linux/drivers/net/ethernet/sfc/ptp.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2011-2013 Solarflare Communications Inc.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of the GNU General Public License version 2 as published
   7 * by the Free Software Foundation, incorporated herein by reference.
   8 */
   9
  10/* Theory of operation:
  11 *
  12 * PTP support is assisted by firmware running on the MC, which provides
  13 * the hardware timestamping capabilities.  Both transmitted and received
  14 * PTP event packets are queued onto internal queues for subsequent processing;
  15 * this is because the MC operations are relatively long and would block
  16 * block NAPI/interrupt operation.
  17 *
  18 * Receive event processing:
  19 *      The event contains the packet's UUID and sequence number, together
  20 *      with the hardware timestamp.  The PTP receive packet queue is searched
  21 *      for this UUID/sequence number and, if found, put on a pending queue.
  22 *      Packets not matching are delivered without timestamps (MCDI events will
  23 *      always arrive after the actual packet).
  24 *      It is important for the operation of the PTP protocol that the ordering
  25 *      of packets between the event and general port is maintained.
  26 *
  27 * Work queue processing:
  28 *      If work waiting, synchronise host/hardware time
  29 *
  30 *      Transmit: send packet through MC, which returns the transmission time
  31 *      that is converted to an appropriate timestamp.
  32 *
  33 *      Receive: the packet's reception time is converted to an appropriate
  34 *      timestamp.
  35 */
  36#include <linux/ip.h>
  37#include <linux/udp.h>
  38#include <linux/time.h>
  39#include <linux/ktime.h>
  40#include <linux/module.h>
  41#include <linux/net_tstamp.h>
  42#include <linux/pps_kernel.h>
  43#include <linux/ptp_clock_kernel.h>
  44#include "net_driver.h"
  45#include "efx.h"
  46#include "mcdi.h"
  47#include "mcdi_pcol.h"
  48#include "io.h"
  49#include "farch_regs.h"
  50#include "nic.h"
  51
  52/* Maximum number of events expected to make up a PTP event */
  53#define MAX_EVENT_FRAGS                 3
  54
  55/* Maximum delay, ms, to begin synchronisation */
  56#define MAX_SYNCHRONISE_WAIT_MS         2
  57
  58/* How long, at most, to spend synchronising */
  59#define SYNCHRONISE_PERIOD_NS           250000
  60
  61/* How often to update the shared memory time */
  62#define SYNCHRONISATION_GRANULARITY_NS  200
  63
  64/* Minimum permitted length of a (corrected) synchronisation time */
  65#define DEFAULT_MIN_SYNCHRONISATION_NS  120
  66
  67/* Maximum permitted length of a (corrected) synchronisation time */
  68#define MAX_SYNCHRONISATION_NS          1000
  69
  70/* How many (MC) receive events that can be queued */
  71#define MAX_RECEIVE_EVENTS              8
  72
  73/* Length of (modified) moving average. */
  74#define AVERAGE_LENGTH                  16
  75
  76/* How long an unmatched event or packet can be held */
  77#define PKT_EVENT_LIFETIME_MS           10
  78
  79/* Offsets into PTP packet for identification.  These offsets are from the
  80 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
  81 * PTP V2 permit the use of IPV4 options.
  82 */
  83#define PTP_DPORT_OFFSET        22
  84
  85#define PTP_V1_VERSION_LENGTH   2
  86#define PTP_V1_VERSION_OFFSET   28
  87
  88#define PTP_V1_UUID_LENGTH      6
  89#define PTP_V1_UUID_OFFSET      50
  90
  91#define PTP_V1_SEQUENCE_LENGTH  2
  92#define PTP_V1_SEQUENCE_OFFSET  58
  93
  94/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
  95 * includes IP header.
  96 */
  97#define PTP_V1_MIN_LENGTH       64
  98
  99#define PTP_V2_VERSION_LENGTH   1
 100#define PTP_V2_VERSION_OFFSET   29
 101
 102#define PTP_V2_UUID_LENGTH      8
 103#define PTP_V2_UUID_OFFSET      48
 104
 105/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
 106 * the MC only captures the last six bytes of the clock identity. These values
 107 * reflect those, not the ones used in the standard.  The standard permits
 108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
 109 */
 110#define PTP_V2_MC_UUID_LENGTH   6
 111#define PTP_V2_MC_UUID_OFFSET   50
 112
 113#define PTP_V2_SEQUENCE_LENGTH  2
 114#define PTP_V2_SEQUENCE_OFFSET  58
 115
 116/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
 117 * includes IP header.
 118 */
 119#define PTP_V2_MIN_LENGTH       63
 120
 121#define PTP_MIN_LENGTH          63
 122
 123#define PTP_ADDRESS             0xe0000181      /* 224.0.1.129 */
 124#define PTP_EVENT_PORT          319
 125#define PTP_GENERAL_PORT        320
 126
 127/* Annoyingly the format of the version numbers are different between
 128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
 129 */
 130#define PTP_VERSION_V1          1
 131
 132#define PTP_VERSION_V2          2
 133#define PTP_VERSION_V2_MASK     0x0f
 134
 135enum ptp_packet_state {
 136        PTP_PACKET_STATE_UNMATCHED = 0,
 137        PTP_PACKET_STATE_MATCHED,
 138        PTP_PACKET_STATE_TIMED_OUT,
 139        PTP_PACKET_STATE_MATCH_UNWANTED
 140};
 141
 142/* NIC synchronised with single word of time only comprising
 143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
 144 */
 145#define MC_NANOSECOND_BITS      30
 146#define MC_NANOSECOND_MASK      ((1 << MC_NANOSECOND_BITS) - 1)
 147#define MC_SECOND_MASK          ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
 148
 149/* Maximum parts-per-billion adjustment that is acceptable */
 150#define MAX_PPB                 1000000
 151
 152/* Number of bits required to hold the above */
 153#define MAX_PPB_BITS            20
 154
 155/* Number of extra bits allowed when calculating fractional ns.
 156 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
 157 * be less than 63.
 158 */
 159#define PPB_EXTRA_BITS          2
 160
 161/* Precalculate scale word to avoid long long division at runtime */
 162#define PPB_SCALE_WORD  ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
 163                        MAX_PPB_BITS)) / 1000000000LL)
 164
 165#define PTP_SYNC_ATTEMPTS       4
 166
 167/**
 168 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
 169 * @words: UUID and (partial) sequence number
 170 * @expiry: Time after which the packet should be delivered irrespective of
 171 *            event arrival.
 172 * @state: The state of the packet - whether it is ready for processing or
 173 *         whether that is of no interest.
 174 */
 175struct efx_ptp_match {
 176        u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
 177        unsigned long expiry;
 178        enum ptp_packet_state state;
 179};
 180
 181/**
 182 * struct efx_ptp_event_rx - A PTP receive event (from MC)
 183 * @seq0: First part of (PTP) UUID
 184 * @seq1: Second part of (PTP) UUID and sequence number
 185 * @hwtimestamp: Event timestamp
 186 */
 187struct efx_ptp_event_rx {
 188        struct list_head link;
 189        u32 seq0;
 190        u32 seq1;
 191        ktime_t hwtimestamp;
 192        unsigned long expiry;
 193};
 194
 195/**
 196 * struct efx_ptp_timeset - Synchronisation between host and MC
 197 * @host_start: Host time immediately before hardware timestamp taken
 198 * @major: Hardware timestamp, major
 199 * @minor: Hardware timestamp, minor
 200 * @host_end: Host time immediately after hardware timestamp taken
 201 * @wait: Number of NIC clock ticks between hardware timestamp being read and
 202 *          host end time being seen
 203 * @window: Difference of host_end and host_start
 204 * @valid: Whether this timeset is valid
 205 */
 206struct efx_ptp_timeset {
 207        u32 host_start;
 208        u32 major;
 209        u32 minor;
 210        u32 host_end;
 211        u32 wait;
 212        u32 window;     /* Derived: end - start, allowing for wrap */
 213};
 214
 215/**
 216 * struct efx_ptp_data - Precision Time Protocol (PTP) state
 217 * @efx: The NIC context
 218 * @channel: The PTP channel (Siena only)
 219 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
 220 *      separate events)
 221 * @rxq: Receive queue (awaiting timestamps)
 222 * @txq: Transmit queue
 223 * @evt_list: List of MC receive events awaiting packets
 224 * @evt_free_list: List of free events
 225 * @evt_lock: Lock for manipulating evt_list and evt_free_list
 226 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
 227 * @workwq: Work queue for processing pending PTP operations
 228 * @work: Work task
 229 * @reset_required: A serious error has occurred and the PTP task needs to be
 230 *                  reset (disable, enable).
 231 * @rxfilter_event: Receive filter when operating
 232 * @rxfilter_general: Receive filter when operating
 233 * @config: Current timestamp configuration
 234 * @enabled: PTP operation enabled
 235 * @mode: Mode in which PTP operating (PTP version)
 236 * @time_format: Time format supported by this NIC
 237 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
 238 * @nic_to_kernel_time: Function to convert from NIC to kernel time
 239 * @min_synchronisation_ns: Minimum acceptable corrected sync window
 240 * @ts_corrections.tx: Required driver correction of transmit timestamps
 241 * @ts_corrections.rx: Required driver correction of receive timestamps
 242 * @ts_corrections.pps_out: PPS output error (information only)
 243 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
 244 * @evt_frags: Partly assembled PTP events
 245 * @evt_frag_idx: Current fragment number
 246 * @evt_code: Last event code
 247 * @start: Address at which MC indicates ready for synchronisation
 248 * @host_time_pps: Host time at last PPS
 249 * @current_adjfreq: Current ppb adjustment.
 250 * @phc_clock: Pointer to registered phc device (if primary function)
 251 * @phc_clock_info: Registration structure for phc device
 252 * @pps_work: pps work task for handling pps events
 253 * @pps_workwq: pps work queue
 254 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
 255 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
 256 *         allocations in main data path).
 257 * @good_syncs: Number of successful synchronisations.
 258 * @fast_syncs: Number of synchronisations requiring short delay
 259 * @bad_syncs: Number of failed synchronisations.
 260 * @sync_timeouts: Number of synchronisation timeouts
 261 * @no_time_syncs: Number of synchronisations with no good times.
 262 * @invalid_sync_windows: Number of sync windows with bad durations.
 263 * @undersize_sync_windows: Number of corrected sync windows that are too small
 264 * @oversize_sync_windows: Number of corrected sync windows that are too large
 265 * @rx_no_timestamp: Number of packets received without a timestamp.
 266 * @timeset: Last set of synchronisation statistics.
 267 */
 268struct efx_ptp_data {
 269        struct efx_nic *efx;
 270        struct efx_channel *channel;
 271        bool rx_ts_inline;
 272        struct sk_buff_head rxq;
 273        struct sk_buff_head txq;
 274        struct list_head evt_list;
 275        struct list_head evt_free_list;
 276        spinlock_t evt_lock;
 277        struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
 278        struct workqueue_struct *workwq;
 279        struct work_struct work;
 280        bool reset_required;
 281        u32 rxfilter_event;
 282        u32 rxfilter_general;
 283        bool rxfilter_installed;
 284        struct hwtstamp_config config;
 285        bool enabled;
 286        unsigned int mode;
 287        unsigned int time_format;
 288        void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
 289        ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
 290                                      s32 correction);
 291        unsigned int min_synchronisation_ns;
 292        struct {
 293                s32 tx;
 294                s32 rx;
 295                s32 pps_out;
 296                s32 pps_in;
 297        } ts_corrections;
 298        efx_qword_t evt_frags[MAX_EVENT_FRAGS];
 299        int evt_frag_idx;
 300        int evt_code;
 301        struct efx_buffer start;
 302        struct pps_event_time host_time_pps;
 303        s64 current_adjfreq;
 304        struct ptp_clock *phc_clock;
 305        struct ptp_clock_info phc_clock_info;
 306        struct work_struct pps_work;
 307        struct workqueue_struct *pps_workwq;
 308        bool nic_ts_enabled;
 309        MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
 310
 311        unsigned int good_syncs;
 312        unsigned int fast_syncs;
 313        unsigned int bad_syncs;
 314        unsigned int sync_timeouts;
 315        unsigned int no_time_syncs;
 316        unsigned int invalid_sync_windows;
 317        unsigned int undersize_sync_windows;
 318        unsigned int oversize_sync_windows;
 319        unsigned int rx_no_timestamp;
 320        struct efx_ptp_timeset
 321        timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
 322};
 323
 324static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
 325static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
 326static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
 327static int efx_phc_settime(struct ptp_clock_info *ptp,
 328                           const struct timespec64 *e_ts);
 329static int efx_phc_enable(struct ptp_clock_info *ptp,
 330                          struct ptp_clock_request *request, int on);
 331
 332#define PTP_SW_STAT(ext_name, field_name)                               \
 333        { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
 334#define PTP_MC_STAT(ext_name, mcdi_name)                                \
 335        { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
 336static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
 337        PTP_SW_STAT(ptp_good_syncs, good_syncs),
 338        PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
 339        PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
 340        PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
 341        PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
 342        PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
 343        PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
 344        PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
 345        PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
 346        PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
 347        PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
 348        PTP_MC_STAT(ptp_timestamp_packets, TS),
 349        PTP_MC_STAT(ptp_filter_matches, FM),
 350        PTP_MC_STAT(ptp_non_filter_matches, NFM),
 351};
 352#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
 353static const unsigned long efx_ptp_stat_mask[] = {
 354        [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
 355};
 356
 357size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
 358{
 359        if (!efx->ptp_data)
 360                return 0;
 361
 362        return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 363                                      efx_ptp_stat_mask, strings);
 364}
 365
 366size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
 367{
 368        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
 369        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
 370        size_t i;
 371        int rc;
 372
 373        if (!efx->ptp_data)
 374                return 0;
 375
 376        /* Copy software statistics */
 377        for (i = 0; i < PTP_STAT_COUNT; i++) {
 378                if (efx_ptp_stat_desc[i].dma_width)
 379                        continue;
 380                stats[i] = *(unsigned int *)((char *)efx->ptp_data +
 381                                             efx_ptp_stat_desc[i].offset);
 382        }
 383
 384        /* Fetch MC statistics.  We *must* fill in all statistics or
 385         * risk leaking kernel memory to userland, so if the MCDI
 386         * request fails we pretend we got zeroes.
 387         */
 388        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
 389        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 390        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 391                          outbuf, sizeof(outbuf), NULL);
 392        if (rc) {
 393                netif_err(efx, hw, efx->net_dev,
 394                          "MC_CMD_PTP_OP_STATUS failed (%d)\n", rc);
 395                memset(outbuf, 0, sizeof(outbuf));
 396        }
 397        efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 398                             efx_ptp_stat_mask,
 399                             stats, _MCDI_PTR(outbuf, 0), false);
 400
 401        return PTP_STAT_COUNT;
 402}
 403
 404/* For Siena platforms NIC time is s and ns */
 405static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
 406{
 407        struct timespec ts = ns_to_timespec(ns);
 408        *nic_major = ts.tv_sec;
 409        *nic_minor = ts.tv_nsec;
 410}
 411
 412static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 413                                                s32 correction)
 414{
 415        ktime_t kt = ktime_set(nic_major, nic_minor);
 416        if (correction >= 0)
 417                kt = ktime_add_ns(kt, (u64)correction);
 418        else
 419                kt = ktime_sub_ns(kt, (u64)-correction);
 420        return kt;
 421}
 422
 423/* To convert from s27 format to ns we multiply then divide by a power of 2.
 424 * For the conversion from ns to s27, the operation is also converted to a
 425 * multiply and shift.
 426 */
 427#define S27_TO_NS_SHIFT (27)
 428#define NS_TO_S27_MULT  (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
 429#define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
 430#define S27_MINOR_MAX   (1 << S27_TO_NS_SHIFT)
 431
 432/* For Huntington platforms NIC time is in seconds and fractions of a second
 433 * where the minor register only uses 27 bits in units of 2^-27s.
 434 */
 435static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
 436{
 437        struct timespec ts = ns_to_timespec(ns);
 438        u32 maj = ts.tv_sec;
 439        u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
 440                         (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
 441
 442        /* The conversion can result in the minor value exceeding the maximum.
 443         * In this case, round up to the next second.
 444         */
 445        if (min >= S27_MINOR_MAX) {
 446                min -= S27_MINOR_MAX;
 447                maj++;
 448        }
 449
 450        *nic_major = maj;
 451        *nic_minor = min;
 452}
 453
 454static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
 455{
 456        u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
 457                        (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
 458        return ktime_set(nic_major, ns);
 459}
 460
 461static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
 462                                               s32 correction)
 463{
 464        /* Apply the correction and deal with carry */
 465        nic_minor += correction;
 466        if ((s32)nic_minor < 0) {
 467                nic_minor += S27_MINOR_MAX;
 468                nic_major--;
 469        } else if (nic_minor >= S27_MINOR_MAX) {
 470                nic_minor -= S27_MINOR_MAX;
 471                nic_major++;
 472        }
 473
 474        return efx_ptp_s27_to_ktime(nic_major, nic_minor);
 475}
 476
 477/* Get PTP attributes and set up time conversions */
 478static int efx_ptp_get_attributes(struct efx_nic *efx)
 479{
 480        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
 481        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
 482        struct efx_ptp_data *ptp = efx->ptp_data;
 483        int rc;
 484        u32 fmt;
 485        size_t out_len;
 486
 487        /* Get the PTP attributes. If the NIC doesn't support the operation we
 488         * use the default format for compatibility with older NICs i.e.
 489         * seconds and nanoseconds.
 490         */
 491        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
 492        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 493        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 494                          outbuf, sizeof(outbuf), &out_len);
 495        if (rc == 0)
 496                fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
 497        else if (rc == -EINVAL)
 498                fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
 499        else
 500                return rc;
 501
 502        if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION) {
 503                ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
 504                ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
 505        } else if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS) {
 506                ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
 507                ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
 508        } else {
 509                return -ERANGE;
 510        }
 511
 512        ptp->time_format = fmt;
 513
 514        /* MC_CMD_PTP_OP_GET_ATTRIBUTES is an extended version of an older
 515         * operation MC_CMD_PTP_OP_GET_TIME_FORMAT that also returns a value
 516         * to use for the minimum acceptable corrected synchronization window.
 517         * If we have the extra information store it. For older firmware that
 518         * does not implement the extended command use the default value.
 519         */
 520        if (rc == 0 && out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
 521                ptp->min_synchronisation_ns =
 522                        MCDI_DWORD(outbuf,
 523                                   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
 524        else
 525                ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
 526
 527        return 0;
 528}
 529
 530/* Get PTP timestamp corrections */
 531static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
 532{
 533        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
 534        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_LEN);
 535        int rc;
 536
 537        /* Get the timestamp corrections from the NIC. If this operation is
 538         * not supported (older NICs) then no correction is required.
 539         */
 540        MCDI_SET_DWORD(inbuf, PTP_IN_OP,
 541                       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
 542        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 543
 544        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 545                          outbuf, sizeof(outbuf), NULL);
 546        if (rc == 0) {
 547                efx->ptp_data->ts_corrections.tx = MCDI_DWORD(outbuf,
 548                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
 549                efx->ptp_data->ts_corrections.rx = MCDI_DWORD(outbuf,
 550                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
 551                efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
 552                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
 553                efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
 554                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
 555        } else if (rc == -EINVAL) {
 556                efx->ptp_data->ts_corrections.tx = 0;
 557                efx->ptp_data->ts_corrections.rx = 0;
 558                efx->ptp_data->ts_corrections.pps_out = 0;
 559                efx->ptp_data->ts_corrections.pps_in = 0;
 560        } else {
 561                return rc;
 562        }
 563
 564        return 0;
 565}
 566
 567/* Enable MCDI PTP support. */
 568static int efx_ptp_enable(struct efx_nic *efx)
 569{
 570        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
 571        MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
 572        int rc;
 573
 574        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
 575        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 576        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
 577                       efx->ptp_data->channel ?
 578                       efx->ptp_data->channel->channel : 0);
 579        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
 580
 581        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 582                                outbuf, sizeof(outbuf), NULL);
 583        rc = (rc == -EALREADY) ? 0 : rc;
 584        if (rc)
 585                efx_mcdi_display_error(efx, MC_CMD_PTP,
 586                                       MC_CMD_PTP_IN_ENABLE_LEN,
 587                                       outbuf, sizeof(outbuf), rc);
 588        return rc;
 589}
 590
 591/* Disable MCDI PTP support.
 592 *
 593 * Note that this function should never rely on the presence of ptp_data -
 594 * may be called before that exists.
 595 */
 596static int efx_ptp_disable(struct efx_nic *efx)
 597{
 598        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
 599        MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
 600        int rc;
 601
 602        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
 603        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 604        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 605                                outbuf, sizeof(outbuf), NULL);
 606        rc = (rc == -EALREADY) ? 0 : rc;
 607        if (rc)
 608                efx_mcdi_display_error(efx, MC_CMD_PTP,
 609                                       MC_CMD_PTP_IN_DISABLE_LEN,
 610                                       outbuf, sizeof(outbuf), rc);
 611        return rc;
 612}
 613
 614static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
 615{
 616        struct sk_buff *skb;
 617
 618        while ((skb = skb_dequeue(q))) {
 619                local_bh_disable();
 620                netif_receive_skb(skb);
 621                local_bh_enable();
 622        }
 623}
 624
 625static void efx_ptp_handle_no_channel(struct efx_nic *efx)
 626{
 627        netif_err(efx, drv, efx->net_dev,
 628                  "ERROR: PTP requires MSI-X and 1 additional interrupt"
 629                  "vector. PTP disabled\n");
 630}
 631
 632/* Repeatedly send the host time to the MC which will capture the hardware
 633 * time.
 634 */
 635static void efx_ptp_send_times(struct efx_nic *efx,
 636                               struct pps_event_time *last_time)
 637{
 638        struct pps_event_time now;
 639        struct timespec limit;
 640        struct efx_ptp_data *ptp = efx->ptp_data;
 641        struct timespec start;
 642        int *mc_running = ptp->start.addr;
 643
 644        pps_get_ts(&now);
 645        start = now.ts_real;
 646        limit = now.ts_real;
 647        timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
 648
 649        /* Write host time for specified period or until MC is done */
 650        while ((timespec_compare(&now.ts_real, &limit) < 0) &&
 651               ACCESS_ONCE(*mc_running)) {
 652                struct timespec update_time;
 653                unsigned int host_time;
 654
 655                /* Don't update continuously to avoid saturating the PCIe bus */
 656                update_time = now.ts_real;
 657                timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
 658                do {
 659                        pps_get_ts(&now);
 660                } while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
 661                         ACCESS_ONCE(*mc_running));
 662
 663                /* Synchronise NIC with single word of time only */
 664                host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
 665                             now.ts_real.tv_nsec);
 666                /* Update host time in NIC memory */
 667                efx->type->ptp_write_host_time(efx, host_time);
 668        }
 669        *last_time = now;
 670}
 671
 672/* Read a timeset from the MC's results and partial process. */
 673static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
 674                                 struct efx_ptp_timeset *timeset)
 675{
 676        unsigned start_ns, end_ns;
 677
 678        timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
 679        timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
 680        timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
 681        timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
 682        timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
 683
 684        /* Ignore seconds */
 685        start_ns = timeset->host_start & MC_NANOSECOND_MASK;
 686        end_ns = timeset->host_end & MC_NANOSECOND_MASK;
 687        /* Allow for rollover */
 688        if (end_ns < start_ns)
 689                end_ns += NSEC_PER_SEC;
 690        /* Determine duration of operation */
 691        timeset->window = end_ns - start_ns;
 692}
 693
 694/* Process times received from MC.
 695 *
 696 * Extract times from returned results, and establish the minimum value
 697 * seen.  The minimum value represents the "best" possible time and events
 698 * too much greater than this are rejected - the machine is, perhaps, too
 699 * busy. A number of readings are taken so that, hopefully, at least one good
 700 * synchronisation will be seen in the results.
 701 */
 702static int
 703efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
 704                      size_t response_length,
 705                      const struct pps_event_time *last_time)
 706{
 707        unsigned number_readings =
 708                MCDI_VAR_ARRAY_LEN(response_length,
 709                                   PTP_OUT_SYNCHRONIZE_TIMESET);
 710        unsigned i;
 711        unsigned ngood = 0;
 712        unsigned last_good = 0;
 713        struct efx_ptp_data *ptp = efx->ptp_data;
 714        u32 last_sec;
 715        u32 start_sec;
 716        struct timespec delta;
 717        ktime_t mc_time;
 718
 719        if (number_readings == 0)
 720                return -EAGAIN;
 721
 722        /* Read the set of results and find the last good host-MC
 723         * synchronization result. The MC times when it finishes reading the
 724         * host time so the corrected window time should be fairly constant
 725         * for a given platform. Increment stats for any results that appear
 726         * to be erroneous.
 727         */
 728        for (i = 0; i < number_readings; i++) {
 729                s32 window, corrected;
 730                struct timespec wait;
 731
 732                efx_ptp_read_timeset(
 733                        MCDI_ARRAY_STRUCT_PTR(synch_buf,
 734                                              PTP_OUT_SYNCHRONIZE_TIMESET, i),
 735                        &ptp->timeset[i]);
 736
 737                wait = ktime_to_timespec(
 738                        ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
 739                window = ptp->timeset[i].window;
 740                corrected = window - wait.tv_nsec;
 741
 742                /* We expect the uncorrected synchronization window to be at
 743                 * least as large as the interval between host start and end
 744                 * times. If it is smaller than this then this is mostly likely
 745                 * to be a consequence of the host's time being adjusted.
 746                 * Check that the corrected sync window is in a reasonable
 747                 * range. If it is out of range it is likely to be because an
 748                 * interrupt or other delay occurred between reading the system
 749                 * time and writing it to MC memory.
 750                 */
 751                if (window < SYNCHRONISATION_GRANULARITY_NS) {
 752                        ++ptp->invalid_sync_windows;
 753                } else if (corrected >= MAX_SYNCHRONISATION_NS) {
 754                        ++ptp->oversize_sync_windows;
 755                } else if (corrected < ptp->min_synchronisation_ns) {
 756                        ++ptp->undersize_sync_windows;
 757                } else {
 758                        ngood++;
 759                        last_good = i;
 760                }
 761        }
 762
 763        if (ngood == 0) {
 764                netif_warn(efx, drv, efx->net_dev,
 765                           "PTP no suitable synchronisations\n");
 766                return -EAGAIN;
 767        }
 768
 769        /* Calculate delay from last good sync (host time) to last_time.
 770         * It is possible that the seconds rolled over between taking
 771         * the start reading and the last value written by the host.  The
 772         * timescales are such that a gap of more than one second is never
 773         * expected.  delta is *not* normalised.
 774         */
 775        start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
 776        last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
 777        if (start_sec != last_sec &&
 778            ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
 779                netif_warn(efx, hw, efx->net_dev,
 780                           "PTP bad synchronisation seconds\n");
 781                return -EAGAIN;
 782        }
 783        delta.tv_sec = (last_sec - start_sec) & 1;
 784        delta.tv_nsec =
 785                last_time->ts_real.tv_nsec -
 786                (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
 787
 788        /* Convert the NIC time at last good sync into kernel time.
 789         * No correction is required - this time is the output of a
 790         * firmware process.
 791         */
 792        mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
 793                                          ptp->timeset[last_good].minor, 0);
 794
 795        /* Calculate delay from NIC top of second to last_time */
 796        delta.tv_nsec += ktime_to_timespec(mc_time).tv_nsec;
 797
 798        /* Set PPS timestamp to match NIC top of second */
 799        ptp->host_time_pps = *last_time;
 800        pps_sub_ts(&ptp->host_time_pps, delta);
 801
 802        return 0;
 803}
 804
 805/* Synchronize times between the host and the MC */
 806static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
 807{
 808        struct efx_ptp_data *ptp = efx->ptp_data;
 809        MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
 810        size_t response_length;
 811        int rc;
 812        unsigned long timeout;
 813        struct pps_event_time last_time = {};
 814        unsigned int loops = 0;
 815        int *start = ptp->start.addr;
 816
 817        MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
 818        MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
 819        MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
 820                       num_readings);
 821        MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
 822                       ptp->start.dma_addr);
 823
 824        /* Clear flag that signals MC ready */
 825        ACCESS_ONCE(*start) = 0;
 826        rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
 827                                MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
 828        EFX_BUG_ON_PARANOID(rc);
 829
 830        /* Wait for start from MCDI (or timeout) */
 831        timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
 832        while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
 833                udelay(20);     /* Usually start MCDI execution quickly */
 834                loops++;
 835        }
 836
 837        if (loops <= 1)
 838                ++ptp->fast_syncs;
 839        if (!time_before(jiffies, timeout))
 840                ++ptp->sync_timeouts;
 841
 842        if (ACCESS_ONCE(*start))
 843                efx_ptp_send_times(efx, &last_time);
 844
 845        /* Collect results */
 846        rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
 847                                 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
 848                                 synch_buf, sizeof(synch_buf),
 849                                 &response_length);
 850        if (rc == 0) {
 851                rc = efx_ptp_process_times(efx, synch_buf, response_length,
 852                                           &last_time);
 853                if (rc == 0)
 854                        ++ptp->good_syncs;
 855                else
 856                        ++ptp->no_time_syncs;
 857        }
 858
 859        /* Increment the bad syncs counter if the synchronize fails, whatever
 860         * the reason.
 861         */
 862        if (rc != 0)
 863                ++ptp->bad_syncs;
 864
 865        return rc;
 866}
 867
 868/* Transmit a PTP packet, via the MCDI interface, to the wire. */
 869static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
 870{
 871        struct efx_ptp_data *ptp_data = efx->ptp_data;
 872        struct skb_shared_hwtstamps timestamps;
 873        int rc = -EIO;
 874        MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
 875        size_t len;
 876
 877        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
 878        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
 879        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
 880        if (skb_shinfo(skb)->nr_frags != 0) {
 881                rc = skb_linearize(skb);
 882                if (rc != 0)
 883                        goto fail;
 884        }
 885
 886        if (skb->ip_summed == CHECKSUM_PARTIAL) {
 887                rc = skb_checksum_help(skb);
 888                if (rc != 0)
 889                        goto fail;
 890        }
 891        skb_copy_from_linear_data(skb,
 892                                  MCDI_PTR(ptp_data->txbuf,
 893                                           PTP_IN_TRANSMIT_PACKET),
 894                                  skb->len);
 895        rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
 896                          ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
 897                          txtime, sizeof(txtime), &len);
 898        if (rc != 0)
 899                goto fail;
 900
 901        memset(&timestamps, 0, sizeof(timestamps));
 902        timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
 903                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
 904                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
 905                ptp_data->ts_corrections.tx);
 906
 907        skb_tstamp_tx(skb, &timestamps);
 908
 909        rc = 0;
 910
 911fail:
 912        dev_kfree_skb(skb);
 913
 914        return rc;
 915}
 916
 917static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
 918{
 919        struct efx_ptp_data *ptp = efx->ptp_data;
 920        struct list_head *cursor;
 921        struct list_head *next;
 922
 923        if (ptp->rx_ts_inline)
 924                return;
 925
 926        /* Drop time-expired events */
 927        spin_lock_bh(&ptp->evt_lock);
 928        if (!list_empty(&ptp->evt_list)) {
 929                list_for_each_safe(cursor, next, &ptp->evt_list) {
 930                        struct efx_ptp_event_rx *evt;
 931
 932                        evt = list_entry(cursor, struct efx_ptp_event_rx,
 933                                         link);
 934                        if (time_after(jiffies, evt->expiry)) {
 935                                list_move(&evt->link, &ptp->evt_free_list);
 936                                netif_warn(efx, hw, efx->net_dev,
 937                                           "PTP rx event dropped\n");
 938                        }
 939                }
 940        }
 941        spin_unlock_bh(&ptp->evt_lock);
 942}
 943
 944static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
 945                                              struct sk_buff *skb)
 946{
 947        struct efx_ptp_data *ptp = efx->ptp_data;
 948        bool evts_waiting;
 949        struct list_head *cursor;
 950        struct list_head *next;
 951        struct efx_ptp_match *match;
 952        enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
 953
 954        WARN_ON_ONCE(ptp->rx_ts_inline);
 955
 956        spin_lock_bh(&ptp->evt_lock);
 957        evts_waiting = !list_empty(&ptp->evt_list);
 958        spin_unlock_bh(&ptp->evt_lock);
 959
 960        if (!evts_waiting)
 961                return PTP_PACKET_STATE_UNMATCHED;
 962
 963        match = (struct efx_ptp_match *)skb->cb;
 964        /* Look for a matching timestamp in the event queue */
 965        spin_lock_bh(&ptp->evt_lock);
 966        list_for_each_safe(cursor, next, &ptp->evt_list) {
 967                struct efx_ptp_event_rx *evt;
 968
 969                evt = list_entry(cursor, struct efx_ptp_event_rx, link);
 970                if ((evt->seq0 == match->words[0]) &&
 971                    (evt->seq1 == match->words[1])) {
 972                        struct skb_shared_hwtstamps *timestamps;
 973
 974                        /* Match - add in hardware timestamp */
 975                        timestamps = skb_hwtstamps(skb);
 976                        timestamps->hwtstamp = evt->hwtimestamp;
 977
 978                        match->state = PTP_PACKET_STATE_MATCHED;
 979                        rc = PTP_PACKET_STATE_MATCHED;
 980                        list_move(&evt->link, &ptp->evt_free_list);
 981                        break;
 982                }
 983        }
 984        spin_unlock_bh(&ptp->evt_lock);
 985
 986        return rc;
 987}
 988
 989/* Process any queued receive events and corresponding packets
 990 *
 991 * q is returned with all the packets that are ready for delivery.
 992 */
 993static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
 994{
 995        struct efx_ptp_data *ptp = efx->ptp_data;
 996        struct sk_buff *skb;
 997
 998        while ((skb = skb_dequeue(&ptp->rxq))) {
 999                struct efx_ptp_match *match;
1000
1001                match = (struct efx_ptp_match *)skb->cb;
1002                if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1003                        __skb_queue_tail(q, skb);
1004                } else if (efx_ptp_match_rx(efx, skb) ==
1005                           PTP_PACKET_STATE_MATCHED) {
1006                        __skb_queue_tail(q, skb);
1007                } else if (time_after(jiffies, match->expiry)) {
1008                        match->state = PTP_PACKET_STATE_TIMED_OUT;
1009                        ++ptp->rx_no_timestamp;
1010                        __skb_queue_tail(q, skb);
1011                } else {
1012                        /* Replace unprocessed entry and stop */
1013                        skb_queue_head(&ptp->rxq, skb);
1014                        break;
1015                }
1016        }
1017}
1018
1019/* Complete processing of a received packet */
1020static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1021{
1022        local_bh_disable();
1023        netif_receive_skb(skb);
1024        local_bh_enable();
1025}
1026
1027static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1028{
1029        struct efx_ptp_data *ptp = efx->ptp_data;
1030
1031        if (ptp->rxfilter_installed) {
1032                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1033                                          ptp->rxfilter_general);
1034                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1035                                          ptp->rxfilter_event);
1036                ptp->rxfilter_installed = false;
1037        }
1038}
1039
1040static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1041{
1042        struct efx_ptp_data *ptp = efx->ptp_data;
1043        struct efx_filter_spec rxfilter;
1044        int rc;
1045
1046        if (!ptp->channel || ptp->rxfilter_installed)
1047                return 0;
1048
1049        /* Must filter on both event and general ports to ensure
1050         * that there is no packet re-ordering.
1051         */
1052        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1053                           efx_rx_queue_index(
1054                                   efx_channel_get_rx_queue(ptp->channel)));
1055        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1056                                       htonl(PTP_ADDRESS),
1057                                       htons(PTP_EVENT_PORT));
1058        if (rc != 0)
1059                return rc;
1060
1061        rc = efx_filter_insert_filter(efx, &rxfilter, true);
1062        if (rc < 0)
1063                return rc;
1064        ptp->rxfilter_event = rc;
1065
1066        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1067                           efx_rx_queue_index(
1068                                   efx_channel_get_rx_queue(ptp->channel)));
1069        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1070                                       htonl(PTP_ADDRESS),
1071                                       htons(PTP_GENERAL_PORT));
1072        if (rc != 0)
1073                goto fail;
1074
1075        rc = efx_filter_insert_filter(efx, &rxfilter, true);
1076        if (rc < 0)
1077                goto fail;
1078        ptp->rxfilter_general = rc;
1079
1080        ptp->rxfilter_installed = true;
1081        return 0;
1082
1083fail:
1084        efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1085                                  ptp->rxfilter_event);
1086        return rc;
1087}
1088
1089static int efx_ptp_start(struct efx_nic *efx)
1090{
1091        struct efx_ptp_data *ptp = efx->ptp_data;
1092        int rc;
1093
1094        ptp->reset_required = false;
1095
1096        rc = efx_ptp_insert_multicast_filters(efx);
1097        if (rc)
1098                return rc;
1099
1100        rc = efx_ptp_enable(efx);
1101        if (rc != 0)
1102                goto fail;
1103
1104        ptp->evt_frag_idx = 0;
1105        ptp->current_adjfreq = 0;
1106
1107        return 0;
1108
1109fail:
1110        efx_ptp_remove_multicast_filters(efx);
1111        return rc;
1112}
1113
1114static int efx_ptp_stop(struct efx_nic *efx)
1115{
1116        struct efx_ptp_data *ptp = efx->ptp_data;
1117        struct list_head *cursor;
1118        struct list_head *next;
1119        int rc;
1120
1121        if (ptp == NULL)
1122                return 0;
1123
1124        rc = efx_ptp_disable(efx);
1125
1126        efx_ptp_remove_multicast_filters(efx);
1127
1128        /* Make sure RX packets are really delivered */
1129        efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1130        skb_queue_purge(&efx->ptp_data->txq);
1131
1132        /* Drop any pending receive events */
1133        spin_lock_bh(&efx->ptp_data->evt_lock);
1134        list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1135                list_move(cursor, &efx->ptp_data->evt_free_list);
1136        }
1137        spin_unlock_bh(&efx->ptp_data->evt_lock);
1138
1139        return rc;
1140}
1141
1142static int efx_ptp_restart(struct efx_nic *efx)
1143{
1144        if (efx->ptp_data && efx->ptp_data->enabled)
1145                return efx_ptp_start(efx);
1146        return 0;
1147}
1148
1149static void efx_ptp_pps_worker(struct work_struct *work)
1150{
1151        struct efx_ptp_data *ptp =
1152                container_of(work, struct efx_ptp_data, pps_work);
1153        struct efx_nic *efx = ptp->efx;
1154        struct ptp_clock_event ptp_evt;
1155
1156        if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1157                return;
1158
1159        ptp_evt.type = PTP_CLOCK_PPSUSR;
1160        ptp_evt.pps_times = ptp->host_time_pps;
1161        ptp_clock_event(ptp->phc_clock, &ptp_evt);
1162}
1163
1164static void efx_ptp_worker(struct work_struct *work)
1165{
1166        struct efx_ptp_data *ptp_data =
1167                container_of(work, struct efx_ptp_data, work);
1168        struct efx_nic *efx = ptp_data->efx;
1169        struct sk_buff *skb;
1170        struct sk_buff_head tempq;
1171
1172        if (ptp_data->reset_required) {
1173                efx_ptp_stop(efx);
1174                efx_ptp_start(efx);
1175                return;
1176        }
1177
1178        efx_ptp_drop_time_expired_events(efx);
1179
1180        __skb_queue_head_init(&tempq);
1181        efx_ptp_process_events(efx, &tempq);
1182
1183        while ((skb = skb_dequeue(&ptp_data->txq)))
1184                efx_ptp_xmit_skb(efx, skb);
1185
1186        while ((skb = __skb_dequeue(&tempq)))
1187                efx_ptp_process_rx(efx, skb);
1188}
1189
1190static const struct ptp_clock_info efx_phc_clock_info = {
1191        .owner          = THIS_MODULE,
1192        .name           = "sfc",
1193        .max_adj        = MAX_PPB,
1194        .n_alarm        = 0,
1195        .n_ext_ts       = 0,
1196        .n_per_out      = 0,
1197        .n_pins         = 0,
1198        .pps            = 1,
1199        .adjfreq        = efx_phc_adjfreq,
1200        .adjtime        = efx_phc_adjtime,
1201        .gettime64      = efx_phc_gettime,
1202        .settime64      = efx_phc_settime,
1203        .enable         = efx_phc_enable,
1204};
1205
1206/* Initialise PTP state. */
1207int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1208{
1209        struct efx_ptp_data *ptp;
1210        int rc = 0;
1211        unsigned int pos;
1212
1213        ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1214        efx->ptp_data = ptp;
1215        if (!efx->ptp_data)
1216                return -ENOMEM;
1217
1218        ptp->efx = efx;
1219        ptp->channel = channel;
1220        ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1221
1222        rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1223        if (rc != 0)
1224                goto fail1;
1225
1226        skb_queue_head_init(&ptp->rxq);
1227        skb_queue_head_init(&ptp->txq);
1228        ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1229        if (!ptp->workwq) {
1230                rc = -ENOMEM;
1231                goto fail2;
1232        }
1233
1234        INIT_WORK(&ptp->work, efx_ptp_worker);
1235        ptp->config.flags = 0;
1236        ptp->config.tx_type = HWTSTAMP_TX_OFF;
1237        ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1238        INIT_LIST_HEAD(&ptp->evt_list);
1239        INIT_LIST_HEAD(&ptp->evt_free_list);
1240        spin_lock_init(&ptp->evt_lock);
1241        for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1242                list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1243
1244        /* Get the NIC PTP attributes and set up time conversions */
1245        rc = efx_ptp_get_attributes(efx);
1246        if (rc < 0)
1247                goto fail3;
1248
1249        /* Get the timestamp corrections */
1250        rc = efx_ptp_get_timestamp_corrections(efx);
1251        if (rc < 0)
1252                goto fail3;
1253
1254        if (efx->mcdi->fn_flags &
1255            (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1256                ptp->phc_clock_info = efx_phc_clock_info;
1257                ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1258                                                    &efx->pci_dev->dev);
1259                if (IS_ERR(ptp->phc_clock)) {
1260                        rc = PTR_ERR(ptp->phc_clock);
1261                        goto fail3;
1262                }
1263
1264                INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1265                ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1266                if (!ptp->pps_workwq) {
1267                        rc = -ENOMEM;
1268                        goto fail4;
1269                }
1270        }
1271        ptp->nic_ts_enabled = false;
1272
1273        return 0;
1274fail4:
1275        ptp_clock_unregister(efx->ptp_data->phc_clock);
1276
1277fail3:
1278        destroy_workqueue(efx->ptp_data->workwq);
1279
1280fail2:
1281        efx_nic_free_buffer(efx, &ptp->start);
1282
1283fail1:
1284        kfree(efx->ptp_data);
1285        efx->ptp_data = NULL;
1286
1287        return rc;
1288}
1289
1290/* Initialise PTP channel.
1291 *
1292 * Setting core_index to zero causes the queue to be initialised and doesn't
1293 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1294 */
1295static int efx_ptp_probe_channel(struct efx_channel *channel)
1296{
1297        struct efx_nic *efx = channel->efx;
1298
1299        channel->irq_moderation = 0;
1300        channel->rx_queue.core_index = 0;
1301
1302        return efx_ptp_probe(efx, channel);
1303}
1304
1305void efx_ptp_remove(struct efx_nic *efx)
1306{
1307        if (!efx->ptp_data)
1308                return;
1309
1310        (void)efx_ptp_disable(efx);
1311
1312        cancel_work_sync(&efx->ptp_data->work);
1313        cancel_work_sync(&efx->ptp_data->pps_work);
1314
1315        skb_queue_purge(&efx->ptp_data->rxq);
1316        skb_queue_purge(&efx->ptp_data->txq);
1317
1318        if (efx->ptp_data->phc_clock) {
1319                destroy_workqueue(efx->ptp_data->pps_workwq);
1320                ptp_clock_unregister(efx->ptp_data->phc_clock);
1321        }
1322
1323        destroy_workqueue(efx->ptp_data->workwq);
1324
1325        efx_nic_free_buffer(efx, &efx->ptp_data->start);
1326        kfree(efx->ptp_data);
1327}
1328
1329static void efx_ptp_remove_channel(struct efx_channel *channel)
1330{
1331        efx_ptp_remove(channel->efx);
1332}
1333
1334static void efx_ptp_get_channel_name(struct efx_channel *channel,
1335                                     char *buf, size_t len)
1336{
1337        snprintf(buf, len, "%s-ptp", channel->efx->name);
1338}
1339
1340/* Determine whether this packet should be processed by the PTP module
1341 * or transmitted conventionally.
1342 */
1343bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1344{
1345        return efx->ptp_data &&
1346                efx->ptp_data->enabled &&
1347                skb->len >= PTP_MIN_LENGTH &&
1348                skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1349                likely(skb->protocol == htons(ETH_P_IP)) &&
1350                skb_transport_header_was_set(skb) &&
1351                skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1352                ip_hdr(skb)->protocol == IPPROTO_UDP &&
1353                skb_headlen(skb) >=
1354                skb_transport_offset(skb) + sizeof(struct udphdr) &&
1355                udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1356}
1357
1358/* Receive a PTP packet.  Packets are queued until the arrival of
1359 * the receive timestamp from the MC - this will probably occur after the
1360 * packet arrival because of the processing in the MC.
1361 */
1362static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1363{
1364        struct efx_nic *efx = channel->efx;
1365        struct efx_ptp_data *ptp = efx->ptp_data;
1366        struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1367        u8 *match_data_012, *match_data_345;
1368        unsigned int version;
1369        u8 *data;
1370
1371        match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1372
1373        /* Correct version? */
1374        if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1375                if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1376                        return false;
1377                }
1378                data = skb->data;
1379                version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1380                if (version != PTP_VERSION_V1) {
1381                        return false;
1382                }
1383
1384                /* PTP V1 uses all six bytes of the UUID to match the packet
1385                 * to the timestamp
1386                 */
1387                match_data_012 = data + PTP_V1_UUID_OFFSET;
1388                match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1389        } else {
1390                if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1391                        return false;
1392                }
1393                data = skb->data;
1394                version = data[PTP_V2_VERSION_OFFSET];
1395                if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1396                        return false;
1397                }
1398
1399                /* The original V2 implementation uses bytes 2-7 of
1400                 * the UUID to match the packet to the timestamp. This
1401                 * discards two of the bytes of the MAC address used
1402                 * to create the UUID (SF bug 33070).  The PTP V2
1403                 * enhanced mode fixes this issue and uses bytes 0-2
1404                 * and byte 5-7 of the UUID.
1405                 */
1406                match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1407                if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1408                        match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1409                } else {
1410                        match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1411                        BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1412                }
1413        }
1414
1415        /* Does this packet require timestamping? */
1416        if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1417                match->state = PTP_PACKET_STATE_UNMATCHED;
1418
1419                /* We expect the sequence number to be in the same position in
1420                 * the packet for PTP V1 and V2
1421                 */
1422                BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1423                BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1424
1425                /* Extract UUID/Sequence information */
1426                match->words[0] = (match_data_012[0]         |
1427                                   (match_data_012[1] << 8)  |
1428                                   (match_data_012[2] << 16) |
1429                                   (match_data_345[0] << 24));
1430                match->words[1] = (match_data_345[1]         |
1431                                   (match_data_345[2] << 8)  |
1432                                   (data[PTP_V1_SEQUENCE_OFFSET +
1433                                         PTP_V1_SEQUENCE_LENGTH - 1] <<
1434                                    16));
1435        } else {
1436                match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1437        }
1438
1439        skb_queue_tail(&ptp->rxq, skb);
1440        queue_work(ptp->workwq, &ptp->work);
1441
1442        return true;
1443}
1444
1445/* Transmit a PTP packet.  This has to be transmitted by the MC
1446 * itself, through an MCDI call.  MCDI calls aren't permitted
1447 * in the transmit path so defer the actual transmission to a suitable worker.
1448 */
1449int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1450{
1451        struct efx_ptp_data *ptp = efx->ptp_data;
1452
1453        skb_queue_tail(&ptp->txq, skb);
1454
1455        if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1456            (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1457                efx_xmit_hwtstamp_pending(skb);
1458        queue_work(ptp->workwq, &ptp->work);
1459
1460        return NETDEV_TX_OK;
1461}
1462
1463int efx_ptp_get_mode(struct efx_nic *efx)
1464{
1465        return efx->ptp_data->mode;
1466}
1467
1468int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1469                        unsigned int new_mode)
1470{
1471        if ((enable_wanted != efx->ptp_data->enabled) ||
1472            (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1473                int rc = 0;
1474
1475                if (enable_wanted) {
1476                        /* Change of mode requires disable */
1477                        if (efx->ptp_data->enabled &&
1478                            (efx->ptp_data->mode != new_mode)) {
1479                                efx->ptp_data->enabled = false;
1480                                rc = efx_ptp_stop(efx);
1481                                if (rc != 0)
1482                                        return rc;
1483                        }
1484
1485                        /* Set new operating mode and establish
1486                         * baseline synchronisation, which must
1487                         * succeed.
1488                         */
1489                        efx->ptp_data->mode = new_mode;
1490                        if (netif_running(efx->net_dev))
1491                                rc = efx_ptp_start(efx);
1492                        if (rc == 0) {
1493                                rc = efx_ptp_synchronize(efx,
1494                                                         PTP_SYNC_ATTEMPTS * 2);
1495                                if (rc != 0)
1496                                        efx_ptp_stop(efx);
1497                        }
1498                } else {
1499                        rc = efx_ptp_stop(efx);
1500                }
1501
1502                if (rc != 0)
1503                        return rc;
1504
1505                efx->ptp_data->enabled = enable_wanted;
1506        }
1507
1508        return 0;
1509}
1510
1511static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1512{
1513        int rc;
1514
1515        if (init->flags)
1516                return -EINVAL;
1517
1518        if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1519            (init->tx_type != HWTSTAMP_TX_ON))
1520                return -ERANGE;
1521
1522        rc = efx->type->ptp_set_ts_config(efx, init);
1523        if (rc)
1524                return rc;
1525
1526        efx->ptp_data->config = *init;
1527        return 0;
1528}
1529
1530void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1531{
1532        struct efx_ptp_data *ptp = efx->ptp_data;
1533        struct efx_nic *primary = efx->primary;
1534
1535        ASSERT_RTNL();
1536
1537        if (!ptp)
1538                return;
1539
1540        ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1541                                     SOF_TIMESTAMPING_RX_HARDWARE |
1542                                     SOF_TIMESTAMPING_RAW_HARDWARE);
1543        if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1544                ts_info->phc_index =
1545                        ptp_clock_index(primary->ptp_data->phc_clock);
1546        ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1547        ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1548}
1549
1550int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1551{
1552        struct hwtstamp_config config;
1553        int rc;
1554
1555        /* Not a PTP enabled port */
1556        if (!efx->ptp_data)
1557                return -EOPNOTSUPP;
1558
1559        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1560                return -EFAULT;
1561
1562        rc = efx_ptp_ts_init(efx, &config);
1563        if (rc != 0)
1564                return rc;
1565
1566        return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1567                ? -EFAULT : 0;
1568}
1569
1570int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1571{
1572        if (!efx->ptp_data)
1573                return -EOPNOTSUPP;
1574
1575        return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1576                            sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1577}
1578
1579static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1580{
1581        struct efx_ptp_data *ptp = efx->ptp_data;
1582
1583        netif_err(efx, hw, efx->net_dev,
1584                "PTP unexpected event length: got %d expected %d\n",
1585                ptp->evt_frag_idx, expected_frag_len);
1586        ptp->reset_required = true;
1587        queue_work(ptp->workwq, &ptp->work);
1588}
1589
1590/* Process a completed receive event.  Put it on the event queue and
1591 * start worker thread.  This is required because event and their
1592 * correspoding packets may come in either order.
1593 */
1594static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1595{
1596        struct efx_ptp_event_rx *evt = NULL;
1597
1598        if (WARN_ON_ONCE(ptp->rx_ts_inline))
1599                return;
1600
1601        if (ptp->evt_frag_idx != 3) {
1602                ptp_event_failure(efx, 3);
1603                return;
1604        }
1605
1606        spin_lock_bh(&ptp->evt_lock);
1607        if (!list_empty(&ptp->evt_free_list)) {
1608                evt = list_first_entry(&ptp->evt_free_list,
1609                                       struct efx_ptp_event_rx, link);
1610                list_del(&evt->link);
1611
1612                evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1613                evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1614                                             MCDI_EVENT_SRC)        |
1615                             (EFX_QWORD_FIELD(ptp->evt_frags[1],
1616                                              MCDI_EVENT_SRC) << 8) |
1617                             (EFX_QWORD_FIELD(ptp->evt_frags[0],
1618                                              MCDI_EVENT_SRC) << 16));
1619                evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1620                        EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1621                        EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1622                        ptp->ts_corrections.rx);
1623                evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1624                list_add_tail(&evt->link, &ptp->evt_list);
1625
1626                queue_work(ptp->workwq, &ptp->work);
1627        } else if (net_ratelimit()) {
1628                /* Log a rate-limited warning message. */
1629                netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1630        }
1631        spin_unlock_bh(&ptp->evt_lock);
1632}
1633
1634static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1635{
1636        int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1637        if (ptp->evt_frag_idx != 1) {
1638                ptp_event_failure(efx, 1);
1639                return;
1640        }
1641
1642        netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1643}
1644
1645static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1646{
1647        if (ptp->nic_ts_enabled)
1648                queue_work(ptp->pps_workwq, &ptp->pps_work);
1649}
1650
1651void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1652{
1653        struct efx_ptp_data *ptp = efx->ptp_data;
1654        int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1655
1656        if (!ptp) {
1657                if (net_ratelimit())
1658                        netif_warn(efx, drv, efx->net_dev,
1659                                   "Received PTP event but PTP not set up\n");
1660                return;
1661        }
1662
1663        if (!ptp->enabled)
1664                return;
1665
1666        if (ptp->evt_frag_idx == 0) {
1667                ptp->evt_code = code;
1668        } else if (ptp->evt_code != code) {
1669                netif_err(efx, hw, efx->net_dev,
1670                          "PTP out of sequence event %d\n", code);
1671                ptp->evt_frag_idx = 0;
1672        }
1673
1674        ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1675        if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1676                /* Process resulting event */
1677                switch (code) {
1678                case MCDI_EVENT_CODE_PTP_RX:
1679                        ptp_event_rx(efx, ptp);
1680                        break;
1681                case MCDI_EVENT_CODE_PTP_FAULT:
1682                        ptp_event_fault(efx, ptp);
1683                        break;
1684                case MCDI_EVENT_CODE_PTP_PPS:
1685                        ptp_event_pps(efx, ptp);
1686                        break;
1687                default:
1688                        netif_err(efx, hw, efx->net_dev,
1689                                  "PTP unknown event %d\n", code);
1690                        break;
1691                }
1692                ptp->evt_frag_idx = 0;
1693        } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1694                netif_err(efx, hw, efx->net_dev,
1695                          "PTP too many event fragments\n");
1696                ptp->evt_frag_idx = 0;
1697        }
1698}
1699
1700void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1701{
1702        channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
1703        channel->sync_timestamp_minor =
1704                MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_26_19) << 19;
1705        /* if sync events have been disabled then we want to silently ignore
1706         * this event, so throw away result.
1707         */
1708        (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
1709                       SYNC_EVENTS_VALID);
1710}
1711
1712/* make some assumptions about the time representation rather than abstract it,
1713 * since we currently only support one type of inline timestamping and only on
1714 * EF10.
1715 */
1716#define MINOR_TICKS_PER_SECOND 0x8000000
1717/* Fuzz factor for sync events to be out of order with RX events */
1718#define FUZZ (MINOR_TICKS_PER_SECOND / 10)
1719#define EXPECTED_SYNC_EVENTS_PER_SECOND 4
1720
1721static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
1722{
1723#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1724        return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
1725#else
1726        const u8 *data = eh + efx->rx_packet_ts_offset;
1727        return (u32)data[0]       |
1728               (u32)data[1] << 8  |
1729               (u32)data[2] << 16 |
1730               (u32)data[3] << 24;
1731#endif
1732}
1733
1734void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
1735                                   struct sk_buff *skb)
1736{
1737        struct efx_nic *efx = channel->efx;
1738        u32 pkt_timestamp_major, pkt_timestamp_minor;
1739        u32 diff, carry;
1740        struct skb_shared_hwtstamps *timestamps;
1741
1742        pkt_timestamp_minor = (efx_rx_buf_timestamp_minor(efx,
1743                                                          skb_mac_header(skb)) +
1744                               (u32) efx->ptp_data->ts_corrections.rx) &
1745                              (MINOR_TICKS_PER_SECOND - 1);
1746
1747        /* get the difference between the packet and sync timestamps,
1748         * modulo one second
1749         */
1750        diff = (pkt_timestamp_minor - channel->sync_timestamp_minor) &
1751                (MINOR_TICKS_PER_SECOND - 1);
1752        /* do we roll over a second boundary and need to carry the one? */
1753        carry = channel->sync_timestamp_minor + diff > MINOR_TICKS_PER_SECOND ?
1754                1 : 0;
1755
1756        if (diff <= MINOR_TICKS_PER_SECOND / EXPECTED_SYNC_EVENTS_PER_SECOND +
1757                    FUZZ) {
1758                /* packet is ahead of the sync event by a quarter of a second or
1759                 * less (allowing for fuzz)
1760                 */
1761                pkt_timestamp_major = channel->sync_timestamp_major + carry;
1762        } else if (diff >= MINOR_TICKS_PER_SECOND - FUZZ) {
1763                /* packet is behind the sync event but within the fuzz factor.
1764                 * This means the RX packet and sync event crossed as they were
1765                 * placed on the event queue, which can sometimes happen.
1766                 */
1767                pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
1768        } else {
1769                /* it's outside tolerance in both directions. this might be
1770                 * indicative of us missing sync events for some reason, so
1771                 * we'll call it an error rather than risk giving a bogus
1772                 * timestamp.
1773                 */
1774                netif_vdbg(efx, drv, efx->net_dev,
1775                          "packet timestamp %x too far from sync event %x:%x\n",
1776                          pkt_timestamp_minor, channel->sync_timestamp_major,
1777                          channel->sync_timestamp_minor);
1778                return;
1779        }
1780
1781        /* attach the timestamps to the skb */
1782        timestamps = skb_hwtstamps(skb);
1783        timestamps->hwtstamp =
1784                efx_ptp_s27_to_ktime(pkt_timestamp_major, pkt_timestamp_minor);
1785}
1786
1787static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
1788{
1789        struct efx_ptp_data *ptp_data = container_of(ptp,
1790                                                     struct efx_ptp_data,
1791                                                     phc_clock_info);
1792        struct efx_nic *efx = ptp_data->efx;
1793        MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
1794        s64 adjustment_ns;
1795        int rc;
1796
1797        if (delta > MAX_PPB)
1798                delta = MAX_PPB;
1799        else if (delta < -MAX_PPB)
1800                delta = -MAX_PPB;
1801
1802        /* Convert ppb to fixed point ns. */
1803        adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
1804                         (PPB_EXTRA_BITS + MAX_PPB_BITS));
1805
1806        MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1807        MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
1808        MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
1809        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
1810        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
1811        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
1812                          NULL, 0, NULL);
1813        if (rc != 0)
1814                return rc;
1815
1816        ptp_data->current_adjfreq = adjustment_ns;
1817        return 0;
1818}
1819
1820static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
1821{
1822        u32 nic_major, nic_minor;
1823        struct efx_ptp_data *ptp_data = container_of(ptp,
1824                                                     struct efx_ptp_data,
1825                                                     phc_clock_info);
1826        struct efx_nic *efx = ptp_data->efx;
1827        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
1828
1829        efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
1830
1831        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1832        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1833        MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
1834        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
1835        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
1836        return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1837                            NULL, 0, NULL);
1838}
1839
1840static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
1841{
1842        struct efx_ptp_data *ptp_data = container_of(ptp,
1843                                                     struct efx_ptp_data,
1844                                                     phc_clock_info);
1845        struct efx_nic *efx = ptp_data->efx;
1846        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
1847        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
1848        int rc;
1849        ktime_t kt;
1850
1851        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
1852        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1853
1854        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1855                          outbuf, sizeof(outbuf), NULL);
1856        if (rc != 0)
1857                return rc;
1858
1859        kt = ptp_data->nic_to_kernel_time(
1860                MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
1861                MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
1862        *ts = ktime_to_timespec64(kt);
1863        return 0;
1864}
1865
1866static int efx_phc_settime(struct ptp_clock_info *ptp,
1867                           const struct timespec64 *e_ts)
1868{
1869        /* Get the current NIC time, efx_phc_gettime.
1870         * Subtract from the desired time to get the offset
1871         * call efx_phc_adjtime with the offset
1872         */
1873        int rc;
1874        struct timespec64 time_now;
1875        struct timespec64 delta;
1876
1877        rc = efx_phc_gettime(ptp, &time_now);
1878        if (rc != 0)
1879                return rc;
1880
1881        delta = timespec64_sub(*e_ts, time_now);
1882
1883        rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
1884        if (rc != 0)
1885                return rc;
1886
1887        return 0;
1888}
1889
1890static int efx_phc_enable(struct ptp_clock_info *ptp,
1891                          struct ptp_clock_request *request,
1892                          int enable)
1893{
1894        struct efx_ptp_data *ptp_data = container_of(ptp,
1895                                                     struct efx_ptp_data,
1896                                                     phc_clock_info);
1897        if (request->type != PTP_CLK_REQ_PPS)
1898                return -EOPNOTSUPP;
1899
1900        ptp_data->nic_ts_enabled = !!enable;
1901        return 0;
1902}
1903
1904static const struct efx_channel_type efx_ptp_channel_type = {
1905        .handle_no_channel      = efx_ptp_handle_no_channel,
1906        .pre_probe              = efx_ptp_probe_channel,
1907        .post_remove            = efx_ptp_remove_channel,
1908        .get_name               = efx_ptp_get_channel_name,
1909        /* no copy operation; there is no need to reallocate this channel */
1910        .receive_skb            = efx_ptp_rx,
1911        .keep_eventq            = false,
1912};
1913
1914void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
1915{
1916        /* Check whether PTP is implemented on this NIC.  The DISABLE
1917         * operation will succeed if and only if it is implemented.
1918         */
1919        if (efx_ptp_disable(efx) == 0)
1920                efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
1921                        &efx_ptp_channel_type;
1922}
1923
1924void efx_ptp_start_datapath(struct efx_nic *efx)
1925{
1926        if (efx_ptp_restart(efx))
1927                netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
1928        /* re-enable timestamping if it was previously enabled */
1929        if (efx->type->ptp_set_ts_sync_events)
1930                efx->type->ptp_set_ts_sync_events(efx, true, true);
1931}
1932
1933void efx_ptp_stop_datapath(struct efx_nic *efx)
1934{
1935        /* temporarily disable timestamping */
1936        if (efx->type->ptp_set_ts_sync_events)
1937                efx->type->ptp_set_ts_sync_events(efx, false, true);
1938        efx_ptp_stop(efx);
1939}
1940