linux/drivers/net/ethernet/intel/fm10k/fm10k_main.c
<<
>>
Prefs
   1/* Intel Ethernet Switch Host Interface Driver
   2 * Copyright(c) 2013 - 2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19 */
  20
  21#include <linux/types.h>
  22#include <linux/module.h>
  23#include <net/ipv6.h>
  24#include <net/ip.h>
  25#include <net/tcp.h>
  26#include <linux/if_macvlan.h>
  27#include <linux/prefetch.h>
  28
  29#include "fm10k.h"
  30
  31#define DRV_VERSION     "0.15.2-k"
  32const char fm10k_driver_version[] = DRV_VERSION;
  33char fm10k_driver_name[] = "fm10k";
  34static const char fm10k_driver_string[] =
  35        "Intel(R) Ethernet Switch Host Interface Driver";
  36static const char fm10k_copyright[] =
  37        "Copyright (c) 2013 Intel Corporation.";
  38
  39MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  40MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
  41MODULE_LICENSE("GPL");
  42MODULE_VERSION(DRV_VERSION);
  43
  44/* single workqueue for entire fm10k driver */
  45struct workqueue_struct *fm10k_workqueue = NULL;
  46
  47/**
  48 * fm10k_init_module - Driver Registration Routine
  49 *
  50 * fm10k_init_module is the first routine called when the driver is
  51 * loaded.  All it does is register with the PCI subsystem.
  52 **/
  53static int __init fm10k_init_module(void)
  54{
  55        pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
  56        pr_info("%s\n", fm10k_copyright);
  57
  58        /* create driver workqueue */
  59        if (!fm10k_workqueue)
  60                fm10k_workqueue = create_workqueue("fm10k");
  61
  62        fm10k_dbg_init();
  63
  64        return fm10k_register_pci_driver();
  65}
  66module_init(fm10k_init_module);
  67
  68/**
  69 * fm10k_exit_module - Driver Exit Cleanup Routine
  70 *
  71 * fm10k_exit_module is called just before the driver is removed
  72 * from memory.
  73 **/
  74static void __exit fm10k_exit_module(void)
  75{
  76        fm10k_unregister_pci_driver();
  77
  78        fm10k_dbg_exit();
  79
  80        /* destroy driver workqueue */
  81        flush_workqueue(fm10k_workqueue);
  82        destroy_workqueue(fm10k_workqueue);
  83        fm10k_workqueue = NULL;
  84}
  85module_exit(fm10k_exit_module);
  86
  87static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
  88                                    struct fm10k_rx_buffer *bi)
  89{
  90        struct page *page = bi->page;
  91        dma_addr_t dma;
  92
  93        /* Only page will be NULL if buffer was consumed */
  94        if (likely(page))
  95                return true;
  96
  97        /* alloc new page for storage */
  98        page = dev_alloc_page();
  99        if (unlikely(!page)) {
 100                rx_ring->rx_stats.alloc_failed++;
 101                return false;
 102        }
 103
 104        /* map page for use */
 105        dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
 106
 107        /* if mapping failed free memory back to system since
 108         * there isn't much point in holding memory we can't use
 109         */
 110        if (dma_mapping_error(rx_ring->dev, dma)) {
 111                __free_page(page);
 112
 113                rx_ring->rx_stats.alloc_failed++;
 114                return false;
 115        }
 116
 117        bi->dma = dma;
 118        bi->page = page;
 119        bi->page_offset = 0;
 120
 121        return true;
 122}
 123
 124/**
 125 * fm10k_alloc_rx_buffers - Replace used receive buffers
 126 * @rx_ring: ring to place buffers on
 127 * @cleaned_count: number of buffers to replace
 128 **/
 129void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
 130{
 131        union fm10k_rx_desc *rx_desc;
 132        struct fm10k_rx_buffer *bi;
 133        u16 i = rx_ring->next_to_use;
 134
 135        /* nothing to do */
 136        if (!cleaned_count)
 137                return;
 138
 139        rx_desc = FM10K_RX_DESC(rx_ring, i);
 140        bi = &rx_ring->rx_buffer[i];
 141        i -= rx_ring->count;
 142
 143        do {
 144                if (!fm10k_alloc_mapped_page(rx_ring, bi))
 145                        break;
 146
 147                /* Refresh the desc even if buffer_addrs didn't change
 148                 * because each write-back erases this info.
 149                 */
 150                rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 151
 152                rx_desc++;
 153                bi++;
 154                i++;
 155                if (unlikely(!i)) {
 156                        rx_desc = FM10K_RX_DESC(rx_ring, 0);
 157                        bi = rx_ring->rx_buffer;
 158                        i -= rx_ring->count;
 159                }
 160
 161                /* clear the status bits for the next_to_use descriptor */
 162                rx_desc->d.staterr = 0;
 163
 164                cleaned_count--;
 165        } while (cleaned_count);
 166
 167        i += rx_ring->count;
 168
 169        if (rx_ring->next_to_use != i) {
 170                /* record the next descriptor to use */
 171                rx_ring->next_to_use = i;
 172
 173                /* update next to alloc since we have filled the ring */
 174                rx_ring->next_to_alloc = i;
 175
 176                /* Force memory writes to complete before letting h/w
 177                 * know there are new descriptors to fetch.  (Only
 178                 * applicable for weak-ordered memory model archs,
 179                 * such as IA-64).
 180                 */
 181                wmb();
 182
 183                /* notify hardware of new descriptors */
 184                writel(i, rx_ring->tail);
 185        }
 186}
 187
 188/**
 189 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
 190 * @rx_ring: rx descriptor ring to store buffers on
 191 * @old_buff: donor buffer to have page reused
 192 *
 193 * Synchronizes page for reuse by the interface
 194 **/
 195static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
 196                                struct fm10k_rx_buffer *old_buff)
 197{
 198        struct fm10k_rx_buffer *new_buff;
 199        u16 nta = rx_ring->next_to_alloc;
 200
 201        new_buff = &rx_ring->rx_buffer[nta];
 202
 203        /* update, and store next to alloc */
 204        nta++;
 205        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 206
 207        /* transfer page from old buffer to new buffer */
 208        *new_buff = *old_buff;
 209
 210        /* sync the buffer for use by the device */
 211        dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
 212                                         old_buff->page_offset,
 213                                         FM10K_RX_BUFSZ,
 214                                         DMA_FROM_DEVICE);
 215}
 216
 217static inline bool fm10k_page_is_reserved(struct page *page)
 218{
 219        return (page_to_nid(page) != numa_mem_id()) || page->pfmemalloc;
 220}
 221
 222static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
 223                                    struct page *page,
 224                                    unsigned int __maybe_unused truesize)
 225{
 226        /* avoid re-using remote pages */
 227        if (unlikely(fm10k_page_is_reserved(page)))
 228                return false;
 229
 230#if (PAGE_SIZE < 8192)
 231        /* if we are only owner of page we can reuse it */
 232        if (unlikely(page_count(page) != 1))
 233                return false;
 234
 235        /* flip page offset to other buffer */
 236        rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
 237#else
 238        /* move offset up to the next cache line */
 239        rx_buffer->page_offset += truesize;
 240
 241        if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
 242                return false;
 243#endif
 244
 245        /* Even if we own the page, we are not allowed to use atomic_set()
 246         * This would break get_page_unless_zero() users.
 247         */
 248        atomic_inc(&page->_count);
 249
 250        return true;
 251}
 252
 253/**
 254 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
 255 * @rx_buffer: buffer containing page to add
 256 * @rx_desc: descriptor containing length of buffer written by hardware
 257 * @skb: sk_buff to place the data into
 258 *
 259 * This function will add the data contained in rx_buffer->page to the skb.
 260 * This is done either through a direct copy if the data in the buffer is
 261 * less than the skb header size, otherwise it will just attach the page as
 262 * a frag to the skb.
 263 *
 264 * The function will then update the page offset if necessary and return
 265 * true if the buffer can be reused by the interface.
 266 **/
 267static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
 268                              union fm10k_rx_desc *rx_desc,
 269                              struct sk_buff *skb)
 270{
 271        struct page *page = rx_buffer->page;
 272        unsigned int size = le16_to_cpu(rx_desc->w.length);
 273#if (PAGE_SIZE < 8192)
 274        unsigned int truesize = FM10K_RX_BUFSZ;
 275#else
 276        unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
 277#endif
 278
 279        if ((size <= FM10K_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
 280                unsigned char *va = page_address(page) + rx_buffer->page_offset;
 281
 282                memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 283
 284                /* page is not reserved, we can reuse buffer as-is */
 285                if (likely(!fm10k_page_is_reserved(page)))
 286                        return true;
 287
 288                /* this page cannot be reused so discard it */
 289                __free_page(page);
 290                return false;
 291        }
 292
 293        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 294                        rx_buffer->page_offset, size, truesize);
 295
 296        return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
 297}
 298
 299static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
 300                                             union fm10k_rx_desc *rx_desc,
 301                                             struct sk_buff *skb)
 302{
 303        struct fm10k_rx_buffer *rx_buffer;
 304        struct page *page;
 305
 306        rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
 307        page = rx_buffer->page;
 308        prefetchw(page);
 309
 310        if (likely(!skb)) {
 311                void *page_addr = page_address(page) +
 312                                  rx_buffer->page_offset;
 313
 314                /* prefetch first cache line of first page */
 315                prefetch(page_addr);
 316#if L1_CACHE_BYTES < 128
 317                prefetch(page_addr + L1_CACHE_BYTES);
 318#endif
 319
 320                /* allocate a skb to store the frags */
 321                skb = napi_alloc_skb(&rx_ring->q_vector->napi,
 322                                     FM10K_RX_HDR_LEN);
 323                if (unlikely(!skb)) {
 324                        rx_ring->rx_stats.alloc_failed++;
 325                        return NULL;
 326                }
 327
 328                /* we will be copying header into skb->data in
 329                 * pskb_may_pull so it is in our interest to prefetch
 330                 * it now to avoid a possible cache miss
 331                 */
 332                prefetchw(skb->data);
 333        }
 334
 335        /* we are reusing so sync this buffer for CPU use */
 336        dma_sync_single_range_for_cpu(rx_ring->dev,
 337                                      rx_buffer->dma,
 338                                      rx_buffer->page_offset,
 339                                      FM10K_RX_BUFSZ,
 340                                      DMA_FROM_DEVICE);
 341
 342        /* pull page into skb */
 343        if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
 344                /* hand second half of page back to the ring */
 345                fm10k_reuse_rx_page(rx_ring, rx_buffer);
 346        } else {
 347                /* we are not reusing the buffer so unmap it */
 348                dma_unmap_page(rx_ring->dev, rx_buffer->dma,
 349                               PAGE_SIZE, DMA_FROM_DEVICE);
 350        }
 351
 352        /* clear contents of rx_buffer */
 353        rx_buffer->page = NULL;
 354
 355        return skb;
 356}
 357
 358static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
 359                                     union fm10k_rx_desc *rx_desc,
 360                                     struct sk_buff *skb)
 361{
 362        skb_checksum_none_assert(skb);
 363
 364        /* Rx checksum disabled via ethtool */
 365        if (!(ring->netdev->features & NETIF_F_RXCSUM))
 366                return;
 367
 368        /* TCP/UDP checksum error bit is set */
 369        if (fm10k_test_staterr(rx_desc,
 370                               FM10K_RXD_STATUS_L4E |
 371                               FM10K_RXD_STATUS_L4E2 |
 372                               FM10K_RXD_STATUS_IPE |
 373                               FM10K_RXD_STATUS_IPE2)) {
 374                ring->rx_stats.csum_err++;
 375                return;
 376        }
 377
 378        /* It must be a TCP or UDP packet with a valid checksum */
 379        if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
 380                skb->encapsulation = true;
 381        else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
 382                return;
 383
 384        skb->ip_summed = CHECKSUM_UNNECESSARY;
 385}
 386
 387#define FM10K_RSS_L4_TYPES_MASK \
 388        ((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
 389         (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
 390         (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
 391         (1ul << FM10K_RSSTYPE_IPV6_UDP))
 392
 393static inline void fm10k_rx_hash(struct fm10k_ring *ring,
 394                                 union fm10k_rx_desc *rx_desc,
 395                                 struct sk_buff *skb)
 396{
 397        u16 rss_type;
 398
 399        if (!(ring->netdev->features & NETIF_F_RXHASH))
 400                return;
 401
 402        rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
 403        if (!rss_type)
 404                return;
 405
 406        skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
 407                     (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
 408                     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
 409}
 410
 411static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
 412                              union fm10k_rx_desc *rx_desc,
 413                              struct sk_buff *skb)
 414{
 415        struct fm10k_intfc *interface = rx_ring->q_vector->interface;
 416
 417        FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
 418
 419        if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
 420                fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
 421                                          le64_to_cpu(rx_desc->q.timestamp));
 422}
 423
 424static void fm10k_type_trans(struct fm10k_ring *rx_ring,
 425                             union fm10k_rx_desc __maybe_unused *rx_desc,
 426                             struct sk_buff *skb)
 427{
 428        struct net_device *dev = rx_ring->netdev;
 429        struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
 430
 431        /* check to see if DGLORT belongs to a MACVLAN */
 432        if (l2_accel) {
 433                u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
 434
 435                idx -= l2_accel->dglort;
 436                if (idx < l2_accel->size && l2_accel->macvlan[idx])
 437                        dev = l2_accel->macvlan[idx];
 438                else
 439                        l2_accel = NULL;
 440        }
 441
 442        skb->protocol = eth_type_trans(skb, dev);
 443
 444        if (!l2_accel)
 445                return;
 446
 447        /* update MACVLAN statistics */
 448        macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
 449                         !!(rx_desc->w.hdr_info &
 450                            cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
 451}
 452
 453/**
 454 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
 455 * @rx_ring: rx descriptor ring packet is being transacted on
 456 * @rx_desc: pointer to the EOP Rx descriptor
 457 * @skb: pointer to current skb being populated
 458 *
 459 * This function checks the ring, descriptor, and packet information in
 460 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 461 * other fields within the skb.
 462 **/
 463static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
 464                                             union fm10k_rx_desc *rx_desc,
 465                                             struct sk_buff *skb)
 466{
 467        unsigned int len = skb->len;
 468
 469        fm10k_rx_hash(rx_ring, rx_desc, skb);
 470
 471        fm10k_rx_checksum(rx_ring, rx_desc, skb);
 472
 473        fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
 474
 475        FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
 476
 477        skb_record_rx_queue(skb, rx_ring->queue_index);
 478
 479        FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
 480
 481        if (rx_desc->w.vlan) {
 482                u16 vid = le16_to_cpu(rx_desc->w.vlan);
 483
 484                if (vid != rx_ring->vid)
 485                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 486        }
 487
 488        fm10k_type_trans(rx_ring, rx_desc, skb);
 489
 490        return len;
 491}
 492
 493/**
 494 * fm10k_is_non_eop - process handling of non-EOP buffers
 495 * @rx_ring: Rx ring being processed
 496 * @rx_desc: Rx descriptor for current buffer
 497 *
 498 * This function updates next to clean.  If the buffer is an EOP buffer
 499 * this function exits returning false, otherwise it will place the
 500 * sk_buff in the next buffer to be chained and return true indicating
 501 * that this is in fact a non-EOP buffer.
 502 **/
 503static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
 504                             union fm10k_rx_desc *rx_desc)
 505{
 506        u32 ntc = rx_ring->next_to_clean + 1;
 507
 508        /* fetch, update, and store next to clean */
 509        ntc = (ntc < rx_ring->count) ? ntc : 0;
 510        rx_ring->next_to_clean = ntc;
 511
 512        prefetch(FM10K_RX_DESC(rx_ring, ntc));
 513
 514        if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
 515                return false;
 516
 517        return true;
 518}
 519
 520/**
 521 * fm10k_pull_tail - fm10k specific version of skb_pull_tail
 522 * @skb: pointer to current skb being adjusted
 523 *
 524 * This function is an fm10k specific version of __pskb_pull_tail.  The
 525 * main difference between this version and the original function is that
 526 * this function can make several assumptions about the state of things
 527 * that allow for significant optimizations versus the standard function.
 528 * As a result we can do things like drop a frag and maintain an accurate
 529 * truesize for the skb.
 530 */
 531static void fm10k_pull_tail(struct sk_buff *skb)
 532{
 533        struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
 534        unsigned char *va;
 535        unsigned int pull_len;
 536
 537        /* it is valid to use page_address instead of kmap since we are
 538         * working with pages allocated out of the lomem pool per
 539         * alloc_page(GFP_ATOMIC)
 540         */
 541        va = skb_frag_address(frag);
 542
 543        /* we need the header to contain the greater of either ETH_HLEN or
 544         * 60 bytes if the skb->len is less than 60 for skb_pad.
 545         */
 546        pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
 547
 548        /* align pull length to size of long to optimize memcpy performance */
 549        skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
 550
 551        /* update all of the pointers */
 552        skb_frag_size_sub(frag, pull_len);
 553        frag->page_offset += pull_len;
 554        skb->data_len -= pull_len;
 555        skb->tail += pull_len;
 556}
 557
 558/**
 559 * fm10k_cleanup_headers - Correct corrupted or empty headers
 560 * @rx_ring: rx descriptor ring packet is being transacted on
 561 * @rx_desc: pointer to the EOP Rx descriptor
 562 * @skb: pointer to current skb being fixed
 563 *
 564 * Address the case where we are pulling data in on pages only
 565 * and as such no data is present in the skb header.
 566 *
 567 * In addition if skb is not at least 60 bytes we need to pad it so that
 568 * it is large enough to qualify as a valid Ethernet frame.
 569 *
 570 * Returns true if an error was encountered and skb was freed.
 571 **/
 572static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
 573                                  union fm10k_rx_desc *rx_desc,
 574                                  struct sk_buff *skb)
 575{
 576        if (unlikely((fm10k_test_staterr(rx_desc,
 577                                         FM10K_RXD_STATUS_RXE)))) {
 578                dev_kfree_skb_any(skb);
 579                rx_ring->rx_stats.errors++;
 580                return true;
 581        }
 582
 583        /* place header in linear portion of buffer */
 584        if (skb_is_nonlinear(skb))
 585                fm10k_pull_tail(skb);
 586
 587        /* if eth_skb_pad returns an error the skb was freed */
 588        if (eth_skb_pad(skb))
 589                return true;
 590
 591        return false;
 592}
 593
 594/**
 595 * fm10k_receive_skb - helper function to handle rx indications
 596 * @q_vector: structure containing interrupt and ring information
 597 * @skb: packet to send up
 598 **/
 599static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
 600                              struct sk_buff *skb)
 601{
 602        napi_gro_receive(&q_vector->napi, skb);
 603}
 604
 605static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
 606                               struct fm10k_ring *rx_ring,
 607                               int budget)
 608{
 609        struct sk_buff *skb = rx_ring->skb;
 610        unsigned int total_bytes = 0, total_packets = 0;
 611        u16 cleaned_count = fm10k_desc_unused(rx_ring);
 612
 613        while (likely(total_packets < budget)) {
 614                union fm10k_rx_desc *rx_desc;
 615
 616                /* return some buffers to hardware, one at a time is too slow */
 617                if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
 618                        fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
 619                        cleaned_count = 0;
 620                }
 621
 622                rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
 623
 624                if (!rx_desc->d.staterr)
 625                        break;
 626
 627                /* This memory barrier is needed to keep us from reading
 628                 * any other fields out of the rx_desc until we know the
 629                 * descriptor has been written back
 630                 */
 631                dma_rmb();
 632
 633                /* retrieve a buffer from the ring */
 634                skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
 635
 636                /* exit if we failed to retrieve a buffer */
 637                if (!skb)
 638                        break;
 639
 640                cleaned_count++;
 641
 642                /* fetch next buffer in frame if non-eop */
 643                if (fm10k_is_non_eop(rx_ring, rx_desc))
 644                        continue;
 645
 646                /* verify the packet layout is correct */
 647                if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
 648                        skb = NULL;
 649                        continue;
 650                }
 651
 652                /* populate checksum, timestamp, VLAN, and protocol */
 653                total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
 654
 655                fm10k_receive_skb(q_vector, skb);
 656
 657                /* reset skb pointer */
 658                skb = NULL;
 659
 660                /* update budget accounting */
 661                total_packets++;
 662        }
 663
 664        /* place incomplete frames back on ring for completion */
 665        rx_ring->skb = skb;
 666
 667        u64_stats_update_begin(&rx_ring->syncp);
 668        rx_ring->stats.packets += total_packets;
 669        rx_ring->stats.bytes += total_bytes;
 670        u64_stats_update_end(&rx_ring->syncp);
 671        q_vector->rx.total_packets += total_packets;
 672        q_vector->rx.total_bytes += total_bytes;
 673
 674        return total_packets < budget;
 675}
 676
 677#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
 678static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
 679{
 680        struct fm10k_intfc *interface = netdev_priv(skb->dev);
 681        struct fm10k_vxlan_port *vxlan_port;
 682
 683        /* we can only offload a vxlan if we recognize it as such */
 684        vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
 685                                              struct fm10k_vxlan_port, list);
 686
 687        if (!vxlan_port)
 688                return NULL;
 689        if (vxlan_port->port != udp_hdr(skb)->dest)
 690                return NULL;
 691
 692        /* return offset of udp_hdr plus 8 bytes for VXLAN header */
 693        return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
 694}
 695
 696#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
 697#define NVGRE_TNI htons(0x2000)
 698struct fm10k_nvgre_hdr {
 699        __be16 flags;
 700        __be16 proto;
 701        __be32 tni;
 702};
 703
 704static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
 705{
 706        struct fm10k_nvgre_hdr *nvgre_hdr;
 707        int hlen = ip_hdrlen(skb);
 708
 709        /* currently only IPv4 is supported due to hlen above */
 710        if (vlan_get_protocol(skb) != htons(ETH_P_IP))
 711                return NULL;
 712
 713        /* our transport header should be NVGRE */
 714        nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
 715
 716        /* verify all reserved flags are 0 */
 717        if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
 718                return NULL;
 719
 720        /* report start of ethernet header */
 721        if (nvgre_hdr->flags & NVGRE_TNI)
 722                return (struct ethhdr *)(nvgre_hdr + 1);
 723
 724        return (struct ethhdr *)(&nvgre_hdr->tni);
 725}
 726
 727__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
 728{
 729        u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
 730        struct ethhdr *eth_hdr;
 731
 732        if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
 733            skb->inner_protocol != htons(ETH_P_TEB))
 734                return 0;
 735
 736        switch (vlan_get_protocol(skb)) {
 737        case htons(ETH_P_IP):
 738                l4_hdr = ip_hdr(skb)->protocol;
 739                break;
 740        case htons(ETH_P_IPV6):
 741                l4_hdr = ipv6_hdr(skb)->nexthdr;
 742                break;
 743        default:
 744                return 0;
 745        }
 746
 747        switch (l4_hdr) {
 748        case IPPROTO_UDP:
 749                eth_hdr = fm10k_port_is_vxlan(skb);
 750                break;
 751        case IPPROTO_GRE:
 752                eth_hdr = fm10k_gre_is_nvgre(skb);
 753                break;
 754        default:
 755                return 0;
 756        }
 757
 758        if (!eth_hdr)
 759                return 0;
 760
 761        switch (eth_hdr->h_proto) {
 762        case htons(ETH_P_IP):
 763                inner_l4_hdr = inner_ip_hdr(skb)->protocol;
 764                break;
 765        case htons(ETH_P_IPV6):
 766                inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
 767                break;
 768        default:
 769                return 0;
 770        }
 771
 772        switch (inner_l4_hdr) {
 773        case IPPROTO_TCP:
 774                inner_l4_hlen = inner_tcp_hdrlen(skb);
 775                break;
 776        case IPPROTO_UDP:
 777                inner_l4_hlen = 8;
 778                break;
 779        default:
 780                return 0;
 781        }
 782
 783        /* The hardware allows tunnel offloads only if the combined inner and
 784         * outer header is 184 bytes or less
 785         */
 786        if (skb_inner_transport_header(skb) + inner_l4_hlen -
 787            skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
 788                return 0;
 789
 790        return eth_hdr->h_proto;
 791}
 792
 793static int fm10k_tso(struct fm10k_ring *tx_ring,
 794                     struct fm10k_tx_buffer *first)
 795{
 796        struct sk_buff *skb = first->skb;
 797        struct fm10k_tx_desc *tx_desc;
 798        unsigned char *th;
 799        u8 hdrlen;
 800
 801        if (skb->ip_summed != CHECKSUM_PARTIAL)
 802                return 0;
 803
 804        if (!skb_is_gso(skb))
 805                return 0;
 806
 807        /* compute header lengths */
 808        if (skb->encapsulation) {
 809                if (!fm10k_tx_encap_offload(skb))
 810                        goto err_vxlan;
 811                th = skb_inner_transport_header(skb);
 812        } else {
 813                th = skb_transport_header(skb);
 814        }
 815
 816        /* compute offset from SOF to transport header and add header len */
 817        hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
 818
 819        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 820
 821        /* update gso size and bytecount with header size */
 822        first->gso_segs = skb_shinfo(skb)->gso_segs;
 823        first->bytecount += (first->gso_segs - 1) * hdrlen;
 824
 825        /* populate Tx descriptor header size and mss */
 826        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 827        tx_desc->hdrlen = hdrlen;
 828        tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
 829
 830        return 1;
 831err_vxlan:
 832        tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
 833        if (!net_ratelimit())
 834                netdev_err(tx_ring->netdev,
 835                           "TSO requested for unsupported tunnel, disabling offload\n");
 836        return -1;
 837}
 838
 839static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
 840                          struct fm10k_tx_buffer *first)
 841{
 842        struct sk_buff *skb = first->skb;
 843        struct fm10k_tx_desc *tx_desc;
 844        union {
 845                struct iphdr *ipv4;
 846                struct ipv6hdr *ipv6;
 847                u8 *raw;
 848        } network_hdr;
 849        __be16 protocol;
 850        u8 l4_hdr = 0;
 851
 852        if (skb->ip_summed != CHECKSUM_PARTIAL)
 853                goto no_csum;
 854
 855        if (skb->encapsulation) {
 856                protocol = fm10k_tx_encap_offload(skb);
 857                if (!protocol) {
 858                        if (skb_checksum_help(skb)) {
 859                                dev_warn(tx_ring->dev,
 860                                         "failed to offload encap csum!\n");
 861                                tx_ring->tx_stats.csum_err++;
 862                        }
 863                        goto no_csum;
 864                }
 865                network_hdr.raw = skb_inner_network_header(skb);
 866        } else {
 867                protocol = vlan_get_protocol(skb);
 868                network_hdr.raw = skb_network_header(skb);
 869        }
 870
 871        switch (protocol) {
 872        case htons(ETH_P_IP):
 873                l4_hdr = network_hdr.ipv4->protocol;
 874                break;
 875        case htons(ETH_P_IPV6):
 876                l4_hdr = network_hdr.ipv6->nexthdr;
 877                break;
 878        default:
 879                if (unlikely(net_ratelimit())) {
 880                        dev_warn(tx_ring->dev,
 881                                 "partial checksum but ip version=%x!\n",
 882                                 protocol);
 883                }
 884                tx_ring->tx_stats.csum_err++;
 885                goto no_csum;
 886        }
 887
 888        switch (l4_hdr) {
 889        case IPPROTO_TCP:
 890        case IPPROTO_UDP:
 891                break;
 892        case IPPROTO_GRE:
 893                if (skb->encapsulation)
 894                        break;
 895        default:
 896                if (unlikely(net_ratelimit())) {
 897                        dev_warn(tx_ring->dev,
 898                                 "partial checksum but l4 proto=%x!\n",
 899                                 l4_hdr);
 900                }
 901                tx_ring->tx_stats.csum_err++;
 902                goto no_csum;
 903        }
 904
 905        /* update TX checksum flag */
 906        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 907
 908no_csum:
 909        /* populate Tx descriptor header size and mss */
 910        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 911        tx_desc->hdrlen = 0;
 912        tx_desc->mss = 0;
 913}
 914
 915#define FM10K_SET_FLAG(_input, _flag, _result) \
 916        ((_flag <= _result) ? \
 917         ((u32)(_input & _flag) * (_result / _flag)) : \
 918         ((u32)(_input & _flag) / (_flag / _result)))
 919
 920static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
 921{
 922        /* set type for advanced descriptor with frame checksum insertion */
 923        u32 desc_flags = 0;
 924
 925        /* set timestamping bits */
 926        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
 927            likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
 928                        desc_flags |= FM10K_TXD_FLAG_TIME;
 929
 930        /* set checksum offload bits */
 931        desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
 932                                     FM10K_TXD_FLAG_CSUM);
 933
 934        return desc_flags;
 935}
 936
 937static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
 938                               struct fm10k_tx_desc *tx_desc, u16 i,
 939                               dma_addr_t dma, unsigned int size, u8 desc_flags)
 940{
 941        /* set RS and INT for last frame in a cache line */
 942        if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
 943                desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
 944
 945        /* record values to descriptor */
 946        tx_desc->buffer_addr = cpu_to_le64(dma);
 947        tx_desc->flags = desc_flags;
 948        tx_desc->buflen = cpu_to_le16(size);
 949
 950        /* return true if we just wrapped the ring */
 951        return i == tx_ring->count;
 952}
 953
 954static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 955{
 956        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 957
 958        /* Memory barrier before checking head and tail */
 959        smp_mb();
 960
 961        /* Check again in a case another CPU has just made room available */
 962        if (likely(fm10k_desc_unused(tx_ring) < size))
 963                return -EBUSY;
 964
 965        /* A reprieve! - use start_queue because it doesn't call schedule */
 966        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
 967        ++tx_ring->tx_stats.restart_queue;
 968        return 0;
 969}
 970
 971static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 972{
 973        if (likely(fm10k_desc_unused(tx_ring) >= size))
 974                return 0;
 975        return __fm10k_maybe_stop_tx(tx_ring, size);
 976}
 977
 978static void fm10k_tx_map(struct fm10k_ring *tx_ring,
 979                         struct fm10k_tx_buffer *first)
 980{
 981        struct sk_buff *skb = first->skb;
 982        struct fm10k_tx_buffer *tx_buffer;
 983        struct fm10k_tx_desc *tx_desc;
 984        struct skb_frag_struct *frag;
 985        unsigned char *data;
 986        dma_addr_t dma;
 987        unsigned int data_len, size;
 988        u32 tx_flags = first->tx_flags;
 989        u16 i = tx_ring->next_to_use;
 990        u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
 991
 992        tx_desc = FM10K_TX_DESC(tx_ring, i);
 993
 994        /* add HW VLAN tag */
 995        if (skb_vlan_tag_present(skb))
 996                tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 997        else
 998                tx_desc->vlan = 0;
 999
1000        size = skb_headlen(skb);
1001        data = skb->data;
1002
1003        dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
1004
1005        data_len = skb->data_len;
1006        tx_buffer = first;
1007
1008        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1009                if (dma_mapping_error(tx_ring->dev, dma))
1010                        goto dma_error;
1011
1012                /* record length, and DMA address */
1013                dma_unmap_len_set(tx_buffer, len, size);
1014                dma_unmap_addr_set(tx_buffer, dma, dma);
1015
1016                while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
1017                        if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
1018                                               FM10K_MAX_DATA_PER_TXD, flags)) {
1019                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
1020                                i = 0;
1021                        }
1022
1023                        dma += FM10K_MAX_DATA_PER_TXD;
1024                        size -= FM10K_MAX_DATA_PER_TXD;
1025                }
1026
1027                if (likely(!data_len))
1028                        break;
1029
1030                if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1031                                       dma, size, flags)) {
1032                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
1033                        i = 0;
1034                }
1035
1036                size = skb_frag_size(frag);
1037                data_len -= size;
1038
1039                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1040                                       DMA_TO_DEVICE);
1041
1042                tx_buffer = &tx_ring->tx_buffer[i];
1043        }
1044
1045        /* write last descriptor with LAST bit set */
1046        flags |= FM10K_TXD_FLAG_LAST;
1047
1048        if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1049                i = 0;
1050
1051        /* record bytecount for BQL */
1052        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1053
1054        /* record SW timestamp if HW timestamp is not available */
1055        skb_tx_timestamp(first->skb);
1056
1057        /* Force memory writes to complete before letting h/w know there
1058         * are new descriptors to fetch.  (Only applicable for weak-ordered
1059         * memory model archs, such as IA-64).
1060         *
1061         * We also need this memory barrier to make certain all of the
1062         * status bits have been updated before next_to_watch is written.
1063         */
1064        wmb();
1065
1066        /* set next_to_watch value indicating a packet is present */
1067        first->next_to_watch = tx_desc;
1068
1069        tx_ring->next_to_use = i;
1070
1071        /* Make sure there is space in the ring for the next send. */
1072        fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1073
1074        /* notify HW of packet */
1075        if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1076                writel(i, tx_ring->tail);
1077
1078                /* we need this if more than one processor can write to our tail
1079                 * at a time, it synchronizes IO on IA64/Altix systems
1080                 */
1081                mmiowb();
1082        }
1083
1084        return;
1085dma_error:
1086        dev_err(tx_ring->dev, "TX DMA map failed\n");
1087
1088        /* clear dma mappings for failed tx_buffer map */
1089        for (;;) {
1090                tx_buffer = &tx_ring->tx_buffer[i];
1091                fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1092                if (tx_buffer == first)
1093                        break;
1094                if (i == 0)
1095                        i = tx_ring->count;
1096                i--;
1097        }
1098
1099        tx_ring->next_to_use = i;
1100}
1101
1102netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1103                                  struct fm10k_ring *tx_ring)
1104{
1105        struct fm10k_tx_buffer *first;
1106        int tso;
1107        u32 tx_flags = 0;
1108#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1109        unsigned short f;
1110#endif
1111        u16 count = TXD_USE_COUNT(skb_headlen(skb));
1112
1113        /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1114         *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1115         *       + 2 desc gap to keep tail from touching head
1116         * otherwise try next time
1117         */
1118#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1119        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1120                count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1121#else
1122        count += skb_shinfo(skb)->nr_frags;
1123#endif
1124        if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1125                tx_ring->tx_stats.tx_busy++;
1126                return NETDEV_TX_BUSY;
1127        }
1128
1129        /* record the location of the first descriptor for this packet */
1130        first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1131        first->skb = skb;
1132        first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1133        first->gso_segs = 1;
1134
1135        /* record initial flags and protocol */
1136        first->tx_flags = tx_flags;
1137
1138        tso = fm10k_tso(tx_ring, first);
1139        if (tso < 0)
1140                goto out_drop;
1141        else if (!tso)
1142                fm10k_tx_csum(tx_ring, first);
1143
1144        fm10k_tx_map(tx_ring, first);
1145
1146        return NETDEV_TX_OK;
1147
1148out_drop:
1149        dev_kfree_skb_any(first->skb);
1150        first->skb = NULL;
1151
1152        return NETDEV_TX_OK;
1153}
1154
1155static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1156{
1157        return ring->stats.packets;
1158}
1159
1160static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1161{
1162        /* use SW head and tail until we have real hardware */
1163        u32 head = ring->next_to_clean;
1164        u32 tail = ring->next_to_use;
1165
1166        return ((head <= tail) ? tail : tail + ring->count) - head;
1167}
1168
1169bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1170{
1171        u32 tx_done = fm10k_get_tx_completed(tx_ring);
1172        u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1173        u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1174
1175        clear_check_for_tx_hang(tx_ring);
1176
1177        /* Check for a hung queue, but be thorough. This verifies
1178         * that a transmit has been completed since the previous
1179         * check AND there is at least one packet pending. By
1180         * requiring this to fail twice we avoid races with
1181         * clearing the ARMED bit and conditions where we
1182         * run the check_tx_hang logic with a transmit completion
1183         * pending but without time to complete it yet.
1184         */
1185        if (!tx_pending || (tx_done_old != tx_done)) {
1186                /* update completed stats and continue */
1187                tx_ring->tx_stats.tx_done_old = tx_done;
1188                /* reset the countdown */
1189                clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1190
1191                return false;
1192        }
1193
1194        /* make sure it is true for two checks in a row */
1195        return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1196}
1197
1198/**
1199 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1200 * @interface: driver private struct
1201 **/
1202void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1203{
1204        /* Do the reset outside of interrupt context */
1205        if (!test_bit(__FM10K_DOWN, &interface->state)) {
1206                interface->tx_timeout_count++;
1207                interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1208                fm10k_service_event_schedule(interface);
1209        }
1210}
1211
1212/**
1213 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1214 * @q_vector: structure containing interrupt and ring information
1215 * @tx_ring: tx ring to clean
1216 **/
1217static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1218                               struct fm10k_ring *tx_ring)
1219{
1220        struct fm10k_intfc *interface = q_vector->interface;
1221        struct fm10k_tx_buffer *tx_buffer;
1222        struct fm10k_tx_desc *tx_desc;
1223        unsigned int total_bytes = 0, total_packets = 0;
1224        unsigned int budget = q_vector->tx.work_limit;
1225        unsigned int i = tx_ring->next_to_clean;
1226
1227        if (test_bit(__FM10K_DOWN, &interface->state))
1228                return true;
1229
1230        tx_buffer = &tx_ring->tx_buffer[i];
1231        tx_desc = FM10K_TX_DESC(tx_ring, i);
1232        i -= tx_ring->count;
1233
1234        do {
1235                struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1236
1237                /* if next_to_watch is not set then there is no work pending */
1238                if (!eop_desc)
1239                        break;
1240
1241                /* prevent any other reads prior to eop_desc */
1242                read_barrier_depends();
1243
1244                /* if DD is not set pending work has not been completed */
1245                if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1246                        break;
1247
1248                /* clear next_to_watch to prevent false hangs */
1249                tx_buffer->next_to_watch = NULL;
1250
1251                /* update the statistics for this packet */
1252                total_bytes += tx_buffer->bytecount;
1253                total_packets += tx_buffer->gso_segs;
1254
1255                /* free the skb */
1256                dev_consume_skb_any(tx_buffer->skb);
1257
1258                /* unmap skb header data */
1259                dma_unmap_single(tx_ring->dev,
1260                                 dma_unmap_addr(tx_buffer, dma),
1261                                 dma_unmap_len(tx_buffer, len),
1262                                 DMA_TO_DEVICE);
1263
1264                /* clear tx_buffer data */
1265                tx_buffer->skb = NULL;
1266                dma_unmap_len_set(tx_buffer, len, 0);
1267
1268                /* unmap remaining buffers */
1269                while (tx_desc != eop_desc) {
1270                        tx_buffer++;
1271                        tx_desc++;
1272                        i++;
1273                        if (unlikely(!i)) {
1274                                i -= tx_ring->count;
1275                                tx_buffer = tx_ring->tx_buffer;
1276                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
1277                        }
1278
1279                        /* unmap any remaining paged data */
1280                        if (dma_unmap_len(tx_buffer, len)) {
1281                                dma_unmap_page(tx_ring->dev,
1282                                               dma_unmap_addr(tx_buffer, dma),
1283                                               dma_unmap_len(tx_buffer, len),
1284                                               DMA_TO_DEVICE);
1285                                dma_unmap_len_set(tx_buffer, len, 0);
1286                        }
1287                }
1288
1289                /* move us one more past the eop_desc for start of next pkt */
1290                tx_buffer++;
1291                tx_desc++;
1292                i++;
1293                if (unlikely(!i)) {
1294                        i -= tx_ring->count;
1295                        tx_buffer = tx_ring->tx_buffer;
1296                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
1297                }
1298
1299                /* issue prefetch for next Tx descriptor */
1300                prefetch(tx_desc);
1301
1302                /* update budget accounting */
1303                budget--;
1304        } while (likely(budget));
1305
1306        i += tx_ring->count;
1307        tx_ring->next_to_clean = i;
1308        u64_stats_update_begin(&tx_ring->syncp);
1309        tx_ring->stats.bytes += total_bytes;
1310        tx_ring->stats.packets += total_packets;
1311        u64_stats_update_end(&tx_ring->syncp);
1312        q_vector->tx.total_bytes += total_bytes;
1313        q_vector->tx.total_packets += total_packets;
1314
1315        if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1316                /* schedule immediate reset if we believe we hung */
1317                struct fm10k_hw *hw = &interface->hw;
1318
1319                netif_err(interface, drv, tx_ring->netdev,
1320                          "Detected Tx Unit Hang\n"
1321                          "  Tx Queue             <%d>\n"
1322                          "  TDH, TDT             <%x>, <%x>\n"
1323                          "  next_to_use          <%x>\n"
1324                          "  next_to_clean        <%x>\n",
1325                          tx_ring->queue_index,
1326                          fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1327                          fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1328                          tx_ring->next_to_use, i);
1329
1330                netif_stop_subqueue(tx_ring->netdev,
1331                                    tx_ring->queue_index);
1332
1333                netif_info(interface, probe, tx_ring->netdev,
1334                           "tx hang %d detected on queue %d, resetting interface\n",
1335                           interface->tx_timeout_count + 1,
1336                           tx_ring->queue_index);
1337
1338                fm10k_tx_timeout_reset(interface);
1339
1340                /* the netdev is about to reset, no point in enabling stuff */
1341                return true;
1342        }
1343
1344        /* notify netdev of completed buffers */
1345        netdev_tx_completed_queue(txring_txq(tx_ring),
1346                                  total_packets, total_bytes);
1347
1348#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1349        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1350                     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1351                /* Make sure that anybody stopping the queue after this
1352                 * sees the new next_to_clean.
1353                 */
1354                smp_mb();
1355                if (__netif_subqueue_stopped(tx_ring->netdev,
1356                                             tx_ring->queue_index) &&
1357                    !test_bit(__FM10K_DOWN, &interface->state)) {
1358                        netif_wake_subqueue(tx_ring->netdev,
1359                                            tx_ring->queue_index);
1360                        ++tx_ring->tx_stats.restart_queue;
1361                }
1362        }
1363
1364        return !!budget;
1365}
1366
1367/**
1368 * fm10k_update_itr - update the dynamic ITR value based on packet size
1369 *
1370 *      Stores a new ITR value based on strictly on packet size.  The
1371 *      divisors and thresholds used by this function were determined based
1372 *      on theoretical maximum wire speed and testing data, in order to
1373 *      minimize response time while increasing bulk throughput.
1374 *
1375 * @ring_container: Container for rings to have ITR updated
1376 **/
1377static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1378{
1379        unsigned int avg_wire_size, packets;
1380
1381        /* Only update ITR if we are using adaptive setting */
1382        if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
1383                goto clear_counts;
1384
1385        packets = ring_container->total_packets;
1386        if (!packets)
1387                goto clear_counts;
1388
1389        avg_wire_size = ring_container->total_bytes / packets;
1390
1391        /* Add 24 bytes to size to account for CRC, preamble, and gap */
1392        avg_wire_size += 24;
1393
1394        /* Don't starve jumbo frames */
1395        if (avg_wire_size > 3000)
1396                avg_wire_size = 3000;
1397
1398        /* Give a little boost to mid-size frames */
1399        if ((avg_wire_size > 300) && (avg_wire_size < 1200))
1400                avg_wire_size /= 3;
1401        else
1402                avg_wire_size /= 2;
1403
1404        /* write back value and retain adaptive flag */
1405        ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1406
1407clear_counts:
1408        ring_container->total_bytes = 0;
1409        ring_container->total_packets = 0;
1410}
1411
1412static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1413{
1414        /* Enable auto-mask and clear the current mask */
1415        u32 itr = FM10K_ITR_ENABLE;
1416
1417        /* Update Tx ITR */
1418        fm10k_update_itr(&q_vector->tx);
1419
1420        /* Update Rx ITR */
1421        fm10k_update_itr(&q_vector->rx);
1422
1423        /* Store Tx itr in timer slot 0 */
1424        itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1425
1426        /* Shift Rx itr to timer slot 1 */
1427        itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1428
1429        /* Write the final value to the ITR register */
1430        writel(itr, q_vector->itr);
1431}
1432
1433static int fm10k_poll(struct napi_struct *napi, int budget)
1434{
1435        struct fm10k_q_vector *q_vector =
1436                               container_of(napi, struct fm10k_q_vector, napi);
1437        struct fm10k_ring *ring;
1438        int per_ring_budget;
1439        bool clean_complete = true;
1440
1441        fm10k_for_each_ring(ring, q_vector->tx)
1442                clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1443
1444        /* attempt to distribute budget to each queue fairly, but don't
1445         * allow the budget to go below 1 because we'll exit polling
1446         */
1447        if (q_vector->rx.count > 1)
1448                per_ring_budget = max(budget/q_vector->rx.count, 1);
1449        else
1450                per_ring_budget = budget;
1451
1452        fm10k_for_each_ring(ring, q_vector->rx)
1453                clean_complete &= fm10k_clean_rx_irq(q_vector, ring,
1454                                                     per_ring_budget);
1455
1456        /* If all work not completed, return budget and keep polling */
1457        if (!clean_complete)
1458                return budget;
1459
1460        /* all work done, exit the polling mode */
1461        napi_complete(napi);
1462
1463        /* re-enable the q_vector */
1464        fm10k_qv_enable(q_vector);
1465
1466        return 0;
1467}
1468
1469/**
1470 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1471 * @interface: board private structure to initialize
1472 *
1473 * When QoS (Quality of Service) is enabled, allocate queues for
1474 * each traffic class.  If multiqueue isn't available,then abort QoS
1475 * initialization.
1476 *
1477 * This function handles all combinations of Qos and RSS.
1478 *
1479 **/
1480static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1481{
1482        struct net_device *dev = interface->netdev;
1483        struct fm10k_ring_feature *f;
1484        int rss_i, i;
1485        int pcs;
1486
1487        /* Map queue offset and counts onto allocated tx queues */
1488        pcs = netdev_get_num_tc(dev);
1489
1490        if (pcs <= 1)
1491                return false;
1492
1493        /* set QoS mask and indices */
1494        f = &interface->ring_feature[RING_F_QOS];
1495        f->indices = pcs;
1496        f->mask = (1 << fls(pcs - 1)) - 1;
1497
1498        /* determine the upper limit for our current DCB mode */
1499        rss_i = interface->hw.mac.max_queues / pcs;
1500        rss_i = 1 << (fls(rss_i) - 1);
1501
1502        /* set RSS mask and indices */
1503        f = &interface->ring_feature[RING_F_RSS];
1504        rss_i = min_t(u16, rss_i, f->limit);
1505        f->indices = rss_i;
1506        f->mask = (1 << fls(rss_i - 1)) - 1;
1507
1508        /* configure pause class to queue mapping */
1509        for (i = 0; i < pcs; i++)
1510                netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1511
1512        interface->num_rx_queues = rss_i * pcs;
1513        interface->num_tx_queues = rss_i * pcs;
1514
1515        return true;
1516}
1517
1518/**
1519 * fm10k_set_rss_queues: Allocate queues for RSS
1520 * @interface: board private structure to initialize
1521 *
1522 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1523 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1524 *
1525 **/
1526static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1527{
1528        struct fm10k_ring_feature *f;
1529        u16 rss_i;
1530
1531        f = &interface->ring_feature[RING_F_RSS];
1532        rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1533
1534        /* record indices and power of 2 mask for RSS */
1535        f->indices = rss_i;
1536        f->mask = (1 << fls(rss_i - 1)) - 1;
1537
1538        interface->num_rx_queues = rss_i;
1539        interface->num_tx_queues = rss_i;
1540
1541        return true;
1542}
1543
1544/**
1545 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1546 * @interface: board private structure to initialize
1547 *
1548 * This is the top level queue allocation routine.  The order here is very
1549 * important, starting with the "most" number of features turned on at once,
1550 * and ending with the smallest set of features.  This way large combinations
1551 * can be allocated if they're turned on, and smaller combinations are the
1552 * fallthrough conditions.
1553 *
1554 **/
1555static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1556{
1557        /* Start with base case */
1558        interface->num_rx_queues = 1;
1559        interface->num_tx_queues = 1;
1560
1561        if (fm10k_set_qos_queues(interface))
1562                return;
1563
1564        fm10k_set_rss_queues(interface);
1565}
1566
1567/**
1568 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1569 * @interface: board private structure to initialize
1570 * @v_count: q_vectors allocated on interface, used for ring interleaving
1571 * @v_idx: index of vector in interface struct
1572 * @txr_count: total number of Tx rings to allocate
1573 * @txr_idx: index of first Tx ring to allocate
1574 * @rxr_count: total number of Rx rings to allocate
1575 * @rxr_idx: index of first Rx ring to allocate
1576 *
1577 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1578 **/
1579static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1580                                unsigned int v_count, unsigned int v_idx,
1581                                unsigned int txr_count, unsigned int txr_idx,
1582                                unsigned int rxr_count, unsigned int rxr_idx)
1583{
1584        struct fm10k_q_vector *q_vector;
1585        struct fm10k_ring *ring;
1586        int ring_count, size;
1587
1588        ring_count = txr_count + rxr_count;
1589        size = sizeof(struct fm10k_q_vector) +
1590               (sizeof(struct fm10k_ring) * ring_count);
1591
1592        /* allocate q_vector and rings */
1593        q_vector = kzalloc(size, GFP_KERNEL);
1594        if (!q_vector)
1595                return -ENOMEM;
1596
1597        /* initialize NAPI */
1598        netif_napi_add(interface->netdev, &q_vector->napi,
1599                       fm10k_poll, NAPI_POLL_WEIGHT);
1600
1601        /* tie q_vector and interface together */
1602        interface->q_vector[v_idx] = q_vector;
1603        q_vector->interface = interface;
1604        q_vector->v_idx = v_idx;
1605
1606        /* initialize pointer to rings */
1607        ring = q_vector->ring;
1608
1609        /* save Tx ring container info */
1610        q_vector->tx.ring = ring;
1611        q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1612        q_vector->tx.itr = interface->tx_itr;
1613        q_vector->tx.count = txr_count;
1614
1615        while (txr_count) {
1616                /* assign generic ring traits */
1617                ring->dev = &interface->pdev->dev;
1618                ring->netdev = interface->netdev;
1619
1620                /* configure backlink on ring */
1621                ring->q_vector = q_vector;
1622
1623                /* apply Tx specific ring traits */
1624                ring->count = interface->tx_ring_count;
1625                ring->queue_index = txr_idx;
1626
1627                /* assign ring to interface */
1628                interface->tx_ring[txr_idx] = ring;
1629
1630                /* update count and index */
1631                txr_count--;
1632                txr_idx += v_count;
1633
1634                /* push pointer to next ring */
1635                ring++;
1636        }
1637
1638        /* save Rx ring container info */
1639        q_vector->rx.ring = ring;
1640        q_vector->rx.itr = interface->rx_itr;
1641        q_vector->rx.count = rxr_count;
1642
1643        while (rxr_count) {
1644                /* assign generic ring traits */
1645                ring->dev = &interface->pdev->dev;
1646                ring->netdev = interface->netdev;
1647                rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1648
1649                /* configure backlink on ring */
1650                ring->q_vector = q_vector;
1651
1652                /* apply Rx specific ring traits */
1653                ring->count = interface->rx_ring_count;
1654                ring->queue_index = rxr_idx;
1655
1656                /* assign ring to interface */
1657                interface->rx_ring[rxr_idx] = ring;
1658
1659                /* update count and index */
1660                rxr_count--;
1661                rxr_idx += v_count;
1662
1663                /* push pointer to next ring */
1664                ring++;
1665        }
1666
1667        fm10k_dbg_q_vector_init(q_vector);
1668
1669        return 0;
1670}
1671
1672/**
1673 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1674 * @interface: board private structure to initialize
1675 * @v_idx: Index of vector to be freed
1676 *
1677 * This function frees the memory allocated to the q_vector.  In addition if
1678 * NAPI is enabled it will delete any references to the NAPI struct prior
1679 * to freeing the q_vector.
1680 **/
1681static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1682{
1683        struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1684        struct fm10k_ring *ring;
1685
1686        fm10k_dbg_q_vector_exit(q_vector);
1687
1688        fm10k_for_each_ring(ring, q_vector->tx)
1689                interface->tx_ring[ring->queue_index] = NULL;
1690
1691        fm10k_for_each_ring(ring, q_vector->rx)
1692                interface->rx_ring[ring->queue_index] = NULL;
1693
1694        interface->q_vector[v_idx] = NULL;
1695        netif_napi_del(&q_vector->napi);
1696        kfree_rcu(q_vector, rcu);
1697}
1698
1699/**
1700 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1701 * @interface: board private structure to initialize
1702 *
1703 * We allocate one q_vector per queue interrupt.  If allocation fails we
1704 * return -ENOMEM.
1705 **/
1706static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1707{
1708        unsigned int q_vectors = interface->num_q_vectors;
1709        unsigned int rxr_remaining = interface->num_rx_queues;
1710        unsigned int txr_remaining = interface->num_tx_queues;
1711        unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1712        int err;
1713
1714        if (q_vectors >= (rxr_remaining + txr_remaining)) {
1715                for (; rxr_remaining; v_idx++) {
1716                        err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1717                                                   0, 0, 1, rxr_idx);
1718                        if (err)
1719                                goto err_out;
1720
1721                        /* update counts and index */
1722                        rxr_remaining--;
1723                        rxr_idx++;
1724                }
1725        }
1726
1727        for (; v_idx < q_vectors; v_idx++) {
1728                int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1729                int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1730
1731                err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1732                                           tqpv, txr_idx,
1733                                           rqpv, rxr_idx);
1734
1735                if (err)
1736                        goto err_out;
1737
1738                /* update counts and index */
1739                rxr_remaining -= rqpv;
1740                txr_remaining -= tqpv;
1741                rxr_idx++;
1742                txr_idx++;
1743        }
1744
1745        return 0;
1746
1747err_out:
1748        interface->num_tx_queues = 0;
1749        interface->num_rx_queues = 0;
1750        interface->num_q_vectors = 0;
1751
1752        while (v_idx--)
1753                fm10k_free_q_vector(interface, v_idx);
1754
1755        return -ENOMEM;
1756}
1757
1758/**
1759 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1760 * @interface: board private structure to initialize
1761 *
1762 * This function frees the memory allocated to the q_vectors.  In addition if
1763 * NAPI is enabled it will delete any references to the NAPI struct prior
1764 * to freeing the q_vector.
1765 **/
1766static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1767{
1768        int v_idx = interface->num_q_vectors;
1769
1770        interface->num_tx_queues = 0;
1771        interface->num_rx_queues = 0;
1772        interface->num_q_vectors = 0;
1773
1774        while (v_idx--)
1775                fm10k_free_q_vector(interface, v_idx);
1776}
1777
1778/**
1779 * f10k_reset_msix_capability - reset MSI-X capability
1780 * @interface: board private structure to initialize
1781 *
1782 * Reset the MSI-X capability back to its starting state
1783 **/
1784static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1785{
1786        pci_disable_msix(interface->pdev);
1787        kfree(interface->msix_entries);
1788        interface->msix_entries = NULL;
1789}
1790
1791/**
1792 * f10k_init_msix_capability - configure MSI-X capability
1793 * @interface: board private structure to initialize
1794 *
1795 * Attempt to configure the interrupts using the best available
1796 * capabilities of the hardware and the kernel.
1797 **/
1798static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1799{
1800        struct fm10k_hw *hw = &interface->hw;
1801        int v_budget, vector;
1802
1803        /* It's easy to be greedy for MSI-X vectors, but it really
1804         * doesn't do us much good if we have a lot more vectors
1805         * than CPU's.  So let's be conservative and only ask for
1806         * (roughly) the same number of vectors as there are CPU's.
1807         * the default is to use pairs of vectors
1808         */
1809        v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1810        v_budget = min_t(u16, v_budget, num_online_cpus());
1811
1812        /* account for vectors not related to queues */
1813        v_budget += NON_Q_VECTORS(hw);
1814
1815        /* At the same time, hardware can only support a maximum of
1816         * hw.mac->max_msix_vectors vectors.  With features
1817         * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1818         * descriptor queues supported by our device.  Thus, we cap it off in
1819         * those rare cases where the cpu count also exceeds our vector limit.
1820         */
1821        v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1822
1823        /* A failure in MSI-X entry allocation is fatal. */
1824        interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1825                                          GFP_KERNEL);
1826        if (!interface->msix_entries)
1827                return -ENOMEM;
1828
1829        /* populate entry values */
1830        for (vector = 0; vector < v_budget; vector++)
1831                interface->msix_entries[vector].entry = vector;
1832
1833        /* Attempt to enable MSI-X with requested value */
1834        v_budget = pci_enable_msix_range(interface->pdev,
1835                                         interface->msix_entries,
1836                                         MIN_MSIX_COUNT(hw),
1837                                         v_budget);
1838        if (v_budget < 0) {
1839                kfree(interface->msix_entries);
1840                interface->msix_entries = NULL;
1841                return -ENOMEM;
1842        }
1843
1844        /* record the number of queues available for q_vectors */
1845        interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1846
1847        return 0;
1848}
1849
1850/**
1851 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1852 * @interface: Interface structure continaining rings and devices
1853 *
1854 * Cache the descriptor ring offsets for Qos
1855 **/
1856static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1857{
1858        struct net_device *dev = interface->netdev;
1859        int pc, offset, rss_i, i, q_idx;
1860        u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1861        u8 num_pcs = netdev_get_num_tc(dev);
1862
1863        if (num_pcs <= 1)
1864                return false;
1865
1866        rss_i = interface->ring_feature[RING_F_RSS].indices;
1867
1868        for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1869                q_idx = pc;
1870                for (i = 0; i < rss_i; i++) {
1871                        interface->tx_ring[offset + i]->reg_idx = q_idx;
1872                        interface->tx_ring[offset + i]->qos_pc = pc;
1873                        interface->rx_ring[offset + i]->reg_idx = q_idx;
1874                        interface->rx_ring[offset + i]->qos_pc = pc;
1875                        q_idx += pc_stride;
1876                }
1877        }
1878
1879        return true;
1880}
1881
1882/**
1883 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1884 * @interface: Interface structure continaining rings and devices
1885 *
1886 * Cache the descriptor ring offsets for RSS
1887 **/
1888static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1889{
1890        int i;
1891
1892        for (i = 0; i < interface->num_rx_queues; i++)
1893                interface->rx_ring[i]->reg_idx = i;
1894
1895        for (i = 0; i < interface->num_tx_queues; i++)
1896                interface->tx_ring[i]->reg_idx = i;
1897}
1898
1899/**
1900 * fm10k_assign_rings - Map rings to network devices
1901 * @interface: Interface structure containing rings and devices
1902 *
1903 * This function is meant to go though and configure both the network
1904 * devices so that they contain rings, and configure the rings so that
1905 * they function with their network devices.
1906 **/
1907static void fm10k_assign_rings(struct fm10k_intfc *interface)
1908{
1909        if (fm10k_cache_ring_qos(interface))
1910                return;
1911
1912        fm10k_cache_ring_rss(interface);
1913}
1914
1915static void fm10k_init_reta(struct fm10k_intfc *interface)
1916{
1917        u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1918        u32 reta, base;
1919
1920        /* If the netdev is initialized we have to maintain table if possible */
1921        if (interface->netdev->reg_state) {
1922                for (i = FM10K_RETA_SIZE; i--;) {
1923                        reta = interface->reta[i];
1924                        if ((((reta << 24) >> 24) < rss_i) &&
1925                            (((reta << 16) >> 24) < rss_i) &&
1926                            (((reta <<  8) >> 24) < rss_i) &&
1927                            (((reta)       >> 24) < rss_i))
1928                                continue;
1929                        goto repopulate_reta;
1930                }
1931
1932                /* do nothing if all of the elements are in bounds */
1933                return;
1934        }
1935
1936repopulate_reta:
1937        /* Populate the redirection table 4 entries at a time.  To do this
1938         * we are generating the results for n and n+2 and then interleaving
1939         * those with the results with n+1 and n+3.
1940         */
1941        for (i = FM10K_RETA_SIZE; i--;) {
1942                /* first pass generates n and n+2 */
1943                base = ((i * 0x00040004) + 0x00020000) * rss_i;
1944                reta = (base & 0x3F803F80) >> 7;
1945
1946                /* second pass generates n+1 and n+3 */
1947                base += 0x00010001 * rss_i;
1948                reta |= (base & 0x3F803F80) << 1;
1949
1950                interface->reta[i] = reta;
1951        }
1952}
1953
1954/**
1955 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1956 * @interface: board private structure to initialize
1957 *
1958 * We determine which queueing scheme to use based on...
1959 * - Hardware queue count (num_*_queues)
1960 *   - defined by miscellaneous hardware support/features (RSS, etc.)
1961 **/
1962int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1963{
1964        int err;
1965
1966        /* Number of supported queues */
1967        fm10k_set_num_queues(interface);
1968
1969        /* Configure MSI-X capability */
1970        err = fm10k_init_msix_capability(interface);
1971        if (err) {
1972                dev_err(&interface->pdev->dev,
1973                        "Unable to initialize MSI-X capability\n");
1974                return err;
1975        }
1976
1977        /* Allocate memory for queues */
1978        err = fm10k_alloc_q_vectors(interface);
1979        if (err)
1980                return err;
1981
1982        /* Map rings to devices, and map devices to physical queues */
1983        fm10k_assign_rings(interface);
1984
1985        /* Initialize RSS redirection table */
1986        fm10k_init_reta(interface);
1987
1988        return 0;
1989}
1990
1991/**
1992 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1993 * @interface: board private structure to clear queueing scheme on
1994 *
1995 * We go through and clear queueing specific resources and reset the structure
1996 * to pre-load conditions
1997 **/
1998void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1999{
2000        fm10k_free_q_vectors(interface);
2001        fm10k_reset_msix_capability(interface);
2002}
2003