linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/bitmap.h>
  38#include <linux/crc32.h>
  39#include <linux/ctype.h>
  40#include <linux/debugfs.h>
  41#include <linux/err.h>
  42#include <linux/etherdevice.h>
  43#include <linux/firmware.h>
  44#include <linux/if.h>
  45#include <linux/if_vlan.h>
  46#include <linux/init.h>
  47#include <linux/log2.h>
  48#include <linux/mdio.h>
  49#include <linux/module.h>
  50#include <linux/moduleparam.h>
  51#include <linux/mutex.h>
  52#include <linux/netdevice.h>
  53#include <linux/pci.h>
  54#include <linux/aer.h>
  55#include <linux/rtnetlink.h>
  56#include <linux/sched.h>
  57#include <linux/seq_file.h>
  58#include <linux/sockios.h>
  59#include <linux/vmalloc.h>
  60#include <linux/workqueue.h>
  61#include <net/neighbour.h>
  62#include <net/netevent.h>
  63#include <net/addrconf.h>
  64#include <net/bonding.h>
  65#include <net/addrconf.h>
  66#include <asm/uaccess.h>
  67
  68#include "cxgb4.h"
  69#include "t4_regs.h"
  70#include "t4_values.h"
  71#include "t4_msg.h"
  72#include "t4fw_api.h"
  73#include "t4fw_version.h"
  74#include "cxgb4_dcb.h"
  75#include "cxgb4_debugfs.h"
  76#include "clip_tbl.h"
  77#include "l2t.h"
  78
  79char cxgb4_driver_name[] = KBUILD_MODNAME;
  80
  81#ifdef DRV_VERSION
  82#undef DRV_VERSION
  83#endif
  84#define DRV_VERSION "2.0.0-ko"
  85const char cxgb4_driver_version[] = DRV_VERSION;
  86#define DRV_DESC "Chelsio T4/T5 Network Driver"
  87
  88/* Host shadow copy of ingress filter entry.  This is in host native format
  89 * and doesn't match the ordering or bit order, etc. of the hardware of the
  90 * firmware command.  The use of bit-field structure elements is purely to
  91 * remind ourselves of the field size limitations and save memory in the case
  92 * where the filter table is large.
  93 */
  94struct filter_entry {
  95        /* Administrative fields for filter.
  96         */
  97        u32 valid:1;            /* filter allocated and valid */
  98        u32 locked:1;           /* filter is administratively locked */
  99
 100        u32 pending:1;          /* filter action is pending firmware reply */
 101        u32 smtidx:8;           /* Source MAC Table index for smac */
 102        struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
 103
 104        /* The filter itself.  Most of this is a straight copy of information
 105         * provided by the extended ioctl().  Some fields are translated to
 106         * internal forms -- for instance the Ingress Queue ID passed in from
 107         * the ioctl() is translated into the Absolute Ingress Queue ID.
 108         */
 109        struct ch_filter_specification fs;
 110};
 111
 112#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
 113                         NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
 114                         NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
 115
 116/* Macros needed to support the PCI Device ID Table ...
 117 */
 118#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
 119        static const struct pci_device_id cxgb4_pci_tbl[] = {
 120#define CH_PCI_DEVICE_ID_FUNCTION 0x4
 121
 122/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
 123 * called for both.
 124 */
 125#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
 126
 127#define CH_PCI_ID_TABLE_ENTRY(devid) \
 128                {PCI_VDEVICE(CHELSIO, (devid)), 4}
 129
 130#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
 131                { 0, } \
 132        }
 133
 134#include "t4_pci_id_tbl.h"
 135
 136#define FW4_FNAME "cxgb4/t4fw.bin"
 137#define FW5_FNAME "cxgb4/t5fw.bin"
 138#define FW4_CFNAME "cxgb4/t4-config.txt"
 139#define FW5_CFNAME "cxgb4/t5-config.txt"
 140
 141MODULE_DESCRIPTION(DRV_DESC);
 142MODULE_AUTHOR("Chelsio Communications");
 143MODULE_LICENSE("Dual BSD/GPL");
 144MODULE_VERSION(DRV_VERSION);
 145MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
 146MODULE_FIRMWARE(FW4_FNAME);
 147MODULE_FIRMWARE(FW5_FNAME);
 148
 149/*
 150 * Normally we're willing to become the firmware's Master PF but will be happy
 151 * if another PF has already become the Master and initialized the adapter.
 152 * Setting "force_init" will cause this driver to forcibly establish itself as
 153 * the Master PF and initialize the adapter.
 154 */
 155static uint force_init;
 156
 157module_param(force_init, uint, 0644);
 158MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
 159
 160/*
 161 * Normally if the firmware we connect to has Configuration File support, we
 162 * use that and only fall back to the old Driver-based initialization if the
 163 * Configuration File fails for some reason.  If force_old_init is set, then
 164 * we'll always use the old Driver-based initialization sequence.
 165 */
 166static uint force_old_init;
 167
 168module_param(force_old_init, uint, 0644);
 169MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
 170                 " parameter");
 171
 172static int dflt_msg_enable = DFLT_MSG_ENABLE;
 173
 174module_param(dflt_msg_enable, int, 0644);
 175MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
 176
 177/*
 178 * The driver uses the best interrupt scheme available on a platform in the
 179 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
 180 * of these schemes the driver may consider as follows:
 181 *
 182 * msi = 2: choose from among all three options
 183 * msi = 1: only consider MSI and INTx interrupts
 184 * msi = 0: force INTx interrupts
 185 */
 186static int msi = 2;
 187
 188module_param(msi, int, 0644);
 189MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
 190
 191/*
 192 * Queue interrupt hold-off timer values.  Queues default to the first of these
 193 * upon creation.
 194 */
 195static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
 196
 197module_param_array(intr_holdoff, uint, NULL, 0644);
 198MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
 199                 "0..4 in microseconds, deprecated parameter");
 200
 201static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
 202
 203module_param_array(intr_cnt, uint, NULL, 0644);
 204MODULE_PARM_DESC(intr_cnt,
 205                 "thresholds 1..3 for queue interrupt packet counters, "
 206                 "deprecated parameter");
 207
 208/*
 209 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
 210 * offset by 2 bytes in order to have the IP headers line up on 4-byte
 211 * boundaries.  This is a requirement for many architectures which will throw
 212 * a machine check fault if an attempt is made to access one of the 4-byte IP
 213 * header fields on a non-4-byte boundary.  And it's a major performance issue
 214 * even on some architectures which allow it like some implementations of the
 215 * x86 ISA.  However, some architectures don't mind this and for some very
 216 * edge-case performance sensitive applications (like forwarding large volumes
 217 * of small packets), setting this DMA offset to 0 will decrease the number of
 218 * PCI-E Bus transfers enough to measurably affect performance.
 219 */
 220static int rx_dma_offset = 2;
 221
 222static bool vf_acls;
 223
 224#ifdef CONFIG_PCI_IOV
 225module_param(vf_acls, bool, 0644);
 226MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
 227                 "deprecated parameter");
 228
 229/* Configure the number of PCI-E Virtual Function which are to be instantiated
 230 * on SR-IOV Capable Physical Functions.
 231 */
 232static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
 233
 234module_param_array(num_vf, uint, NULL, 0644);
 235MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
 236#endif
 237
 238/* TX Queue select used to determine what algorithm to use for selecting TX
 239 * queue. Select between the kernel provided function (select_queue=0) or user
 240 * cxgb_select_queue function (select_queue=1)
 241 *
 242 * Default: select_queue=0
 243 */
 244static int select_queue;
 245module_param(select_queue, int, 0644);
 246MODULE_PARM_DESC(select_queue,
 247                 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
 248
 249static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
 250
 251module_param(tp_vlan_pri_map, uint, 0644);
 252MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
 253                 "deprecated parameter");
 254
 255static struct dentry *cxgb4_debugfs_root;
 256
 257static LIST_HEAD(adapter_list);
 258static DEFINE_MUTEX(uld_mutex);
 259/* Adapter list to be accessed from atomic context */
 260static LIST_HEAD(adap_rcu_list);
 261static DEFINE_SPINLOCK(adap_rcu_lock);
 262static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
 263static const char *uld_str[] = { "RDMA", "iSCSI" };
 264
 265static void link_report(struct net_device *dev)
 266{
 267        if (!netif_carrier_ok(dev))
 268                netdev_info(dev, "link down\n");
 269        else {
 270                static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
 271
 272                const char *s = "10Mbps";
 273                const struct port_info *p = netdev_priv(dev);
 274
 275                switch (p->link_cfg.speed) {
 276                case 10000:
 277                        s = "10Gbps";
 278                        break;
 279                case 1000:
 280                        s = "1000Mbps";
 281                        break;
 282                case 100:
 283                        s = "100Mbps";
 284                        break;
 285                case 40000:
 286                        s = "40Gbps";
 287                        break;
 288                }
 289
 290                netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
 291                            fc[p->link_cfg.fc]);
 292        }
 293}
 294
 295#ifdef CONFIG_CHELSIO_T4_DCB
 296/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
 297static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
 298{
 299        struct port_info *pi = netdev_priv(dev);
 300        struct adapter *adap = pi->adapter;
 301        struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
 302        int i;
 303
 304        /* We use a simple mapping of Port TX Queue Index to DCB
 305         * Priority when we're enabling DCB.
 306         */
 307        for (i = 0; i < pi->nqsets; i++, txq++) {
 308                u32 name, value;
 309                int err;
 310
 311                name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
 312                        FW_PARAMS_PARAM_X_V(
 313                                FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
 314                        FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
 315                value = enable ? i : 0xffffffff;
 316
 317                /* Since we can be called while atomic (from "interrupt
 318                 * level") we need to issue the Set Parameters Commannd
 319                 * without sleeping (timeout < 0).
 320                 */
 321                err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
 322                                            &name, &value);
 323
 324                if (err)
 325                        dev_err(adap->pdev_dev,
 326                                "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
 327                                enable ? "set" : "unset", pi->port_id, i, -err);
 328                else
 329                        txq->dcb_prio = value;
 330        }
 331}
 332#endif /* CONFIG_CHELSIO_T4_DCB */
 333
 334void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
 335{
 336        struct net_device *dev = adapter->port[port_id];
 337
 338        /* Skip changes from disabled ports. */
 339        if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
 340                if (link_stat)
 341                        netif_carrier_on(dev);
 342                else {
 343#ifdef CONFIG_CHELSIO_T4_DCB
 344                        cxgb4_dcb_state_init(dev);
 345                        dcb_tx_queue_prio_enable(dev, false);
 346#endif /* CONFIG_CHELSIO_T4_DCB */
 347                        netif_carrier_off(dev);
 348                }
 349
 350                link_report(dev);
 351        }
 352}
 353
 354void t4_os_portmod_changed(const struct adapter *adap, int port_id)
 355{
 356        static const char *mod_str[] = {
 357                NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
 358        };
 359
 360        const struct net_device *dev = adap->port[port_id];
 361        const struct port_info *pi = netdev_priv(dev);
 362
 363        if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
 364                netdev_info(dev, "port module unplugged\n");
 365        else if (pi->mod_type < ARRAY_SIZE(mod_str))
 366                netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
 367}
 368
 369/*
 370 * Configure the exact and hash address filters to handle a port's multicast
 371 * and secondary unicast MAC addresses.
 372 */
 373static int set_addr_filters(const struct net_device *dev, bool sleep)
 374{
 375        u64 mhash = 0;
 376        u64 uhash = 0;
 377        bool free = true;
 378        u16 filt_idx[7];
 379        const u8 *addr[7];
 380        int ret, naddr = 0;
 381        const struct netdev_hw_addr *ha;
 382        int uc_cnt = netdev_uc_count(dev);
 383        int mc_cnt = netdev_mc_count(dev);
 384        const struct port_info *pi = netdev_priv(dev);
 385        unsigned int mb = pi->adapter->fn;
 386
 387        /* first do the secondary unicast addresses */
 388        netdev_for_each_uc_addr(ha, dev) {
 389                addr[naddr++] = ha->addr;
 390                if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
 391                        ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
 392                                        naddr, addr, filt_idx, &uhash, sleep);
 393                        if (ret < 0)
 394                                return ret;
 395
 396                        free = false;
 397                        naddr = 0;
 398                }
 399        }
 400
 401        /* next set up the multicast addresses */
 402        netdev_for_each_mc_addr(ha, dev) {
 403                addr[naddr++] = ha->addr;
 404                if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
 405                        ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
 406                                        naddr, addr, filt_idx, &mhash, sleep);
 407                        if (ret < 0)
 408                                return ret;
 409
 410                        free = false;
 411                        naddr = 0;
 412                }
 413        }
 414
 415        return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
 416                                uhash | mhash, sleep);
 417}
 418
 419int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
 420module_param(dbfifo_int_thresh, int, 0644);
 421MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
 422
 423/*
 424 * usecs to sleep while draining the dbfifo
 425 */
 426static int dbfifo_drain_delay = 1000;
 427module_param(dbfifo_drain_delay, int, 0644);
 428MODULE_PARM_DESC(dbfifo_drain_delay,
 429                 "usecs to sleep while draining the dbfifo");
 430
 431/*
 432 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
 433 * If @mtu is -1 it is left unchanged.
 434 */
 435static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
 436{
 437        int ret;
 438        struct port_info *pi = netdev_priv(dev);
 439
 440        ret = set_addr_filters(dev, sleep_ok);
 441        if (ret == 0)
 442                ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
 443                                    (dev->flags & IFF_PROMISC) ? 1 : 0,
 444                                    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
 445                                    sleep_ok);
 446        return ret;
 447}
 448
 449/**
 450 *      link_start - enable a port
 451 *      @dev: the port to enable
 452 *
 453 *      Performs the MAC and PHY actions needed to enable a port.
 454 */
 455static int link_start(struct net_device *dev)
 456{
 457        int ret;
 458        struct port_info *pi = netdev_priv(dev);
 459        unsigned int mb = pi->adapter->fn;
 460
 461        /*
 462         * We do not set address filters and promiscuity here, the stack does
 463         * that step explicitly.
 464         */
 465        ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
 466                            !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
 467        if (ret == 0) {
 468                ret = t4_change_mac(pi->adapter, mb, pi->viid,
 469                                    pi->xact_addr_filt, dev->dev_addr, true,
 470                                    true);
 471                if (ret >= 0) {
 472                        pi->xact_addr_filt = ret;
 473                        ret = 0;
 474                }
 475        }
 476        if (ret == 0)
 477                ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
 478                                    &pi->link_cfg);
 479        if (ret == 0) {
 480                local_bh_disable();
 481                ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
 482                                          true, CXGB4_DCB_ENABLED);
 483                local_bh_enable();
 484        }
 485
 486        return ret;
 487}
 488
 489int cxgb4_dcb_enabled(const struct net_device *dev)
 490{
 491#ifdef CONFIG_CHELSIO_T4_DCB
 492        struct port_info *pi = netdev_priv(dev);
 493
 494        if (!pi->dcb.enabled)
 495                return 0;
 496
 497        return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
 498                (pi->dcb.state == CXGB4_DCB_STATE_HOST));
 499#else
 500        return 0;
 501#endif
 502}
 503EXPORT_SYMBOL(cxgb4_dcb_enabled);
 504
 505#ifdef CONFIG_CHELSIO_T4_DCB
 506/* Handle a Data Center Bridging update message from the firmware. */
 507static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
 508{
 509        int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
 510        struct net_device *dev = adap->port[port];
 511        int old_dcb_enabled = cxgb4_dcb_enabled(dev);
 512        int new_dcb_enabled;
 513
 514        cxgb4_dcb_handle_fw_update(adap, pcmd);
 515        new_dcb_enabled = cxgb4_dcb_enabled(dev);
 516
 517        /* If the DCB has become enabled or disabled on the port then we're
 518         * going to need to set up/tear down DCB Priority parameters for the
 519         * TX Queues associated with the port.
 520         */
 521        if (new_dcb_enabled != old_dcb_enabled)
 522                dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
 523}
 524#endif /* CONFIG_CHELSIO_T4_DCB */
 525
 526/* Clear a filter and release any of its resources that we own.  This also
 527 * clears the filter's "pending" status.
 528 */
 529static void clear_filter(struct adapter *adap, struct filter_entry *f)
 530{
 531        /* If the new or old filter have loopback rewriteing rules then we'll
 532         * need to free any existing Layer Two Table (L2T) entries of the old
 533         * filter rule.  The firmware will handle freeing up any Source MAC
 534         * Table (SMT) entries used for rewriting Source MAC Addresses in
 535         * loopback rules.
 536         */
 537        if (f->l2t)
 538                cxgb4_l2t_release(f->l2t);
 539
 540        /* The zeroing of the filter rule below clears the filter valid,
 541         * pending, locked flags, l2t pointer, etc. so it's all we need for
 542         * this operation.
 543         */
 544        memset(f, 0, sizeof(*f));
 545}
 546
 547/* Handle a filter write/deletion reply.
 548 */
 549static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
 550{
 551        unsigned int idx = GET_TID(rpl);
 552        unsigned int nidx = idx - adap->tids.ftid_base;
 553        unsigned int ret;
 554        struct filter_entry *f;
 555
 556        if (idx >= adap->tids.ftid_base && nidx <
 557           (adap->tids.nftids + adap->tids.nsftids)) {
 558                idx = nidx;
 559                ret = TCB_COOKIE_G(rpl->cookie);
 560                f = &adap->tids.ftid_tab[idx];
 561
 562                if (ret == FW_FILTER_WR_FLT_DELETED) {
 563                        /* Clear the filter when we get confirmation from the
 564                         * hardware that the filter has been deleted.
 565                         */
 566                        clear_filter(adap, f);
 567                } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
 568                        dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
 569                                idx);
 570                        clear_filter(adap, f);
 571                } else if (ret == FW_FILTER_WR_FLT_ADDED) {
 572                        f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
 573                        f->pending = 0;  /* asynchronous setup completed */
 574                        f->valid = 1;
 575                } else {
 576                        /* Something went wrong.  Issue a warning about the
 577                         * problem and clear everything out.
 578                         */
 579                        dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
 580                                idx, ret);
 581                        clear_filter(adap, f);
 582                }
 583        }
 584}
 585
 586/* Response queue handler for the FW event queue.
 587 */
 588static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
 589                          const struct pkt_gl *gl)
 590{
 591        u8 opcode = ((const struct rss_header *)rsp)->opcode;
 592
 593        rsp++;                                          /* skip RSS header */
 594
 595        /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
 596         */
 597        if (unlikely(opcode == CPL_FW4_MSG &&
 598           ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
 599                rsp++;
 600                opcode = ((const struct rss_header *)rsp)->opcode;
 601                rsp++;
 602                if (opcode != CPL_SGE_EGR_UPDATE) {
 603                        dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
 604                                , opcode);
 605                        goto out;
 606                }
 607        }
 608
 609        if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
 610                const struct cpl_sge_egr_update *p = (void *)rsp;
 611                unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
 612                struct sge_txq *txq;
 613
 614                txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
 615                txq->restarts++;
 616                if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
 617                        struct sge_eth_txq *eq;
 618
 619                        eq = container_of(txq, struct sge_eth_txq, q);
 620                        netif_tx_wake_queue(eq->txq);
 621                } else {
 622                        struct sge_ofld_txq *oq;
 623
 624                        oq = container_of(txq, struct sge_ofld_txq, q);
 625                        tasklet_schedule(&oq->qresume_tsk);
 626                }
 627        } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
 628                const struct cpl_fw6_msg *p = (void *)rsp;
 629
 630#ifdef CONFIG_CHELSIO_T4_DCB
 631                const struct fw_port_cmd *pcmd = (const void *)p->data;
 632                unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
 633                unsigned int action =
 634                        FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
 635
 636                if (cmd == FW_PORT_CMD &&
 637                    action == FW_PORT_ACTION_GET_PORT_INFO) {
 638                        int port = FW_PORT_CMD_PORTID_G(
 639                                        be32_to_cpu(pcmd->op_to_portid));
 640                        struct net_device *dev = q->adap->port[port];
 641                        int state_input = ((pcmd->u.info.dcbxdis_pkd &
 642                                            FW_PORT_CMD_DCBXDIS_F)
 643                                           ? CXGB4_DCB_INPUT_FW_DISABLED
 644                                           : CXGB4_DCB_INPUT_FW_ENABLED);
 645
 646                        cxgb4_dcb_state_fsm(dev, state_input);
 647                }
 648
 649                if (cmd == FW_PORT_CMD &&
 650                    action == FW_PORT_ACTION_L2_DCB_CFG)
 651                        dcb_rpl(q->adap, pcmd);
 652                else
 653#endif
 654                        if (p->type == 0)
 655                                t4_handle_fw_rpl(q->adap, p->data);
 656        } else if (opcode == CPL_L2T_WRITE_RPL) {
 657                const struct cpl_l2t_write_rpl *p = (void *)rsp;
 658
 659                do_l2t_write_rpl(q->adap, p);
 660        } else if (opcode == CPL_SET_TCB_RPL) {
 661                const struct cpl_set_tcb_rpl *p = (void *)rsp;
 662
 663                filter_rpl(q->adap, p);
 664        } else
 665                dev_err(q->adap->pdev_dev,
 666                        "unexpected CPL %#x on FW event queue\n", opcode);
 667out:
 668        return 0;
 669}
 670
 671/**
 672 *      uldrx_handler - response queue handler for ULD queues
 673 *      @q: the response queue that received the packet
 674 *      @rsp: the response queue descriptor holding the offload message
 675 *      @gl: the gather list of packet fragments
 676 *
 677 *      Deliver an ingress offload packet to a ULD.  All processing is done by
 678 *      the ULD, we just maintain statistics.
 679 */
 680static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
 681                         const struct pkt_gl *gl)
 682{
 683        struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
 684
 685        /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
 686         */
 687        if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
 688            ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
 689                rsp += 2;
 690
 691        if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
 692                rxq->stats.nomem++;
 693                return -1;
 694        }
 695        if (gl == NULL)
 696                rxq->stats.imm++;
 697        else if (gl == CXGB4_MSG_AN)
 698                rxq->stats.an++;
 699        else
 700                rxq->stats.pkts++;
 701        return 0;
 702}
 703
 704static void disable_msi(struct adapter *adapter)
 705{
 706        if (adapter->flags & USING_MSIX) {
 707                pci_disable_msix(adapter->pdev);
 708                adapter->flags &= ~USING_MSIX;
 709        } else if (adapter->flags & USING_MSI) {
 710                pci_disable_msi(adapter->pdev);
 711                adapter->flags &= ~USING_MSI;
 712        }
 713}
 714
 715/*
 716 * Interrupt handler for non-data events used with MSI-X.
 717 */
 718static irqreturn_t t4_nondata_intr(int irq, void *cookie)
 719{
 720        struct adapter *adap = cookie;
 721        u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
 722
 723        if (v & PFSW_F) {
 724                adap->swintr = 1;
 725                t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
 726        }
 727        if (adap->flags & MASTER_PF)
 728                t4_slow_intr_handler(adap);
 729        return IRQ_HANDLED;
 730}
 731
 732/*
 733 * Name the MSI-X interrupts.
 734 */
 735static void name_msix_vecs(struct adapter *adap)
 736{
 737        int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
 738
 739        /* non-data interrupts */
 740        snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
 741
 742        /* FW events */
 743        snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
 744                 adap->port[0]->name);
 745
 746        /* Ethernet queues */
 747        for_each_port(adap, j) {
 748                struct net_device *d = adap->port[j];
 749                const struct port_info *pi = netdev_priv(d);
 750
 751                for (i = 0; i < pi->nqsets; i++, msi_idx++)
 752                        snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
 753                                 d->name, i);
 754        }
 755
 756        /* offload queues */
 757        for_each_ofldrxq(&adap->sge, i)
 758                snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
 759                         adap->port[0]->name, i);
 760
 761        for_each_rdmarxq(&adap->sge, i)
 762                snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
 763                         adap->port[0]->name, i);
 764
 765        for_each_rdmaciq(&adap->sge, i)
 766                snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
 767                         adap->port[0]->name, i);
 768}
 769
 770static int request_msix_queue_irqs(struct adapter *adap)
 771{
 772        struct sge *s = &adap->sge;
 773        int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
 774        int msi_index = 2;
 775
 776        err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
 777                          adap->msix_info[1].desc, &s->fw_evtq);
 778        if (err)
 779                return err;
 780
 781        for_each_ethrxq(s, ethqidx) {
 782                err = request_irq(adap->msix_info[msi_index].vec,
 783                                  t4_sge_intr_msix, 0,
 784                                  adap->msix_info[msi_index].desc,
 785                                  &s->ethrxq[ethqidx].rspq);
 786                if (err)
 787                        goto unwind;
 788                msi_index++;
 789        }
 790        for_each_ofldrxq(s, ofldqidx) {
 791                err = request_irq(adap->msix_info[msi_index].vec,
 792                                  t4_sge_intr_msix, 0,
 793                                  adap->msix_info[msi_index].desc,
 794                                  &s->ofldrxq[ofldqidx].rspq);
 795                if (err)
 796                        goto unwind;
 797                msi_index++;
 798        }
 799        for_each_rdmarxq(s, rdmaqidx) {
 800                err = request_irq(adap->msix_info[msi_index].vec,
 801                                  t4_sge_intr_msix, 0,
 802                                  adap->msix_info[msi_index].desc,
 803                                  &s->rdmarxq[rdmaqidx].rspq);
 804                if (err)
 805                        goto unwind;
 806                msi_index++;
 807        }
 808        for_each_rdmaciq(s, rdmaciqqidx) {
 809                err = request_irq(adap->msix_info[msi_index].vec,
 810                                  t4_sge_intr_msix, 0,
 811                                  adap->msix_info[msi_index].desc,
 812                                  &s->rdmaciq[rdmaciqqidx].rspq);
 813                if (err)
 814                        goto unwind;
 815                msi_index++;
 816        }
 817        return 0;
 818
 819unwind:
 820        while (--rdmaciqqidx >= 0)
 821                free_irq(adap->msix_info[--msi_index].vec,
 822                         &s->rdmaciq[rdmaciqqidx].rspq);
 823        while (--rdmaqidx >= 0)
 824                free_irq(adap->msix_info[--msi_index].vec,
 825                         &s->rdmarxq[rdmaqidx].rspq);
 826        while (--ofldqidx >= 0)
 827                free_irq(adap->msix_info[--msi_index].vec,
 828                         &s->ofldrxq[ofldqidx].rspq);
 829        while (--ethqidx >= 0)
 830                free_irq(adap->msix_info[--msi_index].vec,
 831                         &s->ethrxq[ethqidx].rspq);
 832        free_irq(adap->msix_info[1].vec, &s->fw_evtq);
 833        return err;
 834}
 835
 836static void free_msix_queue_irqs(struct adapter *adap)
 837{
 838        int i, msi_index = 2;
 839        struct sge *s = &adap->sge;
 840
 841        free_irq(adap->msix_info[1].vec, &s->fw_evtq);
 842        for_each_ethrxq(s, i)
 843                free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
 844        for_each_ofldrxq(s, i)
 845                free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
 846        for_each_rdmarxq(s, i)
 847                free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
 848        for_each_rdmaciq(s, i)
 849                free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
 850}
 851
 852/**
 853 *      cxgb4_write_rss - write the RSS table for a given port
 854 *      @pi: the port
 855 *      @queues: array of queue indices for RSS
 856 *
 857 *      Sets up the portion of the HW RSS table for the port's VI to distribute
 858 *      packets to the Rx queues in @queues.
 859 */
 860int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
 861{
 862        u16 *rss;
 863        int i, err;
 864        const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
 865
 866        rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
 867        if (!rss)
 868                return -ENOMEM;
 869
 870        /* map the queue indices to queue ids */
 871        for (i = 0; i < pi->rss_size; i++, queues++)
 872                rss[i] = q[*queues].rspq.abs_id;
 873
 874        err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
 875                                  pi->rss_size, rss, pi->rss_size);
 876        kfree(rss);
 877        return err;
 878}
 879
 880/**
 881 *      setup_rss - configure RSS
 882 *      @adap: the adapter
 883 *
 884 *      Sets up RSS for each port.
 885 */
 886static int setup_rss(struct adapter *adap)
 887{
 888        int i, err;
 889
 890        for_each_port(adap, i) {
 891                const struct port_info *pi = adap2pinfo(adap, i);
 892
 893                err = cxgb4_write_rss(pi, pi->rss);
 894                if (err)
 895                        return err;
 896        }
 897        return 0;
 898}
 899
 900/*
 901 * Return the channel of the ingress queue with the given qid.
 902 */
 903static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
 904{
 905        qid -= p->ingr_start;
 906        return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
 907}
 908
 909/*
 910 * Wait until all NAPI handlers are descheduled.
 911 */
 912static void quiesce_rx(struct adapter *adap)
 913{
 914        int i;
 915
 916        for (i = 0; i < adap->sge.ingr_sz; i++) {
 917                struct sge_rspq *q = adap->sge.ingr_map[i];
 918
 919                if (q && q->handler) {
 920                        napi_disable(&q->napi);
 921                        local_bh_disable();
 922                        while (!cxgb_poll_lock_napi(q))
 923                                mdelay(1);
 924                        local_bh_enable();
 925                }
 926
 927        }
 928}
 929
 930/* Disable interrupt and napi handler */
 931static void disable_interrupts(struct adapter *adap)
 932{
 933        if (adap->flags & FULL_INIT_DONE) {
 934                t4_intr_disable(adap);
 935                if (adap->flags & USING_MSIX) {
 936                        free_msix_queue_irqs(adap);
 937                        free_irq(adap->msix_info[0].vec, adap);
 938                } else {
 939                        free_irq(adap->pdev->irq, adap);
 940                }
 941                quiesce_rx(adap);
 942        }
 943}
 944
 945/*
 946 * Enable NAPI scheduling and interrupt generation for all Rx queues.
 947 */
 948static void enable_rx(struct adapter *adap)
 949{
 950        int i;
 951
 952        for (i = 0; i < adap->sge.ingr_sz; i++) {
 953                struct sge_rspq *q = adap->sge.ingr_map[i];
 954
 955                if (!q)
 956                        continue;
 957                if (q->handler) {
 958                        cxgb_busy_poll_init_lock(q);
 959                        napi_enable(&q->napi);
 960                }
 961                /* 0-increment GTS to start the timer and enable interrupts */
 962                t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
 963                             SEINTARM_V(q->intr_params) |
 964                             INGRESSQID_V(q->cntxt_id));
 965        }
 966}
 967
 968static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
 969                           unsigned int nq, unsigned int per_chan, int msi_idx,
 970                           u16 *ids)
 971{
 972        int i, err;
 973
 974        for (i = 0; i < nq; i++, q++) {
 975                if (msi_idx > 0)
 976                        msi_idx++;
 977                err = t4_sge_alloc_rxq(adap, &q->rspq, false,
 978                                       adap->port[i / per_chan],
 979                                       msi_idx, q->fl.size ? &q->fl : NULL,
 980                                       uldrx_handler);
 981                if (err)
 982                        return err;
 983                memset(&q->stats, 0, sizeof(q->stats));
 984                if (ids)
 985                        ids[i] = q->rspq.abs_id;
 986        }
 987        return 0;
 988}
 989
 990/**
 991 *      setup_sge_queues - configure SGE Tx/Rx/response queues
 992 *      @adap: the adapter
 993 *
 994 *      Determines how many sets of SGE queues to use and initializes them.
 995 *      We support multiple queue sets per port if we have MSI-X, otherwise
 996 *      just one queue set per port.
 997 */
 998static int setup_sge_queues(struct adapter *adap)
 999{
1000        int err, msi_idx, i, j;
1001        struct sge *s = &adap->sge;
1002
1003        bitmap_zero(s->starving_fl, s->egr_sz);
1004        bitmap_zero(s->txq_maperr, s->egr_sz);
1005
1006        if (adap->flags & USING_MSIX)
1007                msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1008        else {
1009                err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1010                                       NULL, NULL);
1011                if (err)
1012                        return err;
1013                msi_idx = -((int)s->intrq.abs_id + 1);
1014        }
1015
1016        /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1017         * don't forget to update the following which need to be
1018         * synchronized to and changes here.
1019         *
1020         * 1. The calculations of MAX_INGQ in cxgb4.h.
1021         *
1022         * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1023         *    to accommodate any new/deleted Ingress Queues
1024         *    which need MSI-X Vectors.
1025         *
1026         * 3. Update sge_qinfo_show() to include information on the
1027         *    new/deleted queues.
1028         */
1029        err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1030                               msi_idx, NULL, fwevtq_handler);
1031        if (err) {
1032freeout:        t4_free_sge_resources(adap);
1033                return err;
1034        }
1035
1036        for_each_port(adap, i) {
1037                struct net_device *dev = adap->port[i];
1038                struct port_info *pi = netdev_priv(dev);
1039                struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1040                struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1041
1042                for (j = 0; j < pi->nqsets; j++, q++) {
1043                        if (msi_idx > 0)
1044                                msi_idx++;
1045                        err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1046                                               msi_idx, &q->fl,
1047                                               t4_ethrx_handler);
1048                        if (err)
1049                                goto freeout;
1050                        q->rspq.idx = j;
1051                        memset(&q->stats, 0, sizeof(q->stats));
1052                }
1053                for (j = 0; j < pi->nqsets; j++, t++) {
1054                        err = t4_sge_alloc_eth_txq(adap, t, dev,
1055                                        netdev_get_tx_queue(dev, j),
1056                                        s->fw_evtq.cntxt_id);
1057                        if (err)
1058                                goto freeout;
1059                }
1060        }
1061
1062        j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1063        for_each_ofldrxq(s, i) {
1064                err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1065                                            adap->port[i / j],
1066                                            s->fw_evtq.cntxt_id);
1067                if (err)
1068                        goto freeout;
1069        }
1070
1071#define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1072        err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1073        if (err) \
1074                goto freeout; \
1075        if (msi_idx > 0) \
1076                msi_idx += nq; \
1077} while (0)
1078
1079        ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1080        ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1081        j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1082        ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1083
1084#undef ALLOC_OFLD_RXQS
1085
1086        for_each_port(adap, i) {
1087                /*
1088                 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1089                 * have RDMA queues, and that's the right value.
1090                 */
1091                err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1092                                            s->fw_evtq.cntxt_id,
1093                                            s->rdmarxq[i].rspq.cntxt_id);
1094                if (err)
1095                        goto freeout;
1096        }
1097
1098        t4_write_reg(adap, is_t4(adap->params.chip) ?
1099                                MPS_TRC_RSS_CONTROL_A :
1100                                MPS_T5_TRC_RSS_CONTROL_A,
1101                     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1102                     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1103        return 0;
1104}
1105
1106/*
1107 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1108 * The allocated memory is cleared.
1109 */
1110void *t4_alloc_mem(size_t size)
1111{
1112        void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1113
1114        if (!p)
1115                p = vzalloc(size);
1116        return p;
1117}
1118
1119/*
1120 * Free memory allocated through alloc_mem().
1121 */
1122void t4_free_mem(void *addr)
1123{
1124        if (is_vmalloc_addr(addr))
1125                vfree(addr);
1126        else
1127                kfree(addr);
1128}
1129
1130/* Send a Work Request to write the filter at a specified index.  We construct
1131 * a Firmware Filter Work Request to have the work done and put the indicated
1132 * filter into "pending" mode which will prevent any further actions against
1133 * it till we get a reply from the firmware on the completion status of the
1134 * request.
1135 */
1136static int set_filter_wr(struct adapter *adapter, int fidx)
1137{
1138        struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1139        struct sk_buff *skb;
1140        struct fw_filter_wr *fwr;
1141        unsigned int ftid;
1142
1143        skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1144        if (!skb)
1145                return -ENOMEM;
1146
1147        /* If the new filter requires loopback Destination MAC and/or VLAN
1148         * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1149         * the filter.
1150         */
1151        if (f->fs.newdmac || f->fs.newvlan) {
1152                /* allocate L2T entry for new filter */
1153                f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1154                if (f->l2t == NULL) {
1155                        kfree_skb(skb);
1156                        return -EAGAIN;
1157                }
1158                if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1159                                        f->fs.eport, f->fs.dmac)) {
1160                        cxgb4_l2t_release(f->l2t);
1161                        f->l2t = NULL;
1162                        kfree_skb(skb);
1163                        return -ENOMEM;
1164                }
1165        }
1166
1167        ftid = adapter->tids.ftid_base + fidx;
1168
1169        fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1170        memset(fwr, 0, sizeof(*fwr));
1171
1172        /* It would be nice to put most of the following in t4_hw.c but most
1173         * of the work is translating the cxgbtool ch_filter_specification
1174         * into the Work Request and the definition of that structure is
1175         * currently in cxgbtool.h which isn't appropriate to pull into the
1176         * common code.  We may eventually try to come up with a more neutral
1177         * filter specification structure but for now it's easiest to simply
1178         * put this fairly direct code in line ...
1179         */
1180        fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1181        fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1182        fwr->tid_to_iq =
1183                htonl(FW_FILTER_WR_TID_V(ftid) |
1184                      FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1185                      FW_FILTER_WR_NOREPLY_V(0) |
1186                      FW_FILTER_WR_IQ_V(f->fs.iq));
1187        fwr->del_filter_to_l2tix =
1188                htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1189                      FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1190                      FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1191                      FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1192                      FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1193                      FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1194                      FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1195                      FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1196                      FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1197                                             f->fs.newvlan == VLAN_REWRITE) |
1198                      FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1199                                            f->fs.newvlan == VLAN_REWRITE) |
1200                      FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1201                      FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1202                      FW_FILTER_WR_PRIO_V(f->fs.prio) |
1203                      FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1204        fwr->ethtype = htons(f->fs.val.ethtype);
1205        fwr->ethtypem = htons(f->fs.mask.ethtype);
1206        fwr->frag_to_ovlan_vldm =
1207                (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1208                 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1209                 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1210                 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1211                 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1212                 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1213        fwr->smac_sel = 0;
1214        fwr->rx_chan_rx_rpl_iq =
1215                htons(FW_FILTER_WR_RX_CHAN_V(0) |
1216                      FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1217        fwr->maci_to_matchtypem =
1218                htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1219                      FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1220                      FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1221                      FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1222                      FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1223                      FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1224                      FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1225                      FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1226        fwr->ptcl = f->fs.val.proto;
1227        fwr->ptclm = f->fs.mask.proto;
1228        fwr->ttyp = f->fs.val.tos;
1229        fwr->ttypm = f->fs.mask.tos;
1230        fwr->ivlan = htons(f->fs.val.ivlan);
1231        fwr->ivlanm = htons(f->fs.mask.ivlan);
1232        fwr->ovlan = htons(f->fs.val.ovlan);
1233        fwr->ovlanm = htons(f->fs.mask.ovlan);
1234        memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1235        memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1236        memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1237        memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1238        fwr->lp = htons(f->fs.val.lport);
1239        fwr->lpm = htons(f->fs.mask.lport);
1240        fwr->fp = htons(f->fs.val.fport);
1241        fwr->fpm = htons(f->fs.mask.fport);
1242        if (f->fs.newsmac)
1243                memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1244
1245        /* Mark the filter as "pending" and ship off the Filter Work Request.
1246         * When we get the Work Request Reply we'll clear the pending status.
1247         */
1248        f->pending = 1;
1249        set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1250        t4_ofld_send(adapter, skb);
1251        return 0;
1252}
1253
1254/* Delete the filter at a specified index.
1255 */
1256static int del_filter_wr(struct adapter *adapter, int fidx)
1257{
1258        struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1259        struct sk_buff *skb;
1260        struct fw_filter_wr *fwr;
1261        unsigned int len, ftid;
1262
1263        len = sizeof(*fwr);
1264        ftid = adapter->tids.ftid_base + fidx;
1265
1266        skb = alloc_skb(len, GFP_KERNEL);
1267        if (!skb)
1268                return -ENOMEM;
1269
1270        fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1271        t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1272
1273        /* Mark the filter as "pending" and ship off the Filter Work Request.
1274         * When we get the Work Request Reply we'll clear the pending status.
1275         */
1276        f->pending = 1;
1277        t4_mgmt_tx(adapter, skb);
1278        return 0;
1279}
1280
1281static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1282                             void *accel_priv, select_queue_fallback_t fallback)
1283{
1284        int txq;
1285
1286#ifdef CONFIG_CHELSIO_T4_DCB
1287        /* If a Data Center Bridging has been successfully negotiated on this
1288         * link then we'll use the skb's priority to map it to a TX Queue.
1289         * The skb's priority is determined via the VLAN Tag Priority Code
1290         * Point field.
1291         */
1292        if (cxgb4_dcb_enabled(dev)) {
1293                u16 vlan_tci;
1294                int err;
1295
1296                err = vlan_get_tag(skb, &vlan_tci);
1297                if (unlikely(err)) {
1298                        if (net_ratelimit())
1299                                netdev_warn(dev,
1300                                            "TX Packet without VLAN Tag on DCB Link\n");
1301                        txq = 0;
1302                } else {
1303                        txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1304#ifdef CONFIG_CHELSIO_T4_FCOE
1305                        if (skb->protocol == htons(ETH_P_FCOE))
1306                                txq = skb->priority & 0x7;
1307#endif /* CONFIG_CHELSIO_T4_FCOE */
1308                }
1309                return txq;
1310        }
1311#endif /* CONFIG_CHELSIO_T4_DCB */
1312
1313        if (select_queue) {
1314                txq = (skb_rx_queue_recorded(skb)
1315                        ? skb_get_rx_queue(skb)
1316                        : smp_processor_id());
1317
1318                while (unlikely(txq >= dev->real_num_tx_queues))
1319                        txq -= dev->real_num_tx_queues;
1320
1321                return txq;
1322        }
1323
1324        return fallback(dev, skb) % dev->real_num_tx_queues;
1325}
1326
1327static inline int is_offload(const struct adapter *adap)
1328{
1329        return adap->params.offload;
1330}
1331
1332static int closest_timer(const struct sge *s, int time)
1333{
1334        int i, delta, match = 0, min_delta = INT_MAX;
1335
1336        for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1337                delta = time - s->timer_val[i];
1338                if (delta < 0)
1339                        delta = -delta;
1340                if (delta < min_delta) {
1341                        min_delta = delta;
1342                        match = i;
1343                }
1344        }
1345        return match;
1346}
1347
1348static int closest_thres(const struct sge *s, int thres)
1349{
1350        int i, delta, match = 0, min_delta = INT_MAX;
1351
1352        for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1353                delta = thres - s->counter_val[i];
1354                if (delta < 0)
1355                        delta = -delta;
1356                if (delta < min_delta) {
1357                        min_delta = delta;
1358                        match = i;
1359                }
1360        }
1361        return match;
1362}
1363
1364/**
1365 *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1366 *      @q: the Rx queue
1367 *      @us: the hold-off time in us, or 0 to disable timer
1368 *      @cnt: the hold-off packet count, or 0 to disable counter
1369 *
1370 *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1371 *      one of the two needs to be enabled for the queue to generate interrupts.
1372 */
1373int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1374                               unsigned int us, unsigned int cnt)
1375{
1376        struct adapter *adap = q->adap;
1377
1378        if ((us | cnt) == 0)
1379                cnt = 1;
1380
1381        if (cnt) {
1382                int err;
1383                u32 v, new_idx;
1384
1385                new_idx = closest_thres(&adap->sge, cnt);
1386                if (q->desc && q->pktcnt_idx != new_idx) {
1387                        /* the queue has already been created, update it */
1388                        v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1389                            FW_PARAMS_PARAM_X_V(
1390                                        FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1391                            FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1392                        err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
1393                                            &new_idx);
1394                        if (err)
1395                                return err;
1396                }
1397                q->pktcnt_idx = new_idx;
1398        }
1399
1400        us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1401        q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
1402        return 0;
1403}
1404
1405static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1406{
1407        const struct port_info *pi = netdev_priv(dev);
1408        netdev_features_t changed = dev->features ^ features;
1409        int err;
1410
1411        if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1412                return 0;
1413
1414        err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
1415                            -1, -1, -1,
1416                            !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1417        if (unlikely(err))
1418                dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1419        return err;
1420}
1421
1422static int setup_debugfs(struct adapter *adap)
1423{
1424        if (IS_ERR_OR_NULL(adap->debugfs_root))
1425                return -1;
1426
1427#ifdef CONFIG_DEBUG_FS
1428        t4_setup_debugfs(adap);
1429#endif
1430        return 0;
1431}
1432
1433/*
1434 * upper-layer driver support
1435 */
1436
1437/*
1438 * Allocate an active-open TID and set it to the supplied value.
1439 */
1440int cxgb4_alloc_atid(struct tid_info *t, void *data)
1441{
1442        int atid = -1;
1443
1444        spin_lock_bh(&t->atid_lock);
1445        if (t->afree) {
1446                union aopen_entry *p = t->afree;
1447
1448                atid = (p - t->atid_tab) + t->atid_base;
1449                t->afree = p->next;
1450                p->data = data;
1451                t->atids_in_use++;
1452        }
1453        spin_unlock_bh(&t->atid_lock);
1454        return atid;
1455}
1456EXPORT_SYMBOL(cxgb4_alloc_atid);
1457
1458/*
1459 * Release an active-open TID.
1460 */
1461void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1462{
1463        union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1464
1465        spin_lock_bh(&t->atid_lock);
1466        p->next = t->afree;
1467        t->afree = p;
1468        t->atids_in_use--;
1469        spin_unlock_bh(&t->atid_lock);
1470}
1471EXPORT_SYMBOL(cxgb4_free_atid);
1472
1473/*
1474 * Allocate a server TID and set it to the supplied value.
1475 */
1476int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1477{
1478        int stid;
1479
1480        spin_lock_bh(&t->stid_lock);
1481        if (family == PF_INET) {
1482                stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1483                if (stid < t->nstids)
1484                        __set_bit(stid, t->stid_bmap);
1485                else
1486                        stid = -1;
1487        } else {
1488                stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1489                if (stid < 0)
1490                        stid = -1;
1491        }
1492        if (stid >= 0) {
1493                t->stid_tab[stid].data = data;
1494                stid += t->stid_base;
1495                /* IPv6 requires max of 520 bits or 16 cells in TCAM
1496                 * This is equivalent to 4 TIDs. With CLIP enabled it
1497                 * needs 2 TIDs.
1498                 */
1499                if (family == PF_INET)
1500                        t->stids_in_use++;
1501                else
1502                        t->stids_in_use += 4;
1503        }
1504        spin_unlock_bh(&t->stid_lock);
1505        return stid;
1506}
1507EXPORT_SYMBOL(cxgb4_alloc_stid);
1508
1509/* Allocate a server filter TID and set it to the supplied value.
1510 */
1511int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1512{
1513        int stid;
1514
1515        spin_lock_bh(&t->stid_lock);
1516        if (family == PF_INET) {
1517                stid = find_next_zero_bit(t->stid_bmap,
1518                                t->nstids + t->nsftids, t->nstids);
1519                if (stid < (t->nstids + t->nsftids))
1520                        __set_bit(stid, t->stid_bmap);
1521                else
1522                        stid = -1;
1523        } else {
1524                stid = -1;
1525        }
1526        if (stid >= 0) {
1527                t->stid_tab[stid].data = data;
1528                stid -= t->nstids;
1529                stid += t->sftid_base;
1530                t->stids_in_use++;
1531        }
1532        spin_unlock_bh(&t->stid_lock);
1533        return stid;
1534}
1535EXPORT_SYMBOL(cxgb4_alloc_sftid);
1536
1537/* Release a server TID.
1538 */
1539void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1540{
1541        /* Is it a server filter TID? */
1542        if (t->nsftids && (stid >= t->sftid_base)) {
1543                stid -= t->sftid_base;
1544                stid += t->nstids;
1545        } else {
1546                stid -= t->stid_base;
1547        }
1548
1549        spin_lock_bh(&t->stid_lock);
1550        if (family == PF_INET)
1551                __clear_bit(stid, t->stid_bmap);
1552        else
1553                bitmap_release_region(t->stid_bmap, stid, 2);
1554        t->stid_tab[stid].data = NULL;
1555        if (family == PF_INET)
1556                t->stids_in_use--;
1557        else
1558                t->stids_in_use -= 4;
1559        spin_unlock_bh(&t->stid_lock);
1560}
1561EXPORT_SYMBOL(cxgb4_free_stid);
1562
1563/*
1564 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1565 */
1566static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1567                           unsigned int tid)
1568{
1569        struct cpl_tid_release *req;
1570
1571        set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1572        req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1573        INIT_TP_WR(req, tid);
1574        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1575}
1576
1577/*
1578 * Queue a TID release request and if necessary schedule a work queue to
1579 * process it.
1580 */
1581static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1582                                    unsigned int tid)
1583{
1584        void **p = &t->tid_tab[tid];
1585        struct adapter *adap = container_of(t, struct adapter, tids);
1586
1587        spin_lock_bh(&adap->tid_release_lock);
1588        *p = adap->tid_release_head;
1589        /* Low 2 bits encode the Tx channel number */
1590        adap->tid_release_head = (void **)((uintptr_t)p | chan);
1591        if (!adap->tid_release_task_busy) {
1592                adap->tid_release_task_busy = true;
1593                queue_work(adap->workq, &adap->tid_release_task);
1594        }
1595        spin_unlock_bh(&adap->tid_release_lock);
1596}
1597
1598/*
1599 * Process the list of pending TID release requests.
1600 */
1601static void process_tid_release_list(struct work_struct *work)
1602{
1603        struct sk_buff *skb;
1604        struct adapter *adap;
1605
1606        adap = container_of(work, struct adapter, tid_release_task);
1607
1608        spin_lock_bh(&adap->tid_release_lock);
1609        while (adap->tid_release_head) {
1610                void **p = adap->tid_release_head;
1611                unsigned int chan = (uintptr_t)p & 3;
1612                p = (void *)p - chan;
1613
1614                adap->tid_release_head = *p;
1615                *p = NULL;
1616                spin_unlock_bh(&adap->tid_release_lock);
1617
1618                while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1619                                         GFP_KERNEL)))
1620                        schedule_timeout_uninterruptible(1);
1621
1622                mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1623                t4_ofld_send(adap, skb);
1624                spin_lock_bh(&adap->tid_release_lock);
1625        }
1626        adap->tid_release_task_busy = false;
1627        spin_unlock_bh(&adap->tid_release_lock);
1628}
1629
1630/*
1631 * Release a TID and inform HW.  If we are unable to allocate the release
1632 * message we defer to a work queue.
1633 */
1634void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1635{
1636        void *old;
1637        struct sk_buff *skb;
1638        struct adapter *adap = container_of(t, struct adapter, tids);
1639
1640        old = t->tid_tab[tid];
1641        skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1642        if (likely(skb)) {
1643                t->tid_tab[tid] = NULL;
1644                mk_tid_release(skb, chan, tid);
1645                t4_ofld_send(adap, skb);
1646        } else
1647                cxgb4_queue_tid_release(t, chan, tid);
1648        if (old)
1649                atomic_dec(&t->tids_in_use);
1650}
1651EXPORT_SYMBOL(cxgb4_remove_tid);
1652
1653/*
1654 * Allocate and initialize the TID tables.  Returns 0 on success.
1655 */
1656static int tid_init(struct tid_info *t)
1657{
1658        size_t size;
1659        unsigned int stid_bmap_size;
1660        unsigned int natids = t->natids;
1661        struct adapter *adap = container_of(t, struct adapter, tids);
1662
1663        stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1664        size = t->ntids * sizeof(*t->tid_tab) +
1665               natids * sizeof(*t->atid_tab) +
1666               t->nstids * sizeof(*t->stid_tab) +
1667               t->nsftids * sizeof(*t->stid_tab) +
1668               stid_bmap_size * sizeof(long) +
1669               t->nftids * sizeof(*t->ftid_tab) +
1670               t->nsftids * sizeof(*t->ftid_tab);
1671
1672        t->tid_tab = t4_alloc_mem(size);
1673        if (!t->tid_tab)
1674                return -ENOMEM;
1675
1676        t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1677        t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1678        t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1679        t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1680        spin_lock_init(&t->stid_lock);
1681        spin_lock_init(&t->atid_lock);
1682
1683        t->stids_in_use = 0;
1684        t->afree = NULL;
1685        t->atids_in_use = 0;
1686        atomic_set(&t->tids_in_use, 0);
1687
1688        /* Setup the free list for atid_tab and clear the stid bitmap. */
1689        if (natids) {
1690                while (--natids)
1691                        t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1692                t->afree = t->atid_tab;
1693        }
1694        bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1695        /* Reserve stid 0 for T4/T5 adapters */
1696        if (!t->stid_base &&
1697            (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
1698                __set_bit(0, t->stid_bmap);
1699
1700        return 0;
1701}
1702
1703/**
1704 *      cxgb4_create_server - create an IP server
1705 *      @dev: the device
1706 *      @stid: the server TID
1707 *      @sip: local IP address to bind server to
1708 *      @sport: the server's TCP port
1709 *      @queue: queue to direct messages from this server to
1710 *
1711 *      Create an IP server for the given port and address.
1712 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1713 */
1714int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1715                        __be32 sip, __be16 sport, __be16 vlan,
1716                        unsigned int queue)
1717{
1718        unsigned int chan;
1719        struct sk_buff *skb;
1720        struct adapter *adap;
1721        struct cpl_pass_open_req *req;
1722        int ret;
1723
1724        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1725        if (!skb)
1726                return -ENOMEM;
1727
1728        adap = netdev2adap(dev);
1729        req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1730        INIT_TP_WR(req, 0);
1731        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1732        req->local_port = sport;
1733        req->peer_port = htons(0);
1734        req->local_ip = sip;
1735        req->peer_ip = htonl(0);
1736        chan = rxq_to_chan(&adap->sge, queue);
1737        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1738        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1739                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1740        ret = t4_mgmt_tx(adap, skb);
1741        return net_xmit_eval(ret);
1742}
1743EXPORT_SYMBOL(cxgb4_create_server);
1744
1745/*      cxgb4_create_server6 - create an IPv6 server
1746 *      @dev: the device
1747 *      @stid: the server TID
1748 *      @sip: local IPv6 address to bind server to
1749 *      @sport: the server's TCP port
1750 *      @queue: queue to direct messages from this server to
1751 *
1752 *      Create an IPv6 server for the given port and address.
1753 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1754 */
1755int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1756                         const struct in6_addr *sip, __be16 sport,
1757                         unsigned int queue)
1758{
1759        unsigned int chan;
1760        struct sk_buff *skb;
1761        struct adapter *adap;
1762        struct cpl_pass_open_req6 *req;
1763        int ret;
1764
1765        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1766        if (!skb)
1767                return -ENOMEM;
1768
1769        adap = netdev2adap(dev);
1770        req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1771        INIT_TP_WR(req, 0);
1772        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1773        req->local_port = sport;
1774        req->peer_port = htons(0);
1775        req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1776        req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1777        req->peer_ip_hi = cpu_to_be64(0);
1778        req->peer_ip_lo = cpu_to_be64(0);
1779        chan = rxq_to_chan(&adap->sge, queue);
1780        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1781        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1782                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1783        ret = t4_mgmt_tx(adap, skb);
1784        return net_xmit_eval(ret);
1785}
1786EXPORT_SYMBOL(cxgb4_create_server6);
1787
1788int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1789                        unsigned int queue, bool ipv6)
1790{
1791        struct sk_buff *skb;
1792        struct adapter *adap;
1793        struct cpl_close_listsvr_req *req;
1794        int ret;
1795
1796        adap = netdev2adap(dev);
1797
1798        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1799        if (!skb)
1800                return -ENOMEM;
1801
1802        req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1803        INIT_TP_WR(req, 0);
1804        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1805        req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1806                                LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1807        ret = t4_mgmt_tx(adap, skb);
1808        return net_xmit_eval(ret);
1809}
1810EXPORT_SYMBOL(cxgb4_remove_server);
1811
1812/**
1813 *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1814 *      @mtus: the HW MTU table
1815 *      @mtu: the target MTU
1816 *      @idx: index of selected entry in the MTU table
1817 *
1818 *      Returns the index and the value in the HW MTU table that is closest to
1819 *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1820 *      table, in which case that smallest available value is selected.
1821 */
1822unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1823                            unsigned int *idx)
1824{
1825        unsigned int i = 0;
1826
1827        while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1828                ++i;
1829        if (idx)
1830                *idx = i;
1831        return mtus[i];
1832}
1833EXPORT_SYMBOL(cxgb4_best_mtu);
1834
1835/**
1836 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1837 *     @mtus: the HW MTU table
1838 *     @header_size: Header Size
1839 *     @data_size_max: maximum Data Segment Size
1840 *     @data_size_align: desired Data Segment Size Alignment (2^N)
1841 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1842 *
1843 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1844 *     MTU Table based solely on a Maximum MTU parameter, we break that
1845 *     parameter up into a Header Size and Maximum Data Segment Size, and
1846 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1847 *     the Hardware MTU Table which will result in a Data Segment Size with
1848 *     the requested alignment _and_ that MTU isn't "too far" from the
1849 *     closest MTU, then we'll return that rather than the closest MTU.
1850 */
1851unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1852                                    unsigned short header_size,
1853                                    unsigned short data_size_max,
1854                                    unsigned short data_size_align,
1855                                    unsigned int *mtu_idxp)
1856{
1857        unsigned short max_mtu = header_size + data_size_max;
1858        unsigned short data_size_align_mask = data_size_align - 1;
1859        int mtu_idx, aligned_mtu_idx;
1860
1861        /* Scan the MTU Table till we find an MTU which is larger than our
1862         * Maximum MTU or we reach the end of the table.  Along the way,
1863         * record the last MTU found, if any, which will result in a Data
1864         * Segment Length matching the requested alignment.
1865         */
1866        for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1867                unsigned short data_size = mtus[mtu_idx] - header_size;
1868
1869                /* If this MTU minus the Header Size would result in a
1870                 * Data Segment Size of the desired alignment, remember it.
1871                 */
1872                if ((data_size & data_size_align_mask) == 0)
1873                        aligned_mtu_idx = mtu_idx;
1874
1875                /* If we're not at the end of the Hardware MTU Table and the
1876                 * next element is larger than our Maximum MTU, drop out of
1877                 * the loop.
1878                 */
1879                if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1880                        break;
1881        }
1882
1883        /* If we fell out of the loop because we ran to the end of the table,
1884         * then we just have to use the last [largest] entry.
1885         */
1886        if (mtu_idx == NMTUS)
1887                mtu_idx--;
1888
1889        /* If we found an MTU which resulted in the requested Data Segment
1890         * Length alignment and that's "not far" from the largest MTU which is
1891         * less than or equal to the maximum MTU, then use that.
1892         */
1893        if (aligned_mtu_idx >= 0 &&
1894            mtu_idx - aligned_mtu_idx <= 1)
1895                mtu_idx = aligned_mtu_idx;
1896
1897        /* If the caller has passed in an MTU Index pointer, pass the
1898         * MTU Index back.  Return the MTU value.
1899         */
1900        if (mtu_idxp)
1901                *mtu_idxp = mtu_idx;
1902        return mtus[mtu_idx];
1903}
1904EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1905
1906/**
1907 *      cxgb4_port_chan - get the HW channel of a port
1908 *      @dev: the net device for the port
1909 *
1910 *      Return the HW Tx channel of the given port.
1911 */
1912unsigned int cxgb4_port_chan(const struct net_device *dev)
1913{
1914        return netdev2pinfo(dev)->tx_chan;
1915}
1916EXPORT_SYMBOL(cxgb4_port_chan);
1917
1918unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1919{
1920        struct adapter *adap = netdev2adap(dev);
1921        u32 v1, v2, lp_count, hp_count;
1922
1923        v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1924        v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1925        if (is_t4(adap->params.chip)) {
1926                lp_count = LP_COUNT_G(v1);
1927                hp_count = HP_COUNT_G(v1);
1928        } else {
1929                lp_count = LP_COUNT_T5_G(v1);
1930                hp_count = HP_COUNT_T5_G(v2);
1931        }
1932        return lpfifo ? lp_count : hp_count;
1933}
1934EXPORT_SYMBOL(cxgb4_dbfifo_count);
1935
1936/**
1937 *      cxgb4_port_viid - get the VI id of a port
1938 *      @dev: the net device for the port
1939 *
1940 *      Return the VI id of the given port.
1941 */
1942unsigned int cxgb4_port_viid(const struct net_device *dev)
1943{
1944        return netdev2pinfo(dev)->viid;
1945}
1946EXPORT_SYMBOL(cxgb4_port_viid);
1947
1948/**
1949 *      cxgb4_port_idx - get the index of a port
1950 *      @dev: the net device for the port
1951 *
1952 *      Return the index of the given port.
1953 */
1954unsigned int cxgb4_port_idx(const struct net_device *dev)
1955{
1956        return netdev2pinfo(dev)->port_id;
1957}
1958EXPORT_SYMBOL(cxgb4_port_idx);
1959
1960void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1961                         struct tp_tcp_stats *v6)
1962{
1963        struct adapter *adap = pci_get_drvdata(pdev);
1964
1965        spin_lock(&adap->stats_lock);
1966        t4_tp_get_tcp_stats(adap, v4, v6);
1967        spin_unlock(&adap->stats_lock);
1968}
1969EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1970
1971void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1972                      const unsigned int *pgsz_order)
1973{
1974        struct adapter *adap = netdev2adap(dev);
1975
1976        t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1977        t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1978                     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1979                     HPZ3_V(pgsz_order[3]));
1980}
1981EXPORT_SYMBOL(cxgb4_iscsi_init);
1982
1983int cxgb4_flush_eq_cache(struct net_device *dev)
1984{
1985        struct adapter *adap = netdev2adap(dev);
1986        int ret;
1987
1988        ret = t4_fwaddrspace_write(adap, adap->mbox,
1989                                   0xe1000000 + SGE_CTXT_CMD_A, 0x20000000);
1990        return ret;
1991}
1992EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1993
1994static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1995{
1996        u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1997        __be64 indices;
1998        int ret;
1999
2000        spin_lock(&adap->win0_lock);
2001        ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2002                           sizeof(indices), (__be32 *)&indices,
2003                           T4_MEMORY_READ);
2004        spin_unlock(&adap->win0_lock);
2005        if (!ret) {
2006                *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2007                *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2008        }
2009        return ret;
2010}
2011
2012int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2013                        u16 size)
2014{
2015        struct adapter *adap = netdev2adap(dev);
2016        u16 hw_pidx, hw_cidx;
2017        int ret;
2018
2019        ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2020        if (ret)
2021                goto out;
2022
2023        if (pidx != hw_pidx) {
2024                u16 delta;
2025                u32 val;
2026
2027                if (pidx >= hw_pidx)
2028                        delta = pidx - hw_pidx;
2029                else
2030                        delta = size - hw_pidx + pidx;
2031
2032                if (is_t4(adap->params.chip))
2033                        val = PIDX_V(delta);
2034                else
2035                        val = PIDX_T5_V(delta);
2036                wmb();
2037                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2038                             QID_V(qid) | val);
2039        }
2040out:
2041        return ret;
2042}
2043EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2044
2045void cxgb4_disable_db_coalescing(struct net_device *dev)
2046{
2047        struct adapter *adap;
2048
2049        adap = netdev2adap(dev);
2050        t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F,
2051                         NOCOALESCE_F);
2052}
2053EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
2054
2055void cxgb4_enable_db_coalescing(struct net_device *dev)
2056{
2057        struct adapter *adap;
2058
2059        adap = netdev2adap(dev);
2060        t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, 0);
2061}
2062EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
2063
2064int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2065{
2066        struct adapter *adap;
2067        u32 offset, memtype, memaddr;
2068        u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2069        u32 edc0_end, edc1_end, mc0_end, mc1_end;
2070        int ret;
2071
2072        adap = netdev2adap(dev);
2073
2074        offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2075
2076        /* Figure out where the offset lands in the Memory Type/Address scheme.
2077         * This code assumes that the memory is laid out starting at offset 0
2078         * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2079         * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2080         * MC0, and some have both MC0 and MC1.
2081         */
2082        size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2083        edc0_size = EDRAM0_SIZE_G(size) << 20;
2084        size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2085        edc1_size = EDRAM1_SIZE_G(size) << 20;
2086        size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2087        mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2088
2089        edc0_end = edc0_size;
2090        edc1_end = edc0_end + edc1_size;
2091        mc0_end = edc1_end + mc0_size;
2092
2093        if (offset < edc0_end) {
2094                memtype = MEM_EDC0;
2095                memaddr = offset;
2096        } else if (offset < edc1_end) {
2097                memtype = MEM_EDC1;
2098                memaddr = offset - edc0_end;
2099        } else {
2100                if (offset < mc0_end) {
2101                        memtype = MEM_MC0;
2102                        memaddr = offset - edc1_end;
2103                } else if (is_t4(adap->params.chip)) {
2104                        /* T4 only has a single memory channel */
2105                        goto err;
2106                } else {
2107                        size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2108                        mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2109                        mc1_end = mc0_end + mc1_size;
2110                        if (offset < mc1_end) {
2111                                memtype = MEM_MC1;
2112                                memaddr = offset - mc0_end;
2113                        } else {
2114                                /* offset beyond the end of any memory */
2115                                goto err;
2116                        }
2117                }
2118        }
2119
2120        spin_lock(&adap->win0_lock);
2121        ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2122        spin_unlock(&adap->win0_lock);
2123        return ret;
2124
2125err:
2126        dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2127                stag, offset);
2128        return -EINVAL;
2129}
2130EXPORT_SYMBOL(cxgb4_read_tpte);
2131
2132u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2133{
2134        u32 hi, lo;
2135        struct adapter *adap;
2136
2137        adap = netdev2adap(dev);
2138        lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2139        hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2140
2141        return ((u64)hi << 32) | (u64)lo;
2142}
2143EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2144
2145int cxgb4_bar2_sge_qregs(struct net_device *dev,
2146                         unsigned int qid,
2147                         enum cxgb4_bar2_qtype qtype,
2148                         u64 *pbar2_qoffset,
2149                         unsigned int *pbar2_qid)
2150{
2151        return cxgb4_t4_bar2_sge_qregs(netdev2adap(dev),
2152                                 qid,
2153                                 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2154                                  ? T4_BAR2_QTYPE_EGRESS
2155                                  : T4_BAR2_QTYPE_INGRESS),
2156                                 pbar2_qoffset,
2157                                 pbar2_qid);
2158}
2159EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2160
2161static struct pci_driver cxgb4_driver;
2162
2163static void check_neigh_update(struct neighbour *neigh)
2164{
2165        const struct device *parent;
2166        const struct net_device *netdev = neigh->dev;
2167
2168        if (netdev->priv_flags & IFF_802_1Q_VLAN)
2169                netdev = vlan_dev_real_dev(netdev);
2170        parent = netdev->dev.parent;
2171        if (parent && parent->driver == &cxgb4_driver.driver)
2172                t4_l2t_update(dev_get_drvdata(parent), neigh);
2173}
2174
2175static int netevent_cb(struct notifier_block *nb, unsigned long event,
2176                       void *data)
2177{
2178        switch (event) {
2179        case NETEVENT_NEIGH_UPDATE:
2180                check_neigh_update(data);
2181                break;
2182        case NETEVENT_REDIRECT:
2183        default:
2184                break;
2185        }
2186        return 0;
2187}
2188
2189static bool netevent_registered;
2190static struct notifier_block cxgb4_netevent_nb = {
2191        .notifier_call = netevent_cb
2192};
2193
2194static void drain_db_fifo(struct adapter *adap, int usecs)
2195{
2196        u32 v1, v2, lp_count, hp_count;
2197
2198        do {
2199                v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2200                v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2201                if (is_t4(adap->params.chip)) {
2202                        lp_count = LP_COUNT_G(v1);
2203                        hp_count = HP_COUNT_G(v1);
2204                } else {
2205                        lp_count = LP_COUNT_T5_G(v1);
2206                        hp_count = HP_COUNT_T5_G(v2);
2207                }
2208
2209                if (lp_count == 0 && hp_count == 0)
2210                        break;
2211                set_current_state(TASK_UNINTERRUPTIBLE);
2212                schedule_timeout(usecs_to_jiffies(usecs));
2213        } while (1);
2214}
2215
2216static void disable_txq_db(struct sge_txq *q)
2217{
2218        unsigned long flags;
2219
2220        spin_lock_irqsave(&q->db_lock, flags);
2221        q->db_disabled = 1;
2222        spin_unlock_irqrestore(&q->db_lock, flags);
2223}
2224
2225static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2226{
2227        spin_lock_irq(&q->db_lock);
2228        if (q->db_pidx_inc) {
2229                /* Make sure that all writes to the TX descriptors
2230                 * are committed before we tell HW about them.
2231                 */
2232                wmb();
2233                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2234                             QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2235                q->db_pidx_inc = 0;
2236        }
2237        q->db_disabled = 0;
2238        spin_unlock_irq(&q->db_lock);
2239}
2240
2241static void disable_dbs(struct adapter *adap)
2242{
2243        int i;
2244
2245        for_each_ethrxq(&adap->sge, i)
2246                disable_txq_db(&adap->sge.ethtxq[i].q);
2247        for_each_ofldrxq(&adap->sge, i)
2248                disable_txq_db(&adap->sge.ofldtxq[i].q);
2249        for_each_port(adap, i)
2250                disable_txq_db(&adap->sge.ctrlq[i].q);
2251}
2252
2253static void enable_dbs(struct adapter *adap)
2254{
2255        int i;
2256
2257        for_each_ethrxq(&adap->sge, i)
2258                enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2259        for_each_ofldrxq(&adap->sge, i)
2260                enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2261        for_each_port(adap, i)
2262                enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2263}
2264
2265static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2266{
2267        if (adap->uld_handle[CXGB4_ULD_RDMA])
2268                ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2269                                cmd);
2270}
2271
2272static void process_db_full(struct work_struct *work)
2273{
2274        struct adapter *adap;
2275
2276        adap = container_of(work, struct adapter, db_full_task);
2277
2278        drain_db_fifo(adap, dbfifo_drain_delay);
2279        enable_dbs(adap);
2280        notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2281        t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2282                         DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2283                         DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2284}
2285
2286static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2287{
2288        u16 hw_pidx, hw_cidx;
2289        int ret;
2290
2291        spin_lock_irq(&q->db_lock);
2292        ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2293        if (ret)
2294                goto out;
2295        if (q->db_pidx != hw_pidx) {
2296                u16 delta;
2297                u32 val;
2298
2299                if (q->db_pidx >= hw_pidx)
2300                        delta = q->db_pidx - hw_pidx;
2301                else
2302                        delta = q->size - hw_pidx + q->db_pidx;
2303
2304                if (is_t4(adap->params.chip))
2305                        val = PIDX_V(delta);
2306                else
2307                        val = PIDX_T5_V(delta);
2308                wmb();
2309                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2310                             QID_V(q->cntxt_id) | val);
2311        }
2312out:
2313        q->db_disabled = 0;
2314        q->db_pidx_inc = 0;
2315        spin_unlock_irq(&q->db_lock);
2316        if (ret)
2317                CH_WARN(adap, "DB drop recovery failed.\n");
2318}
2319static void recover_all_queues(struct adapter *adap)
2320{
2321        int i;
2322
2323        for_each_ethrxq(&adap->sge, i)
2324                sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2325        for_each_ofldrxq(&adap->sge, i)
2326                sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2327        for_each_port(adap, i)
2328                sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2329}
2330
2331static void process_db_drop(struct work_struct *work)
2332{
2333        struct adapter *adap;
2334
2335        adap = container_of(work, struct adapter, db_drop_task);
2336
2337        if (is_t4(adap->params.chip)) {
2338                drain_db_fifo(adap, dbfifo_drain_delay);
2339                notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2340                drain_db_fifo(adap, dbfifo_drain_delay);
2341                recover_all_queues(adap);
2342                drain_db_fifo(adap, dbfifo_drain_delay);
2343                enable_dbs(adap);
2344                notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2345        } else {
2346                u32 dropped_db = t4_read_reg(adap, 0x010ac);
2347                u16 qid = (dropped_db >> 15) & 0x1ffff;
2348                u16 pidx_inc = dropped_db & 0x1fff;
2349                u64 bar2_qoffset;
2350                unsigned int bar2_qid;
2351                int ret;
2352
2353                ret = cxgb4_t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2354                                        &bar2_qoffset, &bar2_qid);
2355                if (ret)
2356                        dev_err(adap->pdev_dev, "doorbell drop recovery: "
2357                                "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2358                else
2359                        writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2360                               adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2361
2362                /* Re-enable BAR2 WC */
2363                t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2364        }
2365
2366        t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2367}
2368
2369void t4_db_full(struct adapter *adap)
2370{
2371        if (is_t4(adap->params.chip)) {
2372                disable_dbs(adap);
2373                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2374                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2375                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2376                queue_work(adap->workq, &adap->db_full_task);
2377        }
2378}
2379
2380void t4_db_dropped(struct adapter *adap)
2381{
2382        if (is_t4(adap->params.chip)) {
2383                disable_dbs(adap);
2384                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2385        }
2386        queue_work(adap->workq, &adap->db_drop_task);
2387}
2388
2389static void uld_attach(struct adapter *adap, unsigned int uld)
2390{
2391        void *handle;
2392        struct cxgb4_lld_info lli;
2393        unsigned short i;
2394
2395        lli.pdev = adap->pdev;
2396        lli.pf = adap->fn;
2397        lli.l2t = adap->l2t;
2398        lli.tids = &adap->tids;
2399        lli.ports = adap->port;
2400        lli.vr = &adap->vres;
2401        lli.mtus = adap->params.mtus;
2402        if (uld == CXGB4_ULD_RDMA) {
2403                lli.rxq_ids = adap->sge.rdma_rxq;
2404                lli.ciq_ids = adap->sge.rdma_ciq;
2405                lli.nrxq = adap->sge.rdmaqs;
2406                lli.nciq = adap->sge.rdmaciqs;
2407        } else if (uld == CXGB4_ULD_ISCSI) {
2408                lli.rxq_ids = adap->sge.ofld_rxq;
2409                lli.nrxq = adap->sge.ofldqsets;
2410        }
2411        lli.ntxq = adap->sge.ofldqsets;
2412        lli.nchan = adap->params.nports;
2413        lli.nports = adap->params.nports;
2414        lli.wr_cred = adap->params.ofldq_wr_cred;
2415        lli.adapter_type = adap->params.chip;
2416        lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2417        lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2418        lli.udb_density = 1 << adap->params.sge.eq_qpp;
2419        lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2420        lli.filt_mode = adap->params.tp.vlan_pri_map;
2421        /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2422        for (i = 0; i < NCHAN; i++)
2423                lli.tx_modq[i] = i;
2424        lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2425        lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2426        lli.fw_vers = adap->params.fw_vers;
2427        lli.dbfifo_int_thresh = dbfifo_int_thresh;
2428        lli.sge_ingpadboundary = adap->sge.fl_align;
2429        lli.sge_egrstatuspagesize = adap->sge.stat_len;
2430        lli.sge_pktshift = adap->sge.pktshift;
2431        lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2432        lli.max_ordird_qp = adap->params.max_ordird_qp;
2433        lli.max_ird_adapter = adap->params.max_ird_adapter;
2434        lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2435
2436        handle = ulds[uld].add(&lli);
2437        if (IS_ERR(handle)) {
2438                dev_warn(adap->pdev_dev,
2439                         "could not attach to the %s driver, error %ld\n",
2440                         uld_str[uld], PTR_ERR(handle));
2441                return;
2442        }
2443
2444        adap->uld_handle[uld] = handle;
2445
2446        if (!netevent_registered) {
2447                register_netevent_notifier(&cxgb4_netevent_nb);
2448                netevent_registered = true;
2449        }
2450
2451        if (adap->flags & FULL_INIT_DONE)
2452                ulds[uld].state_change(handle, CXGB4_STATE_UP);
2453}
2454
2455static void attach_ulds(struct adapter *adap)
2456{
2457        unsigned int i;
2458
2459        spin_lock(&adap_rcu_lock);
2460        list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2461        spin_unlock(&adap_rcu_lock);
2462
2463        mutex_lock(&uld_mutex);
2464        list_add_tail(&adap->list_node, &adapter_list);
2465        for (i = 0; i < CXGB4_ULD_MAX; i++)
2466                if (ulds[i].add)
2467                        uld_attach(adap, i);
2468        mutex_unlock(&uld_mutex);
2469}
2470
2471static void detach_ulds(struct adapter *adap)
2472{
2473        unsigned int i;
2474
2475        mutex_lock(&uld_mutex);
2476        list_del(&adap->list_node);
2477        for (i = 0; i < CXGB4_ULD_MAX; i++)
2478                if (adap->uld_handle[i]) {
2479                        ulds[i].state_change(adap->uld_handle[i],
2480                                             CXGB4_STATE_DETACH);
2481                        adap->uld_handle[i] = NULL;
2482                }
2483        if (netevent_registered && list_empty(&adapter_list)) {
2484                unregister_netevent_notifier(&cxgb4_netevent_nb);
2485                netevent_registered = false;
2486        }
2487        mutex_unlock(&uld_mutex);
2488
2489        spin_lock(&adap_rcu_lock);
2490        list_del_rcu(&adap->rcu_node);
2491        spin_unlock(&adap_rcu_lock);
2492}
2493
2494static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2495{
2496        unsigned int i;
2497
2498        mutex_lock(&uld_mutex);
2499        for (i = 0; i < CXGB4_ULD_MAX; i++)
2500                if (adap->uld_handle[i])
2501                        ulds[i].state_change(adap->uld_handle[i], new_state);
2502        mutex_unlock(&uld_mutex);
2503}
2504
2505/**
2506 *      cxgb4_register_uld - register an upper-layer driver
2507 *      @type: the ULD type
2508 *      @p: the ULD methods
2509 *
2510 *      Registers an upper-layer driver with this driver and notifies the ULD
2511 *      about any presently available devices that support its type.  Returns
2512 *      %-EBUSY if a ULD of the same type is already registered.
2513 */
2514int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2515{
2516        int ret = 0;
2517        struct adapter *adap;
2518
2519        if (type >= CXGB4_ULD_MAX)
2520                return -EINVAL;
2521        mutex_lock(&uld_mutex);
2522        if (ulds[type].add) {
2523                ret = -EBUSY;
2524                goto out;
2525        }
2526        ulds[type] = *p;
2527        list_for_each_entry(adap, &adapter_list, list_node)
2528                uld_attach(adap, type);
2529out:    mutex_unlock(&uld_mutex);
2530        return ret;
2531}
2532EXPORT_SYMBOL(cxgb4_register_uld);
2533
2534/**
2535 *      cxgb4_unregister_uld - unregister an upper-layer driver
2536 *      @type: the ULD type
2537 *
2538 *      Unregisters an existing upper-layer driver.
2539 */
2540int cxgb4_unregister_uld(enum cxgb4_uld type)
2541{
2542        struct adapter *adap;
2543
2544        if (type >= CXGB4_ULD_MAX)
2545                return -EINVAL;
2546        mutex_lock(&uld_mutex);
2547        list_for_each_entry(adap, &adapter_list, list_node)
2548                adap->uld_handle[type] = NULL;
2549        ulds[type].add = NULL;
2550        mutex_unlock(&uld_mutex);
2551        return 0;
2552}
2553EXPORT_SYMBOL(cxgb4_unregister_uld);
2554
2555#if IS_ENABLED(CONFIG_IPV6)
2556static int cxgb4_inet6addr_handler(struct notifier_block *this,
2557                                   unsigned long event, void *data)
2558{
2559        struct inet6_ifaddr *ifa = data;
2560        struct net_device *event_dev = ifa->idev->dev;
2561        const struct device *parent = NULL;
2562#if IS_ENABLED(CONFIG_BONDING)
2563        struct adapter *adap;
2564#endif
2565        if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2566                event_dev = vlan_dev_real_dev(event_dev);
2567#if IS_ENABLED(CONFIG_BONDING)
2568        if (event_dev->flags & IFF_MASTER) {
2569                list_for_each_entry(adap, &adapter_list, list_node) {
2570                        switch (event) {
2571                        case NETDEV_UP:
2572                                cxgb4_clip_get(adap->port[0],
2573                                               (const u32 *)ifa, 1);
2574                                break;
2575                        case NETDEV_DOWN:
2576                                cxgb4_clip_release(adap->port[0],
2577                                                   (const u32 *)ifa, 1);
2578                                break;
2579                        default:
2580                                break;
2581                        }
2582                }
2583                return NOTIFY_OK;
2584        }
2585#endif
2586
2587        if (event_dev)
2588                parent = event_dev->dev.parent;
2589
2590        if (parent && parent->driver == &cxgb4_driver.driver) {
2591                switch (event) {
2592                case NETDEV_UP:
2593                        cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2594                        break;
2595                case NETDEV_DOWN:
2596                        cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2597                        break;
2598                default:
2599                        break;
2600                }
2601        }
2602        return NOTIFY_OK;
2603}
2604
2605static bool inet6addr_registered;
2606static struct notifier_block cxgb4_inet6addr_notifier = {
2607        .notifier_call = cxgb4_inet6addr_handler
2608};
2609
2610static void update_clip(const struct adapter *adap)
2611{
2612        int i;
2613        struct net_device *dev;
2614        int ret;
2615
2616        rcu_read_lock();
2617
2618        for (i = 0; i < MAX_NPORTS; i++) {
2619                dev = adap->port[i];
2620                ret = 0;
2621
2622                if (dev)
2623                        ret = cxgb4_update_root_dev_clip(dev);
2624
2625                if (ret < 0)
2626                        break;
2627        }
2628        rcu_read_unlock();
2629}
2630#endif /* IS_ENABLED(CONFIG_IPV6) */
2631
2632/**
2633 *      cxgb_up - enable the adapter
2634 *      @adap: adapter being enabled
2635 *
2636 *      Called when the first port is enabled, this function performs the
2637 *      actions necessary to make an adapter operational, such as completing
2638 *      the initialization of HW modules, and enabling interrupts.
2639 *
2640 *      Must be called with the rtnl lock held.
2641 */
2642static int cxgb_up(struct adapter *adap)
2643{
2644        int err;
2645
2646        err = setup_sge_queues(adap);
2647        if (err)
2648                goto out;
2649        err = setup_rss(adap);
2650        if (err)
2651                goto freeq;
2652
2653        if (adap->flags & USING_MSIX) {
2654                name_msix_vecs(adap);
2655                err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2656                                  adap->msix_info[0].desc, adap);
2657                if (err)
2658                        goto irq_err;
2659
2660                err = request_msix_queue_irqs(adap);
2661                if (err) {
2662                        free_irq(adap->msix_info[0].vec, adap);
2663                        goto irq_err;
2664                }
2665        } else {
2666                err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2667                                  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2668                                  adap->port[0]->name, adap);
2669                if (err)
2670                        goto irq_err;
2671        }
2672        enable_rx(adap);
2673        t4_sge_start(adap);
2674        t4_intr_enable(adap);
2675        adap->flags |= FULL_INIT_DONE;
2676        notify_ulds(adap, CXGB4_STATE_UP);
2677#if IS_ENABLED(CONFIG_IPV6)
2678        update_clip(adap);
2679#endif
2680 out:
2681        return err;
2682 irq_err:
2683        dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2684 freeq:
2685        t4_free_sge_resources(adap);
2686        goto out;
2687}
2688
2689static void cxgb_down(struct adapter *adapter)
2690{
2691        cancel_work_sync(&adapter->tid_release_task);
2692        cancel_work_sync(&adapter->db_full_task);
2693        cancel_work_sync(&adapter->db_drop_task);
2694        adapter->tid_release_task_busy = false;
2695        adapter->tid_release_head = NULL;
2696
2697        t4_sge_stop(adapter);
2698        t4_free_sge_resources(adapter);
2699        adapter->flags &= ~FULL_INIT_DONE;
2700}
2701
2702/*
2703 * net_device operations
2704 */
2705static int cxgb_open(struct net_device *dev)
2706{
2707        int err;
2708        struct port_info *pi = netdev_priv(dev);
2709        struct adapter *adapter = pi->adapter;
2710
2711        netif_carrier_off(dev);
2712
2713        if (!(adapter->flags & FULL_INIT_DONE)) {
2714                err = cxgb_up(adapter);
2715                if (err < 0)
2716                        return err;
2717        }
2718
2719        err = link_start(dev);
2720        if (!err)
2721                netif_tx_start_all_queues(dev);
2722        return err;
2723}
2724
2725static int cxgb_close(struct net_device *dev)
2726{
2727        struct port_info *pi = netdev_priv(dev);
2728        struct adapter *adapter = pi->adapter;
2729
2730        netif_tx_stop_all_queues(dev);
2731        netif_carrier_off(dev);
2732        return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
2733}
2734
2735/* Return an error number if the indicated filter isn't writable ...
2736 */
2737static int writable_filter(struct filter_entry *f)
2738{
2739        if (f->locked)
2740                return -EPERM;
2741        if (f->pending)
2742                return -EBUSY;
2743
2744        return 0;
2745}
2746
2747/* Delete the filter at the specified index (if valid).  The checks for all
2748 * the common problems with doing this like the filter being locked, currently
2749 * pending in another operation, etc.
2750 */
2751static int delete_filter(struct adapter *adapter, unsigned int fidx)
2752{
2753        struct filter_entry *f;
2754        int ret;
2755
2756        if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2757                return -EINVAL;
2758
2759        f = &adapter->tids.ftid_tab[fidx];
2760        ret = writable_filter(f);
2761        if (ret)
2762                return ret;
2763        if (f->valid)
2764                return del_filter_wr(adapter, fidx);
2765
2766        return 0;
2767}
2768
2769int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2770                __be32 sip, __be16 sport, __be16 vlan,
2771                unsigned int queue, unsigned char port, unsigned char mask)
2772{
2773        int ret;
2774        struct filter_entry *f;
2775        struct adapter *adap;
2776        int i;
2777        u8 *val;
2778
2779        adap = netdev2adap(dev);
2780
2781        /* Adjust stid to correct filter index */
2782        stid -= adap->tids.sftid_base;
2783        stid += adap->tids.nftids;
2784
2785        /* Check to make sure the filter requested is writable ...
2786         */
2787        f = &adap->tids.ftid_tab[stid];
2788        ret = writable_filter(f);
2789        if (ret)
2790                return ret;
2791
2792        /* Clear out any old resources being used by the filter before
2793         * we start constructing the new filter.
2794         */
2795        if (f->valid)
2796                clear_filter(adap, f);
2797
2798        /* Clear out filter specifications */
2799        memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2800        f->fs.val.lport = cpu_to_be16(sport);
2801        f->fs.mask.lport  = ~0;
2802        val = (u8 *)&sip;
2803        if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2804                for (i = 0; i < 4; i++) {
2805                        f->fs.val.lip[i] = val[i];
2806                        f->fs.mask.lip[i] = ~0;
2807                }
2808                if (adap->params.tp.vlan_pri_map & PORT_F) {
2809                        f->fs.val.iport = port;
2810                        f->fs.mask.iport = mask;
2811                }
2812        }
2813
2814        if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2815                f->fs.val.proto = IPPROTO_TCP;
2816                f->fs.mask.proto = ~0;
2817        }
2818
2819        f->fs.dirsteer = 1;
2820        f->fs.iq = queue;
2821        /* Mark filter as locked */
2822        f->locked = 1;
2823        f->fs.rpttid = 1;
2824
2825        ret = set_filter_wr(adap, stid);
2826        if (ret) {
2827                clear_filter(adap, f);
2828                return ret;
2829        }
2830
2831        return 0;
2832}
2833EXPORT_SYMBOL(cxgb4_create_server_filter);
2834
2835int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2836                unsigned int queue, bool ipv6)
2837{
2838        int ret;
2839        struct filter_entry *f;
2840        struct adapter *adap;
2841
2842        adap = netdev2adap(dev);
2843
2844        /* Adjust stid to correct filter index */
2845        stid -= adap->tids.sftid_base;
2846        stid += adap->tids.nftids;
2847
2848        f = &adap->tids.ftid_tab[stid];
2849        /* Unlock the filter */
2850        f->locked = 0;
2851
2852        ret = delete_filter(adap, stid);
2853        if (ret)
2854                return ret;
2855
2856        return 0;
2857}
2858EXPORT_SYMBOL(cxgb4_remove_server_filter);
2859
2860static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2861                                                struct rtnl_link_stats64 *ns)
2862{
2863        struct port_stats stats;
2864        struct port_info *p = netdev_priv(dev);
2865        struct adapter *adapter = p->adapter;
2866
2867        /* Block retrieving statistics during EEH error
2868         * recovery. Otherwise, the recovery might fail
2869         * and the PCI device will be removed permanently
2870         */
2871        spin_lock(&adapter->stats_lock);
2872        if (!netif_device_present(dev)) {
2873                spin_unlock(&adapter->stats_lock);
2874                return ns;
2875        }
2876        t4_get_port_stats(adapter, p->tx_chan, &stats);
2877        spin_unlock(&adapter->stats_lock);
2878
2879        ns->tx_bytes   = stats.tx_octets;
2880        ns->tx_packets = stats.tx_frames;
2881        ns->rx_bytes   = stats.rx_octets;
2882        ns->rx_packets = stats.rx_frames;
2883        ns->multicast  = stats.rx_mcast_frames;
2884
2885        /* detailed rx_errors */
2886        ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2887                               stats.rx_runt;
2888        ns->rx_over_errors   = 0;
2889        ns->rx_crc_errors    = stats.rx_fcs_err;
2890        ns->rx_frame_errors  = stats.rx_symbol_err;
2891        ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2892                               stats.rx_ovflow2 + stats.rx_ovflow3 +
2893                               stats.rx_trunc0 + stats.rx_trunc1 +
2894                               stats.rx_trunc2 + stats.rx_trunc3;
2895        ns->rx_missed_errors = 0;
2896
2897        /* detailed tx_errors */
2898        ns->tx_aborted_errors   = 0;
2899        ns->tx_carrier_errors   = 0;
2900        ns->tx_fifo_errors      = 0;
2901        ns->tx_heartbeat_errors = 0;
2902        ns->tx_window_errors    = 0;
2903
2904        ns->tx_errors = stats.tx_error_frames;
2905        ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2906                ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2907        return ns;
2908}
2909
2910static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2911{
2912        unsigned int mbox;
2913        int ret = 0, prtad, devad;
2914        struct port_info *pi = netdev_priv(dev);
2915        struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2916
2917        switch (cmd) {
2918        case SIOCGMIIPHY:
2919                if (pi->mdio_addr < 0)
2920                        return -EOPNOTSUPP;
2921                data->phy_id = pi->mdio_addr;
2922                break;
2923        case SIOCGMIIREG:
2924        case SIOCSMIIREG:
2925                if (mdio_phy_id_is_c45(data->phy_id)) {
2926                        prtad = mdio_phy_id_prtad(data->phy_id);
2927                        devad = mdio_phy_id_devad(data->phy_id);
2928                } else if (data->phy_id < 32) {
2929                        prtad = data->phy_id;
2930                        devad = 0;
2931                        data->reg_num &= 0x1f;
2932                } else
2933                        return -EINVAL;
2934
2935                mbox = pi->adapter->fn;
2936                if (cmd == SIOCGMIIREG)
2937                        ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2938                                         data->reg_num, &data->val_out);
2939                else
2940                        ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2941                                         data->reg_num, data->val_in);
2942                break;
2943        default:
2944                return -EOPNOTSUPP;
2945        }
2946        return ret;
2947}
2948
2949static void cxgb_set_rxmode(struct net_device *dev)
2950{
2951        /* unfortunately we can't return errors to the stack */
2952        set_rxmode(dev, -1, false);
2953}
2954
2955static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2956{
2957        int ret;
2958        struct port_info *pi = netdev_priv(dev);
2959
2960        if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2961                return -EINVAL;
2962        ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
2963                            -1, -1, -1, true);
2964        if (!ret)
2965                dev->mtu = new_mtu;
2966        return ret;
2967}
2968
2969static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2970{
2971        int ret;
2972        struct sockaddr *addr = p;
2973        struct port_info *pi = netdev_priv(dev);
2974
2975        if (!is_valid_ether_addr(addr->sa_data))
2976                return -EADDRNOTAVAIL;
2977
2978        ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
2979                            pi->xact_addr_filt, addr->sa_data, true, true);
2980        if (ret < 0)
2981                return ret;
2982
2983        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2984        pi->xact_addr_filt = ret;
2985        return 0;
2986}
2987
2988#ifdef CONFIG_NET_POLL_CONTROLLER
2989static void cxgb_netpoll(struct net_device *dev)
2990{
2991        struct port_info *pi = netdev_priv(dev);
2992        struct adapter *adap = pi->adapter;
2993
2994        if (adap->flags & USING_MSIX) {
2995                int i;
2996                struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2997
2998                for (i = pi->nqsets; i; i--, rx++)
2999                        t4_sge_intr_msix(0, &rx->rspq);
3000        } else
3001                t4_intr_handler(adap)(0, adap);
3002}
3003#endif
3004
3005static const struct net_device_ops cxgb4_netdev_ops = {
3006        .ndo_open             = cxgb_open,
3007        .ndo_stop             = cxgb_close,
3008        .ndo_start_xmit       = t4_eth_xmit,
3009        .ndo_select_queue     = cxgb_select_queue,
3010        .ndo_get_stats64      = cxgb_get_stats,
3011        .ndo_set_rx_mode      = cxgb_set_rxmode,
3012        .ndo_set_mac_address  = cxgb_set_mac_addr,
3013        .ndo_set_features     = cxgb_set_features,
3014        .ndo_validate_addr    = eth_validate_addr,
3015        .ndo_do_ioctl         = cxgb_ioctl,
3016        .ndo_change_mtu       = cxgb_change_mtu,
3017#ifdef CONFIG_NET_POLL_CONTROLLER
3018        .ndo_poll_controller  = cxgb_netpoll,
3019#endif
3020#ifdef CONFIG_CHELSIO_T4_FCOE
3021        .ndo_fcoe_enable      = cxgb_fcoe_enable,
3022        .ndo_fcoe_disable     = cxgb_fcoe_disable,
3023#endif /* CONFIG_CHELSIO_T4_FCOE */
3024#ifdef CONFIG_NET_RX_BUSY_POLL
3025        .ndo_busy_poll        = cxgb_busy_poll,
3026#endif
3027
3028};
3029
3030void t4_fatal_err(struct adapter *adap)
3031{
3032        t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3033        t4_intr_disable(adap);
3034        dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3035}
3036
3037/* Return the specified PCI-E Configuration Space register from our Physical
3038 * Function.  We try first via a Firmware LDST Command since we prefer to let
3039 * the firmware own all of these registers, but if that fails we go for it
3040 * directly ourselves.
3041 */
3042static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
3043{
3044        struct fw_ldst_cmd ldst_cmd;
3045        u32 val;
3046        int ret;
3047
3048        /* Construct and send the Firmware LDST Command to retrieve the
3049         * specified PCI-E Configuration Space register.
3050         */
3051        memset(&ldst_cmd, 0, sizeof(ldst_cmd));
3052        ldst_cmd.op_to_addrspace =
3053                htonl(FW_CMD_OP_V(FW_LDST_CMD) |
3054                      FW_CMD_REQUEST_F |
3055                      FW_CMD_READ_F |
3056                      FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE));
3057        ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
3058        ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
3059        ldst_cmd.u.pcie.ctrl_to_fn =
3060                (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->fn));
3061        ldst_cmd.u.pcie.r = reg;
3062        ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
3063                         &ldst_cmd);
3064
3065        /* If the LDST Command suucceeded, exctract the returned register
3066         * value.  Otherwise read it directly ourself.
3067         */
3068        if (ret == 0)
3069                val = ntohl(ldst_cmd.u.pcie.data[0]);
3070        else
3071                t4_hw_pci_read_cfg4(adap, reg, &val);
3072
3073        return val;
3074}
3075
3076static void setup_memwin(struct adapter *adap)
3077{
3078        u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
3079
3080        if (is_t4(adap->params.chip)) {
3081                u32 bar0;
3082
3083                /* Truncation intentional: we only read the bottom 32-bits of
3084                 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
3085                 * mechanism to read BAR0 instead of using
3086                 * pci_resource_start() because we could be operating from
3087                 * within a Virtual Machine which is trapping our accesses to
3088                 * our Configuration Space and we need to set up the PCI-E
3089                 * Memory Window decoders with the actual addresses which will
3090                 * be coming across the PCI-E link.
3091                 */
3092                bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
3093                bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
3094                adap->t4_bar0 = bar0;
3095
3096                mem_win0_base = bar0 + MEMWIN0_BASE;
3097                mem_win1_base = bar0 + MEMWIN1_BASE;
3098                mem_win2_base = bar0 + MEMWIN2_BASE;
3099                mem_win2_aperture = MEMWIN2_APERTURE;
3100        } else {
3101                /* For T5, only relative offset inside the PCIe BAR is passed */
3102                mem_win0_base = MEMWIN0_BASE;
3103                mem_win1_base = MEMWIN1_BASE;
3104                mem_win2_base = MEMWIN2_BASE_T5;
3105                mem_win2_aperture = MEMWIN2_APERTURE_T5;
3106        }
3107        t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 0),
3108                     mem_win0_base | BIR_V(0) |
3109                     WINDOW_V(ilog2(MEMWIN0_APERTURE) - 10));
3110        t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 1),
3111                     mem_win1_base | BIR_V(0) |
3112                     WINDOW_V(ilog2(MEMWIN1_APERTURE) - 10));
3113        t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2),
3114                     mem_win2_base | BIR_V(0) |
3115                     WINDOW_V(ilog2(mem_win2_aperture) - 10));
3116        t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2));
3117}
3118
3119static void setup_memwin_rdma(struct adapter *adap)
3120{
3121        if (adap->vres.ocq.size) {
3122                u32 start;
3123                unsigned int sz_kb;
3124
3125                start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3126                start &= PCI_BASE_ADDRESS_MEM_MASK;
3127                start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3128                sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3129                t4_write_reg(adap,
3130                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3131                             start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3132                t4_write_reg(adap,
3133                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3134                             adap->vres.ocq.start);
3135                t4_read_reg(adap,
3136                            PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3137        }
3138}
3139
3140static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3141{
3142        u32 v;
3143        int ret;
3144
3145        /* get device capabilities */
3146        memset(c, 0, sizeof(*c));
3147        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3148                               FW_CMD_REQUEST_F | FW_CMD_READ_F);
3149        c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3150        ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
3151        if (ret < 0)
3152                return ret;
3153
3154        /* select capabilities we'll be using */
3155        if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3156                if (!vf_acls)
3157                        c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3158                else
3159                        c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3160        } else if (vf_acls) {
3161                dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3162                return ret;
3163        }
3164        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3165                               FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3166        ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
3167        if (ret < 0)
3168                return ret;
3169
3170        ret = t4_config_glbl_rss(adap, adap->fn,
3171                                 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3172                                 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3173                                 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3174        if (ret < 0)
3175                return ret;
3176
3177        ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, adap->sge.egr_sz, 64,
3178                          MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3179                          FW_CMD_CAP_PF);
3180        if (ret < 0)
3181                return ret;
3182
3183        t4_sge_init(adap);
3184
3185        /* tweak some settings */
3186        t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3187        t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3188        t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3189        v = t4_read_reg(adap, TP_PIO_DATA_A);
3190        t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3191
3192        /* first 4 Tx modulation queues point to consecutive Tx channels */
3193        adap->params.tp.tx_modq_map = 0xE4;
3194        t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3195                     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3196
3197        /* associate each Tx modulation queue with consecutive Tx channels */
3198        v = 0x84218421;
3199        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3200                          &v, 1, TP_TX_SCHED_HDR_A);
3201        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3202                          &v, 1, TP_TX_SCHED_FIFO_A);
3203        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3204                          &v, 1, TP_TX_SCHED_PCMD_A);
3205
3206#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3207        if (is_offload(adap)) {
3208                t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3209                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3210                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3211                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3212                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3213                t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3214                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3215                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3216                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3217                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3218        }
3219
3220        /* get basic stuff going */
3221        return t4_early_init(adap, adap->fn);
3222}
3223
3224/*
3225 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3226 */
3227#define MAX_ATIDS 8192U
3228
3229/*
3230 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3231 *
3232 * If the firmware we're dealing with has Configuration File support, then
3233 * we use that to perform all configuration
3234 */
3235
3236/*
3237 * Tweak configuration based on module parameters, etc.  Most of these have
3238 * defaults assigned to them by Firmware Configuration Files (if we're using
3239 * them) but need to be explicitly set if we're using hard-coded
3240 * initialization.  But even in the case of using Firmware Configuration
3241 * Files, we'd like to expose the ability to change these via module
3242 * parameters so these are essentially common tweaks/settings for
3243 * Configuration Files and hard-coded initialization ...
3244 */
3245static int adap_init0_tweaks(struct adapter *adapter)
3246{
3247        /*
3248         * Fix up various Host-Dependent Parameters like Page Size, Cache
3249         * Line Size, etc.  The firmware default is for a 4KB Page Size and
3250         * 64B Cache Line Size ...
3251         */
3252        t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3253
3254        /*
3255         * Process module parameters which affect early initialization.
3256         */
3257        if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3258                dev_err(&adapter->pdev->dev,
3259                        "Ignoring illegal rx_dma_offset=%d, using 2\n",
3260                        rx_dma_offset);
3261                rx_dma_offset = 2;
3262        }
3263        t4_set_reg_field(adapter, SGE_CONTROL_A,
3264                         PKTSHIFT_V(PKTSHIFT_M),
3265                         PKTSHIFT_V(rx_dma_offset));
3266
3267        /*
3268         * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3269         * adds the pseudo header itself.
3270         */
3271        t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3272                               CSUM_HAS_PSEUDO_HDR_F, 0);
3273
3274        return 0;
3275}
3276
3277/*
3278 * Attempt to initialize the adapter via a Firmware Configuration File.
3279 */
3280static int adap_init0_config(struct adapter *adapter, int reset)
3281{
3282        struct fw_caps_config_cmd caps_cmd;
3283        const struct firmware *cf;
3284        unsigned long mtype = 0, maddr = 0;
3285        u32 finiver, finicsum, cfcsum;
3286        int ret;
3287        int config_issued = 0;
3288        char *fw_config_file, fw_config_file_path[256];
3289        char *config_name = NULL;
3290
3291        /*
3292         * Reset device if necessary.
3293         */
3294        if (reset) {
3295                ret = t4_fw_reset(adapter, adapter->mbox,
3296                                  PIORSTMODE_F | PIORST_F);
3297                if (ret < 0)
3298                        goto bye;
3299        }
3300
3301        /*
3302         * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3303         * then use that.  Otherwise, use the configuration file stored
3304         * in the adapter flash ...
3305         */
3306        switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3307        case CHELSIO_T4:
3308                fw_config_file = FW4_CFNAME;
3309                break;
3310        case CHELSIO_T5:
3311                fw_config_file = FW5_CFNAME;
3312                break;
3313        default:
3314                dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3315                       adapter->pdev->device);
3316                ret = -EINVAL;
3317                goto bye;
3318        }
3319
3320        ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3321        if (ret < 0) {
3322                config_name = "On FLASH";
3323                mtype = FW_MEMTYPE_CF_FLASH;
3324                maddr = t4_flash_cfg_addr(adapter);
3325        } else {
3326                u32 params[7], val[7];
3327
3328                sprintf(fw_config_file_path,
3329                        "/lib/firmware/%s", fw_config_file);
3330                config_name = fw_config_file_path;
3331
3332                if (cf->size >= FLASH_CFG_MAX_SIZE)
3333                        ret = -ENOMEM;
3334                else {
3335                        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3336                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3337                        ret = t4_query_params(adapter, adapter->mbox,
3338                                              adapter->fn, 0, 1, params, val);
3339                        if (ret == 0) {
3340                                /*
3341                                 * For t4_memory_rw() below addresses and
3342                                 * sizes have to be in terms of multiples of 4
3343                                 * bytes.  So, if the Configuration File isn't
3344                                 * a multiple of 4 bytes in length we'll have
3345                                 * to write that out separately since we can't
3346                                 * guarantee that the bytes following the
3347                                 * residual byte in the buffer returned by
3348                                 * request_firmware() are zeroed out ...
3349                                 */
3350                                size_t resid = cf->size & 0x3;
3351                                size_t size = cf->size & ~0x3;
3352                                __be32 *data = (__be32 *)cf->data;
3353
3354                                mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3355                                maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3356
3357                                spin_lock(&adapter->win0_lock);
3358                                ret = t4_memory_rw(adapter, 0, mtype, maddr,
3359                                                   size, data, T4_MEMORY_WRITE);
3360                                if (ret == 0 && resid != 0) {
3361                                        union {
3362                                                __be32 word;
3363                                                char buf[4];
3364                                        } last;
3365                                        int i;
3366
3367                                        last.word = data[size >> 2];
3368                                        for (i = resid; i < 4; i++)
3369                                                last.buf[i] = 0;
3370                                        ret = t4_memory_rw(adapter, 0, mtype,
3371                                                           maddr + size,
3372                                                           4, &last.word,
3373                                                           T4_MEMORY_WRITE);
3374                                }
3375                                spin_unlock(&adapter->win0_lock);
3376                        }
3377                }
3378
3379                release_firmware(cf);
3380                if (ret)
3381                        goto bye;
3382        }
3383
3384        /*
3385         * Issue a Capability Configuration command to the firmware to get it
3386         * to parse the Configuration File.  We don't use t4_fw_config_file()
3387         * because we want the ability to modify various features after we've
3388         * processed the configuration file ...
3389         */
3390        memset(&caps_cmd, 0, sizeof(caps_cmd));
3391        caps_cmd.op_to_write =
3392                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3393                      FW_CMD_REQUEST_F |
3394                      FW_CMD_READ_F);
3395        caps_cmd.cfvalid_to_len16 =
3396                htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3397                      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3398                      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3399                      FW_LEN16(caps_cmd));
3400        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3401                         &caps_cmd);
3402
3403        /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3404         * Configuration File in FLASH), our last gasp effort is to use the
3405         * Firmware Configuration File which is embedded in the firmware.  A
3406         * very few early versions of the firmware didn't have one embedded
3407         * but we can ignore those.
3408         */
3409        if (ret == -ENOENT) {
3410                memset(&caps_cmd, 0, sizeof(caps_cmd));
3411                caps_cmd.op_to_write =
3412                        htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3413                                        FW_CMD_REQUEST_F |
3414                                        FW_CMD_READ_F);
3415                caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3416                ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3417                                sizeof(caps_cmd), &caps_cmd);
3418                config_name = "Firmware Default";
3419        }
3420
3421        config_issued = 1;
3422        if (ret < 0)
3423                goto bye;
3424
3425        finiver = ntohl(caps_cmd.finiver);
3426        finicsum = ntohl(caps_cmd.finicsum);
3427        cfcsum = ntohl(caps_cmd.cfcsum);
3428        if (finicsum != cfcsum)
3429                dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3430                         "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3431                         finicsum, cfcsum);
3432
3433        /*
3434         * And now tell the firmware to use the configuration we just loaded.
3435         */
3436        caps_cmd.op_to_write =
3437                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3438                      FW_CMD_REQUEST_F |
3439                      FW_CMD_WRITE_F);
3440        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3441        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3442                         NULL);
3443        if (ret < 0)
3444                goto bye;
3445
3446        /*
3447         * Tweak configuration based on system architecture, module
3448         * parameters, etc.
3449         */
3450        ret = adap_init0_tweaks(adapter);
3451        if (ret < 0)
3452                goto bye;
3453
3454        /*
3455         * And finally tell the firmware to initialize itself using the
3456         * parameters from the Configuration File.
3457         */
3458        ret = t4_fw_initialize(adapter, adapter->mbox);
3459        if (ret < 0)
3460                goto bye;
3461
3462        /* Emit Firmware Configuration File information and return
3463         * successfully.
3464         */
3465        dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3466                 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3467                 config_name, finiver, cfcsum);
3468        return 0;
3469
3470        /*
3471         * Something bad happened.  Return the error ...  (If the "error"
3472         * is that there's no Configuration File on the adapter we don't
3473         * want to issue a warning since this is fairly common.)
3474         */
3475bye:
3476        if (config_issued && ret != -ENOENT)
3477                dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3478                         config_name, -ret);
3479        return ret;
3480}
3481
3482static struct fw_info fw_info_array[] = {
3483        {
3484                .chip = CHELSIO_T4,
3485                .fs_name = FW4_CFNAME,
3486                .fw_mod_name = FW4_FNAME,
3487                .fw_hdr = {
3488                        .chip = FW_HDR_CHIP_T4,
3489                        .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3490                        .intfver_nic = FW_INTFVER(T4, NIC),
3491                        .intfver_vnic = FW_INTFVER(T4, VNIC),
3492                        .intfver_ri = FW_INTFVER(T4, RI),
3493                        .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3494                        .intfver_fcoe = FW_INTFVER(T4, FCOE),
3495                },
3496        }, {
3497                .chip = CHELSIO_T5,
3498                .fs_name = FW5_CFNAME,
3499                .fw_mod_name = FW5_FNAME,
3500                .fw_hdr = {
3501                        .chip = FW_HDR_CHIP_T5,
3502                        .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3503                        .intfver_nic = FW_INTFVER(T5, NIC),
3504                        .intfver_vnic = FW_INTFVER(T5, VNIC),
3505                        .intfver_ri = FW_INTFVER(T5, RI),
3506                        .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3507                        .intfver_fcoe = FW_INTFVER(T5, FCOE),
3508                },
3509        }
3510};
3511
3512static struct fw_info *find_fw_info(int chip)
3513{
3514        int i;
3515
3516        for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3517                if (fw_info_array[i].chip == chip)
3518                        return &fw_info_array[i];
3519        }
3520        return NULL;
3521}
3522
3523/*
3524 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3525 */
3526static int adap_init0(struct adapter *adap)
3527{
3528        int ret;
3529        u32 v, port_vec;
3530        enum dev_state state;
3531        u32 params[7], val[7];
3532        struct fw_caps_config_cmd caps_cmd;
3533        int reset = 1;
3534
3535        /* Grab Firmware Device Log parameters as early as possible so we have
3536         * access to it for debugging, etc.
3537         */
3538        ret = t4_init_devlog_params(adap);
3539        if (ret < 0)
3540                return ret;
3541
3542        /* Contact FW, advertising Master capability */
3543        ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3544        if (ret < 0) {
3545                dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3546                        ret);
3547                return ret;
3548        }
3549        if (ret == adap->mbox)
3550                adap->flags |= MASTER_PF;
3551
3552        /*
3553         * If we're the Master PF Driver and the device is uninitialized,
3554         * then let's consider upgrading the firmware ...  (We always want
3555         * to check the firmware version number in order to A. get it for
3556         * later reporting and B. to warn if the currently loaded firmware
3557         * is excessively mismatched relative to the driver.)
3558         */
3559        t4_get_fw_version(adap, &adap->params.fw_vers);
3560        t4_get_tp_version(adap, &adap->params.tp_vers);
3561        if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3562                struct fw_info *fw_info;
3563                struct fw_hdr *card_fw;
3564                const struct firmware *fw;
3565                const u8 *fw_data = NULL;
3566                unsigned int fw_size = 0;
3567
3568                /* This is the firmware whose headers the driver was compiled
3569                 * against
3570                 */
3571                fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3572                if (fw_info == NULL) {
3573                        dev_err(adap->pdev_dev,
3574                                "unable to get firmware info for chip %d.\n",
3575                                CHELSIO_CHIP_VERSION(adap->params.chip));
3576                        return -EINVAL;
3577                }
3578
3579                /* allocate memory to read the header of the firmware on the
3580                 * card
3581                 */
3582                card_fw = t4_alloc_mem(sizeof(*card_fw));
3583
3584                /* Get FW from from /lib/firmware/ */
3585                ret = request_firmware(&fw, fw_info->fw_mod_name,
3586                                       adap->pdev_dev);
3587                if (ret < 0) {
3588                        dev_err(adap->pdev_dev,
3589                                "unable to load firmware image %s, error %d\n",
3590                                fw_info->fw_mod_name, ret);
3591                } else {
3592                        fw_data = fw->data;
3593                        fw_size = fw->size;
3594                }
3595
3596                /* upgrade FW logic */
3597                ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3598                                 state, &reset);
3599
3600                /* Cleaning up */
3601                release_firmware(fw);
3602                t4_free_mem(card_fw);
3603
3604                if (ret < 0)
3605                        goto bye;
3606        }
3607
3608        /*
3609         * Grab VPD parameters.  This should be done after we establish a
3610         * connection to the firmware since some of the VPD parameters
3611         * (notably the Core Clock frequency) are retrieved via requests to
3612         * the firmware.  On the other hand, we need these fairly early on
3613         * so we do this right after getting ahold of the firmware.
3614         */
3615        ret = get_vpd_params(adap, &adap->params.vpd);
3616        if (ret < 0)
3617                goto bye;
3618
3619        /*
3620         * Find out what ports are available to us.  Note that we need to do
3621         * this before calling adap_init0_no_config() since it needs nports
3622         * and portvec ...
3623         */
3624        v =
3625            FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3626            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3627        ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
3628        if (ret < 0)
3629                goto bye;
3630
3631        adap->params.nports = hweight32(port_vec);
3632        adap->params.portvec = port_vec;
3633
3634        /* If the firmware is initialized already, emit a simply note to that
3635         * effect. Otherwise, it's time to try initializing the adapter.
3636         */
3637        if (state == DEV_STATE_INIT) {
3638                dev_info(adap->pdev_dev, "Coming up as %s: "\
3639                         "Adapter already initialized\n",
3640                         adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3641        } else {
3642                dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3643                         "Initializing adapter\n");
3644
3645                /* Find out whether we're dealing with a version of the
3646                 * firmware which has configuration file support.
3647                 */
3648                params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3649                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3650                ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
3651                                      params, val);
3652
3653                /* If the firmware doesn't support Configuration Files,
3654                 * return an error.
3655                 */
3656                if (ret < 0) {
3657                        dev_err(adap->pdev_dev, "firmware doesn't support "
3658                                "Firmware Configuration Files\n");
3659                        goto bye;
3660                }
3661
3662                /* The firmware provides us with a memory buffer where we can
3663                 * load a Configuration File from the host if we want to
3664                 * override the Configuration File in flash.
3665                 */
3666                ret = adap_init0_config(adap, reset);
3667                if (ret == -ENOENT) {
3668                        dev_err(adap->pdev_dev, "no Configuration File "
3669                                "present on adapter.\n");
3670                        goto bye;
3671                }
3672                if (ret < 0) {
3673                        dev_err(adap->pdev_dev, "could not initialize "
3674                                "adapter, error %d\n", -ret);
3675                        goto bye;
3676                }
3677        }
3678
3679        /* Give the SGE code a chance to pull in anything that it needs ...
3680         * Note that this must be called after we retrieve our VPD parameters
3681         * in order to know how to convert core ticks to seconds, etc.
3682         */
3683        ret = t4_sge_init(adap);
3684        if (ret < 0)
3685                goto bye;
3686
3687        if (is_bypass_device(adap->pdev->device))
3688                adap->params.bypass = 1;
3689
3690        /*
3691         * Grab some of our basic fundamental operating parameters.
3692         */
3693#define FW_PARAM_DEV(param) \
3694        (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3695        FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3696
3697#define FW_PARAM_PFVF(param) \
3698        FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3699        FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3700        FW_PARAMS_PARAM_Y_V(0) | \
3701        FW_PARAMS_PARAM_Z_V(0)
3702
3703        params[0] = FW_PARAM_PFVF(EQ_START);
3704        params[1] = FW_PARAM_PFVF(L2T_START);
3705        params[2] = FW_PARAM_PFVF(L2T_END);
3706        params[3] = FW_PARAM_PFVF(FILTER_START);
3707        params[4] = FW_PARAM_PFVF(FILTER_END);
3708        params[5] = FW_PARAM_PFVF(IQFLINT_START);
3709        ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
3710        if (ret < 0)
3711                goto bye;
3712        adap->sge.egr_start = val[0];
3713        adap->l2t_start = val[1];
3714        adap->l2t_end = val[2];
3715        adap->tids.ftid_base = val[3];
3716        adap->tids.nftids = val[4] - val[3] + 1;
3717        adap->sge.ingr_start = val[5];
3718
3719        /* qids (ingress/egress) returned from firmware can be anywhere
3720         * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3721         * Hence driver needs to allocate memory for this range to
3722         * store the queue info. Get the highest IQFLINT/EQ index returned
3723         * in FW_EQ_*_CMD.alloc command.
3724         */
3725        params[0] = FW_PARAM_PFVF(EQ_END);
3726        params[1] = FW_PARAM_PFVF(IQFLINT_END);
3727        ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3728        if (ret < 0)
3729                goto bye;
3730        adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3731        adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3732
3733        adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3734                                    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3735        if (!adap->sge.egr_map) {
3736                ret = -ENOMEM;
3737                goto bye;
3738        }
3739
3740        adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3741                                     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3742        if (!adap->sge.ingr_map) {
3743                ret = -ENOMEM;
3744                goto bye;
3745        }
3746
3747        /* Allocate the memory for the vaious egress queue bitmaps
3748         * ie starving_fl and txq_maperr.
3749         */
3750        adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3751                                        sizeof(long), GFP_KERNEL);
3752        if (!adap->sge.starving_fl) {
3753                ret = -ENOMEM;
3754                goto bye;
3755        }
3756
3757        adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3758                                       sizeof(long), GFP_KERNEL);
3759        if (!adap->sge.txq_maperr) {
3760                ret = -ENOMEM;
3761                goto bye;
3762        }
3763
3764        params[0] = FW_PARAM_PFVF(CLIP_START);
3765        params[1] = FW_PARAM_PFVF(CLIP_END);
3766        ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3767        if (ret < 0)
3768                goto bye;
3769        adap->clipt_start = val[0];
3770        adap->clipt_end = val[1];
3771
3772        /* query params related to active filter region */
3773        params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3774        params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3775        ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3776        /* If Active filter size is set we enable establishing
3777         * offload connection through firmware work request
3778         */
3779        if ((val[0] != val[1]) && (ret >= 0)) {
3780                adap->flags |= FW_OFLD_CONN;
3781                adap->tids.aftid_base = val[0];
3782                adap->tids.aftid_end = val[1];
3783        }
3784
3785        /* If we're running on newer firmware, let it know that we're
3786         * prepared to deal with encapsulated CPL messages.  Older
3787         * firmware won't understand this and we'll just get
3788         * unencapsulated messages ...
3789         */
3790        params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3791        val[0] = 1;
3792        (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
3793
3794        /*
3795         * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3796         * capability.  Earlier versions of the firmware didn't have the
3797         * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3798         * permission to use ULPTX MEMWRITE DSGL.
3799         */
3800        if (is_t4(adap->params.chip)) {
3801                adap->params.ulptx_memwrite_dsgl = false;
3802        } else {
3803                params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3804                ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
3805                                      1, params, val);
3806                adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3807        }
3808
3809        /*
3810         * Get device capabilities so we can determine what resources we need
3811         * to manage.
3812         */
3813        memset(&caps_cmd, 0, sizeof(caps_cmd));
3814        caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3815                                     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3816        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3817        ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3818                         &caps_cmd);
3819        if (ret < 0)
3820                goto bye;
3821
3822        if (caps_cmd.ofldcaps) {
3823                /* query offload-related parameters */
3824                params[0] = FW_PARAM_DEV(NTID);
3825                params[1] = FW_PARAM_PFVF(SERVER_START);
3826                params[2] = FW_PARAM_PFVF(SERVER_END);
3827                params[3] = FW_PARAM_PFVF(TDDP_START);
3828                params[4] = FW_PARAM_PFVF(TDDP_END);
3829                params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3830                ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3831                                      params, val);
3832                if (ret < 0)
3833                        goto bye;
3834                adap->tids.ntids = val[0];
3835                adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3836                adap->tids.stid_base = val[1];
3837                adap->tids.nstids = val[2] - val[1] + 1;
3838                /*
3839                 * Setup server filter region. Divide the available filter
3840                 * region into two parts. Regular filters get 1/3rd and server
3841                 * filters get 2/3rd part. This is only enabled if workarond
3842                 * path is enabled.
3843                 * 1. For regular filters.
3844                 * 2. Server filter: This are special filters which are used
3845                 * to redirect SYN packets to offload queue.
3846                 */
3847                if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3848                        adap->tids.sftid_base = adap->tids.ftid_base +
3849                                        DIV_ROUND_UP(adap->tids.nftids, 3);
3850                        adap->tids.nsftids = adap->tids.nftids -
3851                                         DIV_ROUND_UP(adap->tids.nftids, 3);
3852                        adap->tids.nftids = adap->tids.sftid_base -
3853                                                adap->tids.ftid_base;
3854                }
3855                adap->vres.ddp.start = val[3];
3856                adap->vres.ddp.size = val[4] - val[3] + 1;
3857                adap->params.ofldq_wr_cred = val[5];
3858
3859                adap->params.offload = 1;
3860        }
3861        if (caps_cmd.rdmacaps) {
3862                params[0] = FW_PARAM_PFVF(STAG_START);
3863                params[1] = FW_PARAM_PFVF(STAG_END);
3864                params[2] = FW_PARAM_PFVF(RQ_START);
3865                params[3] = FW_PARAM_PFVF(RQ_END);
3866                params[4] = FW_PARAM_PFVF(PBL_START);
3867                params[5] = FW_PARAM_PFVF(PBL_END);
3868                ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3869                                      params, val);
3870                if (ret < 0)
3871                        goto bye;
3872                adap->vres.stag.start = val[0];
3873                adap->vres.stag.size = val[1] - val[0] + 1;
3874                adap->vres.rq.start = val[2];
3875                adap->vres.rq.size = val[3] - val[2] + 1;
3876                adap->vres.pbl.start = val[4];
3877                adap->vres.pbl.size = val[5] - val[4] + 1;
3878
3879                params[0] = FW_PARAM_PFVF(SQRQ_START);
3880                params[1] = FW_PARAM_PFVF(SQRQ_END);
3881                params[2] = FW_PARAM_PFVF(CQ_START);
3882                params[3] = FW_PARAM_PFVF(CQ_END);
3883                params[4] = FW_PARAM_PFVF(OCQ_START);
3884                params[5] = FW_PARAM_PFVF(OCQ_END);
3885                ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
3886                                      val);
3887                if (ret < 0)
3888                        goto bye;
3889                adap->vres.qp.start = val[0];
3890                adap->vres.qp.size = val[1] - val[0] + 1;
3891                adap->vres.cq.start = val[2];
3892                adap->vres.cq.size = val[3] - val[2] + 1;
3893                adap->vres.ocq.start = val[4];
3894                adap->vres.ocq.size = val[5] - val[4] + 1;
3895
3896                params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3897                params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3898                ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
3899                                      val);
3900                if (ret < 0) {
3901                        adap->params.max_ordird_qp = 8;
3902                        adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3903                        ret = 0;
3904                } else {
3905                        adap->params.max_ordird_qp = val[0];
3906                        adap->params.max_ird_adapter = val[1];
3907                }
3908                dev_info(adap->pdev_dev,
3909                         "max_ordird_qp %d max_ird_adapter %d\n",
3910                         adap->params.max_ordird_qp,
3911                         adap->params.max_ird_adapter);
3912        }
3913        if (caps_cmd.iscsicaps) {
3914                params[0] = FW_PARAM_PFVF(ISCSI_START);
3915                params[1] = FW_PARAM_PFVF(ISCSI_END);
3916                ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
3917                                      params, val);
3918                if (ret < 0)
3919                        goto bye;
3920                adap->vres.iscsi.start = val[0];
3921                adap->vres.iscsi.size = val[1] - val[0] + 1;
3922        }
3923#undef FW_PARAM_PFVF
3924#undef FW_PARAM_DEV
3925
3926        /* The MTU/MSS Table is initialized by now, so load their values.  If
3927         * we're initializing the adapter, then we'll make any modifications
3928         * we want to the MTU/MSS Table and also initialize the congestion
3929         * parameters.
3930         */
3931        t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3932        if (state != DEV_STATE_INIT) {
3933                int i;
3934
3935                /* The default MTU Table contains values 1492 and 1500.
3936                 * However, for TCP, it's better to have two values which are
3937                 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3938                 * This allows us to have a TCP Data Payload which is a
3939                 * multiple of 8 regardless of what combination of TCP Options
3940                 * are in use (always a multiple of 4 bytes) which is
3941                 * important for performance reasons.  For instance, if no
3942                 * options are in use, then we have a 20-byte IP header and a
3943                 * 20-byte TCP header.  In this case, a 1500-byte MSS would
3944                 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3945                 * which is not a multiple of 8.  So using an MSS of 1488 in
3946                 * this case results in a TCP Data Payload of 1448 bytes which
3947                 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
3948                 * Stamps have been negotiated, then an MTU of 1500 bytes
3949                 * results in a TCP Data Payload of 1448 bytes which, as
3950                 * above, is a multiple of 8 bytes ...
3951                 */
3952                for (i = 0; i < NMTUS; i++)
3953                        if (adap->params.mtus[i] == 1492) {
3954                                adap->params.mtus[i] = 1488;
3955                                break;
3956                        }
3957
3958                t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3959                             adap->params.b_wnd);
3960        }
3961        t4_init_sge_params(adap);
3962        t4_init_tp_params(adap);
3963        adap->flags |= FW_OK;
3964        return 0;
3965
3966        /*
3967         * Something bad happened.  If a command timed out or failed with EIO
3968         * FW does not operate within its spec or something catastrophic
3969         * happened to HW/FW, stop issuing commands.
3970         */
3971bye:
3972        kfree(adap->sge.egr_map);
3973        kfree(adap->sge.ingr_map);
3974        kfree(adap->sge.starving_fl);
3975        kfree(adap->sge.txq_maperr);
3976        if (ret != -ETIMEDOUT && ret != -EIO)
3977                t4_fw_bye(adap, adap->mbox);
3978        return ret;
3979}
3980
3981/* EEH callbacks */
3982
3983static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3984                                         pci_channel_state_t state)
3985{
3986        int i;
3987        struct adapter *adap = pci_get_drvdata(pdev);
3988
3989        if (!adap)
3990                goto out;
3991
3992        rtnl_lock();
3993        adap->flags &= ~FW_OK;
3994        notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3995        spin_lock(&adap->stats_lock);
3996        for_each_port(adap, i) {
3997                struct net_device *dev = adap->port[i];
3998
3999                netif_device_detach(dev);
4000                netif_carrier_off(dev);
4001        }
4002        spin_unlock(&adap->stats_lock);
4003        disable_interrupts(adap);
4004        if (adap->flags & FULL_INIT_DONE)
4005                cxgb_down(adap);
4006        rtnl_unlock();
4007        if ((adap->flags & DEV_ENABLED)) {
4008                pci_disable_device(pdev);
4009                adap->flags &= ~DEV_ENABLED;
4010        }
4011out:    return state == pci_channel_io_perm_failure ?
4012                PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4013}
4014
4015static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4016{
4017        int i, ret;
4018        struct fw_caps_config_cmd c;
4019        struct adapter *adap = pci_get_drvdata(pdev);
4020
4021        if (!adap) {
4022                pci_restore_state(pdev);
4023                pci_save_state(pdev);
4024                return PCI_ERS_RESULT_RECOVERED;
4025        }
4026
4027        if (!(adap->flags & DEV_ENABLED)) {
4028                if (pci_enable_device(pdev)) {
4029                        dev_err(&pdev->dev, "Cannot reenable PCI "
4030                                            "device after reset\n");
4031                        return PCI_ERS_RESULT_DISCONNECT;
4032                }
4033                adap->flags |= DEV_ENABLED;
4034        }
4035
4036        pci_set_master(pdev);
4037        pci_restore_state(pdev);
4038        pci_save_state(pdev);
4039        pci_cleanup_aer_uncorrect_error_status(pdev);
4040
4041        if (t4_wait_dev_ready(adap->regs) < 0)
4042                return PCI_ERS_RESULT_DISCONNECT;
4043        if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
4044                return PCI_ERS_RESULT_DISCONNECT;
4045        adap->flags |= FW_OK;
4046        if (adap_init1(adap, &c))
4047                return PCI_ERS_RESULT_DISCONNECT;
4048
4049        for_each_port(adap, i) {
4050                struct port_info *p = adap2pinfo(adap, i);
4051
4052                ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
4053                                  NULL, NULL);
4054                if (ret < 0)
4055                        return PCI_ERS_RESULT_DISCONNECT;
4056                p->viid = ret;
4057                p->xact_addr_filt = -1;
4058        }
4059
4060        t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4061                     adap->params.b_wnd);
4062        setup_memwin(adap);
4063        if (cxgb_up(adap))
4064                return PCI_ERS_RESULT_DISCONNECT;
4065        return PCI_ERS_RESULT_RECOVERED;
4066}
4067
4068static void eeh_resume(struct pci_dev *pdev)
4069{
4070        int i;
4071        struct adapter *adap = pci_get_drvdata(pdev);
4072
4073        if (!adap)
4074                return;
4075
4076        rtnl_lock();
4077        for_each_port(adap, i) {
4078                struct net_device *dev = adap->port[i];
4079
4080                if (netif_running(dev)) {
4081                        link_start(dev);
4082                        cxgb_set_rxmode(dev);
4083                }
4084                netif_device_attach(dev);
4085        }
4086        rtnl_unlock();
4087}
4088
4089static const struct pci_error_handlers cxgb4_eeh = {
4090        .error_detected = eeh_err_detected,
4091        .slot_reset     = eeh_slot_reset,
4092        .resume         = eeh_resume,
4093};
4094
4095static inline bool is_x_10g_port(const struct link_config *lc)
4096{
4097        return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4098               (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4099}
4100
4101static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4102                             unsigned int us, unsigned int cnt,
4103                             unsigned int size, unsigned int iqe_size)
4104{
4105        q->adap = adap;
4106        cxgb4_set_rspq_intr_params(q, us, cnt);
4107        q->iqe_len = iqe_size;
4108        q->size = size;
4109}
4110
4111/*
4112 * Perform default configuration of DMA queues depending on the number and type
4113 * of ports we found and the number of available CPUs.  Most settings can be
4114 * modified by the admin prior to actual use.
4115 */
4116static void cfg_queues(struct adapter *adap)
4117{
4118        struct sge *s = &adap->sge;
4119        int i, n10g = 0, qidx = 0;
4120#ifndef CONFIG_CHELSIO_T4_DCB
4121        int q10g = 0;
4122#endif
4123        int ciq_size;
4124
4125        for_each_port(adap, i)
4126                n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4127#ifdef CONFIG_CHELSIO_T4_DCB
4128        /* For Data Center Bridging support we need to be able to support up
4129         * to 8 Traffic Priorities; each of which will be assigned to its
4130         * own TX Queue in order to prevent Head-Of-Line Blocking.
4131         */
4132        if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4133                dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4134                        MAX_ETH_QSETS, adap->params.nports * 8);
4135                BUG_ON(1);
4136        }
4137
4138        for_each_port(adap, i) {
4139                struct port_info *pi = adap2pinfo(adap, i);
4140
4141                pi->first_qset = qidx;
4142                pi->nqsets = 8;
4143                qidx += pi->nqsets;
4144        }
4145#else /* !CONFIG_CHELSIO_T4_DCB */
4146        /*
4147         * We default to 1 queue per non-10G port and up to # of cores queues
4148         * per 10G port.
4149         */
4150        if (n10g)
4151                q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4152        if (q10g > netif_get_num_default_rss_queues())
4153                q10g = netif_get_num_default_rss_queues();
4154
4155        for_each_port(adap, i) {
4156                struct port_info *pi = adap2pinfo(adap, i);
4157
4158                pi->first_qset = qidx;
4159                pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4160                qidx += pi->nqsets;
4161        }
4162#endif /* !CONFIG_CHELSIO_T4_DCB */
4163
4164        s->ethqsets = qidx;
4165        s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4166
4167        if (is_offload(adap)) {
4168                /*
4169                 * For offload we use 1 queue/channel if all ports are up to 1G,
4170                 * otherwise we divide all available queues amongst the channels
4171                 * capped by the number of available cores.
4172                 */
4173                if (n10g) {
4174                        i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4175                                  num_online_cpus());
4176                        s->ofldqsets = roundup(i, adap->params.nports);
4177                } else
4178                        s->ofldqsets = adap->params.nports;
4179                /* For RDMA one Rx queue per channel suffices */
4180                s->rdmaqs = adap->params.nports;
4181                /* Try and allow at least 1 CIQ per cpu rounding down
4182                 * to the number of ports, with a minimum of 1 per port.
4183                 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4184                 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4185                 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4186                 */
4187                s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4188                s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4189                                adap->params.nports;
4190                s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4191        }
4192
4193        for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4194                struct sge_eth_rxq *r = &s->ethrxq[i];
4195
4196                init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4197                r->fl.size = 72;
4198        }
4199
4200        for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4201                s->ethtxq[i].q.size = 1024;
4202
4203        for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4204                s->ctrlq[i].q.size = 512;
4205
4206        for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4207                s->ofldtxq[i].q.size = 1024;
4208
4209        for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4210                struct sge_ofld_rxq *r = &s->ofldrxq[i];
4211
4212                init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4213                r->rspq.uld = CXGB4_ULD_ISCSI;
4214                r->fl.size = 72;
4215        }
4216
4217        for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4218                struct sge_ofld_rxq *r = &s->rdmarxq[i];
4219
4220                init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4221                r->rspq.uld = CXGB4_ULD_RDMA;
4222                r->fl.size = 72;
4223        }
4224
4225        ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4226        if (ciq_size > SGE_MAX_IQ_SIZE) {
4227                CH_WARN(adap, "CIQ size too small for available IQs\n");
4228                ciq_size = SGE_MAX_IQ_SIZE;
4229        }
4230
4231        for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4232                struct sge_ofld_rxq *r = &s->rdmaciq[i];
4233
4234                init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4235                r->rspq.uld = CXGB4_ULD_RDMA;
4236        }
4237
4238        init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4239        init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4240}
4241
4242/*
4243 * Reduce the number of Ethernet queues across all ports to at most n.
4244 * n provides at least one queue per port.
4245 */
4246static void reduce_ethqs(struct adapter *adap, int n)
4247{
4248        int i;
4249        struct port_info *pi;
4250
4251        while (n < adap->sge.ethqsets)
4252                for_each_port(adap, i) {
4253                        pi = adap2pinfo(adap, i);
4254                        if (pi->nqsets > 1) {
4255                                pi->nqsets--;
4256                                adap->sge.ethqsets--;
4257                                if (adap->sge.ethqsets <= n)
4258                                        break;
4259                        }
4260                }
4261
4262        n = 0;
4263        for_each_port(adap, i) {
4264                pi = adap2pinfo(adap, i);
4265                pi->first_qset = n;
4266                n += pi->nqsets;
4267        }
4268}
4269
4270/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4271#define EXTRA_VECS 2
4272
4273static int enable_msix(struct adapter *adap)
4274{
4275        int ofld_need = 0;
4276        int i, want, need, allocated;
4277        struct sge *s = &adap->sge;
4278        unsigned int nchan = adap->params.nports;
4279        struct msix_entry *entries;
4280
4281        entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4282                          GFP_KERNEL);
4283        if (!entries)
4284                return -ENOMEM;
4285
4286        for (i = 0; i < MAX_INGQ + 1; ++i)
4287                entries[i].entry = i;
4288
4289        want = s->max_ethqsets + EXTRA_VECS;
4290        if (is_offload(adap)) {
4291                want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
4292                /* need nchan for each possible ULD */
4293                ofld_need = 3 * nchan;
4294        }
4295#ifdef CONFIG_CHELSIO_T4_DCB
4296        /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4297         * each port.
4298         */
4299        need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4300#else
4301        need = adap->params.nports + EXTRA_VECS + ofld_need;
4302#endif
4303        allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4304        if (allocated < 0) {
4305                dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4306                         " not using MSI-X\n");
4307                kfree(entries);
4308                return allocated;
4309        }
4310
4311        /* Distribute available vectors to the various queue groups.
4312         * Every group gets its minimum requirement and NIC gets top
4313         * priority for leftovers.
4314         */
4315        i = allocated - EXTRA_VECS - ofld_need;
4316        if (i < s->max_ethqsets) {
4317                s->max_ethqsets = i;
4318                if (i < s->ethqsets)
4319                        reduce_ethqs(adap, i);
4320        }
4321        if (is_offload(adap)) {
4322                if (allocated < want) {
4323                        s->rdmaqs = nchan;
4324                        s->rdmaciqs = nchan;
4325                }
4326
4327                /* leftovers go to OFLD */
4328                i = allocated - EXTRA_VECS - s->max_ethqsets -
4329                    s->rdmaqs - s->rdmaciqs;
4330                s->ofldqsets = (i / nchan) * nchan;  /* round down */
4331        }
4332        for (i = 0; i < allocated; ++i)
4333                adap->msix_info[i].vec = entries[i].vector;
4334
4335        kfree(entries);
4336        return 0;
4337}
4338
4339#undef EXTRA_VECS
4340
4341static int init_rss(struct adapter *adap)
4342{
4343        unsigned int i, j;
4344
4345        for_each_port(adap, i) {
4346                struct port_info *pi = adap2pinfo(adap, i);
4347
4348                pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4349                if (!pi->rss)
4350                        return -ENOMEM;
4351                for (j = 0; j < pi->rss_size; j++)
4352                        pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
4353        }
4354        return 0;
4355}
4356
4357static void print_port_info(const struct net_device *dev)
4358{
4359        char buf[80];
4360        char *bufp = buf;
4361        const char *spd = "";
4362        const struct port_info *pi = netdev_priv(dev);
4363        const struct adapter *adap = pi->adapter;
4364
4365        if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4366                spd = " 2.5 GT/s";
4367        else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4368                spd = " 5 GT/s";
4369        else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4370                spd = " 8 GT/s";
4371
4372        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4373                bufp += sprintf(bufp, "100/");
4374        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4375                bufp += sprintf(bufp, "1000/");
4376        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4377                bufp += sprintf(bufp, "10G/");
4378        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4379                bufp += sprintf(bufp, "40G/");
4380        if (bufp != buf)
4381                --bufp;
4382        sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4383
4384        netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
4385                    adap->params.vpd.id,
4386                    CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4387                    is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4388                    (adap->flags & USING_MSIX) ? " MSI-X" :
4389                    (adap->flags & USING_MSI) ? " MSI" : "");
4390        netdev_info(dev, "S/N: %s, P/N: %s\n",
4391                    adap->params.vpd.sn, adap->params.vpd.pn);
4392}
4393
4394static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4395{
4396        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4397}
4398
4399/*
4400 * Free the following resources:
4401 * - memory used for tables
4402 * - MSI/MSI-X
4403 * - net devices
4404 * - resources FW is holding for us
4405 */
4406static void free_some_resources(struct adapter *adapter)
4407{
4408        unsigned int i;
4409
4410        t4_free_mem(adapter->l2t);
4411        t4_free_mem(adapter->tids.tid_tab);
4412        kfree(adapter->sge.egr_map);
4413        kfree(adapter->sge.ingr_map);
4414        kfree(adapter->sge.starving_fl);
4415        kfree(adapter->sge.txq_maperr);
4416        disable_msi(adapter);
4417
4418        for_each_port(adapter, i)
4419                if (adapter->port[i]) {
4420                        kfree(adap2pinfo(adapter, i)->rss);
4421                        free_netdev(adapter->port[i]);
4422                }
4423        if (adapter->flags & FW_OK)
4424                t4_fw_bye(adapter, adapter->fn);
4425}
4426
4427#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4428#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4429                   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4430#define SEGMENT_SIZE 128
4431
4432static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4433{
4434        int func, i, err, s_qpp, qpp, num_seg;
4435        struct port_info *pi;
4436        bool highdma = false;
4437        struct adapter *adapter = NULL;
4438        void __iomem *regs;
4439
4440        printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4441
4442        err = pci_request_regions(pdev, KBUILD_MODNAME);
4443        if (err) {
4444                /* Just info, some other driver may have claimed the device. */
4445                dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4446                return err;
4447        }
4448
4449        err = pci_enable_device(pdev);
4450        if (err) {
4451                dev_err(&pdev->dev, "cannot enable PCI device\n");
4452                goto out_release_regions;
4453        }
4454
4455        regs = pci_ioremap_bar(pdev, 0);
4456        if (!regs) {
4457                dev_err(&pdev->dev, "cannot map device registers\n");
4458                err = -ENOMEM;
4459                goto out_disable_device;
4460        }
4461
4462        err = t4_wait_dev_ready(regs);
4463        if (err < 0)
4464                goto out_unmap_bar0;
4465
4466        /* We control everything through one PF */
4467        func = SOURCEPF_G(readl(regs + PL_WHOAMI_A));
4468        if (func != ent->driver_data) {
4469                iounmap(regs);
4470                pci_disable_device(pdev);
4471                pci_save_state(pdev);        /* to restore SR-IOV later */
4472                goto sriov;
4473        }
4474
4475        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4476                highdma = true;
4477                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4478                if (err) {
4479                        dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4480                                "coherent allocations\n");
4481                        goto out_unmap_bar0;
4482                }
4483        } else {
4484                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4485                if (err) {
4486                        dev_err(&pdev->dev, "no usable DMA configuration\n");
4487                        goto out_unmap_bar0;
4488                }
4489        }
4490
4491        pci_enable_pcie_error_reporting(pdev);
4492        enable_pcie_relaxed_ordering(pdev);
4493        pci_set_master(pdev);
4494        pci_save_state(pdev);
4495
4496        adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4497        if (!adapter) {
4498                err = -ENOMEM;
4499                goto out_unmap_bar0;
4500        }
4501
4502        adapter->workq = create_singlethread_workqueue("cxgb4");
4503        if (!adapter->workq) {
4504                err = -ENOMEM;
4505                goto out_free_adapter;
4506        }
4507
4508        /* PCI device has been enabled */
4509        adapter->flags |= DEV_ENABLED;
4510
4511        adapter->regs = regs;
4512        adapter->pdev = pdev;
4513        adapter->pdev_dev = &pdev->dev;
4514        adapter->mbox = func;
4515        adapter->fn = func;
4516        adapter->msg_enable = dflt_msg_enable;
4517        memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4518
4519        spin_lock_init(&adapter->stats_lock);
4520        spin_lock_init(&adapter->tid_release_lock);
4521        spin_lock_init(&adapter->win0_lock);
4522
4523        INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4524        INIT_WORK(&adapter->db_full_task, process_db_full);
4525        INIT_WORK(&adapter->db_drop_task, process_db_drop);
4526
4527        err = t4_prep_adapter(adapter);
4528        if (err)
4529                goto out_free_adapter;
4530
4531
4532        if (!is_t4(adapter->params.chip)) {
4533                s_qpp = (QUEUESPERPAGEPF0_S +
4534                        (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4535                        adapter->fn);
4536                qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4537                      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4538                num_seg = PAGE_SIZE / SEGMENT_SIZE;
4539
4540                /* Each segment size is 128B. Write coalescing is enabled only
4541                 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4542                 * queue is less no of segments that can be accommodated in
4543                 * a page size.
4544                 */
4545                if (qpp > num_seg) {
4546                        dev_err(&pdev->dev,
4547                                "Incorrect number of egress queues per page\n");
4548                        err = -EINVAL;
4549                        goto out_free_adapter;
4550                }
4551                adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4552                pci_resource_len(pdev, 2));
4553                if (!adapter->bar2) {
4554                        dev_err(&pdev->dev, "cannot map device bar2 region\n");
4555                        err = -ENOMEM;
4556                        goto out_free_adapter;
4557                }
4558        }
4559
4560        setup_memwin(adapter);
4561        err = adap_init0(adapter);
4562        setup_memwin_rdma(adapter);
4563        if (err)
4564                goto out_unmap_bar;
4565
4566        for_each_port(adapter, i) {
4567                struct net_device *netdev;
4568
4569                netdev = alloc_etherdev_mq(sizeof(struct port_info),
4570                                           MAX_ETH_QSETS);
4571                if (!netdev) {
4572                        err = -ENOMEM;
4573                        goto out_free_dev;
4574                }
4575
4576                SET_NETDEV_DEV(netdev, &pdev->dev);
4577
4578                adapter->port[i] = netdev;
4579                pi = netdev_priv(netdev);
4580                pi->adapter = adapter;
4581                pi->xact_addr_filt = -1;
4582                pi->port_id = i;
4583                netdev->irq = pdev->irq;
4584
4585                netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4586                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4587                        NETIF_F_RXCSUM | NETIF_F_RXHASH |
4588                        NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4589                if (highdma)
4590                        netdev->hw_features |= NETIF_F_HIGHDMA;
4591                netdev->features |= netdev->hw_features;
4592                netdev->vlan_features = netdev->features & VLAN_FEAT;
4593
4594                netdev->priv_flags |= IFF_UNICAST_FLT;
4595
4596                netdev->netdev_ops = &cxgb4_netdev_ops;
4597#ifdef CONFIG_CHELSIO_T4_DCB
4598                netdev->dcbnl_ops = &cxgb4_dcb_ops;
4599                cxgb4_dcb_state_init(netdev);
4600#endif
4601                cxgb4_set_ethtool_ops(netdev);
4602        }
4603
4604        pci_set_drvdata(pdev, adapter);
4605
4606        if (adapter->flags & FW_OK) {
4607                err = t4_port_init(adapter, func, func, 0);
4608                if (err)
4609                        goto out_free_dev;
4610        }
4611
4612        /*
4613         * Configure queues and allocate tables now, they can be needed as
4614         * soon as the first register_netdev completes.
4615         */
4616        cfg_queues(adapter);
4617
4618        adapter->l2t = t4_init_l2t();
4619        if (!adapter->l2t) {
4620                /* We tolerate a lack of L2T, giving up some functionality */
4621                dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4622                adapter->params.offload = 0;
4623        }
4624
4625#if IS_ENABLED(CONFIG_IPV6)
4626        adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4627                                          adapter->clipt_end);
4628        if (!adapter->clipt) {
4629                /* We tolerate a lack of clip_table, giving up
4630                 * some functionality
4631                 */
4632                dev_warn(&pdev->dev,
4633                         "could not allocate Clip table, continuing\n");
4634                adapter->params.offload = 0;
4635        }
4636#endif
4637        if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4638                dev_warn(&pdev->dev, "could not allocate TID table, "
4639                         "continuing\n");
4640                adapter->params.offload = 0;
4641        }
4642
4643        /* See what interrupts we'll be using */
4644        if (msi > 1 && enable_msix(adapter) == 0)
4645                adapter->flags |= USING_MSIX;
4646        else if (msi > 0 && pci_enable_msi(pdev) == 0)
4647                adapter->flags |= USING_MSI;
4648
4649        err = init_rss(adapter);
4650        if (err)
4651                goto out_free_dev;
4652
4653        /*
4654         * The card is now ready to go.  If any errors occur during device
4655         * registration we do not fail the whole card but rather proceed only
4656         * with the ports we manage to register successfully.  However we must
4657         * register at least one net device.
4658         */
4659        for_each_port(adapter, i) {
4660                pi = adap2pinfo(adapter, i);
4661                netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4662                netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4663
4664                err = register_netdev(adapter->port[i]);
4665                if (err)
4666                        break;
4667                adapter->chan_map[pi->tx_chan] = i;
4668                print_port_info(adapter->port[i]);
4669        }
4670        if (i == 0) {
4671                dev_err(&pdev->dev, "could not register any net devices\n");
4672                goto out_free_dev;
4673        }
4674        if (err) {
4675                dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4676                err = 0;
4677        }
4678
4679        if (cxgb4_debugfs_root) {
4680                adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4681                                                           cxgb4_debugfs_root);
4682                setup_debugfs(adapter);
4683        }
4684
4685        /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4686        pdev->needs_freset = 1;
4687
4688        if (is_offload(adapter))
4689                attach_ulds(adapter);
4690
4691sriov:
4692#ifdef CONFIG_PCI_IOV
4693        if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4694                if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4695                        dev_info(&pdev->dev,
4696                                 "instantiated %u virtual functions\n",
4697                                 num_vf[func]);
4698#endif
4699        return 0;
4700
4701 out_free_dev:
4702        free_some_resources(adapter);
4703 out_unmap_bar:
4704        if (!is_t4(adapter->params.chip))
4705                iounmap(adapter->bar2);
4706 out_free_adapter:
4707        if (adapter->workq)
4708                destroy_workqueue(adapter->workq);
4709
4710        kfree(adapter);
4711 out_unmap_bar0:
4712        iounmap(regs);
4713 out_disable_device:
4714        pci_disable_pcie_error_reporting(pdev);
4715        pci_disable_device(pdev);
4716 out_release_regions:
4717        pci_release_regions(pdev);
4718        return err;
4719}
4720
4721static void remove_one(struct pci_dev *pdev)
4722{
4723        struct adapter *adapter = pci_get_drvdata(pdev);
4724
4725#ifdef CONFIG_PCI_IOV
4726        pci_disable_sriov(pdev);
4727
4728#endif
4729
4730        if (adapter) {
4731                int i;
4732
4733                /* Tear down per-adapter Work Queue first since it can contain
4734                 * references to our adapter data structure.
4735                 */
4736                destroy_workqueue(adapter->workq);
4737
4738                if (is_offload(adapter))
4739                        detach_ulds(adapter);
4740
4741                disable_interrupts(adapter);
4742
4743                for_each_port(adapter, i)
4744                        if (adapter->port[i]->reg_state == NETREG_REGISTERED)
4745                                unregister_netdev(adapter->port[i]);
4746
4747                debugfs_remove_recursive(adapter->debugfs_root);
4748
4749                /* If we allocated filters, free up state associated with any
4750                 * valid filters ...
4751                 */
4752                if (adapter->tids.ftid_tab) {
4753                        struct filter_entry *f = &adapter->tids.ftid_tab[0];
4754                        for (i = 0; i < (adapter->tids.nftids +
4755                                        adapter->tids.nsftids); i++, f++)
4756                                if (f->valid)
4757                                        clear_filter(adapter, f);
4758                }
4759
4760                if (adapter->flags & FULL_INIT_DONE)
4761                        cxgb_down(adapter);
4762
4763                free_some_resources(adapter);
4764#if IS_ENABLED(CONFIG_IPV6)
4765                t4_cleanup_clip_tbl(adapter);
4766#endif
4767                iounmap(adapter->regs);
4768                if (!is_t4(adapter->params.chip))
4769                        iounmap(adapter->bar2);
4770                pci_disable_pcie_error_reporting(pdev);
4771                if ((adapter->flags & DEV_ENABLED)) {
4772                        pci_disable_device(pdev);
4773                        adapter->flags &= ~DEV_ENABLED;
4774                }
4775                pci_release_regions(pdev);
4776                synchronize_rcu();
4777                kfree(adapter);
4778        } else
4779                pci_release_regions(pdev);
4780}
4781
4782static struct pci_driver cxgb4_driver = {
4783        .name     = KBUILD_MODNAME,
4784        .id_table = cxgb4_pci_tbl,
4785        .probe    = init_one,
4786        .remove   = remove_one,
4787        .shutdown = remove_one,
4788        .err_handler = &cxgb4_eeh,
4789};
4790
4791static int __init cxgb4_init_module(void)
4792{
4793        int ret;
4794
4795        /* Debugfs support is optional, just warn if this fails */
4796        cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
4797        if (!cxgb4_debugfs_root)
4798                pr_warn("could not create debugfs entry, continuing\n");
4799
4800        ret = pci_register_driver(&cxgb4_driver);
4801        if (ret < 0)
4802                debugfs_remove(cxgb4_debugfs_root);
4803
4804#if IS_ENABLED(CONFIG_IPV6)
4805        if (!inet6addr_registered) {
4806                register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4807                inet6addr_registered = true;
4808        }
4809#endif
4810
4811        return ret;
4812}
4813
4814static void __exit cxgb4_cleanup_module(void)
4815{
4816#if IS_ENABLED(CONFIG_IPV6)
4817        if (inet6addr_registered) {
4818                unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4819                inet6addr_registered = false;
4820        }
4821#endif
4822        pci_unregister_driver(&cxgb4_driver);
4823        debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
4824}
4825
4826module_init(cxgb4_init_module);
4827module_exit(cxgb4_cleanup_module);
4828