linux/drivers/net/ethernet/freescale/fec_main.c
<<
>>
Prefs
   1/*
   2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   4 *
   5 * Right now, I am very wasteful with the buffers.  I allocate memory
   6 * pages and then divide them into 2K frame buffers.  This way I know I
   7 * have buffers large enough to hold one frame within one buffer descriptor.
   8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
   9 * will be much more memory efficient and will easily handle lots of
  10 * small packets.
  11 *
  12 * Much better multiple PHY support by Magnus Damm.
  13 * Copyright (c) 2000 Ericsson Radio Systems AB.
  14 *
  15 * Support for FEC controller of ColdFire processors.
  16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  17 *
  18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  19 * Copyright (c) 2004-2006 Macq Electronique SA.
  20 *
  21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/string.h>
  27#include <linux/ptrace.h>
  28#include <linux/errno.h>
  29#include <linux/ioport.h>
  30#include <linux/slab.h>
  31#include <linux/interrupt.h>
  32#include <linux/delay.h>
  33#include <linux/netdevice.h>
  34#include <linux/etherdevice.h>
  35#include <linux/skbuff.h>
  36#include <linux/in.h>
  37#include <linux/ip.h>
  38#include <net/ip.h>
  39#include <net/tso.h>
  40#include <linux/tcp.h>
  41#include <linux/udp.h>
  42#include <linux/icmp.h>
  43#include <linux/spinlock.h>
  44#include <linux/workqueue.h>
  45#include <linux/bitops.h>
  46#include <linux/io.h>
  47#include <linux/irq.h>
  48#include <linux/clk.h>
  49#include <linux/platform_device.h>
  50#include <linux/phy.h>
  51#include <linux/fec.h>
  52#include <linux/of.h>
  53#include <linux/of_device.h>
  54#include <linux/of_gpio.h>
  55#include <linux/of_mdio.h>
  56#include <linux/of_net.h>
  57#include <linux/regulator/consumer.h>
  58#include <linux/if_vlan.h>
  59#include <linux/pinctrl/consumer.h>
  60#include <linux/prefetch.h>
  61
  62#include <asm/cacheflush.h>
  63
  64#include "fec.h"
  65
  66static void set_multicast_list(struct net_device *ndev);
  67static void fec_enet_itr_coal_init(struct net_device *ndev);
  68
  69#define DRIVER_NAME     "fec"
  70
  71#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
  72
  73/* Pause frame feild and FIFO threshold */
  74#define FEC_ENET_FCE    (1 << 5)
  75#define FEC_ENET_RSEM_V 0x84
  76#define FEC_ENET_RSFL_V 16
  77#define FEC_ENET_RAEM_V 0x8
  78#define FEC_ENET_RAFL_V 0x8
  79#define FEC_ENET_OPD_V  0xFFF0
  80
  81static struct platform_device_id fec_devtype[] = {
  82        {
  83                /* keep it for coldfire */
  84                .name = DRIVER_NAME,
  85                .driver_data = 0,
  86        }, {
  87                .name = "imx25-fec",
  88                .driver_data = FEC_QUIRK_USE_GASKET,
  89        }, {
  90                .name = "imx27-fec",
  91                .driver_data = 0,
  92        }, {
  93                .name = "imx28-fec",
  94                .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
  95                                FEC_QUIRK_SINGLE_MDIO,
  96        }, {
  97                .name = "imx6q-fec",
  98                .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
  99                                FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 100                                FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
 101        }, {
 102                .name = "mvf600-fec",
 103                .driver_data = FEC_QUIRK_ENET_MAC,
 104        }, {
 105                .name = "imx6sx-fec",
 106                .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 107                                FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 108                                FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 109                                FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
 110        }, {
 111                /* sentinel */
 112        }
 113};
 114MODULE_DEVICE_TABLE(platform, fec_devtype);
 115
 116enum imx_fec_type {
 117        IMX25_FEC = 1,  /* runs on i.mx25/50/53 */
 118        IMX27_FEC,      /* runs on i.mx27/35/51 */
 119        IMX28_FEC,
 120        IMX6Q_FEC,
 121        MVF600_FEC,
 122        IMX6SX_FEC,
 123};
 124
 125static const struct of_device_id fec_dt_ids[] = {
 126        { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 127        { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 128        { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 129        { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 130        { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 131        { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
 132        { /* sentinel */ }
 133};
 134MODULE_DEVICE_TABLE(of, fec_dt_ids);
 135
 136static unsigned char macaddr[ETH_ALEN];
 137module_param_array(macaddr, byte, NULL, 0);
 138MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 139
 140#if defined(CONFIG_M5272)
 141/*
 142 * Some hardware gets it MAC address out of local flash memory.
 143 * if this is non-zero then assume it is the address to get MAC from.
 144 */
 145#if defined(CONFIG_NETtel)
 146#define FEC_FLASHMAC    0xf0006006
 147#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 148#define FEC_FLASHMAC    0xf0006000
 149#elif defined(CONFIG_CANCam)
 150#define FEC_FLASHMAC    0xf0020000
 151#elif defined (CONFIG_M5272C3)
 152#define FEC_FLASHMAC    (0xffe04000 + 4)
 153#elif defined(CONFIG_MOD5272)
 154#define FEC_FLASHMAC    0xffc0406b
 155#else
 156#define FEC_FLASHMAC    0
 157#endif
 158#endif /* CONFIG_M5272 */
 159
 160/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 161 */
 162#define PKT_MAXBUF_SIZE         1522
 163#define PKT_MINBUF_SIZE         64
 164#define PKT_MAXBLR_SIZE         1536
 165
 166/* FEC receive acceleration */
 167#define FEC_RACC_IPDIS          (1 << 1)
 168#define FEC_RACC_PRODIS         (1 << 2)
 169#define FEC_RACC_OPTIONS        (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 170
 171/*
 172 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 173 * size bits. Other FEC hardware does not, so we need to take that into
 174 * account when setting it.
 175 */
 176#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 177    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
 178#define OPT_FRAME_SIZE  (PKT_MAXBUF_SIZE << 16)
 179#else
 180#define OPT_FRAME_SIZE  0
 181#endif
 182
 183/* FEC MII MMFR bits definition */
 184#define FEC_MMFR_ST             (1 << 30)
 185#define FEC_MMFR_OP_READ        (2 << 28)
 186#define FEC_MMFR_OP_WRITE       (1 << 28)
 187#define FEC_MMFR_PA(v)          ((v & 0x1f) << 23)
 188#define FEC_MMFR_RA(v)          ((v & 0x1f) << 18)
 189#define FEC_MMFR_TA             (2 << 16)
 190#define FEC_MMFR_DATA(v)        (v & 0xffff)
 191/* FEC ECR bits definition */
 192#define FEC_ECR_MAGICEN         (1 << 2)
 193#define FEC_ECR_SLEEP           (1 << 3)
 194
 195#define FEC_MII_TIMEOUT         30000 /* us */
 196
 197/* Transmitter timeout */
 198#define TX_TIMEOUT (2 * HZ)
 199
 200#define FEC_PAUSE_FLAG_AUTONEG  0x1
 201#define FEC_PAUSE_FLAG_ENABLE   0x2
 202#define FEC_WOL_HAS_MAGIC_PACKET        (0x1 << 0)
 203#define FEC_WOL_FLAG_ENABLE             (0x1 << 1)
 204#define FEC_WOL_FLAG_SLEEP_ON           (0x1 << 2)
 205
 206#define COPYBREAK_DEFAULT       256
 207
 208#define TSO_HEADER_SIZE         128
 209/* Max number of allowed TCP segments for software TSO */
 210#define FEC_MAX_TSO_SEGS        100
 211#define FEC_MAX_SKB_DESCS       (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 212
 213#define IS_TSO_HEADER(txq, addr) \
 214        ((addr >= txq->tso_hdrs_dma) && \
 215        (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
 216
 217static int mii_cnt;
 218
 219static inline
 220struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 221                                      struct fec_enet_private *fep,
 222                                      int queue_id)
 223{
 224        struct bufdesc *new_bd = bdp + 1;
 225        struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
 226        struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
 227        struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
 228        struct bufdesc_ex *ex_base;
 229        struct bufdesc *base;
 230        int ring_size;
 231
 232        if (bdp >= txq->tx_bd_base) {
 233                base = txq->tx_bd_base;
 234                ring_size = txq->tx_ring_size;
 235                ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
 236        } else {
 237                base = rxq->rx_bd_base;
 238                ring_size = rxq->rx_ring_size;
 239                ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
 240        }
 241
 242        if (fep->bufdesc_ex)
 243                return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
 244                        ex_base : ex_new_bd);
 245        else
 246                return (new_bd >= (base + ring_size)) ?
 247                        base : new_bd;
 248}
 249
 250static inline
 251struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 252                                      struct fec_enet_private *fep,
 253                                      int queue_id)
 254{
 255        struct bufdesc *new_bd = bdp - 1;
 256        struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
 257        struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
 258        struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
 259        struct bufdesc_ex *ex_base;
 260        struct bufdesc *base;
 261        int ring_size;
 262
 263        if (bdp >= txq->tx_bd_base) {
 264                base = txq->tx_bd_base;
 265                ring_size = txq->tx_ring_size;
 266                ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
 267        } else {
 268                base = rxq->rx_bd_base;
 269                ring_size = rxq->rx_ring_size;
 270                ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
 271        }
 272
 273        if (fep->bufdesc_ex)
 274                return (struct bufdesc *)((ex_new_bd < ex_base) ?
 275                        (ex_new_bd + ring_size) : ex_new_bd);
 276        else
 277                return (new_bd < base) ? (new_bd + ring_size) : new_bd;
 278}
 279
 280static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
 281                                struct fec_enet_private *fep)
 282{
 283        return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
 284}
 285
 286static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
 287                                        struct fec_enet_priv_tx_q *txq)
 288{
 289        int entries;
 290
 291        entries = ((const char *)txq->dirty_tx -
 292                        (const char *)txq->cur_tx) / fep->bufdesc_size - 1;
 293
 294        return entries > 0 ? entries : entries + txq->tx_ring_size;
 295}
 296
 297static void swap_buffer(void *bufaddr, int len)
 298{
 299        int i;
 300        unsigned int *buf = bufaddr;
 301
 302        for (i = 0; i < len; i += 4, buf++)
 303                swab32s(buf);
 304}
 305
 306static void swap_buffer2(void *dst_buf, void *src_buf, int len)
 307{
 308        int i;
 309        unsigned int *src = src_buf;
 310        unsigned int *dst = dst_buf;
 311
 312        for (i = 0; i < len; i += 4, src++, dst++)
 313                *dst = swab32p(src);
 314}
 315
 316static void fec_dump(struct net_device *ndev)
 317{
 318        struct fec_enet_private *fep = netdev_priv(ndev);
 319        struct bufdesc *bdp;
 320        struct fec_enet_priv_tx_q *txq;
 321        int index = 0;
 322
 323        netdev_info(ndev, "TX ring dump\n");
 324        pr_info("Nr     SC     addr       len  SKB\n");
 325
 326        txq = fep->tx_queue[0];
 327        bdp = txq->tx_bd_base;
 328
 329        do {
 330                pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
 331                        index,
 332                        bdp == txq->cur_tx ? 'S' : ' ',
 333                        bdp == txq->dirty_tx ? 'H' : ' ',
 334                        bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
 335                        txq->tx_skbuff[index]);
 336                bdp = fec_enet_get_nextdesc(bdp, fep, 0);
 337                index++;
 338        } while (bdp != txq->tx_bd_base);
 339}
 340
 341static inline bool is_ipv4_pkt(struct sk_buff *skb)
 342{
 343        return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 344}
 345
 346static int
 347fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 348{
 349        /* Only run for packets requiring a checksum. */
 350        if (skb->ip_summed != CHECKSUM_PARTIAL)
 351                return 0;
 352
 353        if (unlikely(skb_cow_head(skb, 0)))
 354                return -1;
 355
 356        if (is_ipv4_pkt(skb))
 357                ip_hdr(skb)->check = 0;
 358        *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 359
 360        return 0;
 361}
 362
 363static int
 364fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 365                             struct sk_buff *skb,
 366                             struct net_device *ndev)
 367{
 368        struct fec_enet_private *fep = netdev_priv(ndev);
 369        struct bufdesc *bdp = txq->cur_tx;
 370        struct bufdesc_ex *ebdp;
 371        int nr_frags = skb_shinfo(skb)->nr_frags;
 372        unsigned short queue = skb_get_queue_mapping(skb);
 373        int frag, frag_len;
 374        unsigned short status;
 375        unsigned int estatus = 0;
 376        skb_frag_t *this_frag;
 377        unsigned int index;
 378        void *bufaddr;
 379        dma_addr_t addr;
 380        int i;
 381
 382        for (frag = 0; frag < nr_frags; frag++) {
 383                this_frag = &skb_shinfo(skb)->frags[frag];
 384                bdp = fec_enet_get_nextdesc(bdp, fep, queue);
 385                ebdp = (struct bufdesc_ex *)bdp;
 386
 387                status = bdp->cbd_sc;
 388                status &= ~BD_ENET_TX_STATS;
 389                status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 390                frag_len = skb_shinfo(skb)->frags[frag].size;
 391
 392                /* Handle the last BD specially */
 393                if (frag == nr_frags - 1) {
 394                        status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 395                        if (fep->bufdesc_ex) {
 396                                estatus |= BD_ENET_TX_INT;
 397                                if (unlikely(skb_shinfo(skb)->tx_flags &
 398                                        SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 399                                        estatus |= BD_ENET_TX_TS;
 400                        }
 401                }
 402
 403                if (fep->bufdesc_ex) {
 404                        if (fep->quirks & FEC_QUIRK_HAS_AVB)
 405                                estatus |= FEC_TX_BD_FTYPE(queue);
 406                        if (skb->ip_summed == CHECKSUM_PARTIAL)
 407                                estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 408                        ebdp->cbd_bdu = 0;
 409                        ebdp->cbd_esc = estatus;
 410                }
 411
 412                bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
 413
 414                index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
 415                if (((unsigned long) bufaddr) & fep->tx_align ||
 416                        fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 417                        memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 418                        bufaddr = txq->tx_bounce[index];
 419
 420                        if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 421                                swap_buffer(bufaddr, frag_len);
 422                }
 423
 424                addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 425                                      DMA_TO_DEVICE);
 426                if (dma_mapping_error(&fep->pdev->dev, addr)) {
 427                        dev_kfree_skb_any(skb);
 428                        if (net_ratelimit())
 429                                netdev_err(ndev, "Tx DMA memory map failed\n");
 430                        goto dma_mapping_error;
 431                }
 432
 433                bdp->cbd_bufaddr = addr;
 434                bdp->cbd_datlen = frag_len;
 435                bdp->cbd_sc = status;
 436        }
 437
 438        txq->cur_tx = bdp;
 439
 440        return 0;
 441
 442dma_mapping_error:
 443        bdp = txq->cur_tx;
 444        for (i = 0; i < frag; i++) {
 445                bdp = fec_enet_get_nextdesc(bdp, fep, queue);
 446                dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
 447                                bdp->cbd_datlen, DMA_TO_DEVICE);
 448        }
 449        return NETDEV_TX_OK;
 450}
 451
 452static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 453                                   struct sk_buff *skb, struct net_device *ndev)
 454{
 455        struct fec_enet_private *fep = netdev_priv(ndev);
 456        int nr_frags = skb_shinfo(skb)->nr_frags;
 457        struct bufdesc *bdp, *last_bdp;
 458        void *bufaddr;
 459        dma_addr_t addr;
 460        unsigned short status;
 461        unsigned short buflen;
 462        unsigned short queue;
 463        unsigned int estatus = 0;
 464        unsigned int index;
 465        int entries_free;
 466        int ret;
 467
 468        entries_free = fec_enet_get_free_txdesc_num(fep, txq);
 469        if (entries_free < MAX_SKB_FRAGS + 1) {
 470                dev_kfree_skb_any(skb);
 471                if (net_ratelimit())
 472                        netdev_err(ndev, "NOT enough BD for SG!\n");
 473                return NETDEV_TX_OK;
 474        }
 475
 476        /* Protocol checksum off-load for TCP and UDP. */
 477        if (fec_enet_clear_csum(skb, ndev)) {
 478                dev_kfree_skb_any(skb);
 479                return NETDEV_TX_OK;
 480        }
 481
 482        /* Fill in a Tx ring entry */
 483        bdp = txq->cur_tx;
 484        status = bdp->cbd_sc;
 485        status &= ~BD_ENET_TX_STATS;
 486
 487        /* Set buffer length and buffer pointer */
 488        bufaddr = skb->data;
 489        buflen = skb_headlen(skb);
 490
 491        queue = skb_get_queue_mapping(skb);
 492        index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
 493        if (((unsigned long) bufaddr) & fep->tx_align ||
 494                fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 495                memcpy(txq->tx_bounce[index], skb->data, buflen);
 496                bufaddr = txq->tx_bounce[index];
 497
 498                if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 499                        swap_buffer(bufaddr, buflen);
 500        }
 501
 502        /* Push the data cache so the CPM does not get stale memory data. */
 503        addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 504        if (dma_mapping_error(&fep->pdev->dev, addr)) {
 505                dev_kfree_skb_any(skb);
 506                if (net_ratelimit())
 507                        netdev_err(ndev, "Tx DMA memory map failed\n");
 508                return NETDEV_TX_OK;
 509        }
 510
 511        if (nr_frags) {
 512                ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 513                if (ret)
 514                        return ret;
 515        } else {
 516                status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 517                if (fep->bufdesc_ex) {
 518                        estatus = BD_ENET_TX_INT;
 519                        if (unlikely(skb_shinfo(skb)->tx_flags &
 520                                SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 521                                estatus |= BD_ENET_TX_TS;
 522                }
 523        }
 524
 525        if (fep->bufdesc_ex) {
 526
 527                struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 528
 529                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 530                        fep->hwts_tx_en))
 531                        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 532
 533                if (fep->quirks & FEC_QUIRK_HAS_AVB)
 534                        estatus |= FEC_TX_BD_FTYPE(queue);
 535
 536                if (skb->ip_summed == CHECKSUM_PARTIAL)
 537                        estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 538
 539                ebdp->cbd_bdu = 0;
 540                ebdp->cbd_esc = estatus;
 541        }
 542
 543        last_bdp = txq->cur_tx;
 544        index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
 545        /* Save skb pointer */
 546        txq->tx_skbuff[index] = skb;
 547
 548        bdp->cbd_datlen = buflen;
 549        bdp->cbd_bufaddr = addr;
 550
 551        /* Send it on its way.  Tell FEC it's ready, interrupt when done,
 552         * it's the last BD of the frame, and to put the CRC on the end.
 553         */
 554        status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 555        bdp->cbd_sc = status;
 556
 557        /* If this was the last BD in the ring, start at the beginning again. */
 558        bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
 559
 560        skb_tx_timestamp(skb);
 561
 562        txq->cur_tx = bdp;
 563
 564        /* Trigger transmission start */
 565        writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
 566
 567        return 0;
 568}
 569
 570static int
 571fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 572                          struct net_device *ndev,
 573                          struct bufdesc *bdp, int index, char *data,
 574                          int size, bool last_tcp, bool is_last)
 575{
 576        struct fec_enet_private *fep = netdev_priv(ndev);
 577        struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 578        unsigned short queue = skb_get_queue_mapping(skb);
 579        unsigned short status;
 580        unsigned int estatus = 0;
 581        dma_addr_t addr;
 582
 583        status = bdp->cbd_sc;
 584        status &= ~BD_ENET_TX_STATS;
 585
 586        status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 587
 588        if (((unsigned long) data) & fep->tx_align ||
 589                fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 590                memcpy(txq->tx_bounce[index], data, size);
 591                data = txq->tx_bounce[index];
 592
 593                if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 594                        swap_buffer(data, size);
 595        }
 596
 597        addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 598        if (dma_mapping_error(&fep->pdev->dev, addr)) {
 599                dev_kfree_skb_any(skb);
 600                if (net_ratelimit())
 601                        netdev_err(ndev, "Tx DMA memory map failed\n");
 602                return NETDEV_TX_BUSY;
 603        }
 604
 605        bdp->cbd_datlen = size;
 606        bdp->cbd_bufaddr = addr;
 607
 608        if (fep->bufdesc_ex) {
 609                if (fep->quirks & FEC_QUIRK_HAS_AVB)
 610                        estatus |= FEC_TX_BD_FTYPE(queue);
 611                if (skb->ip_summed == CHECKSUM_PARTIAL)
 612                        estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 613                ebdp->cbd_bdu = 0;
 614                ebdp->cbd_esc = estatus;
 615        }
 616
 617        /* Handle the last BD specially */
 618        if (last_tcp)
 619                status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 620        if (is_last) {
 621                status |= BD_ENET_TX_INTR;
 622                if (fep->bufdesc_ex)
 623                        ebdp->cbd_esc |= BD_ENET_TX_INT;
 624        }
 625
 626        bdp->cbd_sc = status;
 627
 628        return 0;
 629}
 630
 631static int
 632fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 633                         struct sk_buff *skb, struct net_device *ndev,
 634                         struct bufdesc *bdp, int index)
 635{
 636        struct fec_enet_private *fep = netdev_priv(ndev);
 637        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 638        struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 639        unsigned short queue = skb_get_queue_mapping(skb);
 640        void *bufaddr;
 641        unsigned long dmabuf;
 642        unsigned short status;
 643        unsigned int estatus = 0;
 644
 645        status = bdp->cbd_sc;
 646        status &= ~BD_ENET_TX_STATS;
 647        status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 648
 649        bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 650        dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 651        if (((unsigned long)bufaddr) & fep->tx_align ||
 652                fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 653                memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 654                bufaddr = txq->tx_bounce[index];
 655
 656                if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 657                        swap_buffer(bufaddr, hdr_len);
 658
 659                dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 660                                        hdr_len, DMA_TO_DEVICE);
 661                if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 662                        dev_kfree_skb_any(skb);
 663                        if (net_ratelimit())
 664                                netdev_err(ndev, "Tx DMA memory map failed\n");
 665                        return NETDEV_TX_BUSY;
 666                }
 667        }
 668
 669        bdp->cbd_bufaddr = dmabuf;
 670        bdp->cbd_datlen = hdr_len;
 671
 672        if (fep->bufdesc_ex) {
 673                if (fep->quirks & FEC_QUIRK_HAS_AVB)
 674                        estatus |= FEC_TX_BD_FTYPE(queue);
 675                if (skb->ip_summed == CHECKSUM_PARTIAL)
 676                        estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 677                ebdp->cbd_bdu = 0;
 678                ebdp->cbd_esc = estatus;
 679        }
 680
 681        bdp->cbd_sc = status;
 682
 683        return 0;
 684}
 685
 686static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 687                                   struct sk_buff *skb,
 688                                   struct net_device *ndev)
 689{
 690        struct fec_enet_private *fep = netdev_priv(ndev);
 691        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 692        int total_len, data_left;
 693        struct bufdesc *bdp = txq->cur_tx;
 694        unsigned short queue = skb_get_queue_mapping(skb);
 695        struct tso_t tso;
 696        unsigned int index = 0;
 697        int ret;
 698
 699        if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
 700                dev_kfree_skb_any(skb);
 701                if (net_ratelimit())
 702                        netdev_err(ndev, "NOT enough BD for TSO!\n");
 703                return NETDEV_TX_OK;
 704        }
 705
 706        /* Protocol checksum off-load for TCP and UDP. */
 707        if (fec_enet_clear_csum(skb, ndev)) {
 708                dev_kfree_skb_any(skb);
 709                return NETDEV_TX_OK;
 710        }
 711
 712        /* Initialize the TSO handler, and prepare the first payload */
 713        tso_start(skb, &tso);
 714
 715        total_len = skb->len - hdr_len;
 716        while (total_len > 0) {
 717                char *hdr;
 718
 719                index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
 720                data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 721                total_len -= data_left;
 722
 723                /* prepare packet headers: MAC + IP + TCP */
 724                hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 725                tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 726                ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 727                if (ret)
 728                        goto err_release;
 729
 730                while (data_left > 0) {
 731                        int size;
 732
 733                        size = min_t(int, tso.size, data_left);
 734                        bdp = fec_enet_get_nextdesc(bdp, fep, queue);
 735                        index = fec_enet_get_bd_index(txq->tx_bd_base,
 736                                                      bdp, fep);
 737                        ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 738                                                        bdp, index,
 739                                                        tso.data, size,
 740                                                        size == data_left,
 741                                                        total_len == 0);
 742                        if (ret)
 743                                goto err_release;
 744
 745                        data_left -= size;
 746                        tso_build_data(skb, &tso, size);
 747                }
 748
 749                bdp = fec_enet_get_nextdesc(bdp, fep, queue);
 750        }
 751
 752        /* Save skb pointer */
 753        txq->tx_skbuff[index] = skb;
 754
 755        skb_tx_timestamp(skb);
 756        txq->cur_tx = bdp;
 757
 758        /* Trigger transmission start */
 759        if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 760            !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
 761            !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
 762            !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
 763            !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
 764                writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
 765
 766        return 0;
 767
 768err_release:
 769        /* TODO: Release all used data descriptors for TSO */
 770        return ret;
 771}
 772
 773static netdev_tx_t
 774fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 775{
 776        struct fec_enet_private *fep = netdev_priv(ndev);
 777        int entries_free;
 778        unsigned short queue;
 779        struct fec_enet_priv_tx_q *txq;
 780        struct netdev_queue *nq;
 781        int ret;
 782
 783        queue = skb_get_queue_mapping(skb);
 784        txq = fep->tx_queue[queue];
 785        nq = netdev_get_tx_queue(ndev, queue);
 786
 787        if (skb_is_gso(skb))
 788                ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 789        else
 790                ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 791        if (ret)
 792                return ret;
 793
 794        entries_free = fec_enet_get_free_txdesc_num(fep, txq);
 795        if (entries_free <= txq->tx_stop_threshold)
 796                netif_tx_stop_queue(nq);
 797
 798        return NETDEV_TX_OK;
 799}
 800
 801/* Init RX & TX buffer descriptors
 802 */
 803static void fec_enet_bd_init(struct net_device *dev)
 804{
 805        struct fec_enet_private *fep = netdev_priv(dev);
 806        struct fec_enet_priv_tx_q *txq;
 807        struct fec_enet_priv_rx_q *rxq;
 808        struct bufdesc *bdp;
 809        unsigned int i;
 810        unsigned int q;
 811
 812        for (q = 0; q < fep->num_rx_queues; q++) {
 813                /* Initialize the receive buffer descriptors. */
 814                rxq = fep->rx_queue[q];
 815                bdp = rxq->rx_bd_base;
 816
 817                for (i = 0; i < rxq->rx_ring_size; i++) {
 818
 819                        /* Initialize the BD for every fragment in the page. */
 820                        if (bdp->cbd_bufaddr)
 821                                bdp->cbd_sc = BD_ENET_RX_EMPTY;
 822                        else
 823                                bdp->cbd_sc = 0;
 824                        bdp = fec_enet_get_nextdesc(bdp, fep, q);
 825                }
 826
 827                /* Set the last buffer to wrap */
 828                bdp = fec_enet_get_prevdesc(bdp, fep, q);
 829                bdp->cbd_sc |= BD_SC_WRAP;
 830
 831                rxq->cur_rx = rxq->rx_bd_base;
 832        }
 833
 834        for (q = 0; q < fep->num_tx_queues; q++) {
 835                /* ...and the same for transmit */
 836                txq = fep->tx_queue[q];
 837                bdp = txq->tx_bd_base;
 838                txq->cur_tx = bdp;
 839
 840                for (i = 0; i < txq->tx_ring_size; i++) {
 841                        /* Initialize the BD for every fragment in the page. */
 842                        bdp->cbd_sc = 0;
 843                        if (txq->tx_skbuff[i]) {
 844                                dev_kfree_skb_any(txq->tx_skbuff[i]);
 845                                txq->tx_skbuff[i] = NULL;
 846                        }
 847                        bdp->cbd_bufaddr = 0;
 848                        bdp = fec_enet_get_nextdesc(bdp, fep, q);
 849                }
 850
 851                /* Set the last buffer to wrap */
 852                bdp = fec_enet_get_prevdesc(bdp, fep, q);
 853                bdp->cbd_sc |= BD_SC_WRAP;
 854                txq->dirty_tx = bdp;
 855        }
 856}
 857
 858static void fec_enet_active_rxring(struct net_device *ndev)
 859{
 860        struct fec_enet_private *fep = netdev_priv(ndev);
 861        int i;
 862
 863        for (i = 0; i < fep->num_rx_queues; i++)
 864                writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
 865}
 866
 867static void fec_enet_enable_ring(struct net_device *ndev)
 868{
 869        struct fec_enet_private *fep = netdev_priv(ndev);
 870        struct fec_enet_priv_tx_q *txq;
 871        struct fec_enet_priv_rx_q *rxq;
 872        int i;
 873
 874        for (i = 0; i < fep->num_rx_queues; i++) {
 875                rxq = fep->rx_queue[i];
 876                writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
 877                writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
 878
 879                /* enable DMA1/2 */
 880                if (i)
 881                        writel(RCMR_MATCHEN | RCMR_CMP(i),
 882                               fep->hwp + FEC_RCMR(i));
 883        }
 884
 885        for (i = 0; i < fep->num_tx_queues; i++) {
 886                txq = fep->tx_queue[i];
 887                writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
 888
 889                /* enable DMA1/2 */
 890                if (i)
 891                        writel(DMA_CLASS_EN | IDLE_SLOPE(i),
 892                               fep->hwp + FEC_DMA_CFG(i));
 893        }
 894}
 895
 896static void fec_enet_reset_skb(struct net_device *ndev)
 897{
 898        struct fec_enet_private *fep = netdev_priv(ndev);
 899        struct fec_enet_priv_tx_q *txq;
 900        int i, j;
 901
 902        for (i = 0; i < fep->num_tx_queues; i++) {
 903                txq = fep->tx_queue[i];
 904
 905                for (j = 0; j < txq->tx_ring_size; j++) {
 906                        if (txq->tx_skbuff[j]) {
 907                                dev_kfree_skb_any(txq->tx_skbuff[j]);
 908                                txq->tx_skbuff[j] = NULL;
 909                        }
 910                }
 911        }
 912}
 913
 914/*
 915 * This function is called to start or restart the FEC during a link
 916 * change, transmit timeout, or to reconfigure the FEC.  The network
 917 * packet processing for this device must be stopped before this call.
 918 */
 919static void
 920fec_restart(struct net_device *ndev)
 921{
 922        struct fec_enet_private *fep = netdev_priv(ndev);
 923        u32 val;
 924        u32 temp_mac[2];
 925        u32 rcntl = OPT_FRAME_SIZE | 0x04;
 926        u32 ecntl = 0x2; /* ETHEREN */
 927
 928        /* Whack a reset.  We should wait for this.
 929         * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
 930         * instead of reset MAC itself.
 931         */
 932        if (fep->quirks & FEC_QUIRK_HAS_AVB) {
 933                writel(0, fep->hwp + FEC_ECNTRL);
 934        } else {
 935                writel(1, fep->hwp + FEC_ECNTRL);
 936                udelay(10);
 937        }
 938
 939        /*
 940         * enet-mac reset will reset mac address registers too,
 941         * so need to reconfigure it.
 942         */
 943        if (fep->quirks & FEC_QUIRK_ENET_MAC) {
 944                memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 945                writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
 946                writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
 947        }
 948
 949        /* Clear any outstanding interrupt. */
 950        writel(0xffffffff, fep->hwp + FEC_IEVENT);
 951
 952        fec_enet_bd_init(ndev);
 953
 954        fec_enet_enable_ring(ndev);
 955
 956        /* Reset tx SKB buffers. */
 957        fec_enet_reset_skb(ndev);
 958
 959        /* Enable MII mode */
 960        if (fep->full_duplex == DUPLEX_FULL) {
 961                /* FD enable */
 962                writel(0x04, fep->hwp + FEC_X_CNTRL);
 963        } else {
 964                /* No Rcv on Xmit */
 965                rcntl |= 0x02;
 966                writel(0x0, fep->hwp + FEC_X_CNTRL);
 967        }
 968
 969        /* Set MII speed */
 970        writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 971
 972#if !defined(CONFIG_M5272)
 973        /* set RX checksum */
 974        val = readl(fep->hwp + FEC_RACC);
 975        if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
 976                val |= FEC_RACC_OPTIONS;
 977        else
 978                val &= ~FEC_RACC_OPTIONS;
 979        writel(val, fep->hwp + FEC_RACC);
 980#endif
 981
 982        /*
 983         * The phy interface and speed need to get configured
 984         * differently on enet-mac.
 985         */
 986        if (fep->quirks & FEC_QUIRK_ENET_MAC) {
 987                /* Enable flow control and length check */
 988                rcntl |= 0x40000000 | 0x00000020;
 989
 990                /* RGMII, RMII or MII */
 991                if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
 992                    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
 993                    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
 994                    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
 995                        rcntl |= (1 << 6);
 996                else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 997                        rcntl |= (1 << 8);
 998                else
 999                        rcntl &= ~(1 << 8);
1000
1001                /* 1G, 100M or 10M */
1002                if (fep->phy_dev) {
1003                        if (fep->phy_dev->speed == SPEED_1000)
1004                                ecntl |= (1 << 5);
1005                        else if (fep->phy_dev->speed == SPEED_100)
1006                                rcntl &= ~(1 << 9);
1007                        else
1008                                rcntl |= (1 << 9);
1009                }
1010        } else {
1011#ifdef FEC_MIIGSK_ENR
1012                if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1013                        u32 cfgr;
1014                        /* disable the gasket and wait */
1015                        writel(0, fep->hwp + FEC_MIIGSK_ENR);
1016                        while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1017                                udelay(1);
1018
1019                        /*
1020                         * configure the gasket:
1021                         *   RMII, 50 MHz, no loopback, no echo
1022                         *   MII, 25 MHz, no loopback, no echo
1023                         */
1024                        cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1025                                ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1026                        if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1027                                cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1028                        writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1029
1030                        /* re-enable the gasket */
1031                        writel(2, fep->hwp + FEC_MIIGSK_ENR);
1032                }
1033#endif
1034        }
1035
1036#if !defined(CONFIG_M5272)
1037        /* enable pause frame*/
1038        if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1039            ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1040             fep->phy_dev && fep->phy_dev->pause)) {
1041                rcntl |= FEC_ENET_FCE;
1042
1043                /* set FIFO threshold parameter to reduce overrun */
1044                writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1045                writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1046                writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1047                writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1048
1049                /* OPD */
1050                writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1051        } else {
1052                rcntl &= ~FEC_ENET_FCE;
1053        }
1054#endif /* !defined(CONFIG_M5272) */
1055
1056        writel(rcntl, fep->hwp + FEC_R_CNTRL);
1057
1058        /* Setup multicast filter. */
1059        set_multicast_list(ndev);
1060#ifndef CONFIG_M5272
1061        writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1062        writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1063#endif
1064
1065        if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1066                /* enable ENET endian swap */
1067                ecntl |= (1 << 8);
1068                /* enable ENET store and forward mode */
1069                writel(1 << 8, fep->hwp + FEC_X_WMRK);
1070        }
1071
1072        if (fep->bufdesc_ex)
1073                ecntl |= (1 << 4);
1074
1075#ifndef CONFIG_M5272
1076        /* Enable the MIB statistic event counters */
1077        writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1078#endif
1079
1080        /* And last, enable the transmit and receive processing */
1081        writel(ecntl, fep->hwp + FEC_ECNTRL);
1082        fec_enet_active_rxring(ndev);
1083
1084        if (fep->bufdesc_ex)
1085                fec_ptp_start_cyclecounter(ndev);
1086
1087        /* Enable interrupts we wish to service */
1088        if (fep->link)
1089                writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1090        else
1091                writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1092
1093        /* Init the interrupt coalescing */
1094        fec_enet_itr_coal_init(ndev);
1095
1096}
1097
1098static void
1099fec_stop(struct net_device *ndev)
1100{
1101        struct fec_enet_private *fep = netdev_priv(ndev);
1102        struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1103        u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1104        u32 val;
1105
1106        /* We cannot expect a graceful transmit stop without link !!! */
1107        if (fep->link) {
1108                writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1109                udelay(10);
1110                if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1111                        netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1112        }
1113
1114        /* Whack a reset.  We should wait for this.
1115         * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1116         * instead of reset MAC itself.
1117         */
1118        if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1119                if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1120                        writel(0, fep->hwp + FEC_ECNTRL);
1121                } else {
1122                        writel(1, fep->hwp + FEC_ECNTRL);
1123                        udelay(10);
1124                }
1125                writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1126        } else {
1127                writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1128                val = readl(fep->hwp + FEC_ECNTRL);
1129                val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1130                writel(val, fep->hwp + FEC_ECNTRL);
1131
1132                if (pdata && pdata->sleep_mode_enable)
1133                        pdata->sleep_mode_enable(true);
1134        }
1135        writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1136
1137        /* We have to keep ENET enabled to have MII interrupt stay working */
1138        if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1139                !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1140                writel(2, fep->hwp + FEC_ECNTRL);
1141                writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1142        }
1143}
1144
1145
1146static void
1147fec_timeout(struct net_device *ndev)
1148{
1149        struct fec_enet_private *fep = netdev_priv(ndev);
1150
1151        fec_dump(ndev);
1152
1153        ndev->stats.tx_errors++;
1154
1155        schedule_work(&fep->tx_timeout_work);
1156}
1157
1158static void fec_enet_timeout_work(struct work_struct *work)
1159{
1160        struct fec_enet_private *fep =
1161                container_of(work, struct fec_enet_private, tx_timeout_work);
1162        struct net_device *ndev = fep->netdev;
1163
1164        rtnl_lock();
1165        if (netif_device_present(ndev) || netif_running(ndev)) {
1166                napi_disable(&fep->napi);
1167                netif_tx_lock_bh(ndev);
1168                fec_restart(ndev);
1169                netif_wake_queue(ndev);
1170                netif_tx_unlock_bh(ndev);
1171                napi_enable(&fep->napi);
1172        }
1173        rtnl_unlock();
1174}
1175
1176static void
1177fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1178        struct skb_shared_hwtstamps *hwtstamps)
1179{
1180        unsigned long flags;
1181        u64 ns;
1182
1183        spin_lock_irqsave(&fep->tmreg_lock, flags);
1184        ns = timecounter_cyc2time(&fep->tc, ts);
1185        spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1186
1187        memset(hwtstamps, 0, sizeof(*hwtstamps));
1188        hwtstamps->hwtstamp = ns_to_ktime(ns);
1189}
1190
1191static void
1192fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1193{
1194        struct  fec_enet_private *fep;
1195        struct bufdesc *bdp;
1196        unsigned short status;
1197        struct  sk_buff *skb;
1198        struct fec_enet_priv_tx_q *txq;
1199        struct netdev_queue *nq;
1200        int     index = 0;
1201        int     entries_free;
1202
1203        fep = netdev_priv(ndev);
1204
1205        queue_id = FEC_ENET_GET_QUQUE(queue_id);
1206
1207        txq = fep->tx_queue[queue_id];
1208        /* get next bdp of dirty_tx */
1209        nq = netdev_get_tx_queue(ndev, queue_id);
1210        bdp = txq->dirty_tx;
1211
1212        /* get next bdp of dirty_tx */
1213        bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1214
1215        while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1216
1217                /* current queue is empty */
1218                if (bdp == txq->cur_tx)
1219                        break;
1220
1221                index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1222
1223                skb = txq->tx_skbuff[index];
1224                txq->tx_skbuff[index] = NULL;
1225                if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1226                        dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1227                                        bdp->cbd_datlen, DMA_TO_DEVICE);
1228                bdp->cbd_bufaddr = 0;
1229                if (!skb) {
1230                        bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1231                        continue;
1232                }
1233
1234                /* Check for errors. */
1235                if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1236                                   BD_ENET_TX_RL | BD_ENET_TX_UN |
1237                                   BD_ENET_TX_CSL)) {
1238                        ndev->stats.tx_errors++;
1239                        if (status & BD_ENET_TX_HB)  /* No heartbeat */
1240                                ndev->stats.tx_heartbeat_errors++;
1241                        if (status & BD_ENET_TX_LC)  /* Late collision */
1242                                ndev->stats.tx_window_errors++;
1243                        if (status & BD_ENET_TX_RL)  /* Retrans limit */
1244                                ndev->stats.tx_aborted_errors++;
1245                        if (status & BD_ENET_TX_UN)  /* Underrun */
1246                                ndev->stats.tx_fifo_errors++;
1247                        if (status & BD_ENET_TX_CSL) /* Carrier lost */
1248                                ndev->stats.tx_carrier_errors++;
1249                } else {
1250                        ndev->stats.tx_packets++;
1251                        ndev->stats.tx_bytes += skb->len;
1252                }
1253
1254                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1255                        fep->bufdesc_ex) {
1256                        struct skb_shared_hwtstamps shhwtstamps;
1257                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1258
1259                        fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1260                        skb_tstamp_tx(skb, &shhwtstamps);
1261                }
1262
1263                /* Deferred means some collisions occurred during transmit,
1264                 * but we eventually sent the packet OK.
1265                 */
1266                if (status & BD_ENET_TX_DEF)
1267                        ndev->stats.collisions++;
1268
1269                /* Free the sk buffer associated with this last transmit */
1270                dev_kfree_skb_any(skb);
1271
1272                txq->dirty_tx = bdp;
1273
1274                /* Update pointer to next buffer descriptor to be transmitted */
1275                bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1276
1277                /* Since we have freed up a buffer, the ring is no longer full
1278                 */
1279                if (netif_queue_stopped(ndev)) {
1280                        entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1281                        if (entries_free >= txq->tx_wake_threshold)
1282                                netif_tx_wake_queue(nq);
1283                }
1284        }
1285
1286        /* ERR006538: Keep the transmitter going */
1287        if (bdp != txq->cur_tx &&
1288            readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1289                writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1290}
1291
1292static void
1293fec_enet_tx(struct net_device *ndev)
1294{
1295        struct fec_enet_private *fep = netdev_priv(ndev);
1296        u16 queue_id;
1297        /* First process class A queue, then Class B and Best Effort queue */
1298        for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1299                clear_bit(queue_id, &fep->work_tx);
1300                fec_enet_tx_queue(ndev, queue_id);
1301        }
1302        return;
1303}
1304
1305static int
1306fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1307{
1308        struct  fec_enet_private *fep = netdev_priv(ndev);
1309        int off;
1310
1311        off = ((unsigned long)skb->data) & fep->rx_align;
1312        if (off)
1313                skb_reserve(skb, fep->rx_align + 1 - off);
1314
1315        bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1316                                          FEC_ENET_RX_FRSIZE - fep->rx_align,
1317                                          DMA_FROM_DEVICE);
1318        if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1319                if (net_ratelimit())
1320                        netdev_err(ndev, "Rx DMA memory map failed\n");
1321                return -ENOMEM;
1322        }
1323
1324        return 0;
1325}
1326
1327static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1328                               struct bufdesc *bdp, u32 length, bool swap)
1329{
1330        struct  fec_enet_private *fep = netdev_priv(ndev);
1331        struct sk_buff *new_skb;
1332
1333        if (length > fep->rx_copybreak)
1334                return false;
1335
1336        new_skb = netdev_alloc_skb(ndev, length);
1337        if (!new_skb)
1338                return false;
1339
1340        dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1341                                FEC_ENET_RX_FRSIZE - fep->rx_align,
1342                                DMA_FROM_DEVICE);
1343        if (!swap)
1344                memcpy(new_skb->data, (*skb)->data, length);
1345        else
1346                swap_buffer2(new_skb->data, (*skb)->data, length);
1347        *skb = new_skb;
1348
1349        return true;
1350}
1351
1352/* During a receive, the cur_rx points to the current incoming buffer.
1353 * When we update through the ring, if the next incoming buffer has
1354 * not been given to the system, we just set the empty indicator,
1355 * effectively tossing the packet.
1356 */
1357static int
1358fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1359{
1360        struct fec_enet_private *fep = netdev_priv(ndev);
1361        struct fec_enet_priv_rx_q *rxq;
1362        struct bufdesc *bdp;
1363        unsigned short status;
1364        struct  sk_buff *skb_new = NULL;
1365        struct  sk_buff *skb;
1366        ushort  pkt_len;
1367        __u8 *data;
1368        int     pkt_received = 0;
1369        struct  bufdesc_ex *ebdp = NULL;
1370        bool    vlan_packet_rcvd = false;
1371        u16     vlan_tag;
1372        int     index = 0;
1373        bool    is_copybreak;
1374        bool    need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1375
1376#ifdef CONFIG_M532x
1377        flush_cache_all();
1378#endif
1379        queue_id = FEC_ENET_GET_QUQUE(queue_id);
1380        rxq = fep->rx_queue[queue_id];
1381
1382        /* First, grab all of the stats for the incoming packet.
1383         * These get messed up if we get called due to a busy condition.
1384         */
1385        bdp = rxq->cur_rx;
1386
1387        while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1388
1389                if (pkt_received >= budget)
1390                        break;
1391                pkt_received++;
1392
1393                /* Since we have allocated space to hold a complete frame,
1394                 * the last indicator should be set.
1395                 */
1396                if ((status & BD_ENET_RX_LAST) == 0)
1397                        netdev_err(ndev, "rcv is not +last\n");
1398
1399
1400                /* Check for errors. */
1401                if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1402                           BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1403                        ndev->stats.rx_errors++;
1404                        if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1405                                /* Frame too long or too short. */
1406                                ndev->stats.rx_length_errors++;
1407                        }
1408                        if (status & BD_ENET_RX_NO)     /* Frame alignment */
1409                                ndev->stats.rx_frame_errors++;
1410                        if (status & BD_ENET_RX_CR)     /* CRC Error */
1411                                ndev->stats.rx_crc_errors++;
1412                        if (status & BD_ENET_RX_OV)     /* FIFO overrun */
1413                                ndev->stats.rx_fifo_errors++;
1414                }
1415
1416                /* Report late collisions as a frame error.
1417                 * On this error, the BD is closed, but we don't know what we
1418                 * have in the buffer.  So, just drop this frame on the floor.
1419                 */
1420                if (status & BD_ENET_RX_CL) {
1421                        ndev->stats.rx_errors++;
1422                        ndev->stats.rx_frame_errors++;
1423                        goto rx_processing_done;
1424                }
1425
1426                /* Process the incoming frame. */
1427                ndev->stats.rx_packets++;
1428                pkt_len = bdp->cbd_datlen;
1429                ndev->stats.rx_bytes += pkt_len;
1430
1431                index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1432                skb = rxq->rx_skbuff[index];
1433
1434                /* The packet length includes FCS, but we don't want to
1435                 * include that when passing upstream as it messes up
1436                 * bridging applications.
1437                 */
1438                is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1439                                                  need_swap);
1440                if (!is_copybreak) {
1441                        skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1442                        if (unlikely(!skb_new)) {
1443                                ndev->stats.rx_dropped++;
1444                                goto rx_processing_done;
1445                        }
1446                        dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1447                                         FEC_ENET_RX_FRSIZE - fep->rx_align,
1448                                         DMA_FROM_DEVICE);
1449                }
1450
1451                prefetch(skb->data - NET_IP_ALIGN);
1452                skb_put(skb, pkt_len - 4);
1453                data = skb->data;
1454                if (!is_copybreak && need_swap)
1455                        swap_buffer(data, pkt_len);
1456
1457                /* Extract the enhanced buffer descriptor */
1458                ebdp = NULL;
1459                if (fep->bufdesc_ex)
1460                        ebdp = (struct bufdesc_ex *)bdp;
1461
1462                /* If this is a VLAN packet remove the VLAN Tag */
1463                vlan_packet_rcvd = false;
1464                if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1465                        fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1466                        /* Push and remove the vlan tag */
1467                        struct vlan_hdr *vlan_header =
1468                                        (struct vlan_hdr *) (data + ETH_HLEN);
1469                        vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1470
1471                        vlan_packet_rcvd = true;
1472
1473                        memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1474                        skb_pull(skb, VLAN_HLEN);
1475                }
1476
1477                skb->protocol = eth_type_trans(skb, ndev);
1478
1479                /* Get receive timestamp from the skb */
1480                if (fep->hwts_rx_en && fep->bufdesc_ex)
1481                        fec_enet_hwtstamp(fep, ebdp->ts,
1482                                          skb_hwtstamps(skb));
1483
1484                if (fep->bufdesc_ex &&
1485                    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1486                        if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1487                                /* don't check it */
1488                                skb->ip_summed = CHECKSUM_UNNECESSARY;
1489                        } else {
1490                                skb_checksum_none_assert(skb);
1491                        }
1492                }
1493
1494                /* Handle received VLAN packets */
1495                if (vlan_packet_rcvd)
1496                        __vlan_hwaccel_put_tag(skb,
1497                                               htons(ETH_P_8021Q),
1498                                               vlan_tag);
1499
1500                napi_gro_receive(&fep->napi, skb);
1501
1502                if (is_copybreak) {
1503                        dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1504                                                   FEC_ENET_RX_FRSIZE - fep->rx_align,
1505                                                   DMA_FROM_DEVICE);
1506                } else {
1507                        rxq->rx_skbuff[index] = skb_new;
1508                        fec_enet_new_rxbdp(ndev, bdp, skb_new);
1509                }
1510
1511rx_processing_done:
1512                /* Clear the status flags for this buffer */
1513                status &= ~BD_ENET_RX_STATS;
1514
1515                /* Mark the buffer empty */
1516                status |= BD_ENET_RX_EMPTY;
1517                bdp->cbd_sc = status;
1518
1519                if (fep->bufdesc_ex) {
1520                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1521
1522                        ebdp->cbd_esc = BD_ENET_RX_INT;
1523                        ebdp->cbd_prot = 0;
1524                        ebdp->cbd_bdu = 0;
1525                }
1526
1527                /* Update BD pointer to next entry */
1528                bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1529
1530                /* Doing this here will keep the FEC running while we process
1531                 * incoming frames.  On a heavily loaded network, we should be
1532                 * able to keep up at the expense of system resources.
1533                 */
1534                writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1535        }
1536        rxq->cur_rx = bdp;
1537        return pkt_received;
1538}
1539
1540static int
1541fec_enet_rx(struct net_device *ndev, int budget)
1542{
1543        int     pkt_received = 0;
1544        u16     queue_id;
1545        struct fec_enet_private *fep = netdev_priv(ndev);
1546
1547        for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1548                clear_bit(queue_id, &fep->work_rx);
1549                pkt_received += fec_enet_rx_queue(ndev,
1550                                        budget - pkt_received, queue_id);
1551        }
1552        return pkt_received;
1553}
1554
1555static bool
1556fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1557{
1558        if (int_events == 0)
1559                return false;
1560
1561        if (int_events & FEC_ENET_RXF)
1562                fep->work_rx |= (1 << 2);
1563        if (int_events & FEC_ENET_RXF_1)
1564                fep->work_rx |= (1 << 0);
1565        if (int_events & FEC_ENET_RXF_2)
1566                fep->work_rx |= (1 << 1);
1567
1568        if (int_events & FEC_ENET_TXF)
1569                fep->work_tx |= (1 << 2);
1570        if (int_events & FEC_ENET_TXF_1)
1571                fep->work_tx |= (1 << 0);
1572        if (int_events & FEC_ENET_TXF_2)
1573                fep->work_tx |= (1 << 1);
1574
1575        return true;
1576}
1577
1578static irqreturn_t
1579fec_enet_interrupt(int irq, void *dev_id)
1580{
1581        struct net_device *ndev = dev_id;
1582        struct fec_enet_private *fep = netdev_priv(ndev);
1583        uint int_events;
1584        irqreturn_t ret = IRQ_NONE;
1585
1586        int_events = readl(fep->hwp + FEC_IEVENT);
1587        writel(int_events, fep->hwp + FEC_IEVENT);
1588        fec_enet_collect_events(fep, int_events);
1589
1590        if ((fep->work_tx || fep->work_rx) && fep->link) {
1591                ret = IRQ_HANDLED;
1592
1593                if (napi_schedule_prep(&fep->napi)) {
1594                        /* Disable the NAPI interrupts */
1595                        writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1596                        __napi_schedule(&fep->napi);
1597                }
1598        }
1599
1600        if (int_events & FEC_ENET_MII) {
1601                ret = IRQ_HANDLED;
1602                complete(&fep->mdio_done);
1603        }
1604
1605        if (fep->ptp_clock)
1606                fec_ptp_check_pps_event(fep);
1607
1608        return ret;
1609}
1610
1611static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1612{
1613        struct net_device *ndev = napi->dev;
1614        struct fec_enet_private *fep = netdev_priv(ndev);
1615        int pkts;
1616
1617        pkts = fec_enet_rx(ndev, budget);
1618
1619        fec_enet_tx(ndev);
1620
1621        if (pkts < budget) {
1622                napi_complete(napi);
1623                writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1624        }
1625        return pkts;
1626}
1627
1628/* ------------------------------------------------------------------------- */
1629static void fec_get_mac(struct net_device *ndev)
1630{
1631        struct fec_enet_private *fep = netdev_priv(ndev);
1632        struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1633        unsigned char *iap, tmpaddr[ETH_ALEN];
1634
1635        /*
1636         * try to get mac address in following order:
1637         *
1638         * 1) module parameter via kernel command line in form
1639         *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1640         */
1641        iap = macaddr;
1642
1643        /*
1644         * 2) from device tree data
1645         */
1646        if (!is_valid_ether_addr(iap)) {
1647                struct device_node *np = fep->pdev->dev.of_node;
1648                if (np) {
1649                        const char *mac = of_get_mac_address(np);
1650                        if (mac)
1651                                iap = (unsigned char *) mac;
1652                }
1653        }
1654
1655        /*
1656         * 3) from flash or fuse (via platform data)
1657         */
1658        if (!is_valid_ether_addr(iap)) {
1659#ifdef CONFIG_M5272
1660                if (FEC_FLASHMAC)
1661                        iap = (unsigned char *)FEC_FLASHMAC;
1662#else
1663                if (pdata)
1664                        iap = (unsigned char *)&pdata->mac;
1665#endif
1666        }
1667
1668        /*
1669         * 4) FEC mac registers set by bootloader
1670         */
1671        if (!is_valid_ether_addr(iap)) {
1672                *((__be32 *) &tmpaddr[0]) =
1673                        cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1674                *((__be16 *) &tmpaddr[4]) =
1675                        cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1676                iap = &tmpaddr[0];
1677        }
1678
1679        /*
1680         * 5) random mac address
1681         */
1682        if (!is_valid_ether_addr(iap)) {
1683                /* Report it and use a random ethernet address instead */
1684                netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1685                eth_hw_addr_random(ndev);
1686                netdev_info(ndev, "Using random MAC address: %pM\n",
1687                            ndev->dev_addr);
1688                return;
1689        }
1690
1691        memcpy(ndev->dev_addr, iap, ETH_ALEN);
1692
1693        /* Adjust MAC if using macaddr */
1694        if (iap == macaddr)
1695                 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1696}
1697
1698/* ------------------------------------------------------------------------- */
1699
1700/*
1701 * Phy section
1702 */
1703static void fec_enet_adjust_link(struct net_device *ndev)
1704{
1705        struct fec_enet_private *fep = netdev_priv(ndev);
1706        struct phy_device *phy_dev = fep->phy_dev;
1707        int status_change = 0;
1708
1709        /* Prevent a state halted on mii error */
1710        if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1711                phy_dev->state = PHY_RESUMING;
1712                return;
1713        }
1714
1715        /*
1716         * If the netdev is down, or is going down, we're not interested
1717         * in link state events, so just mark our idea of the link as down
1718         * and ignore the event.
1719         */
1720        if (!netif_running(ndev) || !netif_device_present(ndev)) {
1721                fep->link = 0;
1722        } else if (phy_dev->link) {
1723                if (!fep->link) {
1724                        fep->link = phy_dev->link;
1725                        status_change = 1;
1726                }
1727
1728                if (fep->full_duplex != phy_dev->duplex) {
1729                        fep->full_duplex = phy_dev->duplex;
1730                        status_change = 1;
1731                }
1732
1733                if (phy_dev->speed != fep->speed) {
1734                        fep->speed = phy_dev->speed;
1735                        status_change = 1;
1736                }
1737
1738                /* if any of the above changed restart the FEC */
1739                if (status_change) {
1740                        napi_disable(&fep->napi);
1741                        netif_tx_lock_bh(ndev);
1742                        fec_restart(ndev);
1743                        netif_wake_queue(ndev);
1744                        netif_tx_unlock_bh(ndev);
1745                        napi_enable(&fep->napi);
1746                }
1747        } else {
1748                if (fep->link) {
1749                        napi_disable(&fep->napi);
1750                        netif_tx_lock_bh(ndev);
1751                        fec_stop(ndev);
1752                        netif_tx_unlock_bh(ndev);
1753                        napi_enable(&fep->napi);
1754                        fep->link = phy_dev->link;
1755                        status_change = 1;
1756                }
1757        }
1758
1759        if (status_change)
1760                phy_print_status(phy_dev);
1761}
1762
1763static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1764{
1765        struct fec_enet_private *fep = bus->priv;
1766        unsigned long time_left;
1767
1768        fep->mii_timeout = 0;
1769        init_completion(&fep->mdio_done);
1770
1771        /* start a read op */
1772        writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1773                FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1774                FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1775
1776        /* wait for end of transfer */
1777        time_left = wait_for_completion_timeout(&fep->mdio_done,
1778                        usecs_to_jiffies(FEC_MII_TIMEOUT));
1779        if (time_left == 0) {
1780                fep->mii_timeout = 1;
1781                netdev_err(fep->netdev, "MDIO read timeout\n");
1782                return -ETIMEDOUT;
1783        }
1784
1785        /* return value */
1786        return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1787}
1788
1789static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1790                           u16 value)
1791{
1792        struct fec_enet_private *fep = bus->priv;
1793        unsigned long time_left;
1794
1795        fep->mii_timeout = 0;
1796        init_completion(&fep->mdio_done);
1797
1798        /* start a write op */
1799        writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1800                FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1801                FEC_MMFR_TA | FEC_MMFR_DATA(value),
1802                fep->hwp + FEC_MII_DATA);
1803
1804        /* wait for end of transfer */
1805        time_left = wait_for_completion_timeout(&fep->mdio_done,
1806                        usecs_to_jiffies(FEC_MII_TIMEOUT));
1807        if (time_left == 0) {
1808                fep->mii_timeout = 1;
1809                netdev_err(fep->netdev, "MDIO write timeout\n");
1810                return -ETIMEDOUT;
1811        }
1812
1813        return 0;
1814}
1815
1816static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1817{
1818        struct fec_enet_private *fep = netdev_priv(ndev);
1819        int ret;
1820
1821        if (enable) {
1822                ret = clk_prepare_enable(fep->clk_ahb);
1823                if (ret)
1824                        return ret;
1825                ret = clk_prepare_enable(fep->clk_ipg);
1826                if (ret)
1827                        goto failed_clk_ipg;
1828                if (fep->clk_enet_out) {
1829                        ret = clk_prepare_enable(fep->clk_enet_out);
1830                        if (ret)
1831                                goto failed_clk_enet_out;
1832                }
1833                if (fep->clk_ptp) {
1834                        mutex_lock(&fep->ptp_clk_mutex);
1835                        ret = clk_prepare_enable(fep->clk_ptp);
1836                        if (ret) {
1837                                mutex_unlock(&fep->ptp_clk_mutex);
1838                                goto failed_clk_ptp;
1839                        } else {
1840                                fep->ptp_clk_on = true;
1841                        }
1842                        mutex_unlock(&fep->ptp_clk_mutex);
1843                }
1844                if (fep->clk_ref) {
1845                        ret = clk_prepare_enable(fep->clk_ref);
1846                        if (ret)
1847                                goto failed_clk_ref;
1848                }
1849        } else {
1850                clk_disable_unprepare(fep->clk_ahb);
1851                clk_disable_unprepare(fep->clk_ipg);
1852                if (fep->clk_enet_out)
1853                        clk_disable_unprepare(fep->clk_enet_out);
1854                if (fep->clk_ptp) {
1855                        mutex_lock(&fep->ptp_clk_mutex);
1856                        clk_disable_unprepare(fep->clk_ptp);
1857                        fep->ptp_clk_on = false;
1858                        mutex_unlock(&fep->ptp_clk_mutex);
1859                }
1860                if (fep->clk_ref)
1861                        clk_disable_unprepare(fep->clk_ref);
1862        }
1863
1864        return 0;
1865
1866failed_clk_ref:
1867        if (fep->clk_ref)
1868                clk_disable_unprepare(fep->clk_ref);
1869failed_clk_ptp:
1870        if (fep->clk_enet_out)
1871                clk_disable_unprepare(fep->clk_enet_out);
1872failed_clk_enet_out:
1873                clk_disable_unprepare(fep->clk_ipg);
1874failed_clk_ipg:
1875                clk_disable_unprepare(fep->clk_ahb);
1876
1877        return ret;
1878}
1879
1880static int fec_enet_mii_probe(struct net_device *ndev)
1881{
1882        struct fec_enet_private *fep = netdev_priv(ndev);
1883        struct phy_device *phy_dev = NULL;
1884        char mdio_bus_id[MII_BUS_ID_SIZE];
1885        char phy_name[MII_BUS_ID_SIZE + 3];
1886        int phy_id;
1887        int dev_id = fep->dev_id;
1888
1889        fep->phy_dev = NULL;
1890
1891        if (fep->phy_node) {
1892                phy_dev = of_phy_connect(ndev, fep->phy_node,
1893                                         &fec_enet_adjust_link, 0,
1894                                         fep->phy_interface);
1895                if (!phy_dev)
1896                        return -ENODEV;
1897        } else {
1898                /* check for attached phy */
1899                for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1900                        if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1901                                continue;
1902                        if (fep->mii_bus->phy_map[phy_id] == NULL)
1903                                continue;
1904                        if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1905                                continue;
1906                        if (dev_id--)
1907                                continue;
1908                        strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1909                        break;
1910                }
1911
1912                if (phy_id >= PHY_MAX_ADDR) {
1913                        netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1914                        strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1915                        phy_id = 0;
1916                }
1917
1918                snprintf(phy_name, sizeof(phy_name),
1919                         PHY_ID_FMT, mdio_bus_id, phy_id);
1920                phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1921                                      fep->phy_interface);
1922        }
1923
1924        if (IS_ERR(phy_dev)) {
1925                netdev_err(ndev, "could not attach to PHY\n");
1926                return PTR_ERR(phy_dev);
1927        }
1928
1929        /* mask with MAC supported features */
1930        if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1931                phy_dev->supported &= PHY_GBIT_FEATURES;
1932                phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1933#if !defined(CONFIG_M5272)
1934                phy_dev->supported |= SUPPORTED_Pause;
1935#endif
1936        }
1937        else
1938                phy_dev->supported &= PHY_BASIC_FEATURES;
1939
1940        phy_dev->advertising = phy_dev->supported;
1941
1942        fep->phy_dev = phy_dev;
1943        fep->link = 0;
1944        fep->full_duplex = 0;
1945
1946        netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1947                    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1948                    fep->phy_dev->irq);
1949
1950        return 0;
1951}
1952
1953static int fec_enet_mii_init(struct platform_device *pdev)
1954{
1955        static struct mii_bus *fec0_mii_bus;
1956        struct net_device *ndev = platform_get_drvdata(pdev);
1957        struct fec_enet_private *fep = netdev_priv(ndev);
1958        struct device_node *node;
1959        int err = -ENXIO, i;
1960        u32 mii_speed, holdtime;
1961
1962        /*
1963         * The i.MX28 dual fec interfaces are not equal.
1964         * Here are the differences:
1965         *
1966         *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1967         *  - fec0 acts as the 1588 time master while fec1 is slave
1968         *  - external phys can only be configured by fec0
1969         *
1970         * That is to say fec1 can not work independently. It only works
1971         * when fec0 is working. The reason behind this design is that the
1972         * second interface is added primarily for Switch mode.
1973         *
1974         * Because of the last point above, both phys are attached on fec0
1975         * mdio interface in board design, and need to be configured by
1976         * fec0 mii_bus.
1977         */
1978        if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1979                /* fec1 uses fec0 mii_bus */
1980                if (mii_cnt && fec0_mii_bus) {
1981                        fep->mii_bus = fec0_mii_bus;
1982                        mii_cnt++;
1983                        return 0;
1984                }
1985                return -ENOENT;
1986        }
1987
1988        fep->mii_timeout = 0;
1989
1990        /*
1991         * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1992         *
1993         * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1994         * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1995         * Reference Manual has an error on this, and gets fixed on i.MX6Q
1996         * document.
1997         */
1998        mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1999        if (fep->quirks & FEC_QUIRK_ENET_MAC)
2000                mii_speed--;
2001        if (mii_speed > 63) {
2002                dev_err(&pdev->dev,
2003                        "fec clock (%lu) to fast to get right mii speed\n",
2004                        clk_get_rate(fep->clk_ipg));
2005                err = -EINVAL;
2006                goto err_out;
2007        }
2008
2009        /*
2010         * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2011         * MII_SPEED) register that defines the MDIO output hold time. Earlier
2012         * versions are RAZ there, so just ignore the difference and write the
2013         * register always.
2014         * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2015         * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2016         * output.
2017         * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2018         * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2019         * holdtime cannot result in a value greater than 3.
2020         */
2021        holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2022
2023        fep->phy_speed = mii_speed << 1 | holdtime << 8;
2024
2025        writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2026
2027        fep->mii_bus = mdiobus_alloc();
2028        if (fep->mii_bus == NULL) {
2029                err = -ENOMEM;
2030                goto err_out;
2031        }
2032
2033        fep->mii_bus->name = "fec_enet_mii_bus";
2034        fep->mii_bus->read = fec_enet_mdio_read;
2035        fep->mii_bus->write = fec_enet_mdio_write;
2036        snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2037                pdev->name, fep->dev_id + 1);
2038        fep->mii_bus->priv = fep;
2039        fep->mii_bus->parent = &pdev->dev;
2040
2041        fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2042        if (!fep->mii_bus->irq) {
2043                err = -ENOMEM;
2044                goto err_out_free_mdiobus;
2045        }
2046
2047        for (i = 0; i < PHY_MAX_ADDR; i++)
2048                fep->mii_bus->irq[i] = PHY_POLL;
2049
2050        node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2051        if (node) {
2052                err = of_mdiobus_register(fep->mii_bus, node);
2053                of_node_put(node);
2054        } else {
2055                err = mdiobus_register(fep->mii_bus);
2056        }
2057
2058        if (err)
2059                goto err_out_free_mdio_irq;
2060
2061        mii_cnt++;
2062
2063        /* save fec0 mii_bus */
2064        if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2065                fec0_mii_bus = fep->mii_bus;
2066
2067        return 0;
2068
2069err_out_free_mdio_irq:
2070        kfree(fep->mii_bus->irq);
2071err_out_free_mdiobus:
2072        mdiobus_free(fep->mii_bus);
2073err_out:
2074        return err;
2075}
2076
2077static void fec_enet_mii_remove(struct fec_enet_private *fep)
2078{
2079        if (--mii_cnt == 0) {
2080                mdiobus_unregister(fep->mii_bus);
2081                kfree(fep->mii_bus->irq);
2082                mdiobus_free(fep->mii_bus);
2083        }
2084}
2085
2086static int fec_enet_get_settings(struct net_device *ndev,
2087                                  struct ethtool_cmd *cmd)
2088{
2089        struct fec_enet_private *fep = netdev_priv(ndev);
2090        struct phy_device *phydev = fep->phy_dev;
2091
2092        if (!phydev)
2093                return -ENODEV;
2094
2095        return phy_ethtool_gset(phydev, cmd);
2096}
2097
2098static int fec_enet_set_settings(struct net_device *ndev,
2099                                 struct ethtool_cmd *cmd)
2100{
2101        struct fec_enet_private *fep = netdev_priv(ndev);
2102        struct phy_device *phydev = fep->phy_dev;
2103
2104        if (!phydev)
2105                return -ENODEV;
2106
2107        return phy_ethtool_sset(phydev, cmd);
2108}
2109
2110static void fec_enet_get_drvinfo(struct net_device *ndev,
2111                                 struct ethtool_drvinfo *info)
2112{
2113        struct fec_enet_private *fep = netdev_priv(ndev);
2114
2115        strlcpy(info->driver, fep->pdev->dev.driver->name,
2116                sizeof(info->driver));
2117        strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2118        strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2119}
2120
2121static int fec_enet_get_ts_info(struct net_device *ndev,
2122                                struct ethtool_ts_info *info)
2123{
2124        struct fec_enet_private *fep = netdev_priv(ndev);
2125
2126        if (fep->bufdesc_ex) {
2127
2128                info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2129                                        SOF_TIMESTAMPING_RX_SOFTWARE |
2130                                        SOF_TIMESTAMPING_SOFTWARE |
2131                                        SOF_TIMESTAMPING_TX_HARDWARE |
2132                                        SOF_TIMESTAMPING_RX_HARDWARE |
2133                                        SOF_TIMESTAMPING_RAW_HARDWARE;
2134                if (fep->ptp_clock)
2135                        info->phc_index = ptp_clock_index(fep->ptp_clock);
2136                else
2137                        info->phc_index = -1;
2138
2139                info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2140                                 (1 << HWTSTAMP_TX_ON);
2141
2142                info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2143                                   (1 << HWTSTAMP_FILTER_ALL);
2144                return 0;
2145        } else {
2146                return ethtool_op_get_ts_info(ndev, info);
2147        }
2148}
2149
2150#if !defined(CONFIG_M5272)
2151
2152static void fec_enet_get_pauseparam(struct net_device *ndev,
2153                                    struct ethtool_pauseparam *pause)
2154{
2155        struct fec_enet_private *fep = netdev_priv(ndev);
2156
2157        pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2158        pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2159        pause->rx_pause = pause->tx_pause;
2160}
2161
2162static int fec_enet_set_pauseparam(struct net_device *ndev,
2163                                   struct ethtool_pauseparam *pause)
2164{
2165        struct fec_enet_private *fep = netdev_priv(ndev);
2166
2167        if (!fep->phy_dev)
2168                return -ENODEV;
2169
2170        if (pause->tx_pause != pause->rx_pause) {
2171                netdev_info(ndev,
2172                        "hardware only support enable/disable both tx and rx");
2173                return -EINVAL;
2174        }
2175
2176        fep->pause_flag = 0;
2177
2178        /* tx pause must be same as rx pause */
2179        fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2180        fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2181
2182        if (pause->rx_pause || pause->autoneg) {
2183                fep->phy_dev->supported |= ADVERTISED_Pause;
2184                fep->phy_dev->advertising |= ADVERTISED_Pause;
2185        } else {
2186                fep->phy_dev->supported &= ~ADVERTISED_Pause;
2187                fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2188        }
2189
2190        if (pause->autoneg) {
2191                if (netif_running(ndev))
2192                        fec_stop(ndev);
2193                phy_start_aneg(fep->phy_dev);
2194        }
2195        if (netif_running(ndev)) {
2196                napi_disable(&fep->napi);
2197                netif_tx_lock_bh(ndev);
2198                fec_restart(ndev);
2199                netif_wake_queue(ndev);
2200                netif_tx_unlock_bh(ndev);
2201                napi_enable(&fep->napi);
2202        }
2203
2204        return 0;
2205}
2206
2207static const struct fec_stat {
2208        char name[ETH_GSTRING_LEN];
2209        u16 offset;
2210} fec_stats[] = {
2211        /* RMON TX */
2212        { "tx_dropped", RMON_T_DROP },
2213        { "tx_packets", RMON_T_PACKETS },
2214        { "tx_broadcast", RMON_T_BC_PKT },
2215        { "tx_multicast", RMON_T_MC_PKT },
2216        { "tx_crc_errors", RMON_T_CRC_ALIGN },
2217        { "tx_undersize", RMON_T_UNDERSIZE },
2218        { "tx_oversize", RMON_T_OVERSIZE },
2219        { "tx_fragment", RMON_T_FRAG },
2220        { "tx_jabber", RMON_T_JAB },
2221        { "tx_collision", RMON_T_COL },
2222        { "tx_64byte", RMON_T_P64 },
2223        { "tx_65to127byte", RMON_T_P65TO127 },
2224        { "tx_128to255byte", RMON_T_P128TO255 },
2225        { "tx_256to511byte", RMON_T_P256TO511 },
2226        { "tx_512to1023byte", RMON_T_P512TO1023 },
2227        { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2228        { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2229        { "tx_octets", RMON_T_OCTETS },
2230
2231        /* IEEE TX */
2232        { "IEEE_tx_drop", IEEE_T_DROP },
2233        { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2234        { "IEEE_tx_1col", IEEE_T_1COL },
2235        { "IEEE_tx_mcol", IEEE_T_MCOL },
2236        { "IEEE_tx_def", IEEE_T_DEF },
2237        { "IEEE_tx_lcol", IEEE_T_LCOL },
2238        { "IEEE_tx_excol", IEEE_T_EXCOL },
2239        { "IEEE_tx_macerr", IEEE_T_MACERR },
2240        { "IEEE_tx_cserr", IEEE_T_CSERR },
2241        { "IEEE_tx_sqe", IEEE_T_SQE },
2242        { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2243        { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2244
2245        /* RMON RX */
2246        { "rx_packets", RMON_R_PACKETS },
2247        { "rx_broadcast", RMON_R_BC_PKT },
2248        { "rx_multicast", RMON_R_MC_PKT },
2249        { "rx_crc_errors", RMON_R_CRC_ALIGN },
2250        { "rx_undersize", RMON_R_UNDERSIZE },
2251        { "rx_oversize", RMON_R_OVERSIZE },
2252        { "rx_fragment", RMON_R_FRAG },
2253        { "rx_jabber", RMON_R_JAB },
2254        { "rx_64byte", RMON_R_P64 },
2255        { "rx_65to127byte", RMON_R_P65TO127 },
2256        { "rx_128to255byte", RMON_R_P128TO255 },
2257        { "rx_256to511byte", RMON_R_P256TO511 },
2258        { "rx_512to1023byte", RMON_R_P512TO1023 },
2259        { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2260        { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2261        { "rx_octets", RMON_R_OCTETS },
2262
2263        /* IEEE RX */
2264        { "IEEE_rx_drop", IEEE_R_DROP },
2265        { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2266        { "IEEE_rx_crc", IEEE_R_CRC },
2267        { "IEEE_rx_align", IEEE_R_ALIGN },
2268        { "IEEE_rx_macerr", IEEE_R_MACERR },
2269        { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2270        { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2271};
2272
2273static void fec_enet_get_ethtool_stats(struct net_device *dev,
2274        struct ethtool_stats *stats, u64 *data)
2275{
2276        struct fec_enet_private *fep = netdev_priv(dev);
2277        int i;
2278
2279        for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2280                data[i] = readl(fep->hwp + fec_stats[i].offset);
2281}
2282
2283static void fec_enet_get_strings(struct net_device *netdev,
2284        u32 stringset, u8 *data)
2285{
2286        int i;
2287        switch (stringset) {
2288        case ETH_SS_STATS:
2289                for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2290                        memcpy(data + i * ETH_GSTRING_LEN,
2291                                fec_stats[i].name, ETH_GSTRING_LEN);
2292                break;
2293        }
2294}
2295
2296static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2297{
2298        switch (sset) {
2299        case ETH_SS_STATS:
2300                return ARRAY_SIZE(fec_stats);
2301        default:
2302                return -EOPNOTSUPP;
2303        }
2304}
2305#endif /* !defined(CONFIG_M5272) */
2306
2307static int fec_enet_nway_reset(struct net_device *dev)
2308{
2309        struct fec_enet_private *fep = netdev_priv(dev);
2310        struct phy_device *phydev = fep->phy_dev;
2311
2312        if (!phydev)
2313                return -ENODEV;
2314
2315        return genphy_restart_aneg(phydev);
2316}
2317
2318/* ITR clock source is enet system clock (clk_ahb).
2319 * TCTT unit is cycle_ns * 64 cycle
2320 * So, the ICTT value = X us / (cycle_ns * 64)
2321 */
2322static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2323{
2324        struct fec_enet_private *fep = netdev_priv(ndev);
2325
2326        return us * (fep->itr_clk_rate / 64000) / 1000;
2327}
2328
2329/* Set threshold for interrupt coalescing */
2330static void fec_enet_itr_coal_set(struct net_device *ndev)
2331{
2332        struct fec_enet_private *fep = netdev_priv(ndev);
2333        int rx_itr, tx_itr;
2334
2335        if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2336                return;
2337
2338        /* Must be greater than zero to avoid unpredictable behavior */
2339        if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2340            !fep->tx_time_itr || !fep->tx_pkts_itr)
2341                return;
2342
2343        /* Select enet system clock as Interrupt Coalescing
2344         * timer Clock Source
2345         */
2346        rx_itr = FEC_ITR_CLK_SEL;
2347        tx_itr = FEC_ITR_CLK_SEL;
2348
2349        /* set ICFT and ICTT */
2350        rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2351        rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2352        tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2353        tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2354
2355        rx_itr |= FEC_ITR_EN;
2356        tx_itr |= FEC_ITR_EN;
2357
2358        writel(tx_itr, fep->hwp + FEC_TXIC0);
2359        writel(rx_itr, fep->hwp + FEC_RXIC0);
2360        writel(tx_itr, fep->hwp + FEC_TXIC1);
2361        writel(rx_itr, fep->hwp + FEC_RXIC1);
2362        writel(tx_itr, fep->hwp + FEC_TXIC2);
2363        writel(rx_itr, fep->hwp + FEC_RXIC2);
2364}
2365
2366static int
2367fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2368{
2369        struct fec_enet_private *fep = netdev_priv(ndev);
2370
2371        if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2372                return -EOPNOTSUPP;
2373
2374        ec->rx_coalesce_usecs = fep->rx_time_itr;
2375        ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2376
2377        ec->tx_coalesce_usecs = fep->tx_time_itr;
2378        ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2379
2380        return 0;
2381}
2382
2383static int
2384fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2385{
2386        struct fec_enet_private *fep = netdev_priv(ndev);
2387        unsigned int cycle;
2388
2389        if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2390                return -EOPNOTSUPP;
2391
2392        if (ec->rx_max_coalesced_frames > 255) {
2393                pr_err("Rx coalesced frames exceed hardware limiation");
2394                return -EINVAL;
2395        }
2396
2397        if (ec->tx_max_coalesced_frames > 255) {
2398                pr_err("Tx coalesced frame exceed hardware limiation");
2399                return -EINVAL;
2400        }
2401
2402        cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2403        if (cycle > 0xFFFF) {
2404                pr_err("Rx coalesed usec exceeed hardware limiation");
2405                return -EINVAL;
2406        }
2407
2408        cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2409        if (cycle > 0xFFFF) {
2410                pr_err("Rx coalesed usec exceeed hardware limiation");
2411                return -EINVAL;
2412        }
2413
2414        fep->rx_time_itr = ec->rx_coalesce_usecs;
2415        fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2416
2417        fep->tx_time_itr = ec->tx_coalesce_usecs;
2418        fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2419
2420        fec_enet_itr_coal_set(ndev);
2421
2422        return 0;
2423}
2424
2425static void fec_enet_itr_coal_init(struct net_device *ndev)
2426{
2427        struct ethtool_coalesce ec;
2428
2429        ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2430        ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2431
2432        ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2433        ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2434
2435        fec_enet_set_coalesce(ndev, &ec);
2436}
2437
2438static int fec_enet_get_tunable(struct net_device *netdev,
2439                                const struct ethtool_tunable *tuna,
2440                                void *data)
2441{
2442        struct fec_enet_private *fep = netdev_priv(netdev);
2443        int ret = 0;
2444
2445        switch (tuna->id) {
2446        case ETHTOOL_RX_COPYBREAK:
2447                *(u32 *)data = fep->rx_copybreak;
2448                break;
2449        default:
2450                ret = -EINVAL;
2451                break;
2452        }
2453
2454        return ret;
2455}
2456
2457static int fec_enet_set_tunable(struct net_device *netdev,
2458                                const struct ethtool_tunable *tuna,
2459                                const void *data)
2460{
2461        struct fec_enet_private *fep = netdev_priv(netdev);
2462        int ret = 0;
2463
2464        switch (tuna->id) {
2465        case ETHTOOL_RX_COPYBREAK:
2466                fep->rx_copybreak = *(u32 *)data;
2467                break;
2468        default:
2469                ret = -EINVAL;
2470                break;
2471        }
2472
2473        return ret;
2474}
2475
2476static void
2477fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2478{
2479        struct fec_enet_private *fep = netdev_priv(ndev);
2480
2481        if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2482                wol->supported = WAKE_MAGIC;
2483                wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2484        } else {
2485                wol->supported = wol->wolopts = 0;
2486        }
2487}
2488
2489static int
2490fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2491{
2492        struct fec_enet_private *fep = netdev_priv(ndev);
2493
2494        if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2495                return -EINVAL;
2496
2497        if (wol->wolopts & ~WAKE_MAGIC)
2498                return -EINVAL;
2499
2500        device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2501        if (device_may_wakeup(&ndev->dev)) {
2502                fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2503                if (fep->irq[0] > 0)
2504                        enable_irq_wake(fep->irq[0]);
2505        } else {
2506                fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2507                if (fep->irq[0] > 0)
2508                        disable_irq_wake(fep->irq[0]);
2509        }
2510
2511        return 0;
2512}
2513
2514static const struct ethtool_ops fec_enet_ethtool_ops = {
2515        .get_settings           = fec_enet_get_settings,
2516        .set_settings           = fec_enet_set_settings,
2517        .get_drvinfo            = fec_enet_get_drvinfo,
2518        .nway_reset             = fec_enet_nway_reset,
2519        .get_link               = ethtool_op_get_link,
2520        .get_coalesce           = fec_enet_get_coalesce,
2521        .set_coalesce           = fec_enet_set_coalesce,
2522#ifndef CONFIG_M5272
2523        .get_pauseparam         = fec_enet_get_pauseparam,
2524        .set_pauseparam         = fec_enet_set_pauseparam,
2525        .get_strings            = fec_enet_get_strings,
2526        .get_ethtool_stats      = fec_enet_get_ethtool_stats,
2527        .get_sset_count         = fec_enet_get_sset_count,
2528#endif
2529        .get_ts_info            = fec_enet_get_ts_info,
2530        .get_tunable            = fec_enet_get_tunable,
2531        .set_tunable            = fec_enet_set_tunable,
2532        .get_wol                = fec_enet_get_wol,
2533        .set_wol                = fec_enet_set_wol,
2534};
2535
2536static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2537{
2538        struct fec_enet_private *fep = netdev_priv(ndev);
2539        struct phy_device *phydev = fep->phy_dev;
2540
2541        if (!netif_running(ndev))
2542                return -EINVAL;
2543
2544        if (!phydev)
2545                return -ENODEV;
2546
2547        if (fep->bufdesc_ex) {
2548                if (cmd == SIOCSHWTSTAMP)
2549                        return fec_ptp_set(ndev, rq);
2550                if (cmd == SIOCGHWTSTAMP)
2551                        return fec_ptp_get(ndev, rq);
2552        }
2553
2554        return phy_mii_ioctl(phydev, rq, cmd);
2555}
2556
2557static void fec_enet_free_buffers(struct net_device *ndev)
2558{
2559        struct fec_enet_private *fep = netdev_priv(ndev);
2560        unsigned int i;
2561        struct sk_buff *skb;
2562        struct bufdesc  *bdp;
2563        struct fec_enet_priv_tx_q *txq;
2564        struct fec_enet_priv_rx_q *rxq;
2565        unsigned int q;
2566
2567        for (q = 0; q < fep->num_rx_queues; q++) {
2568                rxq = fep->rx_queue[q];
2569                bdp = rxq->rx_bd_base;
2570                for (i = 0; i < rxq->rx_ring_size; i++) {
2571                        skb = rxq->rx_skbuff[i];
2572                        rxq->rx_skbuff[i] = NULL;
2573                        if (skb) {
2574                                dma_unmap_single(&fep->pdev->dev,
2575                                                 bdp->cbd_bufaddr,
2576                                                 FEC_ENET_RX_FRSIZE - fep->rx_align,
2577                                                 DMA_FROM_DEVICE);
2578                                dev_kfree_skb(skb);
2579                        }
2580                        bdp = fec_enet_get_nextdesc(bdp, fep, q);
2581                }
2582        }
2583
2584        for (q = 0; q < fep->num_tx_queues; q++) {
2585                txq = fep->tx_queue[q];
2586                bdp = txq->tx_bd_base;
2587                for (i = 0; i < txq->tx_ring_size; i++) {
2588                        kfree(txq->tx_bounce[i]);
2589                        txq->tx_bounce[i] = NULL;
2590                        skb = txq->tx_skbuff[i];
2591                        txq->tx_skbuff[i] = NULL;
2592                        dev_kfree_skb(skb);
2593                }
2594        }
2595}
2596
2597static void fec_enet_free_queue(struct net_device *ndev)
2598{
2599        struct fec_enet_private *fep = netdev_priv(ndev);
2600        int i;
2601        struct fec_enet_priv_tx_q *txq;
2602
2603        for (i = 0; i < fep->num_tx_queues; i++)
2604                if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2605                        txq = fep->tx_queue[i];
2606                        dma_free_coherent(NULL,
2607                                          txq->tx_ring_size * TSO_HEADER_SIZE,
2608                                          txq->tso_hdrs,
2609                                          txq->tso_hdrs_dma);
2610                }
2611
2612        for (i = 0; i < fep->num_rx_queues; i++)
2613                kfree(fep->rx_queue[i]);
2614        for (i = 0; i < fep->num_tx_queues; i++)
2615                kfree(fep->tx_queue[i]);
2616}
2617
2618static int fec_enet_alloc_queue(struct net_device *ndev)
2619{
2620        struct fec_enet_private *fep = netdev_priv(ndev);
2621        int i;
2622        int ret = 0;
2623        struct fec_enet_priv_tx_q *txq;
2624
2625        for (i = 0; i < fep->num_tx_queues; i++) {
2626                txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2627                if (!txq) {
2628                        ret = -ENOMEM;
2629                        goto alloc_failed;
2630                }
2631
2632                fep->tx_queue[i] = txq;
2633                txq->tx_ring_size = TX_RING_SIZE;
2634                fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2635
2636                txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2637                txq->tx_wake_threshold =
2638                                (txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2639
2640                txq->tso_hdrs = dma_alloc_coherent(NULL,
2641                                        txq->tx_ring_size * TSO_HEADER_SIZE,
2642                                        &txq->tso_hdrs_dma,
2643                                        GFP_KERNEL);
2644                if (!txq->tso_hdrs) {
2645                        ret = -ENOMEM;
2646                        goto alloc_failed;
2647                }
2648        }
2649
2650        for (i = 0; i < fep->num_rx_queues; i++) {
2651                fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2652                                           GFP_KERNEL);
2653                if (!fep->rx_queue[i]) {
2654                        ret = -ENOMEM;
2655                        goto alloc_failed;
2656                }
2657
2658                fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2659                fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2660        }
2661        return ret;
2662
2663alloc_failed:
2664        fec_enet_free_queue(ndev);
2665        return ret;
2666}
2667
2668static int
2669fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2670{
2671        struct fec_enet_private *fep = netdev_priv(ndev);
2672        unsigned int i;
2673        struct sk_buff *skb;
2674        struct bufdesc  *bdp;
2675        struct fec_enet_priv_rx_q *rxq;
2676
2677        rxq = fep->rx_queue[queue];
2678        bdp = rxq->rx_bd_base;
2679        for (i = 0; i < rxq->rx_ring_size; i++) {
2680                skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2681                if (!skb)
2682                        goto err_alloc;
2683
2684                if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2685                        dev_kfree_skb(skb);
2686                        goto err_alloc;
2687                }
2688
2689                rxq->rx_skbuff[i] = skb;
2690                bdp->cbd_sc = BD_ENET_RX_EMPTY;
2691
2692                if (fep->bufdesc_ex) {
2693                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2694                        ebdp->cbd_esc = BD_ENET_RX_INT;
2695                }
2696
2697                bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2698        }
2699
2700        /* Set the last buffer to wrap. */
2701        bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2702        bdp->cbd_sc |= BD_SC_WRAP;
2703        return 0;
2704
2705 err_alloc:
2706        fec_enet_free_buffers(ndev);
2707        return -ENOMEM;
2708}
2709
2710static int
2711fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2712{
2713        struct fec_enet_private *fep = netdev_priv(ndev);
2714        unsigned int i;
2715        struct bufdesc  *bdp;
2716        struct fec_enet_priv_tx_q *txq;
2717
2718        txq = fep->tx_queue[queue];
2719        bdp = txq->tx_bd_base;
2720        for (i = 0; i < txq->tx_ring_size; i++) {
2721                txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2722                if (!txq->tx_bounce[i])
2723                        goto err_alloc;
2724
2725                bdp->cbd_sc = 0;
2726                bdp->cbd_bufaddr = 0;
2727
2728                if (fep->bufdesc_ex) {
2729                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2730                        ebdp->cbd_esc = BD_ENET_TX_INT;
2731                }
2732
2733                bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2734        }
2735
2736        /* Set the last buffer to wrap. */
2737        bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2738        bdp->cbd_sc |= BD_SC_WRAP;
2739
2740        return 0;
2741
2742 err_alloc:
2743        fec_enet_free_buffers(ndev);
2744        return -ENOMEM;
2745}
2746
2747static int fec_enet_alloc_buffers(struct net_device *ndev)
2748{
2749        struct fec_enet_private *fep = netdev_priv(ndev);
2750        unsigned int i;
2751
2752        for (i = 0; i < fep->num_rx_queues; i++)
2753                if (fec_enet_alloc_rxq_buffers(ndev, i))
2754                        return -ENOMEM;
2755
2756        for (i = 0; i < fep->num_tx_queues; i++)
2757                if (fec_enet_alloc_txq_buffers(ndev, i))
2758                        return -ENOMEM;
2759        return 0;
2760}
2761
2762static int
2763fec_enet_open(struct net_device *ndev)
2764{
2765        struct fec_enet_private *fep = netdev_priv(ndev);
2766        int ret;
2767
2768        pinctrl_pm_select_default_state(&fep->pdev->dev);
2769        ret = fec_enet_clk_enable(ndev, true);
2770        if (ret)
2771                return ret;
2772
2773        /* I should reset the ring buffers here, but I don't yet know
2774         * a simple way to do that.
2775         */
2776
2777        ret = fec_enet_alloc_buffers(ndev);
2778        if (ret)
2779                goto err_enet_alloc;
2780
2781        /* Probe and connect to PHY when open the interface */
2782        ret = fec_enet_mii_probe(ndev);
2783        if (ret)
2784                goto err_enet_mii_probe;
2785
2786        fec_restart(ndev);
2787        napi_enable(&fep->napi);
2788        phy_start(fep->phy_dev);
2789        netif_tx_start_all_queues(ndev);
2790
2791        device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2792                                 FEC_WOL_FLAG_ENABLE);
2793
2794        return 0;
2795
2796err_enet_mii_probe:
2797        fec_enet_free_buffers(ndev);
2798err_enet_alloc:
2799        fec_enet_clk_enable(ndev, false);
2800        pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2801        return ret;
2802}
2803
2804static int
2805fec_enet_close(struct net_device *ndev)
2806{
2807        struct fec_enet_private *fep = netdev_priv(ndev);
2808
2809        phy_stop(fep->phy_dev);
2810
2811        if (netif_device_present(ndev)) {
2812                napi_disable(&fep->napi);
2813                netif_tx_disable(ndev);
2814                fec_stop(ndev);
2815        }
2816
2817        phy_disconnect(fep->phy_dev);
2818        fep->phy_dev = NULL;
2819
2820        fec_enet_clk_enable(ndev, false);
2821        pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2822        fec_enet_free_buffers(ndev);
2823
2824        return 0;
2825}
2826
2827/* Set or clear the multicast filter for this adaptor.
2828 * Skeleton taken from sunlance driver.
2829 * The CPM Ethernet implementation allows Multicast as well as individual
2830 * MAC address filtering.  Some of the drivers check to make sure it is
2831 * a group multicast address, and discard those that are not.  I guess I
2832 * will do the same for now, but just remove the test if you want
2833 * individual filtering as well (do the upper net layers want or support
2834 * this kind of feature?).
2835 */
2836
2837#define HASH_BITS       6               /* #bits in hash */
2838#define CRC32_POLY      0xEDB88320
2839
2840static void set_multicast_list(struct net_device *ndev)
2841{
2842        struct fec_enet_private *fep = netdev_priv(ndev);
2843        struct netdev_hw_addr *ha;
2844        unsigned int i, bit, data, crc, tmp;
2845        unsigned char hash;
2846
2847        if (ndev->flags & IFF_PROMISC) {
2848                tmp = readl(fep->hwp + FEC_R_CNTRL);
2849                tmp |= 0x8;
2850                writel(tmp, fep->hwp + FEC_R_CNTRL);
2851                return;
2852        }
2853
2854        tmp = readl(fep->hwp + FEC_R_CNTRL);
2855        tmp &= ~0x8;
2856        writel(tmp, fep->hwp + FEC_R_CNTRL);
2857
2858        if (ndev->flags & IFF_ALLMULTI) {
2859                /* Catch all multicast addresses, so set the
2860                 * filter to all 1's
2861                 */
2862                writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2863                writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2864
2865                return;
2866        }
2867
2868        /* Clear filter and add the addresses in hash register
2869         */
2870        writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2871        writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2872
2873        netdev_for_each_mc_addr(ha, ndev) {
2874                /* calculate crc32 value of mac address */
2875                crc = 0xffffffff;
2876
2877                for (i = 0; i < ndev->addr_len; i++) {
2878                        data = ha->addr[i];
2879                        for (bit = 0; bit < 8; bit++, data >>= 1) {
2880                                crc = (crc >> 1) ^
2881                                (((crc ^ data) & 1) ? CRC32_POLY : 0);
2882                        }
2883                }
2884
2885                /* only upper 6 bits (HASH_BITS) are used
2886                 * which point to specific bit in he hash registers
2887                 */
2888                hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2889
2890                if (hash > 31) {
2891                        tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2892                        tmp |= 1 << (hash - 32);
2893                        writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2894                } else {
2895                        tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2896                        tmp |= 1 << hash;
2897                        writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2898                }
2899        }
2900}
2901
2902/* Set a MAC change in hardware. */
2903static int
2904fec_set_mac_address(struct net_device *ndev, void *p)
2905{
2906        struct fec_enet_private *fep = netdev_priv(ndev);
2907        struct sockaddr *addr = p;
2908
2909        if (addr) {
2910                if (!is_valid_ether_addr(addr->sa_data))
2911                        return -EADDRNOTAVAIL;
2912                memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2913        }
2914
2915        writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2916                (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2917                fep->hwp + FEC_ADDR_LOW);
2918        writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2919                fep->hwp + FEC_ADDR_HIGH);
2920        return 0;
2921}
2922
2923#ifdef CONFIG_NET_POLL_CONTROLLER
2924/**
2925 * fec_poll_controller - FEC Poll controller function
2926 * @dev: The FEC network adapter
2927 *
2928 * Polled functionality used by netconsole and others in non interrupt mode
2929 *
2930 */
2931static void fec_poll_controller(struct net_device *dev)
2932{
2933        int i;
2934        struct fec_enet_private *fep = netdev_priv(dev);
2935
2936        for (i = 0; i < FEC_IRQ_NUM; i++) {
2937                if (fep->irq[i] > 0) {
2938                        disable_irq(fep->irq[i]);
2939                        fec_enet_interrupt(fep->irq[i], dev);
2940                        enable_irq(fep->irq[i]);
2941                }
2942        }
2943}
2944#endif
2945
2946#define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2947static inline void fec_enet_set_netdev_features(struct net_device *netdev,
2948        netdev_features_t features)
2949{
2950        struct fec_enet_private *fep = netdev_priv(netdev);
2951        netdev_features_t changed = features ^ netdev->features;
2952
2953        netdev->features = features;
2954
2955        /* Receive checksum has been changed */
2956        if (changed & NETIF_F_RXCSUM) {
2957                if (features & NETIF_F_RXCSUM)
2958                        fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2959                else
2960                        fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2961        }
2962}
2963
2964static int fec_set_features(struct net_device *netdev,
2965        netdev_features_t features)
2966{
2967        struct fec_enet_private *fep = netdev_priv(netdev);
2968        netdev_features_t changed = features ^ netdev->features;
2969
2970        if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2971                napi_disable(&fep->napi);
2972                netif_tx_lock_bh(netdev);
2973                fec_stop(netdev);
2974                fec_enet_set_netdev_features(netdev, features);
2975                fec_restart(netdev);
2976                netif_tx_wake_all_queues(netdev);
2977                netif_tx_unlock_bh(netdev);
2978                napi_enable(&fep->napi);
2979        } else {
2980                fec_enet_set_netdev_features(netdev, features);
2981        }
2982
2983        return 0;
2984}
2985
2986static const struct net_device_ops fec_netdev_ops = {
2987        .ndo_open               = fec_enet_open,
2988        .ndo_stop               = fec_enet_close,
2989        .ndo_start_xmit         = fec_enet_start_xmit,
2990        .ndo_set_rx_mode        = set_multicast_list,
2991        .ndo_change_mtu         = eth_change_mtu,
2992        .ndo_validate_addr      = eth_validate_addr,
2993        .ndo_tx_timeout         = fec_timeout,
2994        .ndo_set_mac_address    = fec_set_mac_address,
2995        .ndo_do_ioctl           = fec_enet_ioctl,
2996#ifdef CONFIG_NET_POLL_CONTROLLER
2997        .ndo_poll_controller    = fec_poll_controller,
2998#endif
2999        .ndo_set_features       = fec_set_features,
3000};
3001
3002 /*
3003  * XXX:  We need to clean up on failure exits here.
3004  *
3005  */
3006static int fec_enet_init(struct net_device *ndev)
3007{
3008        struct fec_enet_private *fep = netdev_priv(ndev);
3009        struct fec_enet_priv_tx_q *txq;
3010        struct fec_enet_priv_rx_q *rxq;
3011        struct bufdesc *cbd_base;
3012        dma_addr_t bd_dma;
3013        int bd_size;
3014        unsigned int i;
3015
3016#if defined(CONFIG_ARM)
3017        fep->rx_align = 0xf;
3018        fep->tx_align = 0xf;
3019#else
3020        fep->rx_align = 0x3;
3021        fep->tx_align = 0x3;
3022#endif
3023
3024        fec_enet_alloc_queue(ndev);
3025
3026        if (fep->bufdesc_ex)
3027                fep->bufdesc_size = sizeof(struct bufdesc_ex);
3028        else
3029                fep->bufdesc_size = sizeof(struct bufdesc);
3030        bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
3031                        fep->bufdesc_size;
3032
3033        /* Allocate memory for buffer descriptors. */
3034        cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
3035                                      GFP_KERNEL);
3036        if (!cbd_base) {
3037                return -ENOMEM;
3038        }
3039
3040        memset(cbd_base, 0, bd_size);
3041
3042        /* Get the Ethernet address */
3043        fec_get_mac(ndev);
3044        /* make sure MAC we just acquired is programmed into the hw */
3045        fec_set_mac_address(ndev, NULL);
3046
3047        /* Set receive and transmit descriptor base. */
3048        for (i = 0; i < fep->num_rx_queues; i++) {
3049                rxq = fep->rx_queue[i];
3050                rxq->index = i;
3051                rxq->rx_bd_base = (struct bufdesc *)cbd_base;
3052                rxq->bd_dma = bd_dma;
3053                if (fep->bufdesc_ex) {
3054                        bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3055                        cbd_base = (struct bufdesc *)
3056                                (((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3057                } else {
3058                        bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3059                        cbd_base += rxq->rx_ring_size;
3060                }
3061        }
3062
3063        for (i = 0; i < fep->num_tx_queues; i++) {
3064                txq = fep->tx_queue[i];
3065                txq->index = i;
3066                txq->tx_bd_base = (struct bufdesc *)cbd_base;
3067                txq->bd_dma = bd_dma;
3068                if (fep->bufdesc_ex) {
3069                        bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3070                        cbd_base = (struct bufdesc *)
3071                         (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3072                } else {
3073                        bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3074                        cbd_base += txq->tx_ring_size;
3075                }
3076        }
3077
3078
3079        /* The FEC Ethernet specific entries in the device structure */
3080        ndev->watchdog_timeo = TX_TIMEOUT;
3081        ndev->netdev_ops = &fec_netdev_ops;
3082        ndev->ethtool_ops = &fec_enet_ethtool_ops;
3083
3084        writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3085        netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3086
3087        if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3088                /* enable hw VLAN support */
3089                ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3090
3091        if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3092                ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3093
3094                /* enable hw accelerator */
3095                ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3096                                | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3097                fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3098        }
3099
3100        if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3101                fep->tx_align = 0;
3102                fep->rx_align = 0x3f;
3103        }
3104
3105        ndev->hw_features = ndev->features;
3106
3107        fec_restart(ndev);
3108
3109        return 0;
3110}
3111
3112#ifdef CONFIG_OF
3113static void fec_reset_phy(struct platform_device *pdev)
3114{
3115        int err, phy_reset;
3116        int msec = 1;
3117        struct device_node *np = pdev->dev.of_node;
3118
3119        if (!np)
3120                return;
3121
3122        of_property_read_u32(np, "phy-reset-duration", &msec);
3123        /* A sane reset duration should not be longer than 1s */
3124        if (msec > 1000)
3125                msec = 1;
3126
3127        phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3128        if (!gpio_is_valid(phy_reset))
3129                return;
3130
3131        err = devm_gpio_request_one(&pdev->dev, phy_reset,
3132                                    GPIOF_OUT_INIT_LOW, "phy-reset");
3133        if (err) {
3134                dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3135                return;
3136        }
3137        msleep(msec);
3138        gpio_set_value(phy_reset, 1);
3139}
3140#else /* CONFIG_OF */
3141static void fec_reset_phy(struct platform_device *pdev)
3142{
3143        /*
3144         * In case of platform probe, the reset has been done
3145         * by machine code.
3146         */
3147}
3148#endif /* CONFIG_OF */
3149
3150static void
3151fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3152{
3153        struct device_node *np = pdev->dev.of_node;
3154        int err;
3155
3156        *num_tx = *num_rx = 1;
3157
3158        if (!np || !of_device_is_available(np))
3159                return;
3160
3161        /* parse the num of tx and rx queues */
3162        err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3163        if (err)
3164                *num_tx = 1;
3165
3166        err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3167        if (err)
3168                *num_rx = 1;
3169
3170        if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3171                dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3172                         *num_tx);
3173                *num_tx = 1;
3174                return;
3175        }
3176
3177        if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3178                dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3179                         *num_rx);
3180                *num_rx = 1;
3181                return;
3182        }
3183
3184}
3185
3186static int
3187fec_probe(struct platform_device *pdev)
3188{
3189        struct fec_enet_private *fep;
3190        struct fec_platform_data *pdata;
3191        struct net_device *ndev;
3192        int i, irq, ret = 0;
3193        struct resource *r;
3194        const struct of_device_id *of_id;
3195        static int dev_id;
3196        struct device_node *np = pdev->dev.of_node, *phy_node;
3197        int num_tx_qs;
3198        int num_rx_qs;
3199
3200        fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3201
3202        /* Init network device */
3203        ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3204                                  num_tx_qs, num_rx_qs);
3205        if (!ndev)
3206                return -ENOMEM;
3207
3208        SET_NETDEV_DEV(ndev, &pdev->dev);
3209
3210        /* setup board info structure */
3211        fep = netdev_priv(ndev);
3212
3213        of_id = of_match_device(fec_dt_ids, &pdev->dev);
3214        if (of_id)
3215                pdev->id_entry = of_id->data;
3216        fep->quirks = pdev->id_entry->driver_data;
3217
3218        fep->netdev = ndev;
3219        fep->num_rx_queues = num_rx_qs;
3220        fep->num_tx_queues = num_tx_qs;
3221
3222#if !defined(CONFIG_M5272)
3223        /* default enable pause frame auto negotiation */
3224        if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3225                fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3226#endif
3227
3228        /* Select default pin state */
3229        pinctrl_pm_select_default_state(&pdev->dev);
3230
3231        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3232        fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3233        if (IS_ERR(fep->hwp)) {
3234                ret = PTR_ERR(fep->hwp);
3235                goto failed_ioremap;
3236        }
3237
3238        fep->pdev = pdev;
3239        fep->dev_id = dev_id++;
3240
3241        platform_set_drvdata(pdev, ndev);
3242
3243        if (of_get_property(np, "fsl,magic-packet", NULL))
3244                fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3245
3246        phy_node = of_parse_phandle(np, "phy-handle", 0);
3247        if (!phy_node && of_phy_is_fixed_link(np)) {
3248                ret = of_phy_register_fixed_link(np);
3249                if (ret < 0) {
3250                        dev_err(&pdev->dev,
3251                                "broken fixed-link specification\n");
3252                        goto failed_phy;
3253                }
3254                phy_node = of_node_get(np);
3255        }
3256        fep->phy_node = phy_node;
3257
3258        ret = of_get_phy_mode(pdev->dev.of_node);
3259        if (ret < 0) {
3260                pdata = dev_get_platdata(&pdev->dev);
3261                if (pdata)
3262                        fep->phy_interface = pdata->phy;
3263                else
3264                        fep->phy_interface = PHY_INTERFACE_MODE_MII;
3265        } else {
3266                fep->phy_interface = ret;
3267        }
3268
3269        fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3270        if (IS_ERR(fep->clk_ipg)) {
3271                ret = PTR_ERR(fep->clk_ipg);
3272                goto failed_clk;
3273        }
3274
3275        fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3276        if (IS_ERR(fep->clk_ahb)) {
3277                ret = PTR_ERR(fep->clk_ahb);
3278                goto failed_clk;
3279        }
3280
3281        fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3282
3283        /* enet_out is optional, depends on board */
3284        fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3285        if (IS_ERR(fep->clk_enet_out))
3286                fep->clk_enet_out = NULL;
3287
3288        fep->ptp_clk_on = false;
3289        mutex_init(&fep->ptp_clk_mutex);
3290
3291        /* clk_ref is optional, depends on board */
3292        fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3293        if (IS_ERR(fep->clk_ref))
3294                fep->clk_ref = NULL;
3295
3296        fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3297        fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3298        if (IS_ERR(fep->clk_ptp)) {
3299                fep->clk_ptp = NULL;
3300                fep->bufdesc_ex = false;
3301        }
3302
3303        ret = fec_enet_clk_enable(ndev, true);
3304        if (ret)
3305                goto failed_clk;
3306
3307        fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3308        if (!IS_ERR(fep->reg_phy)) {
3309                ret = regulator_enable(fep->reg_phy);
3310                if (ret) {
3311                        dev_err(&pdev->dev,
3312                                "Failed to enable phy regulator: %d\n", ret);
3313                        goto failed_regulator;
3314                }
3315        } else {
3316                fep->reg_phy = NULL;
3317        }
3318
3319        fec_reset_phy(pdev);
3320
3321        if (fep->bufdesc_ex)
3322                fec_ptp_init(pdev);
3323
3324        ret = fec_enet_init(ndev);
3325        if (ret)
3326                goto failed_init;
3327
3328        for (i = 0; i < FEC_IRQ_NUM; i++) {
3329                irq = platform_get_irq(pdev, i);
3330                if (irq < 0) {
3331                        if (i)
3332                                break;
3333                        ret = irq;
3334                        goto failed_irq;
3335                }
3336                ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3337                                       0, pdev->name, ndev);
3338                if (ret)
3339                        goto failed_irq;
3340
3341                fep->irq[i] = irq;
3342        }
3343
3344        init_completion(&fep->mdio_done);
3345        ret = fec_enet_mii_init(pdev);
3346        if (ret)
3347                goto failed_mii_init;
3348
3349        /* Carrier starts down, phylib will bring it up */
3350        netif_carrier_off(ndev);
3351        fec_enet_clk_enable(ndev, false);
3352        pinctrl_pm_select_sleep_state(&pdev->dev);
3353
3354        ret = register_netdev(ndev);
3355        if (ret)
3356                goto failed_register;
3357
3358        device_init_wakeup(&ndev->dev, fep->wol_flag &
3359                           FEC_WOL_HAS_MAGIC_PACKET);
3360
3361        if (fep->bufdesc_ex && fep->ptp_clock)
3362                netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3363
3364        fep->rx_copybreak = COPYBREAK_DEFAULT;
3365        INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3366        return 0;
3367
3368failed_register:
3369        fec_enet_mii_remove(fep);
3370failed_mii_init:
3371failed_irq:
3372failed_init:
3373        if (fep->reg_phy)
3374                regulator_disable(fep->reg_phy);
3375failed_regulator:
3376        fec_enet_clk_enable(ndev, false);
3377failed_clk:
3378failed_phy:
3379        of_node_put(phy_node);
3380failed_ioremap:
3381        free_netdev(ndev);
3382
3383        return ret;
3384}
3385
3386static int
3387fec_drv_remove(struct platform_device *pdev)
3388{
3389        struct net_device *ndev = platform_get_drvdata(pdev);
3390        struct fec_enet_private *fep = netdev_priv(ndev);
3391
3392        cancel_delayed_work_sync(&fep->time_keep);
3393        cancel_work_sync(&fep->tx_timeout_work);
3394        unregister_netdev(ndev);
3395        fec_enet_mii_remove(fep);
3396        if (fep->reg_phy)
3397                regulator_disable(fep->reg_phy);
3398        if (fep->ptp_clock)
3399                ptp_clock_unregister(fep->ptp_clock);
3400        of_node_put(fep->phy_node);
3401        free_netdev(ndev);
3402
3403        return 0;
3404}
3405
3406static int __maybe_unused fec_suspend(struct device *dev)
3407{
3408        struct net_device *ndev = dev_get_drvdata(dev);
3409        struct fec_enet_private *fep = netdev_priv(ndev);
3410
3411        rtnl_lock();
3412        if (netif_running(ndev)) {
3413                if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3414                        fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3415                phy_stop(fep->phy_dev);
3416                napi_disable(&fep->napi);
3417                netif_tx_lock_bh(ndev);
3418                netif_device_detach(ndev);
3419                netif_tx_unlock_bh(ndev);
3420                fec_stop(ndev);
3421                fec_enet_clk_enable(ndev, false);
3422                if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3423                        pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3424        }
3425        rtnl_unlock();
3426
3427        if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3428                regulator_disable(fep->reg_phy);
3429
3430        /* SOC supply clock to phy, when clock is disabled, phy link down
3431         * SOC control phy regulator, when regulator is disabled, phy link down
3432         */
3433        if (fep->clk_enet_out || fep->reg_phy)
3434                fep->link = 0;
3435
3436        return 0;
3437}
3438
3439static int __maybe_unused fec_resume(struct device *dev)
3440{
3441        struct net_device *ndev = dev_get_drvdata(dev);
3442        struct fec_enet_private *fep = netdev_priv(ndev);
3443        struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3444        int ret;
3445        int val;
3446
3447        if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3448                ret = regulator_enable(fep->reg_phy);
3449                if (ret)
3450                        return ret;
3451        }
3452
3453        rtnl_lock();
3454        if (netif_running(ndev)) {
3455                ret = fec_enet_clk_enable(ndev, true);
3456                if (ret) {
3457                        rtnl_unlock();
3458                        goto failed_clk;
3459                }
3460                if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3461                        if (pdata && pdata->sleep_mode_enable)
3462                                pdata->sleep_mode_enable(false);
3463                        val = readl(fep->hwp + FEC_ECNTRL);
3464                        val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3465                        writel(val, fep->hwp + FEC_ECNTRL);
3466                        fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3467                } else {
3468                        pinctrl_pm_select_default_state(&fep->pdev->dev);
3469                }
3470                fec_restart(ndev);
3471                netif_tx_lock_bh(ndev);
3472                netif_device_attach(ndev);
3473                netif_tx_unlock_bh(ndev);
3474                napi_enable(&fep->napi);
3475                phy_start(fep->phy_dev);
3476        }
3477        rtnl_unlock();
3478
3479        return 0;
3480
3481failed_clk:
3482        if (fep->reg_phy)
3483                regulator_disable(fep->reg_phy);
3484        return ret;
3485}
3486
3487static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
3488
3489static struct platform_driver fec_driver = {
3490        .driver = {
3491                .name   = DRIVER_NAME,
3492                .pm     = &fec_pm_ops,
3493                .of_match_table = fec_dt_ids,
3494        },
3495        .id_table = fec_devtype,
3496        .probe  = fec_probe,
3497        .remove = fec_drv_remove,
3498};
3499
3500module_platform_driver(fec_driver);
3501
3502MODULE_ALIAS("platform:"DRIVER_NAME);
3503MODULE_LICENSE("GPL");
3504