boot from SAN */
10678        if (bnx2x_port_after_undi(bp))
10679                bp->link_params.feature_config_flags |=
10680                        FEATURE_CONFIG_BOOT_FROM_SAN;
10681
10682        BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10683
10684        return rc;
10685}
10686
10687static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10688{
10689        u32 val, val2, val3, val4, id, boot_mode;
10690        u16 pmc;
10691
10692        /* Get the chip revision id and number. */
10693        /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10694        val = REG_RD(bp, MISC_REG_CHIP_NUM);
10695        id = ((val & 0xffff) << 16);
10696        val = REG_RD(bp, MISC_REG_CHIP_REV);
10697        id |= ((val & 0xf) << 12);
10698
10699        /* Metal is read from PCI regs, but we can't access >=0x400 from
10700         * the configuration space (so we need to reg_rd)
10701         */
10702        val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10703        id |= (((val >> 24) & 0xf) << 4);
10704        val = REG_RD(bp, MISC_REG_BOND_ID);
10705        id |= (val & 0xf);
10706        bp->common.chip_id = id;
10707
10708        /* force 57811 according to MISC register */
10709        if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10710                if (CHIP_IS_57810(bp))
10711                        bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10712                                (bp->common.chip_id & 0x0000FFFF);
10713                else if (CHIP_IS_57810_MF(bp))
10714                        bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10715                                (bp->common.chip_id & 0x0000FFFF);
10716                bp->common.chip_id |= 0x1;
10717        }
10718
10719        /* Set doorbell size */
10720        bp->db_size = (1 << BNX2X_DB_SHIFT);
10721
10722        if (!CHIP_IS_E1x(bp)) {
10723                val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10724                if ((val & 1) == 0)
10725                        val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10726                else
10727                        val = (val >> 1) & 1;
10728                BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10729                                                       "2_PORT_MODE");
10730                bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10731                                                 CHIP_2_PORT_MODE;
10732
10733                if (CHIP_MODE_IS_4_PORT(bp))
10734                        bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10735                else
10736                        bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10737        } else {
10738                bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10739                bp->pfid = bp->pf_num;                  /* 0..7 */
10740        }
10741
10742        BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10743
10744        bp->link_params.chip_id = bp->common.chip_id;
10745        BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10746
10747        val = (REG_RD(bp, 0x2874) & 0x55);
10748        if ((bp->common.chip_id & 0x1) ||
10749            (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10750                bp->flags |= ONE_PORT_FLAG;
10751                BNX2X_DEV_INFO("single port device\n");
10752        }
10753
10754        val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10755        bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10756                                 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10757        BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10758                       bp->common.flash_size, bp->common.flash_size);
10759
10760        bnx2x_init_shmem(bp);
10761
10762        bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10763                                        MISC_REG_GENERIC_CR_1 :
10764                                        MISC_REG_GENERIC_CR_0));
10765
10766        bp->link_params.shmem_base = bp->common.shmem_base;
10767        bp->link_params.shmem2_base = bp->common.shmem2_base;
10768        if (SHMEM2_RD(bp, size) >
10769            (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10770                bp->link_params.lfa_base =
10771                REG_RD(bp, bp->common.shmem2_base +
10772                       (u32)offsetof(struct shmem2_region,
10773                                     lfa_host_addr[BP_PORT(bp)]));
10774        else
10775                bp->link_params.lfa_base = 0;
10776        BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10777                       bp->common.shmem_base, bp->common.shmem2_base);
10778
10779        if (!bp->common.shmem_base) {
10780                BNX2X_DEV_INFO("MCP not active\n");
10781                bp->flags |= NO_MCP_FLAG;
10782                return;
10783        }
10784
10785        bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10786        BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10787
10788        bp->link_params.hw_led_mode = ((bp->common.hw_config &
10789                                        SHARED_HW_CFG_LED_MODE_MASK) >>
10790                                       SHARED_HW_CFG_LED_MODE_SHIFT);
10791
10792        bp->link_params.feature_config_flags = 0;
10793        val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10794        if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10795                bp->link_params.feature_config_flags |=
10796                                FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10797        else
10798                bp->link_params.feature_config_flags &=
10799                                ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10800
10801        val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10802        bp->common.bc_ver = val;
10803        BNX2X_DEV_INFO("bc_ver %X\n", val);
10804        if (val < BNX2X_BC_VER) {
10805                /* for now only warn
10806                 * later we might need to enforce this */
10807                BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10808                          BNX2X_BC_VER, val);
10809        }
10810        bp->link_params.feature_config_flags |=
10811                                (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10812                                FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10813
10814        bp->link_params.feature_config_flags |=
10815                (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10816                FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10817        bp->link_params.feature_config_flags |=
10818                (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10819                FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10820        bp->link_params.feature_config_flags |=
10821                (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10822                FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10823
10824        bp->link_params.feature_config_flags |=
10825                (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10826                FEATURE_CONFIG_MT_SUPPORT : 0;
10827
10828        bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10829                        BC_SUPPORTS_PFC_STATS : 0;
10830
10831        bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10832                        BC_SUPPORTS_FCOE_FEATURES : 0;
10833
10834        bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10835                        BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10836
10837        bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10838                        BC_SUPPORTS_RMMOD_CMD : 0;
10839
10840        boot_mode = SHMEM_RD(bp,
10841                        dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10842                        PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10843        switch (boot_mode) {
10844        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10845                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10846                break;
10847        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10848                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10849                break;
10850        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10851                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10852                break;
10853        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10854                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10855                break;
10856        }
10857
10858        pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10859        bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10860
10861        BNX2X_DEV_INFO("%sWoL capable\n",
10862                       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10863
10864        val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10865        val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10866        val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10867        val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10868
10869        dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10870                 val, val2, val3, val4);
10871}
10872
10873#define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10874#define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10875
10876static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10877{
10878        int pfid = BP_FUNC(bp);
10879        int igu_sb_id;
10880        u32 val;
10881        u8 fid, igu_sb_cnt = 0;
10882
10883        bp->igu_base_sb = 0xff;
10884        if (CHIP_INT_MODE_IS_BC(bp)) {
10885                int vn = BP_VN(bp);
10886                igu_sb_cnt = bp->igu_sb_cnt;
10887                bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10888                        FP_SB_MAX_E1x;
10889
10890                bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10891                        (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10892
10893                return 0;
10894        }
10895
10896        /* IGU in normal mode - read CAM */
10897        for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10898             igu_sb_id++) {
10899                val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10900                if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10901                        continue;
10902                fid = IGU_FID(val);
10903                if ((fid & IGU_FID_ENCODE_IS_PF)) {
10904                        if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10905                                continue;
10906                        if (IGU_VEC(val) == 0)
10907                                /* default status block */
10908                                bp->igu_dsb_id = igu_sb_id;
10909                        else {
10910                                if (bp->igu_base_sb == 0xff)
10911                                        bp->igu_base_sb = igu_sb_id;
10912                                igu_sb_cnt++;
10913                        }
10914                }
10915        }
10916
10917#ifdef CONFIG_PCI_MSI
10918        /* Due to new PF resource allocation by MFW T7.4 and above, it's
10919         * optional that number of CAM entries will not be equal to the value
10920         * advertised in PCI.
10921         * Driver should use the minimal value of both as the actual status
10922         * block count
10923         */
10924        bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10925#endif
10926
10927        if (igu_sb_cnt == 0) {
10928                BNX2X_ERR("CAM configuration error\n");
10929                return -EINVAL;
10930        }
10931
10932        return 0;
10933}
10934
10935static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10936{
10937        int cfg_size = 0, idx, port = BP_PORT(bp);
10938
10939        /* Aggregation of supported attributes of all external phys */
10940        bp->port.supported[0] = 0;
10941        bp->port.supported[1] = 0;
10942        switch (bp->link_params.num_phys) {
10943        case 1:
10944                bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10945                cfg_size = 1;
10946                break;
10947        case 2:
10948                bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10949                cfg_size = 1;
10950                break;
10951        case 3:
10952                if (bp->link_params.multi_phy_config &
10953                    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10954                        bp->port.supported[1] =
10955                                bp->link_params.phy[EXT_PHY1].supported;
10956                        bp->port.supported[0] =
10957                                bp->link_params.phy[EXT_PHY2].supported;
10958                } else {
10959                        bp->port.supported[0] =
10960                                bp->link_params.phy[EXT_PHY1].supported;
10961                        bp->port.supported[1] =
10962                                bp->link_params.phy[EXT_PHY2].supported;
10963                }
10964                cfg_size = 2;
10965                break;
10966        }
10967
10968        if (!(bp->port.supported[0] || bp->port.supported[1])) {
10969                BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10970                           SHMEM_RD(bp,
10971                           dev_info.port_hw_config[port].external_phy_config),
10972                           SHMEM_RD(bp,
10973                           dev_info.port_hw_config[port].external_phy_config2));
10974                        return;
10975        }
10976
10977        if (CHIP_IS_E3(bp))
10978                bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10979        else {
10980                switch (switch_cfg) {
10981                case SWITCH_CFG_1G:
10982                        bp->port.phy_addr = REG_RD(
10983                                bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10984                        break;
10985                case SWITCH_CFG_10G:
10986                        bp->port.phy_addr = REG_RD(
10987                                bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10988                        break;
10989                default:
10990                        BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10991                                  bp->port.link_config[0]);
10992                        return;
10993                }
10994        }
10995        BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10996        /* mask what we support according to speed_cap_mask per configuration */
10997        for (idx = 0; idx < cfg_size; idx++) {
10998                if (!(bp->link_params.speed_cap_mask[idx] &
10999                                PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11000                        bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11001
11002                if (!(bp->link_params.speed_cap_mask[idx] &
11003                                PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11004                        bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11005
11006                if (!(bp->link_params.speed_cap_mask[idx] &
11007                                PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11008                        bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11009
11010                if (!(bp->link_params.speed_cap_mask[idx] &
11011                                PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11012                        bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11013
11014                if (!(bp->link_params.speed_cap_mask[idx] &
11015                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11016                        bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11017                                                     SUPPORTED_1000baseT_Full);
11018
11019                if (!(bp->link_params.speed_cap_mask[idx] &
11020                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11021                        bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11022
11023                if (!(bp->link_params.speed_cap_mask[idx] &
11024                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11025                        bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11026
11027                if (!(bp->link_params.speed_cap_mask[idx] &
11028                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11029                        bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11030        }
11031
11032        BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11033                       bp->port.supported[1]);
11034}
11035
11036static void bnx2x_link_settings_requested(struct bnx2x *bp)
11037{
11038        u32 link_config, idx, cfg_size = 0;
11039        bp->port.advertising[0] = 0;
11040        bp->port.advertising[1] = 0;
11041        switch (bp->link_params.num_phys) {
11042        case 1:
11043        case 2:
11044                cfg_size = 1;
11045                break;
11046        case 3:
11047                cfg_size = 2;
11048                break;
11049        }
11050        for (idx = 0; idx < cfg_size; idx++) {
11051                bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11052                link_config = bp->port.link_config[idx];
11053                switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11054                case PORT_FEATURE_LINK_SPEED_AUTO:
11055                        if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11056                                bp->link_params.req_line_speed[idx] =
11057                                        SPEED_AUTO_NEG;
11058                                bp->port.advertising[idx] |=
11059                                        bp->port.supported[idx];
11060                                if (bp->link_params.phy[EXT_PHY1].type ==
11061                                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11062                                        bp->port.advertising[idx] |=
11063                                        (SUPPORTED_100baseT_Half |
11064                                         SUPPORTED_100baseT_Full);
11065                        } else {
11066                                /* force 10G, no AN */
11067                                bp->link_params.req_line_speed[idx] =
11068                                        SPEED_10000;
11069                                bp->port.advertising[idx] |=
11070                                        (ADVERTISED_10000baseT_Full |
11071                                         ADVERTISED_FIBRE);
11072                                continue;
11073                        }
11074                        break;
11075
11076                case PORT_FEATURE_LINK_SPEED_10M_FULL:
11077                        if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11078                                bp->link_params.req_line_speed[idx] =
11079                                        SPEED_10;
11080                                bp->port.advertising[idx] |=
11081                                        (ADVERTISED_10baseT_Full |
11082                                         ADVERTISED_TP);
11083                        } else {
11084                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11085                                            link_config,
11086                                    bp->link_params.speed_cap_mask[idx]);
11087                                return;
11088                        }
11089                        break;
11090
11091                case PORT_FEATURE_LINK_SPEED_10M_HALF:
11092                        if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11093                                bp->link_params.req_line_speed[idx] =
11094                                        SPEED_10;
11095                                bp->link_params.req_duplex[idx] =
11096                                        DUPLEX_HALF;
11097                                bp->port.advertising[idx] |=
11098                                        (ADVERTISED_10baseT_Half |
11099                                         ADVERTISED_TP);
11100                        } else {
11101                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11102                                            link_config,
11103                                          bp->link_params.speed_cap_mask[idx]);
11104                                return;
11105                        }
11106                        break;
11107
11108                case PORT_FEATURE_LINK_SPEED_100M_FULL:
11109                        if (bp->port.supported[idx] &
11110                            SUPPORTED_100baseT_Full) {
11111                                bp->link_params.req_line_speed[idx] =
11112                                        SPEED_100;
11113                                bp->port.advertising[idx] |=
11114                                        (ADVERTISED_100baseT_Full |
11115                                         ADVERTISED_TP);
11116                        } else {
11117                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11118                                            link_config,
11119                                          bp->link_params.speed_cap_mask[idx]);
11120                                return;
11121                        }
11122                        break;
11123
11124                case PORT_FEATURE_LINK_SPEED_100M_HALF:
11125                        if (bp->port.supported[idx] &
11126                            SUPPORTED_100baseT_Half) {
11127                                bp->link_params.req_line_speed[idx] =
11128                                                                SPEED_100;
11129                                bp->link_params.req_duplex[idx] =
11130                                                                DUPLEX_HALF;
11131                                bp->port.advertising[idx] |=
11132                                        (ADVERTISED_100baseT_Half |
11133                                         ADVERTISED_TP);
11134                        } else {
11135                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11136                                    link_config,
11137                                    bp->link_params.speed_cap_mask[idx]);
11138                                return;
11139                        }
11140                        break;
11141
11142                case PORT_FEATURE_LINK_SPEED_1G:
11143                        if (bp->port.supported[idx] &
11144                            SUPPORTED_1000baseT_Full) {
11145                                bp->link_params.req_line_speed[idx] =
11146                                        SPEED_1000;
11147                                bp->port.advertising[idx] |=
11148                                        (ADVERTISED_1000baseT_Full |
11149                                         ADVERTISED_TP);
11150                        } else {
11151                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11152                                    link_config,
11153                                    bp->link_params.speed_cap_mask[idx]);
11154                                return;
11155                        }
11156                        break;
11157
11158                case PORT_FEATURE_LINK_SPEED_2_5G:
11159                        if (bp->port.supported[idx] &
11160                            SUPPORTED_2500baseX_Full) {
11161                                bp->link_params.req_line_speed[idx] =
11162                                        SPEED_2500;
11163                                bp->port.advertising[idx] |=
11164                                        (ADVERTISED_2500baseX_Full |
11165                                                ADVERTISED_TP);
11166                        } else {
11167                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11168                                    link_config,
11169                                    bp->link_params.speed_cap_mask[idx]);
11170                                return;
11171                        }
11172                        break;
11173
11174                case PORT_FEATURE_LINK_SPEED_10G_CX4:
11175                        if (bp->port.supported[idx] &
11176                            SUPPORTED_10000baseT_Full) {
11177                                bp->link_params.req_line_speed[idx] =
11178                                        SPEED_10000;
11179                                bp->port.advertising[idx] |=
11180                                        (ADVERTISED_10000baseT_Full |
11181                                                ADVERTISED_FIBRE);
11182                        } else {
11183                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11184                                    link_config,
11185                                    bp->link_params.speed_cap_mask[idx]);
11186                                return;
11187                        }
11188                        break;
11189                case PORT_FEATURE_LINK_SPEED_20G:
11190                        bp->link_params.req_line_speed[idx] = SPEED_20000;
11191
11192                        break;
11193                default:
11194                        BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11195                                  link_config);
11196                                bp->link_params.req_line_speed[idx] =
11197                                                        SPEED_AUTO_NEG;
11198                                bp->port.advertising[idx] =
11199                                                bp->port.supported[idx];
11200                        break;
11201                }
11202
11203                bp->link_params.req_flow_ctrl[idx] = (link_config &
11204                                         PORT_FEATURE_FLOW_CONTROL_MASK);
11205                if (bp->link_params.req_flow_ctrl[idx] ==
11206                    BNX2X_FLOW_CTRL_AUTO) {
11207                        if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11208                                bp->link_params.req_flow_ctrl[idx] =
11209                                                        BNX2X_FLOW_CTRL_NONE;
11210                        else
11211                                bnx2x_set_requested_fc(bp);
11212                }
11213
11214                BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11215                               bp->link_params.req_line_speed[idx],
11216                               bp->link_params.req_duplex[idx],
11217                               bp->link_params.req_flow_ctrl[idx],
11218                               bp->port.advertising[idx]);
11219        }
11220}
11221
11222static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11223{
11224        __be16 mac_hi_be = cpu_to_be16(mac_hi);
11225        __be32 mac_lo_be = cpu_to_be32(mac_lo);
11226        memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11227        memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11228}
11229
11230static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11231{
11232        int port = BP_PORT(bp);
11233        u32 config;
11234        u32 ext_phy_type, ext_phy_config, eee_mode;
11235
11236        bp->link_params.bp = bp;
11237        bp->link_params.port = port;
11238
11239        bp->link_params.lane_config =
11240                SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11241
11242        bp->link_params.speed_cap_mask[0] =
11243                SHMEM_RD(bp,
11244                         dev_info.port_hw_config[port].speed_capability_mask) &
11245                PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11246        bp->link_params.speed_cap_mask[1] =
11247                SHMEM_RD(bp,
11248                         dev_info.port_hw_config[port].speed_capability_mask2) &
11249                PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11250        bp->port.link_config[0] =
11251                SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11252
11253        bp->port.link_config[1] =
11254                SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11255
11256        bp->link_params.multi_phy_config =
11257                SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11258        /* If the device is capable of WoL, set the default state according
11259         * to the HW
11260         */
11261        config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11262        bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11263                   (config & PORT_FEATURE_WOL_ENABLED));
11264
11265        if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11266            PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11267                bp->flags |= NO_ISCSI_FLAG;
11268        if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11269            PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11270                bp->flags |= NO_FCOE_FLAG;
11271
11272        BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11273                       bp->link_params.lane_config,
11274                       bp->link_params.speed_cap_mask[0],
11275                       bp->port.link_config[0]);
11276
11277        bp->link_params.switch_cfg = (bp->port.link_config[0] &
11278                                      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11279        bnx2x_phy_probe(&bp->link_params);
11280        bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11281
11282        bnx2x_link_settings_requested(bp);
11283
11284        /*
11285         * If connected directly, work with the internal PHY, otherwise, work
11286         * with the external PHY
11287         */
11288        ext_phy_config =
11289                SHMEM_RD(bp,
11290                         dev_info.port_hw_config[port].external_phy_config);
11291        ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11292        if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11293                bp->mdio.prtad = bp->port.phy_addr;
11294
11295        else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11296                 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11297                bp->mdio.prtad =
11298                        XGXS_EXT_PHY_ADDR(ext_phy_config);
11299
11300        /* Configure link feature according to nvram value */
11301        eee_mode = (((SHMEM_RD(bp, dev_info.
11302                      port_feature_config[port].eee_power_mode)) &
11303                     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11304                    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11305        if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11306                bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11307                                           EEE_MODE_ENABLE_LPI |
11308                                           EEE_MODE_OUTPUT_TIME;
11309        } else {
11310                bp->link_params.eee_mode = 0;
11311        }
11312}
11313
11314void bnx2x_get_iscsi_info(struct bnx2x *bp)
11315{
11316        u32 no_flags = NO_ISCSI_FLAG;
11317        int port = BP_PORT(bp);
11318        u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11319                                drv_lic_key[port].max_iscsi_conn);
11320
11321        if (!CNIC_SUPPORT(bp)) {
11322                bp->flags |= no_flags;
11323                return;
11324        }
11325
11326        /* Get the number of maximum allowed iSCSI connections */
11327        bp->cnic_eth_dev.max_iscsi_conn =
11328                (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11329                BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11330
11331        BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11332                       bp->cnic_eth_dev.max_iscsi_conn);
11333
11334        /*
11335         * If maximum allowed number of connections is zero -
11336         * disable the feature.
11337         */
11338        if (!bp->cnic_eth_dev.max_iscsi_conn)
11339                bp->flags |= no_flags;
11340}
11341
11342static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11343{
11344        /* Port info */
11345        bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11346                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11347        bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11348                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11349
11350        /* Node info */
11351        bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11352                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11353        bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11354                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11355}
11356
11357static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11358{
11359        u8 count = 0;
11360
11361        if (IS_MF(bp)) {
11362                u8 fid;
11363
11364                /* iterate over absolute function ids for this path: */
11365                for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11366                        if (IS_MF_SD(bp)) {
11367                                u32 cfg = MF_CFG_RD(bp,
11368                                                    func_mf_config[fid].config);
11369
11370                                if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11371                                    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11372                                            FUNC_MF_CFG_PROTOCOL_FCOE))
11373                                        count++;
11374                        } else {
11375                                u32 cfg = MF_CFG_RD(bp,
11376                                                    func_ext_config[fid].
11377                                                                      func_cfg);
11378
11379                                if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11380                                    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11381                                        count++;
11382                        }
11383                }
11384        } else { /* SF */
11385                int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11386
11387                for (port = 0; port < port_cnt; port++) {
11388                        u32 lic = SHMEM_RD(bp,
11389                                           drv_lic_key[port].max_fcoe_conn) ^
11390                                  FW_ENCODE_32BIT_PATTERN;
11391                        if (lic)
11392                                count++;
11393                }
11394        }
11395
11396        return count;
11397}
11398
11399static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11400{
11401        int port = BP_PORT(bp);
11402        int func = BP_ABS_FUNC(bp);
11403        u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11404                                drv_lic_key[port].max_fcoe_conn);
11405        u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11406
11407        if (!CNIC_SUPPORT(bp)) {
11408                bp->flags |= NO_FCOE_FLAG;
11409                return;
11410        }
11411
11412        /* Get the number of maximum allowed FCoE connections */
11413        bp->cnic_eth_dev.max_fcoe_conn =
11414                (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11415                BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11416
11417        /* Calculate the number of maximum allowed FCoE tasks */
11418        bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11419
11420        /* check if FCoE resources must be shared between different functions */
11421        if (num_fcoe_func)
11422                bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11423
11424        /* Read the WWN: */
11425        if (!IS_MF(bp)) {
11426                /* Port info */
11427                bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11428                        SHMEM_RD(bp,
11429                                 dev_info.port_hw_config[port].
11430                                 fcoe_wwn_port_name_upper);
11431                bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11432                        SHMEM_RD(bp,
11433                                 dev_info.port_hw_config[port].
11434                                 fcoe_wwn_port_name_lower);
11435
11436                /* Node info */
11437                bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11438                        SHMEM_RD(bp,
11439                                 dev_info.port_hw_config[port].
11440                                 fcoe_wwn_node_name_upper);
11441                bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11442                        SHMEM_RD(bp,
11443                                 dev_info.port_hw_config[port].
11444                                 fcoe_wwn_node_name_lower);
11445        } else if (!IS_MF_SD(bp)) {
11446                /* Read the WWN info only if the FCoE feature is enabled for
11447                 * this function.
11448                 */
11449                if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11450                        bnx2x_get_ext_wwn_info(bp, func);
11451        } else {
11452                if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11453                        bnx2x_get_ext_wwn_info(bp, func);
11454        }
11455
11456        BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11457
11458        /*
11459         * If maximum allowed number of connections is zero -
11460         * disable the feature.
11461         */
11462        if (!bp->cnic_eth_dev.max_fcoe_conn)
11463                bp->flags |= NO_FCOE_FLAG;
11464}
11465
11466static void bnx2x_get_cnic_info(struct bnx2x *bp)
11467{
11468        /*
11469         * iSCSI may be dynamically disabled but reading
11470         * info here we will decrease memory usage by driver
11471         * if the feature is disabled for good
11472         */
11473        bnx2x_get_iscsi_info(bp);
11474        bnx2x_get_fcoe_info(bp);
11475}
11476
11477static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11478{
11479        u32 val, val2;
11480        int func = BP_ABS_FUNC(bp);
11481        int port = BP_PORT(bp);
11482        u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11483        u8 *fip_mac = bp->fip_mac;
11484
11485        if (IS_MF(bp)) {
11486                /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11487                 * FCoE MAC then the appropriate feature should be disabled.
11488                 * In non SD mode features configuration comes from struct
11489                 * func_ext_config.
11490                 */
11491                if (!IS_MF_SD(bp)) {
11492                        u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11493                        if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11494                                val2 = MF_CFG_RD(bp, func_ext_config[func].
11495                                                 iscsi_mac_addr_upper);
11496                                val = MF_CFG_RD(bp, func_ext_config[func].
11497                                                iscsi_mac_addr_lower);
11498                                bnx2x_set_mac_buf(iscsi_mac, val, val2);
11499                                BNX2X_DEV_INFO
11500                                        ("Read iSCSI MAC: %pM\n", iscsi_mac);
11501                        } else {
11502                                bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11503                        }
11504
11505                        if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11506                                val2 = MF_CFG_RD(bp, func_ext_config[func].
11507                                                 fcoe_mac_addr_upper);
11508                                val = MF_CFG_RD(bp, func_ext_config[func].
11509                                                fcoe_mac_addr_lower);
11510                                bnx2x_set_mac_buf(fip_mac, val, val2);
11511                                BNX2X_DEV_INFO
11512                                        ("Read FCoE L2 MAC: %pM\n", fip_mac);
11513                        } else {
11514                                bp->flags |= NO_FCOE_FLAG;
11515                        }
11516
11517                        bp->mf_ext_config = cfg;
11518
11519                } else { /* SD MODE */
11520                        if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11521                                /* use primary mac as iscsi mac */
11522                                memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11523
11524                                BNX2X_DEV_INFO("SD ISCSI MODE\n");
11525                                BNX2X_DEV_INFO
11526                                        ("Read iSCSI MAC: %pM\n", iscsi_mac);
11527                        } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11528                                /* use primary mac as fip mac */
11529                                memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11530                                BNX2X_DEV_INFO("SD FCoE MODE\n");
11531                                BNX2X_DEV_INFO
11532                                        ("Read FIP MAC: %pM\n", fip_mac);
11533                        }
11534                }
11535
11536                /* If this is a storage-only interface, use SAN mac as
11537                 * primary MAC. Notice that for SD this is already the case,
11538                 * as the SAN mac was copied from the primary MAC.
11539                 */
11540                if (IS_MF_FCOE_AFEX(bp))
11541                        memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11542        } else {
11543                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11544                                iscsi_mac_upper);
11545                val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11546                               iscsi_mac_lower);
11547                bnx2x_set_mac_buf(iscsi_mac, val, val2);
11548
11549                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11550                                fcoe_fip_mac_upper);
11551                val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11552                               fcoe_fip_mac_lower);
11553                bnx2x_set_mac_buf(fip_mac, val, val2);
11554        }
11555
11556        /* Disable iSCSI OOO if MAC configuration is invalid. */
11557        if (!is_valid_ether_addr(iscsi_mac)) {
11558                bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11559                eth_zero_addr(iscsi_mac);
11560        }
11561
11562        /* Disable FCoE if MAC configuration is invalid. */
11563        if (!is_valid_ether_addr(fip_mac)) {
11564                bp->flags |= NO_FCOE_FLAG;
11565                eth_zero_addr(bp->fip_mac);
11566        }
11567}
11568
11569static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11570{
11571        u32 val, val2;
11572        int func = BP_ABS_FUNC(bp);
11573        int port = BP_PORT(bp);
11574
11575        /* Zero primary MAC configuration */
11576        eth_zero_addr(bp->dev->dev_addr);
11577
11578        if (BP_NOMCP(bp)) {
11579                BNX2X_ERROR("warning: random MAC workaround active\n");
11580                eth_hw_addr_random(bp->dev);
11581        } else if (IS_MF(bp)) {
11582                val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11583                val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11584                if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11585                    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11586                        bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11587
11588                if (CNIC_SUPPORT(bp))
11589                        bnx2x_get_cnic_mac_hwinfo(bp);
11590        } else {
11591                /* in SF read MACs from port configuration */
11592                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11593                val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11594                bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11595
11596                if (CNIC_SUPPORT(bp))
11597                        bnx2x_get_cnic_mac_hwinfo(bp);
11598        }
11599
11600        if (!BP_NOMCP(bp)) {
11601                /* Read physical port identifier from shmem */
11602                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11603                val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11604                bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11605                bp->flags |= HAS_PHYS_PORT_ID;
11606        }
11607
11608        memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11609
11610        if (!is_valid_ether_addr(bp->dev->dev_addr))
11611                dev_err(&bp->pdev->dev,
11612                        "bad Ethernet MAC address configuration: %pM\n"
11613                        "change it manually before bringing up the appropriate network interface\n",
11614                        bp->dev->dev_addr);
11615}
11616
11617static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11618{
11619        int tmp;
11620        u32 cfg;
11621
11622        if (IS_VF(bp))
11623                return false;
11624
11625        if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11626                /* Take function: tmp = func */
11627                tmp = BP_ABS_FUNC(bp);
11628                cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11629                cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11630        } else {
11631                /* Take port: tmp = port */
11632                tmp = BP_PORT(bp);
11633                cfg = SHMEM_RD(bp,
11634                               dev_info.port_hw_config[tmp].generic_features);
11635                cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11636        }
11637        return cfg;
11638}
11639
11640static void validate_set_si_mode(struct bnx2x *bp)
11641{
11642        u8 func = BP_ABS_FUNC(bp);
11643        u32 val;
11644
11645        val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11646
11647        /* check for legal mac (upper bytes) */
11648        if (val != 0xffff) {
11649                bp->mf_mode = MULTI_FUNCTION_SI;
11650                bp->mf_config[BP_VN(bp)] =
11651                        MF_CFG_RD(bp, func_mf_config[func].config);
11652        } else
11653                BNX2X_DEV_INFO("illegal MAC address for SI\n");
11654}
11655
11656static int bnx2x_get_hwinfo(struct bnx2x *bp)
11657{
11658        int /*abs*/func = BP_ABS_FUNC(bp);
11659        int vn;
11660        u32 val = 0, val2 = 0;
11661        int rc = 0;
11662
11663        /* Validate that chip access is feasible */
11664        if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11665                dev_err(&bp->pdev->dev,
11666                        "Chip read returns all Fs. Preventing probe from continuing\n");
11667                return -EINVAL;
11668        }
11669
11670        bnx2x_get_common_hwinfo(bp);
11671
11672        /*
11673         * initialize IGU parameters
11674         */
11675        if (CHIP_IS_E1x(bp)) {
11676                bp->common.int_block = INT_BLOCK_HC;
11677
11678                bp->igu_dsb_id = DEF_SB_IGU_ID;
11679                bp->igu_base_sb = 0;
11680        } else {
11681                bp->common.int_block = INT_BLOCK_IGU;
11682
11683                /* do not allow device reset during IGU info processing */
11684                bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11685
11686                val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11687
11688                if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11689                        int tout = 5000;
11690
11691                        BNX2X_DEV_INFO("FORCING Normal Mode\n");
11692
11693                        val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11694                        REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11695                        REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11696
11697                        while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11698                                tout--;
11699                                usleep_range(1000, 2000);
11700                        }
11701
11702                        if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11703                                dev_err(&bp->pdev->dev,
11704                                        "FORCING Normal Mode failed!!!\n");
11705                                bnx2x_release_hw_lock(bp,
11706                                                      HW_LOCK_RESOURCE_RESET);
11707                                return -EPERM;
11708                        }
11709                }
11710
11711                if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11712                        BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11713                        bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11714                } else
11715                        BNX2X_DEV_INFO("IGU Normal Mode\n");
11716
11717                rc = bnx2x_get_igu_cam_info(bp);
11718                bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11719                if (rc)
11720                        return rc;
11721        }
11722
11723        /*
11724         * set base FW non-default (fast path) status block id, this value is
11725         * used to initialize the fw_sb_id saved on the fp/queue structure to
11726         * determine the id used by the FW.
11727         */
11728        if (CHIP_IS_E1x(bp))
11729                bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11730        else /*
11731              * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11732              * the same queue are indicated on the same IGU SB). So we prefer
11733              * FW and IGU SBs to be the same value.
11734              */
11735                bp->base_fw_ndsb = bp->igu_base_sb;
11736
11737        BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11738                       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11739                       bp->igu_sb_cnt, bp->base_fw_ndsb);
11740
11741        /*
11742         * Initialize MF configuration
11743         */
11744
11745        bp->mf_ov = 0;
11746        bp->mf_mode = 0;
11747        bp->mf_sub_mode = 0;
11748        vn = BP_VN(bp);
11749
11750        if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11751                BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11752                               bp->common.shmem2_base, SHMEM2_RD(bp, size),
11753                              (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11754
11755                if (SHMEM2_HAS(bp, mf_cfg_addr))
11756                        bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11757                else
11758                        bp->common.mf_cfg_base = bp->common.shmem_base +
11759                                offsetof(struct shmem_region, func_mb) +
11760                                E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11761                /*
11762                 * get mf configuration:
11763                 * 1. Existence of MF configuration
11764                 * 2. MAC address must be legal (check only upper bytes)
11765                 *    for  Switch-Independent mode;
11766                 *    OVLAN must be legal for Switch-Dependent mode
11767                 * 3. SF_MODE configures specific MF mode
11768                 */
11769                if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11770                        /* get mf configuration */
11771                        val = SHMEM_RD(bp,
11772                                       dev_info.shared_feature_config.config);
11773                        val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11774
11775                        switch (val) {
11776                        case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11777                                validate_set_si_mode(bp);
11778                                break;
11779                        case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11780                                if ((!CHIP_IS_E1x(bp)) &&
11781                                    (MF_CFG_RD(bp, func_mf_config[func].
11782                                               mac_upper) != 0xffff) &&
11783                                    (SHMEM2_HAS(bp,
11784                                                afex_driver_support))) {
11785                                        bp->mf_mode = MULTI_FUNCTION_AFEX;
11786                                        bp->mf_config[vn] = MF_CFG_RD(bp,
11787                                                func_mf_config[func].config);
11788                                } else {
11789                                        BNX2X_DEV_INFO("can not configure afex mode\n");
11790                                }
11791                                break;
11792                        case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11793                                /* get OV configuration */
11794                                val = MF_CFG_RD(bp,
11795                                        func_mf_config[FUNC_0].e1hov_tag);
11796                                val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11797
11798                                if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11799                                        bp->mf_mode = MULTI_FUNCTION_SD;
11800                                        bp->mf_config[vn] = MF_CFG_RD(bp,
11801                                                func_mf_config[func].config);
11802                                } else
11803                                        BNX2X_DEV_INFO("illegal OV for SD\n");
11804                                break;
11805                        case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
11806                                bp->mf_mode = MULTI_FUNCTION_SD;
11807                                bp->mf_sub_mode = SUB_MF_MODE_UFP;
11808                                bp->mf_config[vn] =
11809                                        MF_CFG_RD(bp,
11810                                                  func_mf_config[func].config);
11811                                break;
11812                        case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11813                                bp->mf_config[vn] = 0;
11814                                break;
11815                        case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
11816                                val2 = SHMEM_RD(bp,
11817                                        dev_info.shared_hw_config.config_3);
11818                                val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
11819                                switch (val2) {
11820                                case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
11821                                        validate_set_si_mode(bp);
11822                                        bp->mf_sub_mode =
11823                                                        SUB_MF_MODE_NPAR1_DOT_5;
11824                                        break;
11825                                default:
11826                                        /* Unknown configuration */
11827                                        bp->mf_config[vn] = 0;
11828                                        BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
11829                                                       val);
11830                                }
11831                                break;
11832                        default:
11833                                /* Unknown configuration: reset mf_config */
11834                                bp->mf_config[vn] = 0;
11835                                BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11836                        }
11837                }
11838
11839                BNX2X_DEV_INFO("%s function mode\n",
11840                               IS_MF(bp) ? "multi" : "single");
11841
11842                switch (bp->mf_mode) {
11843                case MULTI_FUNCTION_SD:
11844                        val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11845                              FUNC_MF_CFG_E1HOV_TAG_MASK;
11846                        if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11847                                bp->mf_ov = val;
11848                                bp->path_has_ovlan = true;
11849
11850                                BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11851                                               func, bp->mf_ov, bp->mf_ov);
11852                        } else if (bp->mf_sub_mode == SUB_MF_MODE_UFP) {
11853                                dev_err(&bp->pdev->dev,
11854                                        "Unexpected - no valid MF OV for func %d in UFP mode\n",
11855                                        func);
11856                                bp->path_has_ovlan = true;
11857                        } else {
11858                                dev_err(&bp->pdev->dev,
11859                                        "No valid MF OV for func %d, aborting\n",
11860                                        func);
11861                                return -EPERM;
11862                        }
11863                        break;
11864                case MULTI_FUNCTION_AFEX:
11865                        BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11866                        break;
11867                case MULTI_FUNCTION_SI:
11868                        BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11869                                       func);
11870                        break;
11871                default:
11872                        if (vn) {
11873                                dev_err(&bp->pdev->dev,
11874                                        "VN %d is in a single function mode, aborting\n",
11875                                        vn);
11876                                return -EPERM;
11877                        }
11878                        break;
11879                }
11880
11881                /* check if other port on the path needs ovlan:
11882                 * Since MF configuration is shared between ports
11883                 * Possible mixed modes are only
11884                 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11885                 */
11886                if (CHIP_MODE_IS_4_PORT(bp) &&
11887                    !bp->path_has_ovlan &&
11888                    !IS_MF(bp) &&
11889                    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11890                        u8 other_port = !BP_PORT(bp);
11891                        u8 other_func = BP_PATH(bp) + 2*other_port;
11892                        val = MF_CFG_RD(bp,
11893                                        func_mf_config[other_func].e1hov_tag);
11894                        if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11895                                bp->path_has_ovlan = true;
11896                }
11897        }
11898
11899        /* adjust igu_sb_cnt to MF for E1H */
11900        if (CHIP_IS_E1H(bp) && IS_MF(bp))
11901                bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11902
11903        /* port info */
11904        bnx2x_get_port_hwinfo(bp);
11905
11906        /* Get MAC addresses */
11907        bnx2x_get_mac_hwinfo(bp);
11908
11909        bnx2x_get_cnic_info(bp);
11910
11911        return rc;
11912}
11913
11914static void bnx2x_read_fwinfo(struct bnx2x *bp)
11915{
11916        int cnt, i, block_end, rodi;
11917        char vpd_start[BNX2X_VPD_LEN+1];
11918        char str_id_reg[VENDOR_ID_LEN+1];
11919        char str_id_cap[VENDOR_ID_LEN+1];
11920        char *vpd_data;
11921        char *vpd_extended_data = NULL;
11922        u8 len;
11923
11924        cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11925        memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11926
11927        if (cnt < BNX2X_VPD_LEN)
11928                goto out_not_found;
11929
11930        /* VPD RO tag should be first tag after identifier string, hence
11931         * we should be able to find it in first BNX2X_VPD_LEN chars
11932         */
11933        i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11934                             PCI_VPD_LRDT_RO_DATA);
11935        if (i < 0)
11936                goto out_not_found;
11937
11938        block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11939                    pci_vpd_lrdt_size(&vpd_start[i]);
11940
11941        i += PCI_VPD_LRDT_TAG_SIZE;
11942
11943        if (block_end > BNX2X_VPD_LEN) {
11944                vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11945                if (vpd_extended_data  == NULL)
11946                        goto out_not_found;
11947
11948                /* read rest of vpd image into vpd_extended_data */
11949                memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11950                cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11951                                   block_end - BNX2X_VPD_LEN,
11952                                   vpd_extended_data + BNX2X_VPD_LEN);
11953                if (cnt < (block_end - BNX2X_VPD_LEN))
11954                        goto out_not_found;
11955                vpd_data = vpd_extended_data;
11956        } else
11957                vpd_data = vpd_start;
11958
11959        /* now vpd_data holds full vpd content in both cases */
11960
11961        rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11962                                   PCI_VPD_RO_KEYWORD_MFR_ID);
11963        if (rodi < 0)
11964                goto out_not_found;
11965
11966        len = pci_vpd_info_field_size(&vpd_data[rodi]);
11967
11968        if (len != VENDOR_ID_LEN)
11969                goto out_not_found;
11970
11971        rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11972
11973        /* vendor specific info */
11974        snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11975        snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11976        if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11977            !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11978
11979                rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11980                                                PCI_VPD_RO_KEYWORD_VENDOR0);
11981                if (rodi >= 0) {
11982                        len = pci_vpd_info_field_size(&vpd_data[rodi]);
11983
11984                        rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11985
11986                        if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11987                                memcpy(bp->fw_ver, &vpd_data[rodi], len);
11988                                bp->fw_ver[len] = ' ';
11989                        }
11990                }
11991                kfree(vpd_extended_data);
11992                return;
11993        }
11994out_not_found:
11995        kfree(vpd_extended_data);
11996        return;
11997}
11998
11999static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12000{
12001        u32 flags = 0;
12002
12003        if (CHIP_REV_IS_FPGA(bp))
12004                SET_FLAGS(flags, MODE_FPGA);
12005        else if (CHIP_REV_IS_EMUL(bp))
12006                SET_FLAGS(flags, MODE_EMUL);
12007        else
12008                SET_FLAGS(flags, MODE_ASIC);
12009
12010        if (CHIP_MODE_IS_4_PORT(bp))
12011                SET_FLAGS(flags, MODE_PORT4);
12012        else
12013                SET_FLAGS(flags, MODE_PORT2);
12014
12015        if (CHIP_IS_E2(bp))
12016                SET_FLAGS(flags, MODE_E2);
12017        else if (CHIP_IS_E3(bp)) {
12018                SET_FLAGS(flags, MODE_E3);
12019                if (CHIP_REV(bp) == CHIP_REV_Ax)
12020                        SET_FLAGS(flags, MODE_E3_A0);
12021                else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12022                        SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12023        }
12024
12025        if (IS_MF(bp)) {
12026                SET_FLAGS(flags, MODE_MF);
12027                switch (bp->mf_mode) {
12028                case MULTI_FUNCTION_SD:
12029                        SET_FLAGS(flags, MODE_MF_SD);
12030                        break;
12031                case MULTI_FUNCTION_SI:
12032                        SET_FLAGS(flags, MODE_MF_SI);
12033                        break;
12034                case MULTI_FUNCTION_AFEX:
12035                        SET_FLAGS(flags, MODE_MF_AFEX);
12036                        break;
12037                }
12038        } else
12039                SET_FLAGS(flags, MODE_SF);
12040
12041#if defined(__LITTLE_ENDIAN)
12042        SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12043#else /*(__BIG_ENDIAN)*/
12044        SET_FLAGS(flags, MODE_BIG_ENDIAN);
12045#endif
12046        INIT_MODE_FLAGS(bp) = flags;
12047}
12048
12049static int bnx2x_init_bp(struct bnx2x *bp)
12050{
12051        int func;
12052        int rc;
12053
12054        mutex_init(&bp->port.phy_mutex);
12055        mutex_init(&bp->fw_mb_mutex);
12056        mutex_init(&bp->drv_info_mutex);
12057        sema_init(&bp->stats_lock, 1);
12058        bp->drv_info_mng_owner = false;
12059
12060        INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12061        INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12062        INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12063        INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12064        if (IS_PF(bp)) {
12065                rc = bnx2x_get_hwinfo(bp);
12066                if (rc)
12067                        return rc;
12068        } else {
12069                eth_zero_addr(bp->dev->dev_addr);
12070        }
12071
12072        bnx2x_set_modes_bitmap(bp);
12073
12074        rc = bnx2x_alloc_mem_bp(bp);
12075        if (rc)
12076                return rc;
12077
12078        bnx2x_read_fwinfo(bp);
12079
12080        func = BP_FUNC(bp);
12081
12082        /* need to reset chip if undi was active */
12083        if (IS_PF(bp) && !BP_NOMCP(bp)) {
12084                /* init fw_seq */
12085                bp->fw_seq =
12086                        SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12087                                                        DRV_MSG_SEQ_NUMBER_MASK;
12088                BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12089
12090                rc = bnx2x_prev_unload(bp);
12091                if (rc) {
12092                        bnx2x_free_mem_bp(bp);
12093                        return rc;
12094                }
12095        }
12096
12097        if (CHIP_REV_IS_FPGA(bp))
12098                dev_err(&bp->pdev->dev, "FPGA detected\n");
12099
12100        if (BP_NOMCP(bp) && (func == 0))
12101                dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12102
12103        bp->disable_tpa = disable_tpa;
12104        bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12105        /* Reduce memory usage in kdump environment by disabling TPA */
12106        bp->disable_tpa |= is_kdump_kernel();
12107
12108        /* Set TPA flags */
12109        if (bp->disable_tpa) {
12110                bp->dev->hw_features &= ~NETIF_F_LRO;
12111                bp->dev->features &= ~NETIF_F_LRO;
12112        }
12113
12114        if (CHIP_IS_E1(bp))
12115                bp->dropless_fc = 0;
12116        else
12117                bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12118
12119        bp->mrrs = mrrs;
12120
12121        bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12122        if (IS_VF(bp))
12123                bp->rx_ring_size = MAX_RX_AVAIL;
12124
12125        /* make sure that the numbers are in the right granularity */
12126        bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12127        bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12128
12129        bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12130
12131        init_timer(&bp->timer);
12132        bp->timer.expires = jiffies + bp->current_interval;
12133        bp->timer.data = (unsigned long) bp;
12134        bp->timer.function = bnx2x_timer;
12135
12136        if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12137            SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12138            SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12139            SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
12140                bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12141                bnx2x_dcbx_init_params(bp);
12142        } else {
12143                bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12144        }
12145
12146        if (CHIP_IS_E1x(bp))
12147                bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12148        else
12149                bp->cnic_base_cl_id = FP_SB_MAX_E2;
12150
12151        /* multiple tx priority */
12152        if (IS_VF(bp))
12153                bp->max_cos = 1;
12154        else if (CHIP_IS_E1x(bp))
12155                bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12156        else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12157                bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12158        else if (CHIP_IS_E3B0(bp))
12159                bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12160        else
12161                BNX2X_ERR("unknown chip %x revision %x\n",
12162                          CHIP_NUM(bp), CHIP_REV(bp));
12163        BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12164
12165        /* We need at least one default status block for slow-path events,
12166         * second status block for the L2 queue, and a third status block for
12167         * CNIC if supported.
12168         */
12169        if (IS_VF(bp))
12170                bp->min_msix_vec_cnt = 1;
12171        else if (CNIC_SUPPORT(bp))
12172                bp->min_msix_vec_cnt = 3;
12173        else /* PF w/o cnic */
12174                bp->min_msix_vec_cnt = 2;
12175        BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12176
12177        bp->dump_preset_idx = 1;
12178
12179        if (CHIP_IS_E3B0(bp))
12180                bp->flags |= PTP_SUPPORTED;
12181
12182        return rc;
12183}
12184
12185/****************************************************************************
12186* General service functions
12187****************************************************************************/
12188
12189/*
12190 * net_device service functions
12191 */
12192
12193/* called with rtnl_lock */
12194static int bnx2x_open(struct net_device *dev)
12195{
12196        struct bnx2x *bp = netdev_priv(dev);
12197        int rc;
12198
12199        bp->stats_init = true;
12200
12201        netif_carrier_off(dev);
12202
12203        bnx2x_set_power_state(bp, PCI_D0);
12204
12205        /* If parity had happen during the unload, then attentions
12206         * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12207         * want the first function loaded on the current engine to
12208         * complete the recovery.
12209         * Parity recovery is only relevant for PF driver.
12210         */
12211        if (IS_PF(bp)) {
12212                int other_engine = BP_PATH(bp) ? 0 : 1;
12213                bool other_load_status, load_status;
12214                bool global = false;
12215
12216                other_load_status = bnx2x_get_load_status(bp, other_engine);
12217                load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12218                if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12219                    bnx2x_chk_parity_attn(bp, &global, true)) {
12220                        do {
12221                                /* If there are attentions and they are in a
12222                                 * global blocks, set the GLOBAL_RESET bit
12223                                 * regardless whether it will be this function
12224                                 * that will complete the recovery or not.
12225                                 */
12226                                if (global)
12227                                        bnx2x_set_reset_global(bp);
12228
12229                                /* Only the first function on the current
12230                                 * engine should try to recover in open. In case
12231                                 * of attentions in global blocks only the first
12232                                 * in the chip should try to recover.
12233                                 */
12234                                if ((!load_status &&
12235                                     (!global || !other_load_status)) &&
12236                                      bnx2x_trylock_leader_lock(bp) &&
12237                                      !bnx2x_leader_reset(bp)) {
12238                                        netdev_info(bp->dev,
12239                                                    "Recovered in open\n");
12240                                        break;
12241                                }
12242
12243                                /* recovery has failed... */
12244                                bnx2x_set_power_state(bp, PCI_D3hot);
12245                                bp->recovery_state = BNX2X_RECOVERY_FAILED;
12246
12247                                BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12248                                          "If you still see this message after a few retries then power cycle is required.\n");
12249
12250                                return -EAGAIN;
12251                        } while (0);
12252                }
12253        }
12254
12255        bp->recovery_state = BNX2X_RECOVERY_DONE;
12256        rc = bnx2x_nic_load(bp, LOAD_OPEN);
12257        if (rc)
12258                return rc;
12259        return 0;
12260}
12261
12262/* called with rtnl_lock */
12263static int bnx2x_close(struct net_device *dev)
12264{
12265        struct bnx2x *bp = netdev_priv(dev);
12266
12267        /* Unload the driver, release IRQs */
12268        bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12269
12270        return 0;
12271}
12272
12273static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12274                                      struct bnx2x_mcast_ramrod_params *p)
12275{
12276        int mc_count = netdev_mc_count(bp->dev);
12277        struct bnx2x_mcast_list_elem *mc_mac =
12278                kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12279        struct netdev_hw_addr *ha;
12280
12281        if (!mc_mac)
12282                return -ENOMEM;
12283
12284        INIT_LIST_HEAD(&p->mcast_list);
12285
12286        netdev_for_each_mc_addr(ha, bp->dev) {
12287                mc_mac->mac = bnx2x_mc_addr(ha);
12288                list_add_tail(&mc_mac->link, &p->mcast_list);
12289                mc_mac++;
12290        }
12291
12292        p->mcast_list_len = mc_count;
12293
12294        return 0;
12295}
12296
12297static void bnx2x_free_mcast_macs_list(
12298        struct bnx2x_mcast_ramrod_params *p)
12299{
12300        struct bnx2x_mcast_list_elem *mc_mac =
12301                list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12302                                 link);
12303
12304        WARN_ON(!mc_mac);
12305        kfree(mc_mac);
12306}
12307
12308/**
12309 * bnx2x_set_uc_list - configure a new unicast MACs list.
12310 *
12311 * @bp: driver handle
12312 *
12313 * We will use zero (0) as a MAC type for these MACs.
12314 */
12315static int bnx2x_set_uc_list(struct bnx2x *bp)
12316{
12317        int rc;
12318        struct net_device *dev = bp->dev;
12319        struct netdev_hw_addr *ha;
12320        struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12321        unsigned long ramrod_flags = 0;
12322
12323        /* First schedule a cleanup up of old configuration */
12324        rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12325        if (rc < 0) {
12326                BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12327                return rc;
12328        }
12329
12330        netdev_for_each_uc_addr(ha, dev) {
12331                rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12332                                       BNX2X_UC_LIST_MAC, &ramrod_flags);
12333                if (rc == -EEXIST) {
12334                        DP(BNX2X_MSG_SP,
12335                           "Failed to schedule ADD operations: %d\n", rc);
12336                        /* do not treat adding same MAC as error */
12337                        rc = 0;
12338
12339                } else if (rc < 0) {
12340
12341                        BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12342                                  rc);
12343                        return rc;
12344                }
12345        }
12346
12347        /* Execute the pending commands */
12348        __set_bit(RAMROD_CONT, &ramrod_flags);
12349        return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12350                                 BNX2X_UC_LIST_MAC, &ramrod_flags);
12351}
12352
12353static int bnx2x_set_mc_list(struct bnx2x *bp)
12354{
12355        struct net_device *dev = bp->dev;
12356        struct bnx2x_mcast_ramrod_params rparam = {NULL};
12357        int rc = 0;
12358
12359        rparam.mcast_obj = &bp->mcast_obj;
12360
12361        /* first, clear all configured multicast MACs */
12362        rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12363        if (rc < 0) {
12364                BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12365                return rc;
12366        }
12367
12368        /* then, configure a new MACs list */
12369        if (netdev_mc_count(dev)) {
12370                rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12371                if (rc) {
12372                        BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12373                                  rc);
12374                        return rc;
12375                }
12376
12377                /* Now add the new MACs */
12378                rc = bnx2x_config_mcast(bp, &rparam,
12379                                        BNX2X_MCAST_CMD_ADD);
12380                if (rc < 0)
12381                        BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12382                                  rc);
12383
12384                bnx2x_free_mcast_macs_list(&rparam);
12385        }
12386
12387        return rc;
12388}
12389
12390/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12391static void bnx2x_set_rx_mode(struct net_device *dev)
12392{
12393        struct bnx2x *bp = netdev_priv(dev);
12394
12395        if (bp->state != BNX2X_STATE_OPEN) {
12396                DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12397                return;
12398        } else {
12399                /* Schedule an SP task to handle rest of change */
12400                bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12401                                       NETIF_MSG_IFUP);
12402        }
12403}
12404
12405void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12406{
12407        u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12408
12409        DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12410
12411        netif_addr_lock_bh(bp->dev);
12412
12413        if (bp->dev->flags & IFF_PROMISC) {
12414                rx_mode = BNX2X_RX_MODE_PROMISC;
12415        } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12416                   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12417                    CHIP_IS_E1(bp))) {
12418                rx_mode = BNX2X_RX_MODE_ALLMULTI;
12419        } else {
12420                if (IS_PF(bp)) {
12421                        /* some multicasts */
12422                        if (bnx2x_set_mc_list(bp) < 0)
12423                                rx_mode = BNX2X_RX_MODE_ALLMULTI;
12424
12425                        /* release bh lock, as bnx2x_set_uc_list might sleep */
12426                        netif_addr_unlock_bh(bp->dev);
12427                        if (bnx2x_set_uc_list(bp) < 0)
12428                                rx_mode = BNX2X_RX_MODE_PROMISC;
12429                        netif_addr_lock_bh(bp->dev);
12430                } else {
12431                        /* configuring mcast to a vf involves sleeping (when we
12432                         * wait for the pf's response).
12433                         */
12434                        bnx2x_schedule_sp_rtnl(bp,
12435                                               BNX2X_SP_RTNL_VFPF_MCAST, 0);
12436                }
12437        }
12438
12439        bp->rx_mode = rx_mode;
12440        /* handle ISCSI SD mode */
12441        if (IS_MF_ISCSI_ONLY(bp))
12442                bp->rx_mode = BNX2X_RX_MODE_NONE;
12443
12444        /* Schedule the rx_mode command */
12445        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12446                set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12447                netif_addr_unlock_bh(bp->dev);
12448                return;
12449        }
12450
12451        if (IS_PF(bp)) {
12452                bnx2x_set_storm_rx_mode(bp);
12453                netif_addr_unlock_bh(bp->dev);
12454        } else {
12455                /* VF will need to request the PF to make this change, and so
12456                 * the VF needs to release the bottom-half lock prior to the
12457                 * request (as it will likely require sleep on the VF side)
12458                 */
12459                netif_addr_unlock_bh(bp->dev);
12460                bnx2x_vfpf_storm_rx_mode(bp);
12461        }
12462}
12463
12464/* called with rtnl_lock */
12465static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12466                           int devad, u16 addr)
12467{
12468        struct bnx2x *bp = netdev_priv(netdev);
12469        u16 value;
12470        int rc;
12471
12472        DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12473           prtad, devad, addr);
12474
12475        /* The HW expects different devad if CL22 is used */
12476        devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12477
12478        bnx2x_acquire_phy_lock(bp);
12479        rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12480        bnx2x_release_phy_lock(bp);
12481        DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12482
12483        if (!rc)
12484                rc = value;
12485        return rc;
12486}
12487
12488/* called with rtnl_lock */
12489static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12490                            u16 addr, u16 value)
12491{
12492        struct bnx2x *bp = netdev_priv(netdev);
12493        int rc;
12494
12495        DP(NETIF_MSG_LINK,
12496           "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12497           prtad, devad, addr, value);
12498
12499        /* The HW expects different devad if CL22 is used */
12500        devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12501
12502        bnx2x_acquire_phy_lock(bp);
12503        rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12504        bnx2x_release_phy_lock(bp);
12505        return rc;
12506}
12507
12508/* called with rtnl_lock */
12509static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12510{
12511        struct bnx2x *bp = netdev_priv(dev);
12512        struct mii_ioctl_data *mdio = if_mii(ifr);
12513
12514        if (!netif_running(dev))
12515                return -EAGAIN;
12516
12517        switch (cmd) {
12518        case SIOCSHWTSTAMP:
12519                return bnx2x_hwtstamp_ioctl(bp, ifr);
12520        default:
12521                DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12522                   mdio->phy_id, mdio->reg_num, mdio->val_in);
12523                return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12524        }
12525}
12526
12527#ifdef CONFIG_NET_POLL_CONTROLLER
12528static void poll_bnx2x(struct net_device *dev)
12529{
12530        struct bnx2x *bp = netdev_priv(dev);
12531        int i;
12532
12533        for_each_eth_queue(bp, i) {
12534                struct bnx2x_fastpath *fp = &bp->fp[i];
12535                napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12536        }
12537}
12538#endif
12539
12540static int bnx2x_validate_addr(struct net_device *dev)
12541{
12542        struct bnx2x *bp = netdev_priv(dev);
12543
12544        /* query the bulletin board for mac address configured by the PF */
12545        if (IS_VF(bp))
12546                bnx2x_sample_bulletin(bp);
12547
12548        if (!is_valid_ether_addr(dev->dev_addr)) {
12549                BNX2X_ERR("Non-valid Ethernet address\n");
12550                return -EADDRNOTAVAIL;
12551        }
12552        return 0;
12553}
12554
12555static int bnx2x_get_phys_port_id(struct net_device *netdev,
12556                                  struct netdev_phys_item_id *ppid)
12557{
12558        struct bnx2x *bp = netdev_priv(netdev);
12559
12560        if (!(bp->flags & HAS_PHYS_PORT_ID))
12561                return -EOPNOTSUPP;
12562
12563        ppid->id_len = sizeof(bp->phys_port_id);
12564        memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12565
12566        return 0;
12567}
12568
12569static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12570                                              struct net_device *dev,
12571                                              netdev_features_t features)
12572{
12573        features = vlan_features_check(skb, features);
12574        return vxlan_features_check(skb, features);
12575}
12576
12577static const struct net_device_ops bnx2x_netdev_ops = {
12578        .ndo_open               = bnx2x_open,
12579        .ndo_stop               = bnx2x_close,
12580        .ndo_start_xmit         = bnx2x_start_xmit,
12581        .ndo_select_queue       = bnx2x_select_queue,
12582        .ndo_set_rx_mode        = bnx2x_set_rx_mode,
12583        .ndo_set_mac_address    = bnx2x_change_mac_addr,
12584        .ndo_validate_addr      = bnx2x_validate_addr,
12585        .ndo_do_ioctl           = bnx2x_ioctl,
12586        .ndo_change_mtu         = bnx2x_change_mtu,
12587        .ndo_fix_features       = bnx2x_fix_features,
12588        .ndo_set_features       = bnx2x_set_features,
12589        .ndo_tx_timeout         = bnx2x_tx_timeout,
12590#ifdef CONFIG_NET_POLL_CONTROLLER
12591        .ndo_poll_controller    = poll_bnx2x,
12592#endif
12593        .ndo_setup_tc           = bnx2x_setup_tc,
12594#ifdef CONFIG_BNX2X_SRIOV
12595        .ndo_set_vf_mac         = bnx2x_set_vf_mac,
12596        .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
12597        .ndo_get_vf_config      = bnx2x_get_vf_config,
12598#endif
12599#ifdef NETDEV_FCOE_WWNN
12600        .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
12601#endif
12602
12603#ifdef CONFIG_NET_RX_BUSY_POLL
12604        .ndo_busy_poll          = bnx2x_low_latency_recv,
12605#endif
12606        .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
12607        .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
12608        .ndo_features_check     = bnx2x_features_check,
12609};
12610
12611static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12612{
12613        struct device *dev = &bp->pdev->dev;
12614
12615        if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12616            dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12617                dev_err(dev, "System does not support DMA, aborting\n");
12618                return -EIO;
12619        }
12620
12621        return 0;
12622}
12623
12624static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12625{
12626        if (bp->flags & AER_ENABLED) {
12627                pci_disable_pcie_error_reporting(bp->pdev);
12628                bp->flags &= ~AER_ENABLED;
12629        }
12630}
12631
12632static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12633                          struct net_device *dev, unsigned long board_type)
12634{
12635        int rc;
12636        u32 pci_cfg_dword;
12637        bool chip_is_e1x = (board_type == BCM57710 ||
12638                            board_type == BCM57711 ||
12639                            board_type == BCM57711E);
12640
12641        SET_NETDEV_DEV(dev, &pdev->dev);
12642
12643        bp->dev = dev;
12644        bp->pdev = pdev;
12645
12646        rc = pci_enable_device(pdev);
12647        if (rc) {
12648                dev_err(&bp->pdev->dev,
12649                        "Cannot enable PCI device, aborting\n");
12650                goto err_out;
12651        }
12652
12653        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12654                dev_err(&bp->pdev->dev,
12655                        "Cannot find PCI device base address, aborting\n");
12656                rc = -ENODEV;
12657                goto err_out_disable;
12658        }
12659
12660        if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12661                dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12662                rc = -ENODEV;
12663                goto err_out_disable;
12664        }
12665
12666        pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12667        if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12668            PCICFG_REVESION_ID_ERROR_VAL) {
12669                pr_err("PCI device error, probably due to fan failure, aborting\n");
12670                rc = -ENODEV;
12671                goto err_out_disable;
12672        }
12673
12674        if (atomic_read(&pdev->enable_cnt) == 1) {
12675                rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12676                if (rc) {
12677                        dev_err(&bp->pdev->dev,
12678                                "Cannot obtain PCI resources, aborting\n");
12679                        goto err_out_disable;
12680                }
12681
12682                pci_set_master(pdev);
12683                pci_save_state(pdev);
12684        }
12685
12686        if (IS_PF(bp)) {
12687                if (!pdev->pm_cap) {
12688                        dev_err(&bp->pdev->dev,
12689                                "Cannot find power management capability, aborting\n");
12690                        rc = -EIO;
12691                        goto err_out_release;
12692                }
12693        }
12694
12695        if (!pci_is_pcie(pdev)) {
12696                dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12697                rc = -EIO;
12698                goto err_out_release;
12699        }
12700
12701        rc = bnx2x_set_coherency_mask(bp);
12702        if (rc)
12703                goto err_out_release;
12704
12705        dev->mem_start = pci_resource_start(pdev, 0);
12706        dev->base_addr = dev->mem_start;
12707        dev->mem_end = pci_resource_end(pdev, 0);
12708
12709        dev->irq = pdev->irq;
12710
12711        bp->regview = pci_ioremap_bar(pdev, 0);
12712        if (!bp->regview) {
12713                dev_err(&bp->pdev->dev,
12714                        "Cannot map register space, aborting\n");
12715                rc = -ENOMEM;
12716                goto err_out_release;
12717        }
12718
12719        /* In E1/E1H use pci device function given by kernel.
12720         * In E2/E3 read physical function from ME register since these chips
12721         * support Physical Device Assignment where kernel BDF maybe arbitrary
12722         * (depending on hypervisor).
12723         */
12724        if (chip_is_e1x) {
12725                bp->pf_num = PCI_FUNC(pdev->devfn);
12726        } else {
12727                /* chip is E2/3*/
12728                pci_read_config_dword(bp->pdev,
12729                                      PCICFG_ME_REGISTER, &pci_cfg_dword);
12730                bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12731                                  ME_REG_ABS_PF_NUM_SHIFT);
12732        }
12733        BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12734
12735        /* clean indirect addresses */
12736        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12737                               PCICFG_VENDOR_ID_OFFSET);
12738
12739        /* Set PCIe reset type to fundamental for EEH recovery */
12740        pdev->needs_freset = 1;
12741
12742        /* AER (Advanced Error reporting) configuration */
12743        rc = pci_enable_pcie_error_reporting(pdev);
12744        if (!rc)
12745                bp->flags |= AER_ENABLED;
12746        else
12747                BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12748
12749        /*
12750         * Clean the following indirect addresses for all functions since it
12751         * is not used by the driver.
12752         */
12753        if (IS_PF(bp)) {
12754                REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12755                REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12756                REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12757                REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12758
12759                if (chip_is_e1x) {
12760                        REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12761                        REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12762                        REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12763                        REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12764                }
12765
12766                /* Enable internal target-read (in case we are probed after PF
12767                 * FLR). Must be done prior to any BAR read access. Only for
12768                 * 57712 and up
12769                 */
12770                if (!chip_is_e1x)
12771                        REG_WR(bp,
12772                               PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12773        }
12774
12775        dev->watchdog_timeo = TX_TIMEOUT;
12776
12777        dev->netdev_ops = &bnx2x_netdev_ops;
12778        bnx2x_set_ethtool_ops(bp, dev);
12779
12780        dev->priv_flags |= IFF_UNICAST_FLT;
12781
12782        dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12783                NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12784                NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12785                NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12786        if (!chip_is_e1x) {
12787                dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12788                                    NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12789                dev->hw_enc_features =
12790                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12791                        NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12792                        NETIF_F_GSO_IPIP |
12793                        NETIF_F_GSO_SIT |
12794                        NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12795        }
12796
12797        dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12798                NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12799
12800        dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12801        dev->features |= NETIF_F_HIGHDMA;
12802
12803        /* Add Loopback capability to the device */
12804        dev->hw_features |= NETIF_F_LOOPBACK;
12805
12806#ifdef BCM_DCBNL
12807        dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12808#endif
12809
12810        /* get_port_hwinfo() will set prtad and mmds properly */
12811        bp->mdio.prtad = MDIO_PRTAD_NONE;
12812        bp->mdio.mmds = 0;
12813        bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12814        bp->mdio.dev = dev;
12815        bp->mdio.mdio_read = bnx2x_mdio_read;
12816        bp->mdio.mdio_write = bnx2x_mdio_write;
12817
12818        return 0;
12819
12820err_out_release:
12821        if (atomic_read(&pdev->enable_cnt) == 1)
12822                pci_release_regions(pdev);
12823
12824err_out_disable:
12825        pci_disable_device(pdev);
12826
12827err_out:
12828        return rc;
12829}
12830
12831static int bnx2x_check_firmware(struct bnx2x *bp)
12832{
12833        const struct firmware *firmware = bp->firmware;
12834        struct bnx2x_fw_file_hdr *fw_hdr;
12835        struct bnx2x_fw_file_section *sections;
12836        u32 offset, len, num_ops;
12837        __be16 *ops_offsets;
12838        int i;
12839        const u8 *fw_ver;
12840
12841        if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12842                BNX2X_ERR("Wrong FW size\n");
12843                return -EINVAL;
12844        }
12845
12846        fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12847        sections = (struct bnx2x_fw_file_section *)fw_hdr;
12848
12849        /* Make sure none of the offsets and sizes make us read beyond
12850         * the end of the firmware data */
12851        for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12852                offset = be32_to_cpu(sections[i].offset);
12853                len = be32_to_cpu(sections[i].len);
12854                if (offset + len > firmware->size) {
12855                        BNX2X_ERR("Section %d length is out of bounds\n", i);
12856                        return -EINVAL;
12857                }
12858        }
12859
12860        /* Likewise for the init_ops offsets */
12861        offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12862        ops_offsets = (__force __be16 *)(firmware->data + offset);
12863        num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12864
12865        for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12866                if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12867                        BNX2X_ERR("Section offset %d is out of bounds\n", i);
12868                        return -EINVAL;
12869                }
12870        }
12871
12872        /* Check FW version */
12873        offset = be32_to_cpu(fw_hdr->fw_version.offset);
12874        fw_ver = firmware->data + offset;
12875        if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12876            (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12877            (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12878            (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12879                BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12880                       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12881                       BCM_5710_FW_MAJOR_VERSION,
12882                       BCM_5710_FW_MINOR_VERSION,
12883                       BCM_5710_FW_REVISION_VERSION,
12884                       BCM_5710_FW_ENGINEERING_VERSION);
12885                return -EINVAL;
12886        }
12887
12888        return 0;
12889}
12890
12891static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12892{
12893        const __be32 *source = (const __be32 *)_source;
12894        u32 *target = (u32 *)_target;
12895        u32 i;
12896
12897        for (i = 0; i < n/4; i++)
12898                target[i] = be32_to_cpu(source[i]);
12899}
12900
12901/*
12902   Ops array is stored in the following format:
12903   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12904 */
12905static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12906{
12907        const __be32 *source = (const __be32 *)_source;
12908        struct raw_op *target = (struct raw_op *)_target;
12909        u32 i, j, tmp;
12910
12911        for (i = 0, j = 0; i < n/8; i++, j += 2) {
12912                tmp = be32_to_cpu(source[j]);
12913                target[i].op = (tmp >> 24) & 0xff;
12914                target[i].offset = tmp & 0xffffff;
12915                target[i].raw_data = be32_to_cpu(source[j + 1]);
12916        }
12917}
12918
12919/* IRO array is stored in the following format:
12920 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12921 */
12922static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12923{
12924        const __be32 *source = (const __be32 *)_source;
12925        struct iro *target = (struct iro *)_target;
12926        u32 i, j, tmp;
12927
12928        for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12929                target[i].base = be32_to_cpu(source[j]);
12930                j++;
12931                tmp = be32_to_cpu(source[j]);
12932                target[i].m1 = (tmp >> 16) & 0xffff;
12933                target[i].m2 = tmp & 0xffff;
12934                j++;
12935                tmp = be32_to_cpu(source[j]);
12936                target[i].m3 = (tmp >> 16) & 0xffff;
12937                target[i].size = tmp & 0xffff;
12938                j++;
12939        }
12940}
12941
12942static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12943{
12944        const __be16 *source = (const __be16 *)_source;
12945        u16 *target = (u16 *)_target;
12946        u32 i;
12947
12948        for (i = 0; i < n/2; i++)
12949                target[i] = be16_to_cpu(source[i]);
12950}
12951
12952#define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
12953do {                                                                    \
12954        u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
12955        bp->arr = kmalloc(len, GFP_KERNEL);                             \
12956        if (!bp->arr)                                                   \
12957                goto lbl;                                               \
12958        func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
12959             (u8 *)bp->arr, len);                                       \
12960} while (0)
12961
12962static int bnx2x_init_firmware(struct bnx2x *bp)
12963{
12964        const char *fw_file_name;
12965        struct bnx2x_fw_file_hdr *fw_hdr;
12966        int rc;
12967
12968        if (bp->firmware)
12969                return 0;
12970
12971        if (CHIP_IS_E1(bp))
12972                fw_file_name = FW_FILE_NAME_E1;
12973        else if (CHIP_IS_E1H(bp))
12974                fw_file_name = FW_FILE_NAME_E1H;
12975        else if (!CHIP_IS_E1x(bp))
12976                fw_file_name = FW_FILE_NAME_E2;
12977        else {
12978                BNX2X_ERR("Unsupported chip revision\n");
12979                return -EINVAL;
12980        }
12981        BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12982
12983        rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12984        if (rc) {
12985                BNX2X_ERR("Can't load firmware file %s\n",
12986                          fw_file_name);
12987                goto request_firmware_exit;
12988        }
12989
12990        rc = bnx2x_check_firmware(bp);
12991        if (rc) {
12992                BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12993                goto request_firmware_exit;
12994        }
12995
12996        fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12997
12998        /* Initialize the pointers to the init arrays */
12999        /* Blob */
13000        BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13001
13002        /* Opcodes */
13003        BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13004
13005        /* Offsets */
13006        BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13007                            be16_to_cpu_n);
13008
13009        /* STORMs firmware */
13010        INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13011                        be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13012        INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13013                        be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13014        INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13015                        be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13016        INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13017                        be32_to_cpu(fw_hdr->usem_pram_data.offset);
13018        INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13019                        be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13020        INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13021                        be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13022        INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13023                        be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13024        INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13025                        be32_to_cpu(fw_hdr->csem_pram_data.offset);
13026        /* IRO */
13027        BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13028
13029        return 0;
13030
13031iro_alloc_err:
13032        kfree(bp->init_ops_offsets);
13033init_offsets_alloc_err:
13034        kfree(bp->init_ops);
13035init_ops_alloc_err:
13036        kfree(bp->init_data);
13037request_firmware_exit:
13038        release_firmware(bp->firmware);
13039        bp->firmware = NULL;
13040
13041        return rc;
13042}
13043
13044static void bnx2x_release_firmware(struct bnx2x *bp)
13045{
13046        kfree(bp->init_ops_offsets);
13047        kfree(bp->init_ops);
13048        kfree(bp->init_data);
13049        release_firmware(bp->firmware);
13050        bp->firmware = NULL;
13051}
13052
13053static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13054        .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13055        .init_hw_cmn      = bnx2x_init_hw_common,
13056        .init_hw_port     = bnx2x_init_hw_port,
13057        .init_hw_func     = bnx2x_init_hw_func,
13058
13059        .reset_hw_cmn     = bnx2x_reset_common,
13060        .reset_hw_port    = bnx2x_reset_port,
13061        .reset_hw_func    = bnx2x_reset_func,
13062
13063        .gunzip_init      = bnx2x_gunzip_init,
13064        .gunzip_end       = bnx2x_gunzip_end,
13065
13066        .init_fw          = bnx2x_init_firmware,
13067        .release_fw       = bnx2x_release_firmware,
13068};
13069
13070void bnx2x__init_func_obj(struct bnx2x *bp)
13071{
13072        /* Prepare DMAE related driver resources */
13073        bnx2x_setup_dmae(bp);
13074
13075        bnx2x_init_func_obj(bp, &bp->func_obj,
13076                            bnx2x_sp(bp, func_rdata),
13077                            bnx2x_sp_mapping(bp, func_rdata),
13078                            bnx2x_sp(bp, func_afex_rdata),
13079                            bnx2x_sp_mapping(bp, func_afex_rdata),
13080                            &bnx2x_func_sp_drv);
13081}
13082
13083/* must be called after sriov-enable */
13084static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13085{
13086        int cid_count = BNX2X_L2_MAX_CID(bp);
13087
13088        if (IS_SRIOV(bp))
13089                cid_count += BNX2X_VF_CIDS;
13090
13091        if (CNIC_SUPPORT(bp))
13092                cid_count += CNIC_CID_MAX;
13093
13094        return roundup(cid_count, QM_CID_ROUND);
13095}
13096
13097/**
13098 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13099 *
13100 * @dev:        pci device
13101 *
13102 */
13103static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13104{
13105        int index;
13106        u16 control = 0;
13107
13108        /*
13109         * If MSI-X is not supported - return number of SBs needed to support
13110         * one fast path queue: one FP queue + SB for CNIC
13111         */
13112        if (!pdev->msix_cap) {
13113                dev_info(&pdev->dev, "no msix capability found\n");
13114                return 1 + cnic_cnt;
13115        }
13116        dev_info(&pdev->dev, "msix capability found\n");
13117
13118        /*
13119         * The value in the PCI configuration space is the index of the last
13120         * entry, namely one less than the actual size of the table, which is
13121         * exactly what we want to return from this function: number of all SBs
13122         * without the default SB.
13123         * For VFs there is no default SB, then we return (index+1).
13124         */
13125        pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13126
13127        index = control & PCI_MSIX_FLAGS_QSIZE;
13128
13129        return index;
13130}
13131
13132static int set_max_cos_est(int chip_id)
13133{
13134        switch (chip_id) {
13135        case BCM57710:
13136        case BCM57711:
13137        case BCM57711E:
13138                return BNX2X_MULTI_TX_COS_E1X;
13139        case BCM57712:
13140        case BCM57712_MF:
13141                return BNX2X_MULTI_TX_COS_E2_E3A0;
13142        case BCM57800:
13143        case BCM57800_MF:
13144        case BCM57810:
13145        case BCM57810_MF:
13146        case BCM57840_4_10:
13147        case BCM57840_2_20:
13148        case BCM57840_O:
13149        case BCM57840_MFO:
13150        case BCM57840_MF:
13151        case BCM57811:
13152        case BCM57811_MF:
13153                return BNX2X_MULTI_TX_COS_E3B0;
13154        case BCM57712_VF:
13155        case BCM57800_VF:
13156        case BCM57810_VF:
13157        case BCM57840_VF:
13158        case BCM57811_VF:
13159                return 1;
13160        default:
13161                pr_err("Unknown board_type (%d), aborting\n", chip_id);
13162                return -ENODEV;
13163        }
13164}
13165
13166static int set_is_vf(int chip_id)
13167{
13168        switch (chip_id) {
13169        case BCM57712_VF:
13170        case BCM57800_VF:
13171        case BCM57810_VF:
13172        case BCM57840_VF:
13173        case BCM57811_VF:
13174                return true;
13175        default:
13176                return false;
13177        }
13178}
13179
13180/* nig_tsgen registers relative address */
13181#define tsgen_ctrl 0x0
13182#define tsgen_freecount 0x10
13183#define tsgen_synctime_t0 0x20
13184#define tsgen_offset_t0 0x28
13185#define tsgen_drift_t0 0x30
13186#define tsgen_synctime_t1 0x58
13187#define tsgen_offset_t1 0x60
13188#define tsgen_drift_t1 0x68
13189
13190/* FW workaround for setting drift */
13191static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13192                                          int best_val, int best_period)
13193{
13194        struct bnx2x_func_state_params func_params = {NULL};
13195        struct bnx2x_func_set_timesync_params *set_timesync_params =
13196                &func_params.params.set_timesync;
13197
13198        /* Prepare parameters for function state transitions */
13199        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13200        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13201
13202        func_params.f_obj = &bp->func_obj;
13203        func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13204
13205        /* Function parameters */
13206        set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13207        set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13208        set_timesync_params->add_sub_drift_adjust_value =
13209                drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13210        set_timesync_params->drift_adjust_value = best_val;
13211        set_timesync_params->drift_adjust_period = best_period;
13212
13213        return bnx2x_func_state_change(bp, &func_params);
13214}
13215
13216static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13217{
13218        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13219        int rc;
13220        int drift_dir = 1;
13221        int val, period, period1, period2, dif, dif1, dif2;
13222        int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13223
13224        DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13225
13226        if (!netif_running(bp->dev)) {
13227                DP(BNX2X_MSG_PTP,
13228                   "PTP adjfreq called while the interface is down\n");
13229                return -EFAULT;
13230        }
13231
13232        if (ppb < 0) {
13233                ppb = -ppb;
13234                drift_dir = 0;
13235        }
13236
13237        if (ppb == 0) {
13238                best_val = 1;
13239                best_period = 0x1FFFFFF;
13240        } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13241                best_val = 31;
13242                best_period = 1;
13243        } else {
13244                /* Changed not to allow val = 8, 16, 24 as these values
13245                 * are not supported in workaround.
13246                 */
13247                for (val = 0; val <= 31; val++) {
13248                        if ((val & 0x7) == 0)
13249                                continue;
13250                        period1 = val * 1000000 / ppb;
13251                        period2 = period1 + 1;
13252                        if (period1 != 0)
13253                                dif1 = ppb - (val * 1000000 / period1);
13254                        else
13255                                dif1 = BNX2X_MAX_PHC_DRIFT;
13256                        if (dif1 < 0)
13257                                dif1 = -dif1;
13258                        dif2 = ppb - (val * 1000000 / period2);
13259                        if (dif2 < 0)
13260                                dif2 = -dif2;
13261                        dif = (dif1 < dif2) ? dif1 : dif2;
13262                        period = (dif1 < dif2) ? period1 : period2;
13263                        if (dif < best_dif) {
13264                                best_dif = dif;
13265                                best_val = val;
13266                                best_period = period;
13267                        }
13268                }
13269        }
13270
13271        rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13272                                            best_period);
13273        if (rc) {
13274                BNX2X_ERR("Failed to set drift\n");
13275                return -EFAULT;
13276        }
13277
13278        DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13279           best_period);
13280
13281        return 0;
13282}
13283
13284static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13285{
13286        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13287
13288        DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13289
13290        timecounter_adjtime(&bp->timecounter, delta);
13291
13292        return 0;
13293}
13294
13295static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13296{
13297        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13298        u64 ns;
13299
13300        ns = timecounter_read(&bp->timecounter);
13301
13302        DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13303
13304        *ts = ns_to_timespec64(ns);
13305
13306        return 0;
13307}
13308
13309static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13310                             const struct timespec64 *ts)
13311{
13312        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13313        u64 ns;
13314
13315        ns = timespec64_to_ns(ts);
13316
13317        DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13318
13319        /* Re-init the timecounter */
13320        timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13321
13322        return 0;
13323}
13324
13325/* Enable (or disable) ancillary features of the phc subsystem */
13326static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13327                            struct ptp_clock_request *rq, int on)
13328{
13329        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13330
13331        BNX2X_ERR("PHC ancillary features are not supported\n");
13332        return -ENOTSUPP;
13333}
13334
13335static void bnx2x_register_phc(struct bnx2x *bp)
13336{
13337        /* Fill the ptp_clock_info struct and register PTP clock*/
13338        bp->ptp_clock_info.owner = THIS_MODULE;
13339        snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13340        bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13341        bp->ptp_clock_info.n_alarm = 0;
13342        bp->ptp_clock_info.n_ext_ts = 0;
13343        bp->ptp_clock_info.n_per_out = 0;
13344        bp->ptp_clock_info.pps = 0;
13345        bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13346        bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13347        bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13348        bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13349        bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13350
13351        bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13352        if (IS_ERR(bp->ptp_clock)) {
13353                bp->ptp_clock = NULL;
13354                BNX2X_ERR("PTP clock registeration failed\n");
13355        }
13356}
13357
13358static int bnx2x_init_one(struct pci_dev *pdev,
13359                                    const struct pci_device_id *ent)
13360{
13361        struct net_device *dev = NULL;
13362        struct bnx2x *bp;
13363        enum pcie_link_width pcie_width;
13364        enum pci_bus_speed pcie_speed;
13365        int rc, max_non_def_sbs;
13366        int rx_count, tx_count, rss_count, doorbell_size;
13367        int max_cos_est;
13368        bool is_vf;
13369        int cnic_cnt;
13370
13371        /* Management FW 'remembers' living interfaces. Allow it some time
13372         * to forget previously living interfaces, allowing a proper re-load.
13373         */
13374        if (is_kdump_kernel()) {
13375                ktime_t now = ktime_get_boottime();
13376                ktime_t fw_ready_time = ktime_set(5, 0);
13377
13378                if (ktime_before(now, fw_ready_time))
13379                        msleep(ktime_ms_delta(fw_ready_time, now));
13380        }
13381
13382        /* An estimated maximum supported CoS number according to the chip
13383         * version.
13384         * We will try to roughly estimate the maximum number of CoSes this chip
13385         * may support in order to minimize the memory allocated for Tx
13386         * netdev_queue's. This number will be accurately calculated during the
13387         * initialization of bp->max_cos based on the chip versions AND chip
13388         * revision in the bnx2x_init_bp().
13389         */
13390        max_cos_est = set_max_cos_est(ent->driver_data);
13391        if (max_cos_est < 0)
13392                return max_cos_est;
13393        is_vf = set_is_vf(ent->driver_data);
13394        cnic_cnt = is_vf ? 0 : 1;
13395
13396        max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13397
13398        /* add another SB for VF as it has no default SB */
13399        max_non_def_sbs += is_vf ? 1 : 0;
13400
13401        /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13402        rss_count = max_non_def_sbs - cnic_cnt;
13403
13404        if (rss_count < 1)
13405                return -EINVAL;
13406
13407        /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13408        rx_count = rss_count + cnic_cnt;
13409
13410        /* Maximum number of netdev Tx queues:
13411         * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13412         */
13413        tx_count = rss_count * max_cos_est + cnic_cnt;
13414
13415        /* dev zeroed in init_etherdev */
13416        dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13417        if (!dev)
13418                return -ENOMEM;
13419
13420        bp = netdev_priv(dev);
13421
13422        bp->flags = 0;
13423        if (is_vf)
13424                bp->flags |= IS_VF_FLAG;
13425
13426        bp->igu_sb_cnt = max_non_def_sbs;
13427        bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13428        bp->msg_enable = debug;
13429        bp->cnic_support = cnic_cnt;
13430        bp->cnic_probe = bnx2x_cnic_probe;
13431
13432        pci_set_drvdata(pdev, dev);
13433
13434        rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13435        if (rc < 0) {
13436                free_netdev(dev);
13437                return rc;
13438        }
13439
13440        BNX2X_DEV_INFO("This is a %s function\n",
13441                       IS_PF(bp) ? "physical" : "virtual");
13442        BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13443        BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13444        BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13445                       tx_count, rx_count);
13446
13447        rc = bnx2x_init_bp(bp);
13448        if (rc)
13449                goto init_one_exit;
13450
13451        /* Map doorbells here as we need the real value of bp->max_cos which
13452         * is initialized in bnx2x_init_bp() to determine the number of
13453         * l2 connections.
13454         */
13455        if (IS_VF(bp)) {
13456                bp->doorbells = bnx2x_vf_doorbells(bp);
13457                rc = bnx2x_vf_pci_alloc(bp);
13458                if (rc)
13459                        goto init_one_exit;
13460        } else {
13461                doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13462                if (doorbell_size > pci_resource_len(pdev, 2)) {
13463                        dev_err(&bp->pdev->dev,
13464                                "Cannot map doorbells, bar size too small, aborting\n");
13465                        rc = -ENOMEM;
13466                        goto init_one_exit;
13467                }
13468                bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13469                                                doorbell_size);
13470        }
13471        if (!bp->doorbells) {
13472                dev_err(&bp->pdev->dev,
13473                        "Cannot map doorbell space, aborting\n");
13474                rc = -ENOMEM;
13475                goto init_one_exit;
13476        }
13477
13478        if (IS_VF(bp)) {
13479                rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13480                if (rc)
13481                        goto init_one_exit;
13482        }
13483
13484        /* Enable SRIOV if capability found in configuration space */
13485        rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13486        if (rc)
13487                goto init_one_exit;
13488
13489        /* calc qm_cid_count */
13490        bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13491        BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13492
13493        /* disable FCOE L2 queue for E1x*/
13494        if (CHIP_IS_E1x(bp))
13495                bp->flags |= NO_FCOE_FLAG;
13496
13497        /* Set bp->num_queues for MSI-X mode*/
13498        bnx2x_set_num_queues(bp);
13499
13500        /* Configure interrupt mode: try to enable MSI-X/MSI if
13501         * needed.
13502         */
13503        rc = bnx2x_set_int_mode(bp);
13504        if (rc) {
13505                dev_err(&pdev->dev, "Cannot set interrupts\n");
13506                goto init_one_exit;
13507        }
13508        BNX2X_DEV_INFO("set interrupts successfully\n");
13509
13510        /* register the net device */
13511        rc = register_netdev(dev);
13512        if (rc) {
13513                dev_err(&pdev->dev, "Cannot register net device\n");
13514                goto init_one_exit;
13515        }
13516        BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13517
13518        if (!NO_FCOE(bp)) {
13519                /* Add storage MAC address */
13520                rtnl_lock();
13521                dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13522                rtnl_unlock();
13523        }
13524        if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13525            pcie_speed == PCI_SPEED_UNKNOWN ||
13526            pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13527                BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13528        else
13529                BNX2X_DEV_INFO(
13530                       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13531                       board_info[ent->driver_data].name,
13532                       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13533                       pcie_width,
13534                       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13535                       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13536                       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13537                       "Unknown",
13538                       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13539
13540        bnx2x_register_phc(bp);
13541
13542        return 0;
13543
13544init_one_exit:
13545        bnx2x_disable_pcie_error_reporting(bp);
13546
13547        if (bp->regview)
13548                iounmap(bp->regview);
13549
13550        if (IS_PF(bp) && bp->doorbells)
13551                iounmap(bp->doorbells);
13552
13553        free_netdev(dev);
13554
13555        if (atomic_read(&pdev->enable_cnt) == 1)
13556                pci_release_regions(pdev);
13557
13558        pci_disable_device(pdev);
13559
13560        return rc;
13561}
13562
13563static void __bnx2x_remove(struct pci_dev *pdev,
13564                           struct net_device *dev,
13565                           struct bnx2x *bp,
13566                           bool remove_netdev)
13567{
13568        if (bp->ptp_clock) {
13569                ptp_clock_unregister(bp->ptp_clock);
13570                bp->ptp_clock = NULL;
13571        }
13572
13573        /* Delete storage MAC address */
13574        if (!NO_FCOE(bp)) {
13575                rtnl_lock();
13576                dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13577                rtnl_unlock();
13578        }
13579
13580#ifdef BCM_DCBNL
13581        /* Delete app tlvs from dcbnl */
13582        bnx2x_dcbnl_update_applist(bp, true);
13583#endif
13584
13585        if (IS_PF(bp) &&
13586            !BP_NOMCP(bp) &&
13587            (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13588                bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13589
13590        /* Close the interface - either directly or implicitly */
13591        if (remove_netdev) {
13592                unregister_netdev(dev);
13593        } else {
13594                rtnl_lock();
13595                dev_close(dev);
13596                rtnl_unlock();
13597        }
13598
13599        bnx2x_iov_remove_one(bp);
13600
13601        /* Power on: we can't let PCI layer write to us while we are in D3 */
13602        if (IS_PF(bp)) {
13603                bnx2x_set_power_state(bp, PCI_D0);
13604
13605                /* Set endianity registers to reset values in case next driver
13606                 * boots in different endianty environment.
13607                 */
13608                bnx2x_reset_endianity(bp);
13609        }
13610
13611        /* Disable MSI/MSI-X */
13612        bnx2x_disable_msi(bp);
13613
13614        /* Power off */
13615        if (IS_PF(bp))
13616                bnx2x_set_power_state(bp, PCI_D3hot);
13617
13618        /* Make sure RESET task is not scheduled before continuing */
13619        cancel_delayed_work_sync(&bp->sp_rtnl_task);
13620
13621        /* send message via vfpf channel to release the resources of this vf */
13622        if (IS_VF(bp))
13623                bnx2x_vfpf_release(bp);
13624
13625        /* Assumes no further PCIe PM changes will occur */
13626        if (system_state == SYSTEM_POWER_OFF) {
13627                pci_wake_from_d3(pdev, bp->wol);
13628                pci_set_power_state(pdev, PCI_D3hot);
13629        }
13630
13631        bnx2x_disable_pcie_error_reporting(bp);
13632        if (remove_netdev) {
13633                if (bp->regview)
13634                        iounmap(bp->regview);
13635
13636                /* For vfs, doorbells are part of the regview and were unmapped
13637                 * along with it. FW is only loaded by PF.
13638                 */
13639                if (IS_PF(bp)) {
13640                        if (bp->doorbells)
13641                                iounmap(bp->doorbells);
13642
13643                        bnx2x_release_firmware(bp);
13644                } else {
13645                        bnx2x_vf_pci_dealloc(bp);
13646                }
13647                bnx2x_free_mem_bp(bp);
13648
13649                free_netdev(dev);
13650
13651                if (atomic_read(&pdev->enable_cnt) == 1)
13652                        pci_release_regions(pdev);
13653
13654                pci_disable_device(pdev);
13655        }
13656}
13657
13658static void bnx2x_remove_one(struct pci_dev *pdev)
13659{
13660        struct net_device *dev = pci_get_drvdata(pdev);
13661        struct bnx2x *bp;
13662
13663        if (!dev) {
13664                dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13665                return;
13666        }
13667        bp = netdev_priv(dev);
13668
13669        __bnx2x_remove(pdev, dev, bp, true);
13670}
13671
13672static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13673{
13674        bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13675
13676        bp->rx_mode = BNX2X_RX_MODE_NONE;
13677
13678        if (CNIC_LOADED(bp))
13679                bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13680
13681        /* Stop Tx */
13682        bnx2x_tx_disable(bp);
13683        /* Delete all NAPI objects */
13684        bnx2x_del_all_napi(bp);
13685        if (CNIC_LOADED(bp))
13686                bnx2x_del_all_napi_cnic(bp);
13687        netdev_reset_tc(bp->dev);
13688
13689        del_timer_sync(&bp->timer);
13690        cancel_delayed_work_sync(&bp->sp_task);
13691        cancel_delayed_work_sync(&bp->period_task);
13692
13693        if (!down_timeout(&bp->stats_lock, HZ / 10)) {
13694                bp->stats_state = STATS_STATE_DISABLED;
13695                up(&bp->stats_lock);
13696        }
13697
13698        bnx2x_save_statistics(bp);
13699
13700        netif_carrier_off(bp->dev);
13701
13702        return 0;
13703}
13704
13705/**
13706 * bnx2x_io_error_detected - called when PCI error is detected
13707 * @pdev: Pointer to PCI device
13708 * @state: The current pci connection state
13709 *
13710 * This function is called after a PCI bus error affecting
13711 * this device has been detected.
13712 */
13713static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13714                                                pci_channel_state_t state)
13715{
13716        struct net_device *dev = pci_get_drvdata(pdev);
13717        struct bnx2x *bp = netdev_priv(dev);
13718
13719        rtnl_lock();
13720
13721        BNX2X_ERR("IO error detected\n");
13722
13723        netif_device_detach(dev);
13724
13725        if (state == pci_channel_io_perm_failure) {
13726                rtnl_unlock();
13727                return PCI_ERS_RESULT_DISCONNECT;
13728        }
13729
13730        if (netif_running(dev))
13731                bnx2x_eeh_nic_unload(bp);
13732
13733        bnx2x_prev_path_mark_eeh(bp);
13734
13735        pci_disable_device(pdev);
13736
13737        rtnl_unlock();
13738
13739        /* Request a slot reset */
13740        return PCI_ERS_RESULT_NEED_RESET;
13741}
13742
13743/**
13744 * bnx2x_io_slot_reset - called after the PCI bus has been reset
13745 * @pdev: Pointer to PCI device
13746 *
13747 * Restart the card from scratch, as if from a cold-boot.
13748 */
13749static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13750{
13751        struct net_device *dev = pci_get_drvdata(pdev);
13752        struct bnx2x *bp = netdev_priv(dev);
13753        int i;
13754
13755        rtnl_lock();
13756        BNX2X_ERR("IO slot reset initializing...\n");
13757        if (pci_enable_device(pdev)) {
13758                dev_err(&pdev->dev,
13759                        "Cannot re-enable PCI device after reset\n");
13760                rtnl_unlock();
13761                return PCI_ERS_RESULT_DISCONNECT;
13762        }
13763
13764        pci_set_master(pdev);
13765        pci_restore_state(pdev);
13766        pci_save_state(pdev);
13767
13768        if (netif_running(dev))
13769                bnx2x_set_power_state(bp, PCI_D0);
13770
13771        if (netif_running(dev)) {
13772                BNX2X_ERR("IO slot reset --> driver unload\n");
13773
13774                /* MCP should have been reset; Need to wait for validity */
13775                bnx2x_init_shmem(bp);
13776
13777                if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13778                        u32 v;
13779
13780                        v = SHMEM2_RD(bp,
13781                                      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13782                        SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13783                                  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13784                }
13785                bnx2x_drain_tx_queues(bp);
13786                bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13787                bnx2x_netif_stop(bp, 1);
13788                bnx2x_free_irq(bp);
13789
13790                /* Report UNLOAD_DONE to MCP */
13791                bnx2x_send_unload_done(bp, true);
13792
13793                bp->sp_state = 0;
13794                bp->port.pmf = 0;
13795
13796                bnx2x_prev_unload(bp);
13797
13798                /* We should have reseted the engine, so It's fair to
13799                 * assume the FW will no longer write to the bnx2x driver.
13800                 */
13801                bnx2x_squeeze_objects(bp);
13802                bnx2x_free_skbs(bp);
13803                for_each_rx_queue(bp, i)
13804                        bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13805                bnx2x_free_fp_mem(bp);
13806                bnx2x_free_mem(bp);
13807
13808                bp->state = BNX2X_STATE_CLOSED;
13809        }
13810
13811        rtnl_unlock();
13812
13813        /* If AER, perform cleanup of the PCIe registers */
13814        if (bp->flags & AER_ENABLED) {
13815                if (pci_cleanup_aer_uncorrect_error_status(pdev))
13816                        BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13817                else
13818                        DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13819        }
13820
13821        return PCI_ERS_RESULT_RECOVERED;
13822}
13823
13824/**
13825 * bnx2x_io_resume - called when traffic can start flowing again
13826 * @pdev: Pointer to PCI device
13827 *
13828 * This callback is called when the error recovery driver tells us that
13829 * its OK to resume normal operation.
13830 */
13831static void bnx2x_io_resume(struct pci_dev *pdev)
13832{
13833        struct net_device *dev = pci_get_drvdata(pdev);
13834        struct bnx2x *bp = netdev_priv(dev);
13835
13836        if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13837                netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13838                return;
13839        }
13840
13841        rtnl_lock();
13842
13843        bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13844                                                        DRV_MSG_SEQ_NUMBER_MASK;
13845
13846        if (netif_running(dev))
13847                bnx2x_nic_load(bp, LOAD_NORMAL);
13848
13849        netif_device_attach(dev);
13850
13851        rtnl_unlock();
13852}
13853
13854static const struct pci_error_handlers bnx2x_err_handler = {
13855        .error_detected = bnx2x_io_error_detected,
13856        .slot_reset     = bnx2x_io_slot_reset,
13857        .resume         = bnx2x_io_resume,
13858};
13859
13860static void bnx2x_shutdown(struct pci_dev *pdev)
13861{
13862        struct net_device *dev = pci_get_drvdata(pdev);
13863        struct bnx2x *bp;
13864
13865        if (!dev)
13866                return;
13867
13868        bp = netdev_priv(dev);
13869        if (!bp)
13870                return;
13871
13872        rtnl_lock();
13873        netif_device_detach(dev);
13874        rtnl_unlock();
13875
13876        /* Don't remove the netdevice, as there are scenarios which will cause
13877         * the kernel to hang, e.g., when trying to remove bnx2i while the
13878         * rootfs is mounted from SAN.
13879         */
13880        __bnx2x_remove(pdev, dev, bp, false);
13881}
13882
13883static struct pci_driver bnx2x_pci_driver = {
13884        .name        = DRV_MODULE_NAME,
13885        .id_table    = bnx2x_pci_tbl,
13886        .probe       = bnx2x_init_one,
13887        .remove      = bnx2x_remove_one,
13888        .suspend     = bnx2x_suspend,
13889        .resume      = bnx2x_resume,
13890        .err_handler = &bnx2x_err_handler,
13891#ifdef CONFIG_BNX2X_SRIOV
13892        .sriov_configure = bnx2x_sriov_configure,
13893#endif
13894        .shutdown    = bnx2x_shutdown,
13895};
13896
13897static int __init bnx2x_init(void)
13898{
13899        int ret;
13900
13901        pr_info("%s", version);
13902
13903        bnx2x_wq = create_singlethread_workqueue("bnx2x");
13904        if (bnx2x_wq == NULL) {
13905                pr_err("Cannot create workqueue\n");
13906                return -ENOMEM;
13907        }
13908        bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
13909        if (!bnx2x_iov_wq) {
13910                pr_err("Cannot create iov workqueue\n");
13911                destroy_workqueue(bnx2x_wq);
13912                return -ENOMEM;
13913        }
13914
13915        ret = pci_register_driver(&bnx2x_pci_driver);
13916        if (ret) {
13917                pr_err("Cannot register driver\n");
13918                destroy_workqueue(bnx2x_wq);
13919                destroy_workqueue(bnx2x_iov_wq);
13920        }
13921        return ret;
13922}
13923
13924static void __exit bnx2x_cleanup(void)
13925{
13926        struct list_head *pos, *q;
13927
13928        pci_unregister_driver(&bnx2x_pci_driver);
13929
13930        destroy_workqueue(bnx2x_wq);
13931        destroy_workqueue(bnx2x_iov_wq);
13932
13933        /* Free globally allocated resources */
13934        list_for_each_safe(pos, q, &bnx2x_prev_list) {
13935                struct bnx2x_prev_path_list *tmp =
13936                        list_entry(pos, struct bnx2x_prev_path_list, list);
13937                list_del(pos);
13938                kfree(tmp);
13939        }
13940}
13941
13942void bnx2x_notify_link_changed(struct bnx2x *bp)
13943{
13944        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13945}
13946
13947module_init(bnx2x_init);
13948module_exit(bnx2x_cleanup);
13949
13950/**
13951 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13952 *
13953 * @bp:         driver handle
13954 * @set:        set or clear the CAM entry
13955 *
13956 * This function will wait until the ramrod completion returns.
13957 * Return 0 if success, -ENODEV if ramrod doesn't return.
13958 */
13959static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13960{
13961        unsigned long ramrod_flags = 0;
13962
13963        __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13964        return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13965                                 &bp->iscsi_l2_mac_obj, true,
13966                                 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13967}
13968
13969/* count denotes the number of new completions we have seen */
13970static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13971{
13972        struct eth_spe *spe;
13973        int cxt_index, cxt_offset;
13974
13975#ifdef BNX2X_STOP_ON_ERROR
13976        if (unlikely(bp->panic))
13977                return;
13978#endif
13979
13980        spin_lock_bh(&bp->spq_lock);
13981        BUG_ON(bp->cnic_spq_pending < count);
13982        bp->cnic_spq_pending -= count;
13983
13984        for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13985                u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13986                                & SPE_HDR_CONN_TYPE) >>
13987                                SPE_HDR_CONN_TYPE_SHIFT;
13988                u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13989                                >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13990
13991                /* Set validation for iSCSI L2 client before sending SETUP
13992                 *  ramrod
13993                 */
13994                if (type == ETH_CONNECTION_TYPE) {
13995                        if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13996                                cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13997                                        ILT_PAGE_CIDS;
13998                                cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13999                                        (cxt_index * ILT_PAGE_CIDS);
14000                                bnx2x_set_ctx_validation(bp,
14001                                        &bp->context[cxt_index].
14002                                                         vcxt[cxt_offset].eth,
14003                                        BNX2X_ISCSI_ETH_CID(bp));
14004                        }
14005                }
14006
14007                /*
14008                 * There may be not more than 8 L2, not more than 8 L5 SPEs
14009                 * and in the air. We also check that number of outstanding
14010                 * COMMON ramrods is not more than the EQ and SPQ can
14011                 * accommodate.
14012                 */
14013                if (type == ETH_CONNECTION_TYPE) {
14014                        if (!atomic_read(&bp->cq_spq_left))
14015                                break;
14016                        else
14017                                atomic_dec(&bp->cq_spq_left);
14018                } else if (type == NONE_CONNECTION_TYPE) {
14019                        if (!atomic_read(&bp->eq_spq_left))
14020                                break;
14021                        else
14022                                atomic_dec(&bp->eq_spq_left);
14023                } else if ((type == ISCSI_CONNECTION_TYPE) ||
14024                           (type == FCOE_CONNECTION_TYPE)) {
14025                        if (bp->cnic_spq_pending >=
14026                            bp->cnic_eth_dev.max_kwqe_pending)
14027                                break;
14028                        else
14029                                bp->cnic_spq_pending++;
14030                } else {
14031                        BNX2X_ERR("Unknown SPE type: %d\n", type);
14032                        bnx2x_panic();
14033                        break;
14034                }
14035
14036                spe = bnx2x_sp_get_next(bp);
14037                *spe = *bp->cnic_kwq_cons;
14038
14039                DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14040                   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14041
14042                if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14043                        bp->cnic_kwq_cons = bp->cnic_kwq;
14044                else
14045                        bp->cnic_kwq_cons++;
14046        }
14047        bnx2x_sp_prod_update(bp);
14048        spin_unlock_bh(&bp->spq_lock);
14049}
14050
14051static int bnx2x_cnic_sp_queue(struct net_device *dev,
14052                               struct kwqe_16 *kwqes[], u32 count)
14053{
14054        struct bnx2x *bp = netdev_priv(dev);
14055        int i;
14056
14057#ifdef BNX2X_STOP_ON_ERROR
14058        if (unlikely(bp->panic)) {
14059                BNX2X_ERR("Can't post to SP queue while panic\n");
14060                return -EIO;
14061        }
14062#endif
14063
14064        if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14065            (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14066                BNX2X_ERR("Handling parity error recovery. Try again later\n");
14067                return -EAGAIN;
14068        }
14069
14070        spin_lock_bh(&bp->spq_lock);
14071
14072        for (i = 0; i < count; i++) {
14073                struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14074
14075                if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14076                        break;
14077
14078                *bp->cnic_kwq_prod = *spe;
14079
14080                bp->cnic_kwq_pending++;
14081
14082                DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14083                   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14084                   spe->data.update_data_addr.hi,
14085                   spe->data.update_data_addr.lo,
14086                   bp->cnic_kwq_pending);
14087
14088                if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14089                        bp->cnic_kwq_prod = bp->cnic_kwq;
14090                else
14091                        bp->cnic_kwq_prod++;
14092        }
14093
14094        spin_unlock_bh(&bp->spq_lock);
14095
14096        if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14097                bnx2x_cnic_sp_post(bp, 0);
14098
14099        return i;
14100}
14101
14102static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14103{
14104        struct cnic_ops *c_ops;
14105        int rc = 0;
14106
14107        mutex_lock(&bp->cnic_mutex);
14108        c_ops = rcu_dereference_protected(bp->cnic_ops,
14109                                          lockdep_is_held(&bp->cnic_mutex));
14110        if (c_ops)
14111                rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14112        mutex_unlock(&bp->cnic_mutex);
14113
14114        return rc;
14115}
14116
14117static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14118{
14119        struct cnic_ops *c_ops;
14120        int rc = 0;
14121
14122        rcu_read_lock();
14123        c_ops = rcu_dereference(bp->cnic_ops);
14124        if (c_ops)
14125                rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14126        rcu_read_unlock();
14127
14128        return rc;
14129}
14130
14131/*
14132 * for commands that have no data
14133 */
14134int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14135{
14136        struct cnic_ctl_info ctl = {0};
14137
14138        ctl.cmd = cmd;
14139
14140        return bnx2x_cnic_ctl_send(bp, &ctl);
14141}
14142
14143static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14144{
14145        struct cnic_ctl_info ctl = {0};
14146
14147        /* first we tell CNIC and only then we count this as a completion */
14148        ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14149        ctl.data.comp.cid = cid;
14150        ctl.data.comp.error = err;
14151
14152        bnx2x_cnic_ctl_send_bh(bp, &ctl);
14153        bnx2x_cnic_sp_post(bp, 0);
14154}
14155
14156/* Called with netif_addr_lock_bh() taken.
14157 * Sets an rx_mode config for an iSCSI ETH client.
14158 * Doesn't block.
14159 * Completion should be checked outside.
14160 */
14161static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14162{
14163        unsigned long accept_flags = 0, ramrod_flags = 0;
14164        u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14165        int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14166
14167        if (start) {
14168                /* Start accepting on iSCSI L2 ring. Accept all multicasts
14169                 * because it's the only way for UIO Queue to accept
14170                 * multicasts (in non-promiscuous mode only one Queue per
14171                 * function will receive multicast packets (leading in our
14172                 * case).
14173                 */
14174                __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14175                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14176                __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14177                __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14178
14179                /* Clear STOP_PENDING bit if START is requested */
14180                clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14181
14182                sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14183        } else
14184                /* Clear START_PENDING bit if STOP is requested */
14185                clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14186
14187        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14188                set_bit(sched_state, &bp->sp_state);
14189        else {
14190                __set_bit(RAMROD_RX, &ramrod_flags);
14191                bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14192                                    ramrod_flags);
14193        }
14194}
14195
14196static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14197{
14198        struct bnx2x *bp = netdev_priv(dev);
14199        int rc = 0;
14200
14201        switch (ctl->cmd) {
14202        case DRV_CTL_CTXTBL_WR_CMD: {
14203                u32 index = ctl->data.io.offset;
14204                dma_addr_t addr = ctl->data.io.dma_addr;
14205
14206                bnx2x_ilt_wr(bp, index, addr);
14207                break;
14208        }
14209
14210        case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14211                int count = ctl->data.credit.credit_count;
14212
14213                bnx2x_cnic_sp_post(bp, count);
14214                break;
14215        }
14216
14217        /* rtnl_lock is held.  */
14218        case DRV_CTL_START_L2_CMD: {
14219                struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14220                unsigned long sp_bits = 0;
14221
14222                /* Configure the iSCSI classification object */
14223                bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14224                                   cp->iscsi_l2_client_id,
14225                                   cp->iscsi_l2_cid, BP_FUNC(bp),
14226                                   bnx2x_sp(bp, mac_rdata),
14227                                   bnx2x_sp_mapping(bp, mac_rdata),
14228                                   BNX2X_FILTER_MAC_PENDING,
14229                                   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14230                                   &bp->macs_pool);
14231
14232                /* Set iSCSI MAC address */
14233                rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14234                if (rc)
14235                        break;
14236
14237                mmiowb();
14238                barrier();
14239
14240                /* Start accepting on iSCSI L2 ring */
14241
14242                netif_addr_lock_bh(dev);
14243                bnx2x_set_iscsi_eth_rx_mode(bp, true);
14244                netif_addr_unlock_bh(dev);
14245
14246                /* bits to wait on */
14247                __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14248                __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14249
14250                if (!bnx2x_wait_sp_comp(bp, sp_bits))
14251                        BNX2X_ERR("rx_mode completion timed out!\n");
14252
14253                break;
14254        }
14255
14256        /* rtnl_lock is held.  */
14257        case DRV_CTL_STOP_L2_CMD: {
14258                unsigned long sp_bits = 0;
14259
14260                /* Stop accepting on iSCSI L2 ring */
14261                netif_addr_lock_bh(dev);
14262                bnx2x_set_iscsi_eth_rx_mode(bp, false);
14263                netif_addr_unlock_bh(dev);
14264
14265                /* bits to wait on */
14266                __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14267                __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14268
14269                if (!bnx2x_wait_sp_comp(bp, sp_bits))
14270                        BNX2X_ERR("rx_mode completion timed out!\n");
14271
14272                mmiowb();
14273                barrier();
14274
14275                /* Unset iSCSI L2 MAC */
14276                rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14277                                        BNX2X_ISCSI_ETH_MAC, true);
14278                break;
14279        }
14280        case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14281                int count = ctl->data.credit.credit_count;
14282
14283                smp_mb__before_atomic();
14284                atomic_add(count, &bp->cq_spq_left);
14285                smp_mb__after_atomic();
14286                break;
14287        }
14288        case DRV_CTL_ULP_REGISTER_CMD: {
14289                int ulp_type = ctl->data.register_data.ulp_type;
14290
14291                if (CHIP_IS_E3(bp)) {
14292                        int idx = BP_FW_MB_IDX(bp);
14293                        u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14294                        int path = BP_PATH(bp);
14295                        int port = BP_PORT(bp);
14296                        int i;
14297                        u32 scratch_offset;
14298                        u32 *host_addr;
14299
14300                        /* first write capability to shmem2 */
14301                        if (ulp_type == CNIC_ULP_ISCSI)
14302                                cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14303                        else if (ulp_type == CNIC_ULP_FCOE)
14304                                cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14305                        SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14306
14307                        if ((ulp_type != CNIC_ULP_FCOE) ||
14308                            (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14309                            (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14310                                break;
14311
14312                        /* if reached here - should write fcoe capabilities */
14313                        scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14314                        if (!scratch_offset)
14315                                break;
14316                        scratch_offset += offsetof(struct glob_ncsi_oem_data,
14317                                                   fcoe_features[path][port]);
14318                        host_addr = (u32 *) &(ctl->data.register_data.
14319                                              fcoe_features);
14320                        for (i = 0; i < sizeof(struct fcoe_capabilities);
14321                             i += 4)
14322                                REG_WR(bp, scratch_offset + i,
14323                                       *(host_addr + i/4));
14324                }
14325                bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14326                break;
14327        }
14328
14329        case DRV_CTL_ULP_UNREGISTER_CMD: {
14330                int ulp_type = ctl->data.ulp_type;
14331
14332                if (CHIP_IS_E3(bp)) {
14333                        int idx = BP_FW_MB_IDX(bp);
14334                        u32 cap;
14335
14336                        cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14337                        if (ulp_type == CNIC_ULP_ISCSI)
14338                                cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14339                        else if (ulp_type == CNIC_ULP_FCOE)
14340                                cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14341                        SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14342                }
14343                bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14344                break;
14345        }
14346
14347        default:
14348                BNX2X_ERR("unknown command %x\n", ctl->cmd);
14349                rc = -EINVAL;
14350        }
14351
14352        return rc;
14353}
14354
14355void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14356{
14357        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14358
14359        if (bp->flags & USING_MSIX_FLAG) {
14360                cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14361                cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14362                cp->irq_arr[0].vector = bp->msix_table[1].vector;
14363        } else {
14364                cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14365                cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14366        }
14367        if (!CHIP_IS_E1x(bp))
14368                cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14369        else
14370                cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14371
14372        cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14373        cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14374        cp->irq_arr[1].status_blk = bp->def_status_blk;
14375        cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14376        cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14377
14378        cp->num_irq = 2;
14379}
14380
14381void bnx2x_setup_cnic_info(struct bnx2x *bp)
14382{
14383        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14384
14385        cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14386                             bnx2x_cid_ilt_lines(bp);
14387        cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14388        cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14389        cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14390
14391        DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14392           BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14393           cp->iscsi_l2_cid);
14394
14395        if (NO_ISCSI_OOO(bp))
14396                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14397}
14398
14399static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14400                               void *data)
14401{
14402        struct bnx2x *bp = netdev_priv(dev);
14403        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14404        int rc;
14405
14406        DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14407
14408        if (ops == NULL) {
14409                BNX2X_ERR("NULL ops received\n");
14410                return -EINVAL;
14411        }
14412
14413        if (!CNIC_SUPPORT(bp)) {
14414                BNX2X_ERR("Can't register CNIC when not supported\n");
14415                return -EOPNOTSUPP;
14416        }
14417
14418        if (!CNIC_LOADED(bp)) {
14419                rc = bnx2x_load_cnic(bp);
14420                if (rc) {
14421                        BNX2X_ERR("CNIC-related load failed\n");
14422                        return rc;
14423                }
14424        }
14425
14426        bp->cnic_enabled = true;
14427
14428        bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14429        if (!bp->cnic_kwq)
14430                return -ENOMEM;
14431
14432        bp->cnic_kwq_cons = bp->cnic_kwq;
14433        bp->cnic_kwq_prod = bp->cnic_kwq;
14434        bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14435
14436        bp->cnic_spq_pending = 0;
14437        bp->cnic_kwq_pending = 0;
14438
14439        bp->cnic_data = data;
14440
14441        cp->num_irq = 0;
14442        cp->drv_state |= CNIC_DRV_STATE_REGD;
14443        cp->iro_arr = bp->iro_arr;
14444
14445        bnx2x_setup_cnic_irq_info(bp);
14446
14447        rcu_assign_pointer(bp->cnic_ops, ops);
14448
14449        /* Schedule driver to read CNIC driver versions */
14450        bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14451
14452        return 0;
14453}
14454
14455static int bnx2x_unregister_cnic(struct net_device *dev)
14456{
14457        struct bnx2x *bp = netdev_priv(dev);
14458        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14459
14460        mutex_lock(&bp->cnic_mutex);
14461        cp->drv_state = 0;
14462        RCU_INIT_POINTER(bp->cnic_ops, NULL);
14463        mutex_unlock(&bp->cnic_mutex);
14464        synchronize_rcu();
14465        bp->cnic_enabled = false;
14466        kfree(bp->cnic_kwq);
14467        bp->cnic_kwq = NULL;
14468
14469        return 0;
14470}
14471
14472static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14473{
14474        struct bnx2x *bp = netdev_priv(dev);
14475        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14476
14477        /* If both iSCSI and FCoE are disabled - return NULL in
14478         * order to indicate CNIC that it should not try to work
14479         * with this device.
14480         */
14481        if (NO_ISCSI(bp) && NO_FCOE(bp))
14482                return NULL;
14483
14484        cp->drv_owner = THIS_MODULE;
14485        cp->chip_id = CHIP_ID(bp);
14486        cp->pdev = bp->pdev;
14487        cp->io_base = bp->regview;
14488        cp->io_base2 = bp->doorbells;
14489        cp->max_kwqe_pending = 8;
14490        cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14491        cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14492                             bnx2x_cid_ilt_lines(bp);
14493        cp->ctx_tbl_len = CNIC_ILT_LINES;
14494        cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14495        cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
14496        cp->drv_ctl = bnx2x_drv_ctl;
14497        cp->drv_register_cnic = bnx2x_register_cnic;
14498        cp->drv_unregister_cnic = bnx2x_unregister_cnic;
14499        cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14500        cp->iscsi_l2_client_id =
14501                bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14502        cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14503
14504        if (NO_ISCSI_OOO(bp))
14505                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14506
14507        if (NO_ISCSI(bp))
14508                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
14509
14510        if (NO_FCOE(bp))
14511                cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
14512
14513        BNX2X_DEV_INFO(
14514                "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
14515           cp->ctx_blk_size,
14516           cp->ctx_tbl_offset,
14517           cp->ctx_tbl_len,
14518           cp->starting_cid);
14519        return cp;
14520}
14521
14522static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
14523{
14524        struct bnx2x *bp = fp->bp;
14525        u32 offset = BAR_USTRORM_INTMEM;
14526
14527        if (IS_VF(bp))
14528                return bnx2x_vf_ustorm_prods_offset(bp, fp);
14529        else if (!CHIP_IS_E1x(bp))
14530                offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
14531        else
14532                offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
14533
14534        return offset;
14535}
14536
14537/* called only on E1H or E2.
14538 * When pretending to be PF, the pretend value is the function number 0...7
14539 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
14540 * combination
14541 */
14542int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
14543{
14544        u32 pretend_reg;
14545
14546        if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
14547                return -1;
14548
14549        /* get my own pretend register */
14550        pretend_reg = bnx2x_get_pretend_reg(bp);
14551        REG_WR(bp, pretend_reg, pretend_func_val);
14552        REG_RD(bp, pretend_reg);
14553        return 0;
14554}
14555
14556static void bnx2x_ptp_task(struct work_struct *work)
14557{
14558        struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
14559        int port = BP_PORT(bp);
14560        u32 val_seq;
14561        u64 timestamp, ns;
14562        struct skb_shared_hwtstamps shhwtstamps;
14563
14564        /* Read Tx timestamp registers */
14565        val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14566                         NIG_REG_P0_TLLH_PTP_BUF_SEQID);
14567        if (val_seq & 0x10000) {
14568                /* There is a valid timestamp value */
14569                timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
14570                                   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
14571                timestamp <<= 32;
14572                timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
14573                                    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
14574                /* Reset timestamp register to allow new timestamp */
14575                REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14576                       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14577                ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14578
14579                memset(&shhwtstamps, 0, sizeof(shhwtstamps));
14580                shhwtstamps.hwtstamp = ns_to_ktime(ns);
14581                skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
14582                dev_kfree_skb_any(bp->ptp_tx_skb);
14583                bp->ptp_tx_skb = NULL;
14584
14585                DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
14586                   timestamp, ns);
14587        } else {
14588                DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
14589                /* Reschedule to keep checking for a valid timestamp value */
14590                schedule_work(&bp->ptp_task);
14591        }
14592}
14593
14594void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
14595{
14596        int port = BP_PORT(bp);
14597        u64 timestamp, ns;
14598
14599        timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
14600                            NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
14601        timestamp <<= 32;
14602        timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
14603                            NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
14604
14605        /* Reset timestamp register to allow new timestamp */
14606        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14607               NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14608
14609        ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14610
14611        skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
14612
14613        DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
14614           timestamp, ns);
14615}
14616
14617/* Read the PHC */
14618static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
14619{
14620        struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
14621        int port = BP_PORT(bp);
14622        u32 wb_data[2];
14623        u64 phc_cycles;
14624
14625        REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
14626                    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
14627        phc_cycles = wb_data[1];
14628        phc_cycles = (phc_cycles << 32) + wb_data[0];
14629
14630        DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
14631
14632        return phc_cycles;
14633}
14634
14635static void bnx2x_init_cyclecounter(struct bnx2x *bp)
14636{
14637        memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
14638        bp->cyclecounter.read = bnx2x_cyclecounter_read;
14639        bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
14640        bp->cyclecounter.shift = 1;
14641        bp->cyclecounter.mult = 1;
14642}
14643
14644static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
14645{
14646        struct bnx2x_func_state_params func_params = {NULL};
14647        struct bnx2x_func_set_timesync_params *set_timesync_params =
14648                &func_params.params.set_timesync;
14649
14650        /* Prepare parameters for function state transitions */
14651        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
14652        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
14653
14654        func_params.f_obj = &bp->func_obj;
14655        func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
14656
14657        /* Function parameters */
14658        set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
14659        set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
14660
14661        return bnx2x_func_state_change(bp, &func_params);
14662}
14663
14664static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
14665{
14666        struct bnx2x_queue_state_params q_params;
14667        int rc, i;
14668
14669        /* send queue update ramrod to enable PTP packets */
14670        memset(&q_params, 0, sizeof(q_params));
14671        __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
14672        q_params.cmd = BNX2X_Q_CMD_UPDATE;
14673        __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
14674                  &q_params.params.update.update_flags);
14675        __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
14676                  &q_params.params.update.update_flags);
14677
14678        /* send the ramrod on all the queues of the PF */
14679        for_each_eth_queue(bp, i) {
14680                struct bnx2x_fastpath *fp = &bp->fp[i];
14681
14682                /* Set the appropriate Queue object */
14683                q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
14684
14685                /* Update the Queue state */
14686                rc = bnx2x_queue_state_change(bp, &q_params);
14687                if (rc) {
14688                        BNX2X_ERR("Failed to enable PTP packets\n");
14689                        return rc;
14690                }
14691        }
14692
14693        return 0;
14694}
14695
14696int bnx2x_configure_ptp_filters(struct bnx2x *bp)
14697{
14698        int port = BP_PORT(bp);
14699        int rc;
14700
14701        if (!bp->hwtstamp_ioctl_called)
14702                return 0;
14703
14704        switch (bp->tx_type) {
14705        case HWTSTAMP_TX_ON:
14706                bp->flags |= TX_TIMESTAMPING_EN;
14707                REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14708                       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
14709                REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14710                       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
14711                break;
14712        case HWTSTAMP_TX_ONESTEP_SYNC:
14713                BNX2X_ERR("One-step timestamping is not supported\n");
14714                return -ERANGE;
14715        }
14716
14717        switch (bp->rx_filter) {
14718        case HWTSTAMP_FILTER_NONE:
14719                break;
14720        case HWTSTAMP_FILTER_ALL:
14721        case HWTSTAMP_FILTER_SOME:
14722                bp->rx_filter = HWTSTAMP_FILTER_NONE;
14723                break;
14724        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
14725        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
14726        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
14727                bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
14728                /* Initialize PTP detection for UDP/IPv4 events */
14729                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14730                       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
14731                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14732                       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
14733                break;
14734        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
14735        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
14736        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
14737                bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
14738                /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
14739                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14740                       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
14741                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14742                       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
14743                break;
14744        case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
14745        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
14746        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
14747                bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
14748                /* Initialize PTP detection L2 events */
14749                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14750                       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
14751                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14752                       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
14753
14754                break;
14755        case HWTSTAMP_FILTER_PTP_V2_EVENT:
14756        case HWTSTAMP_FILTER_PTP_V2_SYNC:
14757        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
14758                bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
14759                /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
14760                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14761                       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
14762                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14763                       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
14764                break;
14765        }
14766
14767        /* Indicate to FW that this PF expects recorded PTP packets */
14768        rc = bnx2x_enable_ptp_packets(bp);
14769        if (rc)
14770                return rc;
14771
14772        /* Enable sending PTP packets to host */
14773        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14774               NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
14775
14776        return 0;
14777}
14778
14779static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
14780{
14781        struct hwtstamp_config config;
14782        int rc;
14783
14784        DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
14785
14786        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
14787                return -EFAULT;
14788
14789        DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
14790           config.tx_type, config.rx_filter);
14791
14792        if (config.flags) {
14793                BNX2X_ERR("config.flags is reserved for future use\n");
14794                return -EINVAL;
14795        }
14796
14797        bp->hwtstamp_ioctl_called = 1;
14798        bp->tx_type = config.tx_type;
14799        bp->rx_filter = config.rx_filter;
14800
14801        rc = bnx2x_configure_ptp_filters(bp);
14802        if (rc)
14803                return rc;
14804
14805        config.rx_filter = bp->rx_filter;
14806
14807        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
14808                -EFAULT : 0;
14809}
14810
14811/* Configures HW for PTP */
14812static int bnx2x_configure_ptp(struct bnx2x *bp)
14813{
14814        int rc, port = BP_PORT(bp);
14815        u32 wb_data[2];
14816
14817        /* Reset PTP event detection rules - will be configured in the IOCTL */
14818        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14819               NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
14820        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14821               NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
14822        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14823               NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
14824        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14825               NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
14826
14827        /* Disable PTP packets to host - will be configured in the IOCTL*/
14828        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14829               NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
14830
14831        /* Enable the PTP feature */
14832        REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
14833               NIG_REG_P0_PTP_EN, 0x3F);
14834
14835        /* Enable the free-running counter */
14836        wb_data[0] = 0;
14837        wb_data[1] = 0;
14838        REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
14839
14840        /* Reset drift register (offset register is not reset) */
14841        rc = bnx2x_send_reset_timesync_ramrod(bp);
14842        if (rc) {
14843                BNX2X_ERR("Failed to reset PHC drift register\n");
14844                return -EFAULT;
14845        }
14846
14847        /* Reset possibly old timestamps */
14848        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14849               NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14850        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14851               NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14852
14853        return 0;
14854}
14855
14856/* Called during load, to initialize PTP-related stuff */
14857void bnx2x_init_ptp(struct bnx2x *bp)
14858{
14859        int rc;
14860
14861        /* Configure PTP in HW */
14862        rc = bnx2x_configure_ptp(bp);
14863        if (rc) {
14864                BNX2X_ERR("Stopping PTP initialization\n");
14865                return;
14866        }
14867
14868        /* Init work queue for Tx timestamping */
14869        INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
14870
14871        /* Init cyclecounter and timecounter. This is done only in the first
14872         * load. If done in every load, PTP application will fail when doing
14873         * unload / load (e.g. MTU change) while it is running.
14874         */
14875        if (!bp->timecounter_init_done) {
14876                bnx2x_init_cyclecounter(bp);
14877                timecounter_init(&bp->timecounter, &bp->cyclecounter,
14878                                 ktime_to_ns(ktime_get_real()));
14879                bp->timecounter_init_done = 1;
14880        }
14881
14882        DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
14883}
14884