linux/drivers/net/ethernet/tile/tilepro.c
<<
>>
Prefs
   1/*
   2 * Copyright 2011 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/moduleparam.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>      /* printk() */
  20#include <linux/slab.h>        /* kmalloc() */
  21#include <linux/errno.h>       /* error codes */
  22#include <linux/types.h>       /* size_t */
  23#include <linux/interrupt.h>
  24#include <linux/in.h>
  25#include <linux/netdevice.h>   /* struct device, and other headers */
  26#include <linux/etherdevice.h> /* eth_type_trans */
  27#include <linux/skbuff.h>
  28#include <linux/ioctl.h>
  29#include <linux/cdev.h>
  30#include <linux/hugetlb.h>
  31#include <linux/in6.h>
  32#include <linux/timer.h>
  33#include <linux/io.h>
  34#include <linux/u64_stats_sync.h>
  35#include <asm/checksum.h>
  36#include <asm/homecache.h>
  37
  38#include <hv/drv_xgbe_intf.h>
  39#include <hv/drv_xgbe_impl.h>
  40#include <hv/hypervisor.h>
  41#include <hv/netio_intf.h>
  42
  43/* For TSO */
  44#include <linux/ip.h>
  45#include <linux/tcp.h>
  46
  47
  48/*
  49 * First, "tile_net_init_module()" initializes all four "devices" which
  50 * can be used by linux.
  51 *
  52 * Then, "ifconfig DEVICE up" calls "tile_net_open()", which analyzes
  53 * the network cpus, then uses "tile_net_open_aux()" to initialize
  54 * LIPP/LEPP, and then uses "tile_net_open_inner()" to register all
  55 * the tiles, provide buffers to LIPP, allow ingress to start, and
  56 * turn on hypervisor interrupt handling (and NAPI) on all tiles.
  57 *
  58 * If registration fails due to the link being down, then "retry_work"
  59 * is used to keep calling "tile_net_open_inner()" until it succeeds.
  60 *
  61 * If "ifconfig DEVICE down" is called, it uses "tile_net_stop()" to
  62 * stop egress, drain the LIPP buffers, unregister all the tiles, stop
  63 * LIPP/LEPP, and wipe the LEPP queue.
  64 *
  65 * We start out with the ingress interrupt enabled on each CPU.  When
  66 * this interrupt fires, we disable it, and call "napi_schedule()".
  67 * This will cause "tile_net_poll()" to be called, which will pull
  68 * packets from the netio queue, filtering them out, or passing them
  69 * to "netif_receive_skb()".  If our budget is exhausted, we will
  70 * return, knowing we will be called again later.  Otherwise, we
  71 * reenable the ingress interrupt, and call "napi_complete()".
  72 *
  73 * HACK: Since disabling the ingress interrupt is not reliable, we
  74 * ignore the interrupt if the global "active" flag is false.
  75 *
  76 *
  77 * NOTE: The use of "native_driver" ensures that EPP exists, and that
  78 * we are using "LIPP" and "LEPP".
  79 *
  80 * NOTE: Failing to free completions for an arbitrarily long time
  81 * (which is defined to be illegal) does in fact cause bizarre
  82 * problems.  The "egress_timer" helps prevent this from happening.
  83 */
  84
  85
  86/* HACK: Allow use of "jumbo" packets. */
  87/* This should be 1500 if "jumbo" is not set in LIPP. */
  88/* This should be at most 10226 (10240 - 14) if "jumbo" is set in LIPP. */
  89/* ISSUE: This has not been thoroughly tested (except at 1500). */
  90#define TILE_NET_MTU 1500
  91
  92/* HACK: Define this to verify incoming packets. */
  93/* #define TILE_NET_VERIFY_INGRESS */
  94
  95/* Use 3000 to enable the Linux Traffic Control (QoS) layer, else 0. */
  96#define TILE_NET_TX_QUEUE_LEN 0
  97
  98/* Define to dump packets (prints out the whole packet on tx and rx). */
  99/* #define TILE_NET_DUMP_PACKETS */
 100
 101/* Define to enable debug spew (all PDEBUG's are enabled). */
 102/* #define TILE_NET_DEBUG */
 103
 104
 105/* Define to activate paranoia checks. */
 106/* #define TILE_NET_PARANOIA */
 107
 108/* Default transmit lockup timeout period, in jiffies. */
 109#define TILE_NET_TIMEOUT (5 * HZ)
 110
 111/* Default retry interval for bringing up the NetIO interface, in jiffies. */
 112#define TILE_NET_RETRY_INTERVAL (5 * HZ)
 113
 114/* Number of ports (xgbe0, xgbe1, gbe0, gbe1). */
 115#define TILE_NET_DEVS 4
 116
 117
 118
 119/* Paranoia. */
 120#if NET_IP_ALIGN != LIPP_PACKET_PADDING
 121#error "NET_IP_ALIGN must match LIPP_PACKET_PADDING."
 122#endif
 123
 124
 125/* Debug print. */
 126#ifdef TILE_NET_DEBUG
 127#define PDEBUG(fmt, args...) net_printk(fmt, ## args)
 128#else
 129#define PDEBUG(fmt, args...)
 130#endif
 131
 132
 133MODULE_AUTHOR("Tilera");
 134MODULE_LICENSE("GPL");
 135
 136
 137/*
 138 * Queue of incoming packets for a specific cpu and device.
 139 *
 140 * Includes a pointer to the "system" data, and the actual "user" data.
 141 */
 142struct tile_netio_queue {
 143        netio_queue_impl_t *__system_part;
 144        netio_queue_user_impl_t __user_part;
 145
 146};
 147
 148
 149/*
 150 * Statistics counters for a specific cpu and device.
 151 */
 152struct tile_net_stats_t {
 153        struct u64_stats_sync syncp;
 154        u64 rx_packets;         /* total packets received       */
 155        u64 tx_packets;         /* total packets transmitted    */
 156        u64 rx_bytes;           /* total bytes received         */
 157        u64 tx_bytes;           /* total bytes transmitted      */
 158        u64 rx_errors;          /* packets truncated or marked bad by hw */
 159        u64 rx_dropped;         /* packets not for us or intf not up */
 160};
 161
 162
 163/*
 164 * Info for a specific cpu and device.
 165 *
 166 * ISSUE: There is a "dev" pointer in "napi" as well.
 167 */
 168struct tile_net_cpu {
 169        /* The NAPI struct. */
 170        struct napi_struct napi;
 171        /* Packet queue. */
 172        struct tile_netio_queue queue;
 173        /* Statistics. */
 174        struct tile_net_stats_t stats;
 175        /* True iff NAPI is enabled. */
 176        bool napi_enabled;
 177        /* True if this tile has successfully registered with the IPP. */
 178        bool registered;
 179        /* True if the link was down last time we tried to register. */
 180        bool link_down;
 181        /* True if "egress_timer" is scheduled. */
 182        bool egress_timer_scheduled;
 183        /* Number of small sk_buffs which must still be provided. */
 184        unsigned int num_needed_small_buffers;
 185        /* Number of large sk_buffs which must still be provided. */
 186        unsigned int num_needed_large_buffers;
 187        /* A timer for handling egress completions. */
 188        struct timer_list egress_timer;
 189};
 190
 191
 192/*
 193 * Info for a specific device.
 194 */
 195struct tile_net_priv {
 196        /* Our network device. */
 197        struct net_device *dev;
 198        /* Pages making up the egress queue. */
 199        struct page *eq_pages;
 200        /* Address of the actual egress queue. */
 201        lepp_queue_t *eq;
 202        /* Protects "eq". */
 203        spinlock_t eq_lock;
 204        /* The hypervisor handle for this interface. */
 205        int hv_devhdl;
 206        /* The intr bit mask that IDs this device. */
 207        u32 intr_id;
 208        /* True iff "tile_net_open_aux()" has succeeded. */
 209        bool partly_opened;
 210        /* True iff the device is "active". */
 211        bool active;
 212        /* Effective network cpus. */
 213        struct cpumask network_cpus_map;
 214        /* Number of network cpus. */
 215        int network_cpus_count;
 216        /* Credits per network cpu. */
 217        int network_cpus_credits;
 218        /* For NetIO bringup retries. */
 219        struct delayed_work retry_work;
 220        /* Quick access to per cpu data. */
 221        struct tile_net_cpu *cpu[NR_CPUS];
 222};
 223
 224/* Log2 of the number of small pages needed for the egress queue. */
 225#define EQ_ORDER  get_order(sizeof(lepp_queue_t))
 226/* Size of the egress queue's pages. */
 227#define EQ_SIZE   (1 << (PAGE_SHIFT + EQ_ORDER))
 228
 229/*
 230 * The actual devices (xgbe0, xgbe1, gbe0, gbe1).
 231 */
 232static struct net_device *tile_net_devs[TILE_NET_DEVS];
 233
 234/*
 235 * The "tile_net_cpu" structures for each device.
 236 */
 237static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe0);
 238static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe1);
 239static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe0);
 240static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe1);
 241
 242
 243/*
 244 * True if "network_cpus" was specified.
 245 */
 246static bool network_cpus_used;
 247
 248/*
 249 * The actual cpus in "network_cpus".
 250 */
 251static struct cpumask network_cpus_map;
 252
 253
 254
 255#ifdef TILE_NET_DEBUG
 256/*
 257 * printk with extra stuff.
 258 *
 259 * We print the CPU we're running in brackets.
 260 */
 261static void net_printk(char *fmt, ...)
 262{
 263        int i;
 264        int len;
 265        va_list args;
 266        static char buf[256];
 267
 268        len = sprintf(buf, "tile_net[%2.2d]: ", smp_processor_id());
 269        va_start(args, fmt);
 270        i = vscnprintf(buf + len, sizeof(buf) - len - 1, fmt, args);
 271        va_end(args);
 272        buf[255] = '\0';
 273        pr_notice(buf);
 274}
 275#endif
 276
 277
 278#ifdef TILE_NET_DUMP_PACKETS
 279/*
 280 * Dump a packet.
 281 */
 282static void dump_packet(unsigned char *data, unsigned long length, char *s)
 283{
 284        int my_cpu = smp_processor_id();
 285
 286        unsigned long i;
 287        char buf[128];
 288
 289        static unsigned int count;
 290
 291        pr_info("dump_packet(data %p, length 0x%lx s %s count 0x%x)\n",
 292               data, length, s, count++);
 293
 294        pr_info("\n");
 295
 296        for (i = 0; i < length; i++) {
 297                if ((i & 0xf) == 0)
 298                        sprintf(buf, "[%02d] %8.8lx:", my_cpu, i);
 299                sprintf(buf + strlen(buf), " %2.2x", data[i]);
 300                if ((i & 0xf) == 0xf || i == length - 1) {
 301                        strcat(buf, "\n");
 302                        pr_info("%s", buf);
 303                }
 304        }
 305}
 306#endif
 307
 308
 309/*
 310 * Provide support for the __netio_fastio1() swint
 311 * (see <hv/drv_xgbe_intf.h> for how it is used).
 312 *
 313 * The fastio swint2 call may clobber all the caller-saved registers.
 314 * It rarely clobbers memory, but we allow for the possibility in
 315 * the signature just to be on the safe side.
 316 *
 317 * Also, gcc doesn't seem to allow an input operand to be
 318 * clobbered, so we fake it with dummy outputs.
 319 *
 320 * This function can't be static because of the way it is declared
 321 * in the netio header.
 322 */
 323inline int __netio_fastio1(u32 fastio_index, u32 arg0)
 324{
 325        long result, clobber_r1, clobber_r10;
 326        asm volatile("swint2"
 327                     : "=R00" (result),
 328                       "=R01" (clobber_r1), "=R10" (clobber_r10)
 329                     : "R10" (fastio_index), "R01" (arg0)
 330                     : "memory", "r2", "r3", "r4",
 331                       "r5", "r6", "r7", "r8", "r9",
 332                       "r11", "r12", "r13", "r14",
 333                       "r15", "r16", "r17", "r18", "r19",
 334                       "r20", "r21", "r22", "r23", "r24",
 335                       "r25", "r26", "r27", "r28", "r29");
 336        return result;
 337}
 338
 339
 340static void tile_net_return_credit(struct tile_net_cpu *info)
 341{
 342        struct tile_netio_queue *queue = &info->queue;
 343        netio_queue_user_impl_t *qup = &queue->__user_part;
 344
 345        /* Return four credits after every fourth packet. */
 346        if (--qup->__receive_credit_remaining == 0) {
 347                u32 interval = qup->__receive_credit_interval;
 348                qup->__receive_credit_remaining = interval;
 349                __netio_fastio_return_credits(qup->__fastio_index, interval);
 350        }
 351}
 352
 353
 354
 355/*
 356 * Provide a linux buffer to LIPP.
 357 */
 358static void tile_net_provide_linux_buffer(struct tile_net_cpu *info,
 359                                          void *va, bool small)
 360{
 361        struct tile_netio_queue *queue = &info->queue;
 362
 363        /* Convert "va" and "small" to "linux_buffer_t". */
 364        unsigned int buffer = ((unsigned int)(__pa(va) >> 7) << 1) + small;
 365
 366        __netio_fastio_free_buffer(queue->__user_part.__fastio_index, buffer);
 367}
 368
 369
 370/*
 371 * Provide a linux buffer for LIPP.
 372 *
 373 * Note that the ACTUAL allocation for each buffer is a "struct sk_buff",
 374 * plus a chunk of memory that includes not only the requested bytes, but
 375 * also NET_SKB_PAD bytes of initial padding, and a "struct skb_shared_info".
 376 *
 377 * Note that "struct skb_shared_info" is 88 bytes with 64K pages and
 378 * 268 bytes with 4K pages (since the frags[] array needs 18 entries).
 379 *
 380 * Without jumbo packets, the maximum packet size will be 1536 bytes,
 381 * and we use 2 bytes (NET_IP_ALIGN) of padding.  ISSUE: If we told
 382 * the hardware to clip at 1518 bytes instead of 1536 bytes, then we
 383 * could save an entire cache line, but in practice, we don't need it.
 384 *
 385 * Since CPAs are 38 bits, and we can only encode the high 31 bits in
 386 * a "linux_buffer_t", the low 7 bits must be zero, and thus, we must
 387 * align the actual "va" mod 128.
 388 *
 389 * We assume that the underlying "head" will be aligned mod 64.  Note
 390 * that in practice, we have seen "head" NOT aligned mod 128 even when
 391 * using 2048 byte allocations, which is surprising.
 392 *
 393 * If "head" WAS always aligned mod 128, we could change LIPP to
 394 * assume that the low SIX bits are zero, and the 7th bit is one, that
 395 * is, align the actual "va" mod 128 plus 64, which would be "free".
 396 *
 397 * For now, the actual "head" pointer points at NET_SKB_PAD bytes of
 398 * padding, plus 28 or 92 bytes of extra padding, plus the sk_buff
 399 * pointer, plus the NET_IP_ALIGN padding, plus 126 or 1536 bytes for
 400 * the actual packet, plus 62 bytes of empty padding, plus some
 401 * padding and the "struct skb_shared_info".
 402 *
 403 * With 64K pages, a large buffer thus needs 32+92+4+2+1536+62+88
 404 * bytes, or 1816 bytes, which fits comfortably into 2048 bytes.
 405 *
 406 * With 64K pages, a small buffer thus needs 32+92+4+2+126+88
 407 * bytes, or 344 bytes, which means we are wasting 64+ bytes, and
 408 * could presumably increase the size of small buffers.
 409 *
 410 * With 4K pages, a large buffer thus needs 32+92+4+2+1536+62+268
 411 * bytes, or 1996 bytes, which fits comfortably into 2048 bytes.
 412 *
 413 * With 4K pages, a small buffer thus needs 32+92+4+2+126+268
 414 * bytes, or 524 bytes, which is annoyingly wasteful.
 415 *
 416 * Maybe we should increase LIPP_SMALL_PACKET_SIZE to 192?
 417 *
 418 * ISSUE: Maybe we should increase "NET_SKB_PAD" to 64?
 419 */
 420static bool tile_net_provide_needed_buffer(struct tile_net_cpu *info,
 421                                           bool small)
 422{
 423#if TILE_NET_MTU <= 1536
 424        /* Without "jumbo", 2 + 1536 should be sufficient. */
 425        unsigned int large_size = NET_IP_ALIGN + 1536;
 426#else
 427        /* ISSUE: This has not been tested. */
 428        unsigned int large_size = NET_IP_ALIGN + TILE_NET_MTU + 100;
 429#endif
 430
 431        /* Avoid "false sharing" with last cache line. */
 432        /* ISSUE: This is already done by "netdev_alloc_skb()". */
 433        unsigned int len =
 434                 (((small ? LIPP_SMALL_PACKET_SIZE : large_size) +
 435                   CHIP_L2_LINE_SIZE() - 1) & -CHIP_L2_LINE_SIZE());
 436
 437        unsigned int padding = 128 - NET_SKB_PAD;
 438        unsigned int align;
 439
 440        struct sk_buff *skb;
 441        void *va;
 442
 443        struct sk_buff **skb_ptr;
 444
 445        /* Request 96 extra bytes for alignment purposes. */
 446        skb = netdev_alloc_skb(info->napi.dev, len + padding);
 447        if (skb == NULL)
 448                return false;
 449
 450        /* Skip 32 or 96 bytes to align "data" mod 128. */
 451        align = -(long)skb->data & (128 - 1);
 452        BUG_ON(align > padding);
 453        skb_reserve(skb, align);
 454
 455        /* This address is given to IPP. */
 456        va = skb->data;
 457
 458        /* Buffers must not span a huge page. */
 459        BUG_ON(((((long)va & ~HPAGE_MASK) + len) & HPAGE_MASK) != 0);
 460
 461#ifdef TILE_NET_PARANOIA
 462#if CHIP_HAS_CBOX_HOME_MAP()
 463        if (hash_default) {
 464                HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)va);
 465                if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
 466                        panic("Non-HFH ingress buffer! VA=%p Mode=%d PTE=%llx",
 467                              va, hv_pte_get_mode(pte), hv_pte_val(pte));
 468        }
 469#endif
 470#endif
 471
 472        /* Invalidate the packet buffer. */
 473        if (!hash_default)
 474                __inv_buffer(va, len);
 475
 476        /* Skip two bytes to satisfy LIPP assumptions. */
 477        /* Note that this aligns IP on a 16 byte boundary. */
 478        /* ISSUE: Do this when the packet arrives? */
 479        skb_reserve(skb, NET_IP_ALIGN);
 480
 481        /* Save a back-pointer to 'skb'. */
 482        skb_ptr = va - sizeof(*skb_ptr);
 483        *skb_ptr = skb;
 484
 485        /* Make sure "skb_ptr" has been flushed. */
 486        __insn_mf();
 487
 488        /* Provide the new buffer. */
 489        tile_net_provide_linux_buffer(info, va, small);
 490
 491        return true;
 492}
 493
 494
 495/*
 496 * Provide linux buffers for LIPP.
 497 */
 498static void tile_net_provide_needed_buffers(struct tile_net_cpu *info)
 499{
 500        while (info->num_needed_small_buffers != 0) {
 501                if (!tile_net_provide_needed_buffer(info, true))
 502                        goto oops;
 503                info->num_needed_small_buffers--;
 504        }
 505
 506        while (info->num_needed_large_buffers != 0) {
 507                if (!tile_net_provide_needed_buffer(info, false))
 508                        goto oops;
 509                info->num_needed_large_buffers--;
 510        }
 511
 512        return;
 513
 514oops:
 515
 516        /* Add a description to the page allocation failure dump. */
 517        pr_notice("Could not provide a linux buffer to LIPP.\n");
 518}
 519
 520
 521/*
 522 * Grab some LEPP completions, and store them in "comps", of size
 523 * "comps_size", and return the number of completions which were
 524 * stored, so the caller can free them.
 525 */
 526static unsigned int tile_net_lepp_grab_comps(lepp_queue_t *eq,
 527                                             struct sk_buff *comps[],
 528                                             unsigned int comps_size,
 529                                             unsigned int min_size)
 530{
 531        unsigned int n = 0;
 532
 533        unsigned int comp_head = eq->comp_head;
 534        unsigned int comp_busy = eq->comp_busy;
 535
 536        while (comp_head != comp_busy && n < comps_size) {
 537                comps[n++] = eq->comps[comp_head];
 538                LEPP_QINC(comp_head);
 539        }
 540
 541        if (n < min_size)
 542                return 0;
 543
 544        eq->comp_head = comp_head;
 545
 546        return n;
 547}
 548
 549
 550/*
 551 * Free some comps, and return true iff there are still some pending.
 552 */
 553static bool tile_net_lepp_free_comps(struct net_device *dev, bool all)
 554{
 555        struct tile_net_priv *priv = netdev_priv(dev);
 556
 557        lepp_queue_t *eq = priv->eq;
 558
 559        struct sk_buff *olds[64];
 560        unsigned int wanted = 64;
 561        unsigned int i, n;
 562        bool pending;
 563
 564        spin_lock(&priv->eq_lock);
 565
 566        if (all)
 567                eq->comp_busy = eq->comp_tail;
 568
 569        n = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
 570
 571        pending = (eq->comp_head != eq->comp_tail);
 572
 573        spin_unlock(&priv->eq_lock);
 574
 575        for (i = 0; i < n; i++)
 576                kfree_skb(olds[i]);
 577
 578        return pending;
 579}
 580
 581
 582/*
 583 * Make sure the egress timer is scheduled.
 584 *
 585 * Note that we use "schedule if not scheduled" logic instead of the more
 586 * obvious "reschedule" logic, because "reschedule" is fairly expensive.
 587 */
 588static void tile_net_schedule_egress_timer(struct tile_net_cpu *info)
 589{
 590        if (!info->egress_timer_scheduled) {
 591                mod_timer_pinned(&info->egress_timer, jiffies + 1);
 592                info->egress_timer_scheduled = true;
 593        }
 594}
 595
 596
 597/*
 598 * The "function" for "info->egress_timer".
 599 *
 600 * This timer will reschedule itself as long as there are any pending
 601 * completions expected (on behalf of any tile).
 602 *
 603 * ISSUE: Realistically, will the timer ever stop scheduling itself?
 604 *
 605 * ISSUE: This timer is almost never actually needed, so just use a global
 606 * timer that can run on any tile.
 607 *
 608 * ISSUE: Maybe instead track number of expected completions, and free
 609 * only that many, resetting to zero if "pending" is ever false.
 610 */
 611static void tile_net_handle_egress_timer(unsigned long arg)
 612{
 613        struct tile_net_cpu *info = (struct tile_net_cpu *)arg;
 614        struct net_device *dev = info->napi.dev;
 615
 616        /* The timer is no longer scheduled. */
 617        info->egress_timer_scheduled = false;
 618
 619        /* Free comps, and reschedule timer if more are pending. */
 620        if (tile_net_lepp_free_comps(dev, false))
 621                tile_net_schedule_egress_timer(info);
 622}
 623
 624
 625static void tile_net_discard_aux(struct tile_net_cpu *info, int index)
 626{
 627        struct tile_netio_queue *queue = &info->queue;
 628        netio_queue_impl_t *qsp = queue->__system_part;
 629        netio_queue_user_impl_t *qup = &queue->__user_part;
 630
 631        int index2_aux = index + sizeof(netio_pkt_t);
 632        int index2 =
 633                ((index2_aux ==
 634                  qsp->__packet_receive_queue.__last_packet_plus_one) ?
 635                 0 : index2_aux);
 636
 637        netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
 638
 639        /* Extract the "linux_buffer_t". */
 640        unsigned int buffer = pkt->__packet.word;
 641
 642        /* Convert "linux_buffer_t" to "va". */
 643        void *va = __va((phys_addr_t)(buffer >> 1) << 7);
 644
 645        /* Acquire the associated "skb". */
 646        struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
 647        struct sk_buff *skb = *skb_ptr;
 648
 649        kfree_skb(skb);
 650
 651        /* Consume this packet. */
 652        qup->__packet_receive_read = index2;
 653}
 654
 655
 656/*
 657 * Like "tile_net_poll()", but just discard packets.
 658 */
 659static void tile_net_discard_packets(struct net_device *dev)
 660{
 661        struct tile_net_priv *priv = netdev_priv(dev);
 662        int my_cpu = smp_processor_id();
 663        struct tile_net_cpu *info = priv->cpu[my_cpu];
 664        struct tile_netio_queue *queue = &info->queue;
 665        netio_queue_impl_t *qsp = queue->__system_part;
 666        netio_queue_user_impl_t *qup = &queue->__user_part;
 667
 668        while (qup->__packet_receive_read !=
 669               qsp->__packet_receive_queue.__packet_write) {
 670                int index = qup->__packet_receive_read;
 671                tile_net_discard_aux(info, index);
 672        }
 673}
 674
 675
 676/*
 677 * Handle the next packet.  Return true if "processed", false if "filtered".
 678 */
 679static bool tile_net_poll_aux(struct tile_net_cpu *info, int index)
 680{
 681        struct net_device *dev = info->napi.dev;
 682
 683        struct tile_netio_queue *queue = &info->queue;
 684        netio_queue_impl_t *qsp = queue->__system_part;
 685        netio_queue_user_impl_t *qup = &queue->__user_part;
 686        struct tile_net_stats_t *stats = &info->stats;
 687
 688        int filter;
 689
 690        int index2_aux = index + sizeof(netio_pkt_t);
 691        int index2 =
 692                ((index2_aux ==
 693                  qsp->__packet_receive_queue.__last_packet_plus_one) ?
 694                 0 : index2_aux);
 695
 696        netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
 697
 698        netio_pkt_metadata_t *metadata = NETIO_PKT_METADATA(pkt);
 699        netio_pkt_status_t pkt_status = NETIO_PKT_STATUS_M(metadata, pkt);
 700
 701        /* Extract the packet size.  FIXME: Shouldn't the second line */
 702        /* get subtracted?  Mostly moot, since it should be "zero". */
 703        unsigned long len =
 704                (NETIO_PKT_CUSTOM_LENGTH(pkt) +
 705                 NET_IP_ALIGN - NETIO_PACKET_PADDING);
 706
 707        /* Extract the "linux_buffer_t". */
 708        unsigned int buffer = pkt->__packet.word;
 709
 710        /* Extract "small" (vs "large"). */
 711        bool small = ((buffer & 1) != 0);
 712
 713        /* Convert "linux_buffer_t" to "va". */
 714        void *va = __va((phys_addr_t)(buffer >> 1) << 7);
 715
 716        /* Extract the packet data pointer. */
 717        /* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */
 718        unsigned char *buf = va + NET_IP_ALIGN;
 719
 720        /* Invalidate the packet buffer. */
 721        if (!hash_default)
 722                __inv_buffer(buf, len);
 723
 724        /* ISSUE: Is this needed? */
 725        dev->last_rx = jiffies;
 726
 727#ifdef TILE_NET_DUMP_PACKETS
 728        dump_packet(buf, len, "rx");
 729#endif /* TILE_NET_DUMP_PACKETS */
 730
 731#ifdef TILE_NET_VERIFY_INGRESS
 732        if (pkt_status == NETIO_PKT_STATUS_OVERSIZE && len >= 64) {
 733                dump_packet(buf, len, "rx");
 734                panic("Unexpected OVERSIZE.");
 735        }
 736#endif
 737
 738        filter = 0;
 739
 740        if (pkt_status == NETIO_PKT_STATUS_BAD) {
 741                /* Handle CRC error and hardware truncation. */
 742                filter = 2;
 743        } else if (!(dev->flags & IFF_UP)) {
 744                /* Filter packets received before we're up. */
 745                filter = 1;
 746        } else if (NETIO_PKT_ETHERTYPE_RECOGNIZED_M(metadata, pkt) &&
 747                   pkt_status == NETIO_PKT_STATUS_UNDERSIZE) {
 748                /* Filter "truncated" packets. */
 749                filter = 2;
 750        } else if (!(dev->flags & IFF_PROMISC)) {
 751                if (!is_multicast_ether_addr(buf)) {
 752                        /* Filter packets not for our address. */
 753                        const u8 *mine = dev->dev_addr;
 754                        filter = !ether_addr_equal(mine, buf);
 755                }
 756        }
 757
 758        u64_stats_update_begin(&stats->syncp);
 759
 760        if (filter != 0) {
 761
 762                if (filter == 1)
 763                        stats->rx_dropped++;
 764                else
 765                        stats->rx_errors++;
 766
 767                tile_net_provide_linux_buffer(info, va, small);
 768
 769        } else {
 770
 771                /* Acquire the associated "skb". */
 772                struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
 773                struct sk_buff *skb = *skb_ptr;
 774
 775                /* Paranoia. */
 776                if (skb->data != buf)
 777                        panic("Corrupt linux buffer from LIPP! "
 778                              "VA=%p, skb=%p, skb->data=%p\n",
 779                              va, skb, skb->data);
 780
 781                /* Encode the actual packet length. */
 782                skb_put(skb, len);
 783
 784                /* NOTE: This call also sets "skb->dev = dev". */
 785                skb->protocol = eth_type_trans(skb, dev);
 786
 787                /* Avoid recomputing "good" TCP/UDP checksums. */
 788                if (NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt))
 789                        skb->ip_summed = CHECKSUM_UNNECESSARY;
 790
 791                netif_receive_skb(skb);
 792
 793                stats->rx_packets++;
 794                stats->rx_bytes += len;
 795        }
 796
 797        u64_stats_update_end(&stats->syncp);
 798
 799        /* ISSUE: It would be nice to defer this until the packet has */
 800        /* actually been processed. */
 801        tile_net_return_credit(info);
 802
 803        /* Consume this packet. */
 804        qup->__packet_receive_read = index2;
 805
 806        return !filter;
 807}
 808
 809
 810/*
 811 * Handle some packets for the given device on the current CPU.
 812 *
 813 * If "tile_net_stop()" is called on some other tile while this
 814 * function is running, we will return, hopefully before that
 815 * other tile asks us to call "napi_disable()".
 816 *
 817 * The "rotting packet" race condition occurs if a packet arrives
 818 * during the extremely narrow window between the queue appearing to
 819 * be empty, and the ingress interrupt being re-enabled.  This happens
 820 * a LOT under heavy network load.
 821 */
 822static int tile_net_poll(struct napi_struct *napi, int budget)
 823{
 824        struct net_device *dev = napi->dev;
 825        struct tile_net_priv *priv = netdev_priv(dev);
 826        int my_cpu = smp_processor_id();
 827        struct tile_net_cpu *info = priv->cpu[my_cpu];
 828        struct tile_netio_queue *queue = &info->queue;
 829        netio_queue_impl_t *qsp = queue->__system_part;
 830        netio_queue_user_impl_t *qup = &queue->__user_part;
 831
 832        unsigned int work = 0;
 833
 834        if (budget <= 0)
 835                goto done;
 836
 837        while (priv->active) {
 838                int index = qup->__packet_receive_read;
 839                if (index == qsp->__packet_receive_queue.__packet_write)
 840                        break;
 841
 842                if (tile_net_poll_aux(info, index)) {
 843                        if (++work >= budget)
 844                                goto done;
 845                }
 846        }
 847
 848        napi_complete(&info->napi);
 849
 850        if (!priv->active)
 851                goto done;
 852
 853        /* Re-enable the ingress interrupt. */
 854        enable_percpu_irq(priv->intr_id, 0);
 855
 856        /* HACK: Avoid the "rotting packet" problem (see above). */
 857        if (qup->__packet_receive_read !=
 858            qsp->__packet_receive_queue.__packet_write) {
 859                /* ISSUE: Sometimes this returns zero, presumably */
 860                /* because an interrupt was handled for this tile. */
 861                (void)napi_reschedule(&info->napi);
 862        }
 863
 864done:
 865
 866        if (priv->active)
 867                tile_net_provide_needed_buffers(info);
 868
 869        return work;
 870}
 871
 872
 873/*
 874 * Handle an ingress interrupt for the given device on the current cpu.
 875 *
 876 * ISSUE: Sometimes this gets called after "disable_percpu_irq()" has
 877 * been called!  This is probably due to "pending hypervisor downcalls".
 878 *
 879 * ISSUE: Is there any race condition between the "napi_schedule()" here
 880 * and the "napi_complete()" call above?
 881 */
 882static irqreturn_t tile_net_handle_ingress_interrupt(int irq, void *dev_ptr)
 883{
 884        struct net_device *dev = (struct net_device *)dev_ptr;
 885        struct tile_net_priv *priv = netdev_priv(dev);
 886        int my_cpu = smp_processor_id();
 887        struct tile_net_cpu *info = priv->cpu[my_cpu];
 888
 889        /* Disable the ingress interrupt. */
 890        disable_percpu_irq(priv->intr_id);
 891
 892        /* Ignore unwanted interrupts. */
 893        if (!priv->active)
 894                return IRQ_HANDLED;
 895
 896        /* ISSUE: Sometimes "info->napi_enabled" is false here. */
 897
 898        napi_schedule(&info->napi);
 899
 900        return IRQ_HANDLED;
 901}
 902
 903
 904/*
 905 * One time initialization per interface.
 906 */
 907static int tile_net_open_aux(struct net_device *dev)
 908{
 909        struct tile_net_priv *priv = netdev_priv(dev);
 910
 911        int ret;
 912        int dummy;
 913        unsigned int epp_lotar;
 914
 915        /*
 916         * Find out where EPP memory should be homed.
 917         */
 918        ret = hv_dev_pread(priv->hv_devhdl, 0,
 919                           (HV_VirtAddr)&epp_lotar, sizeof(epp_lotar),
 920                           NETIO_EPP_SHM_OFF);
 921        if (ret < 0) {
 922                pr_err("could not read epp_shm_queue lotar.\n");
 923                return -EIO;
 924        }
 925
 926        /*
 927         * Home the page on the EPP.
 928         */
 929        {
 930                int epp_home = hv_lotar_to_cpu(epp_lotar);
 931                homecache_change_page_home(priv->eq_pages, EQ_ORDER, epp_home);
 932        }
 933
 934        /*
 935         * Register the EPP shared memory queue.
 936         */
 937        {
 938                netio_ipp_address_t ea = {
 939                        .va = 0,
 940                        .pa = __pa(priv->eq),
 941                        .pte = hv_pte(0),
 942                        .size = EQ_SIZE,
 943                };
 944                ea.pte = hv_pte_set_lotar(ea.pte, epp_lotar);
 945                ea.pte = hv_pte_set_mode(ea.pte, HV_PTE_MODE_CACHE_TILE_L3);
 946                ret = hv_dev_pwrite(priv->hv_devhdl, 0,
 947                                    (HV_VirtAddr)&ea,
 948                                    sizeof(ea),
 949                                    NETIO_EPP_SHM_OFF);
 950                if (ret < 0)
 951                        return -EIO;
 952        }
 953
 954        /*
 955         * Start LIPP/LEPP.
 956         */
 957        if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
 958                          sizeof(dummy), NETIO_IPP_START_SHIM_OFF) < 0) {
 959                pr_warn("Failed to start LIPP/LEPP\n");
 960                return -EIO;
 961        }
 962
 963        return 0;
 964}
 965
 966
 967/*
 968 * Register with hypervisor on the current CPU.
 969 *
 970 * Strangely, this function does important things even if it "fails",
 971 * which is especially common if the link is not up yet.  Hopefully
 972 * these things are all "harmless" if done twice!
 973 */
 974static void tile_net_register(void *dev_ptr)
 975{
 976        struct net_device *dev = (struct net_device *)dev_ptr;
 977        struct tile_net_priv *priv = netdev_priv(dev);
 978        int my_cpu = smp_processor_id();
 979        struct tile_net_cpu *info;
 980
 981        struct tile_netio_queue *queue;
 982
 983        /* Only network cpus can receive packets. */
 984        int queue_id =
 985                cpumask_test_cpu(my_cpu, &priv->network_cpus_map) ? 0 : 255;
 986
 987        netio_input_config_t config = {
 988                .flags = 0,
 989                .num_receive_packets = priv->network_cpus_credits,
 990                .queue_id = queue_id
 991        };
 992
 993        int ret = 0;
 994        netio_queue_impl_t *queuep;
 995
 996        PDEBUG("tile_net_register(queue_id %d)\n", queue_id);
 997
 998        if (!strcmp(dev->name, "xgbe0"))
 999                info = this_cpu_ptr(&hv_xgbe0);
1000        else if (!strcmp(dev->name, "xgbe1"))
1001                info = this_cpu_ptr(&hv_xgbe1);
1002        else if (!strcmp(dev->name, "gbe0"))
1003                info = this_cpu_ptr(&hv_gbe0);
1004        else if (!strcmp(dev->name, "gbe1"))
1005                info = this_cpu_ptr(&hv_gbe1);
1006        else
1007                BUG();
1008
1009        /* Initialize the egress timer. */
1010        init_timer(&info->egress_timer);
1011        info->egress_timer.data = (long)info;
1012        info->egress_timer.function = tile_net_handle_egress_timer;
1013
1014        u64_stats_init(&info->stats.syncp);
1015
1016        priv->cpu[my_cpu] = info;
1017
1018        /*
1019         * Register ourselves with LIPP.  This does a lot of stuff,
1020         * including invoking the LIPP registration code.
1021         */
1022        ret = hv_dev_pwrite(priv->hv_devhdl, 0,
1023                            (HV_VirtAddr)&config,
1024                            sizeof(netio_input_config_t),
1025                            NETIO_IPP_INPUT_REGISTER_OFF);
1026        PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1027               ret);
1028        if (ret < 0) {
1029                if (ret != NETIO_LINK_DOWN) {
1030                        printk(KERN_DEBUG "hv_dev_pwrite "
1031                               "NETIO_IPP_INPUT_REGISTER_OFF failure %d\n",
1032                               ret);
1033                }
1034                info->link_down = (ret == NETIO_LINK_DOWN);
1035                return;
1036        }
1037
1038        /*
1039         * Get the pointer to our queue's system part.
1040         */
1041
1042        ret = hv_dev_pread(priv->hv_devhdl, 0,
1043                           (HV_VirtAddr)&queuep,
1044                           sizeof(netio_queue_impl_t *),
1045                           NETIO_IPP_INPUT_REGISTER_OFF);
1046        PDEBUG("hv_dev_pread(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1047               ret);
1048        PDEBUG("queuep %p\n", queuep);
1049        if (ret <= 0) {
1050                /* ISSUE: Shouldn't this be a fatal error? */
1051                pr_err("hv_dev_pread NETIO_IPP_INPUT_REGISTER_OFF failure\n");
1052                return;
1053        }
1054
1055        queue = &info->queue;
1056
1057        queue->__system_part = queuep;
1058
1059        memset(&queue->__user_part, 0, sizeof(netio_queue_user_impl_t));
1060
1061        /* This is traditionally "config.num_receive_packets / 2". */
1062        queue->__user_part.__receive_credit_interval = 4;
1063        queue->__user_part.__receive_credit_remaining =
1064                queue->__user_part.__receive_credit_interval;
1065
1066        /*
1067         * Get a fastio index from the hypervisor.
1068         * ISSUE: Shouldn't this check the result?
1069         */
1070        ret = hv_dev_pread(priv->hv_devhdl, 0,
1071                           (HV_VirtAddr)&queue->__user_part.__fastio_index,
1072                           sizeof(queue->__user_part.__fastio_index),
1073                           NETIO_IPP_GET_FASTIO_OFF);
1074        PDEBUG("hv_dev_pread(NETIO_IPP_GET_FASTIO_OFF) returned %d\n", ret);
1075
1076        /* Now we are registered. */
1077        info->registered = true;
1078}
1079
1080
1081/*
1082 * Deregister with hypervisor on the current CPU.
1083 *
1084 * This simply discards all our credits, so no more packets will be
1085 * delivered to this tile.  There may still be packets in our queue.
1086 *
1087 * Also, disable the ingress interrupt.
1088 */
1089static void tile_net_deregister(void *dev_ptr)
1090{
1091        struct net_device *dev = (struct net_device *)dev_ptr;
1092        struct tile_net_priv *priv = netdev_priv(dev);
1093        int my_cpu = smp_processor_id();
1094        struct tile_net_cpu *info = priv->cpu[my_cpu];
1095
1096        /* Disable the ingress interrupt. */
1097        disable_percpu_irq(priv->intr_id);
1098
1099        /* Do nothing else if not registered. */
1100        if (info == NULL || !info->registered)
1101                return;
1102
1103        {
1104                struct tile_netio_queue *queue = &info->queue;
1105                netio_queue_user_impl_t *qup = &queue->__user_part;
1106
1107                /* Discard all our credits. */
1108                __netio_fastio_return_credits(qup->__fastio_index, -1);
1109        }
1110}
1111
1112
1113/*
1114 * Unregister with hypervisor on the current CPU.
1115 *
1116 * Also, disable the ingress interrupt.
1117 */
1118static void tile_net_unregister(void *dev_ptr)
1119{
1120        struct net_device *dev = (struct net_device *)dev_ptr;
1121        struct tile_net_priv *priv = netdev_priv(dev);
1122        int my_cpu = smp_processor_id();
1123        struct tile_net_cpu *info = priv->cpu[my_cpu];
1124
1125        int ret;
1126        int dummy = 0;
1127
1128        /* Disable the ingress interrupt. */
1129        disable_percpu_irq(priv->intr_id);
1130
1131        /* Do nothing else if not registered. */
1132        if (info == NULL || !info->registered)
1133                return;
1134
1135        /* Unregister ourselves with LIPP/LEPP. */
1136        ret = hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1137                            sizeof(dummy), NETIO_IPP_INPUT_UNREGISTER_OFF);
1138        if (ret < 0)
1139                panic("Failed to unregister with LIPP/LEPP!\n");
1140
1141        /* Discard all packets still in our NetIO queue. */
1142        tile_net_discard_packets(dev);
1143
1144        /* Reset state. */
1145        info->num_needed_small_buffers = 0;
1146        info->num_needed_large_buffers = 0;
1147
1148        /* Cancel egress timer. */
1149        del_timer(&info->egress_timer);
1150        info->egress_timer_scheduled = false;
1151}
1152
1153
1154/*
1155 * Helper function for "tile_net_stop()".
1156 *
1157 * Also used to handle registration failure in "tile_net_open_inner()",
1158 * when the various extra steps in "tile_net_stop()" are not necessary.
1159 */
1160static void tile_net_stop_aux(struct net_device *dev)
1161{
1162        struct tile_net_priv *priv = netdev_priv(dev);
1163        int i;
1164
1165        int dummy = 0;
1166
1167        /*
1168         * Unregister all tiles, so LIPP will stop delivering packets.
1169         * Also, delete all the "napi" objects (sequentially, to protect
1170         * "dev->napi_list").
1171         */
1172        on_each_cpu(tile_net_unregister, (void *)dev, 1);
1173        for_each_online_cpu(i) {
1174                struct tile_net_cpu *info = priv->cpu[i];
1175                if (info != NULL && info->registered) {
1176                        netif_napi_del(&info->napi);
1177                        info->registered = false;
1178                }
1179        }
1180
1181        /* Stop LIPP/LEPP. */
1182        if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1183                          sizeof(dummy), NETIO_IPP_STOP_SHIM_OFF) < 0)
1184                panic("Failed to stop LIPP/LEPP!\n");
1185
1186        priv->partly_opened = false;
1187}
1188
1189
1190/*
1191 * Disable NAPI for the given device on the current cpu.
1192 */
1193static void tile_net_stop_disable(void *dev_ptr)
1194{
1195        struct net_device *dev = (struct net_device *)dev_ptr;
1196        struct tile_net_priv *priv = netdev_priv(dev);
1197        int my_cpu = smp_processor_id();
1198        struct tile_net_cpu *info = priv->cpu[my_cpu];
1199
1200        /* Disable NAPI if needed. */
1201        if (info != NULL && info->napi_enabled) {
1202                napi_disable(&info->napi);
1203                info->napi_enabled = false;
1204        }
1205}
1206
1207
1208/*
1209 * Enable NAPI and the ingress interrupt for the given device
1210 * on the current cpu.
1211 *
1212 * ISSUE: Only do this for "network cpus"?
1213 */
1214static void tile_net_open_enable(void *dev_ptr)
1215{
1216        struct net_device *dev = (struct net_device *)dev_ptr;
1217        struct tile_net_priv *priv = netdev_priv(dev);
1218        int my_cpu = smp_processor_id();
1219        struct tile_net_cpu *info = priv->cpu[my_cpu];
1220
1221        /* Enable NAPI. */
1222        napi_enable(&info->napi);
1223        info->napi_enabled = true;
1224
1225        /* Enable the ingress interrupt. */
1226        enable_percpu_irq(priv->intr_id, 0);
1227}
1228
1229
1230/*
1231 * tile_net_open_inner does most of the work of bringing up the interface.
1232 * It's called from tile_net_open(), and also from tile_net_retry_open().
1233 * The return value is 0 if the interface was brought up, < 0 if
1234 * tile_net_open() should return the return value as an error, and > 0 if
1235 * tile_net_open() should return success and schedule a work item to
1236 * periodically retry the bringup.
1237 */
1238static int tile_net_open_inner(struct net_device *dev)
1239{
1240        struct tile_net_priv *priv = netdev_priv(dev);
1241        int my_cpu = smp_processor_id();
1242        struct tile_net_cpu *info;
1243        struct tile_netio_queue *queue;
1244        int result = 0;
1245        int i;
1246        int dummy = 0;
1247
1248        /*
1249         * First try to register just on the local CPU, and handle any
1250         * semi-expected "link down" failure specially.  Note that we
1251         * do NOT call "tile_net_stop_aux()", unlike below.
1252         */
1253        tile_net_register(dev);
1254        info = priv->cpu[my_cpu];
1255        if (!info->registered) {
1256                if (info->link_down)
1257                        return 1;
1258                return -EAGAIN;
1259        }
1260
1261        /*
1262         * Now register everywhere else.  If any registration fails,
1263         * even for "link down" (which might not be possible), we
1264         * clean up using "tile_net_stop_aux()".  Also, add all the
1265         * "napi" objects (sequentially, to protect "dev->napi_list").
1266         * ISSUE: Only use "netif_napi_add()" for "network cpus"?
1267         */
1268        smp_call_function(tile_net_register, (void *)dev, 1);
1269        for_each_online_cpu(i) {
1270                struct tile_net_cpu *info = priv->cpu[i];
1271                if (info->registered)
1272                        netif_napi_add(dev, &info->napi, tile_net_poll, 64);
1273                else
1274                        result = -EAGAIN;
1275        }
1276        if (result != 0) {
1277                tile_net_stop_aux(dev);
1278                return result;
1279        }
1280
1281        queue = &info->queue;
1282
1283        if (priv->intr_id == 0) {
1284                unsigned int irq;
1285
1286                /*
1287                 * Acquire the irq allocated by the hypervisor.  Every
1288                 * queue gets the same irq.  The "__intr_id" field is
1289                 * "1 << irq", so we use "__ffs()" to extract "irq".
1290                 */
1291                priv->intr_id = queue->__system_part->__intr_id;
1292                BUG_ON(priv->intr_id == 0);
1293                irq = __ffs(priv->intr_id);
1294
1295                /*
1296                 * Register the ingress interrupt handler for this
1297                 * device, permanently.
1298                 *
1299                 * We used to call "free_irq()" in "tile_net_stop()",
1300                 * and then re-register the handler here every time,
1301                 * but that caused DNP errors in "handle_IRQ_event()"
1302                 * because "desc->action" was NULL.  See bug 9143.
1303                 */
1304                tile_irq_activate(irq, TILE_IRQ_PERCPU);
1305                BUG_ON(request_irq(irq, tile_net_handle_ingress_interrupt,
1306                                   0, dev->name, (void *)dev) != 0);
1307        }
1308
1309        {
1310                /* Allocate initial buffers. */
1311
1312                int max_buffers =
1313                        priv->network_cpus_count * priv->network_cpus_credits;
1314
1315                info->num_needed_small_buffers =
1316                        min(LIPP_SMALL_BUFFERS, max_buffers);
1317
1318                info->num_needed_large_buffers =
1319                        min(LIPP_LARGE_BUFFERS, max_buffers);
1320
1321                tile_net_provide_needed_buffers(info);
1322
1323                if (info->num_needed_small_buffers != 0 ||
1324                    info->num_needed_large_buffers != 0)
1325                        panic("Insufficient memory for buffer stack!");
1326        }
1327
1328        /* We are about to be active. */
1329        priv->active = true;
1330
1331        /* Make sure "active" is visible to all tiles. */
1332        mb();
1333
1334        /* On each tile, enable NAPI and the ingress interrupt. */
1335        on_each_cpu(tile_net_open_enable, (void *)dev, 1);
1336
1337        /* Start LIPP/LEPP and activate "ingress" at the shim. */
1338        if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1339                          sizeof(dummy), NETIO_IPP_INPUT_INIT_OFF) < 0)
1340                panic("Failed to activate the LIPP Shim!\n");
1341
1342        /* Start our transmit queue. */
1343        netif_start_queue(dev);
1344
1345        return 0;
1346}
1347
1348
1349/*
1350 * Called periodically to retry bringing up the NetIO interface,
1351 * if it doesn't come up cleanly during tile_net_open().
1352 */
1353static void tile_net_open_retry(struct work_struct *w)
1354{
1355        struct delayed_work *dw =
1356                container_of(w, struct delayed_work, work);
1357
1358        struct tile_net_priv *priv =
1359                container_of(dw, struct tile_net_priv, retry_work);
1360
1361        /*
1362         * Try to bring the NetIO interface up.  If it fails, reschedule
1363         * ourselves to try again later; otherwise, tell Linux we now have
1364         * a working link.  ISSUE: What if the return value is negative?
1365         */
1366        if (tile_net_open_inner(priv->dev) != 0)
1367                schedule_delayed_work(&priv->retry_work,
1368                                      TILE_NET_RETRY_INTERVAL);
1369        else
1370                netif_carrier_on(priv->dev);
1371}
1372
1373
1374/*
1375 * Called when a network interface is made active.
1376 *
1377 * Returns 0 on success, negative value on failure.
1378 *
1379 * The open entry point is called when a network interface is made
1380 * active by the system (IFF_UP).  At this point all resources needed
1381 * for transmit and receive operations are allocated, the interrupt
1382 * handler is registered with the OS (if needed), the watchdog timer
1383 * is started, and the stack is notified that the interface is ready.
1384 *
1385 * If the actual link is not available yet, then we tell Linux that
1386 * we have no carrier, and we keep checking until the link comes up.
1387 */
1388static int tile_net_open(struct net_device *dev)
1389{
1390        int ret = 0;
1391        struct tile_net_priv *priv = netdev_priv(dev);
1392
1393        /*
1394         * We rely on priv->partly_opened to tell us if this is the
1395         * first time this interface is being brought up. If it is
1396         * set, the IPP was already initialized and should not be
1397         * initialized again.
1398         */
1399        if (!priv->partly_opened) {
1400
1401                int count;
1402                int credits;
1403
1404                /* Initialize LIPP/LEPP, and start the Shim. */
1405                ret = tile_net_open_aux(dev);
1406                if (ret < 0) {
1407                        pr_err("tile_net_open_aux failed: %d\n", ret);
1408                        return ret;
1409                }
1410
1411                /* Analyze the network cpus. */
1412
1413                if (network_cpus_used)
1414                        cpumask_copy(&priv->network_cpus_map,
1415                                     &network_cpus_map);
1416                else
1417                        cpumask_copy(&priv->network_cpus_map, cpu_online_mask);
1418
1419
1420                count = cpumask_weight(&priv->network_cpus_map);
1421
1422                /* Limit credits to available buffers, and apply min. */
1423                credits = max(16, (LIPP_LARGE_BUFFERS / count) & ~1);
1424
1425                /* Apply "GBE" max limit. */
1426                /* ISSUE: Use higher limit for XGBE? */
1427                credits = min(NETIO_MAX_RECEIVE_PKTS, credits);
1428
1429                priv->network_cpus_count = count;
1430                priv->network_cpus_credits = credits;
1431
1432#ifdef TILE_NET_DEBUG
1433                pr_info("Using %d network cpus, with %d credits each\n",
1434                       priv->network_cpus_count, priv->network_cpus_credits);
1435#endif
1436
1437                priv->partly_opened = true;
1438
1439        } else {
1440                /* FIXME: Is this possible? */
1441                /* printk("Already partly opened.\n"); */
1442        }
1443
1444        /*
1445         * Attempt to bring up the link.
1446         */
1447        ret = tile_net_open_inner(dev);
1448        if (ret <= 0) {
1449                if (ret == 0)
1450                        netif_carrier_on(dev);
1451                return ret;
1452        }
1453
1454        /*
1455         * We were unable to bring up the NetIO interface, but we want to
1456         * try again in a little bit.  Tell Linux that we have no carrier
1457         * so it doesn't try to use the interface before the link comes up
1458         * and then remember to try again later.
1459         */
1460        netif_carrier_off(dev);
1461        schedule_delayed_work(&priv->retry_work, TILE_NET_RETRY_INTERVAL);
1462
1463        return 0;
1464}
1465
1466
1467static int tile_net_drain_lipp_buffers(struct tile_net_priv *priv)
1468{
1469        int n = 0;
1470
1471        /* Drain all the LIPP buffers. */
1472        while (true) {
1473                unsigned int buffer;
1474
1475                /* NOTE: This should never fail. */
1476                if (hv_dev_pread(priv->hv_devhdl, 0, (HV_VirtAddr)&buffer,
1477                                 sizeof(buffer), NETIO_IPP_DRAIN_OFF) < 0)
1478                        break;
1479
1480                /* Stop when done. */
1481                if (buffer == 0)
1482                        break;
1483
1484                {
1485                        /* Convert "linux_buffer_t" to "va". */
1486                        void *va = __va((phys_addr_t)(buffer >> 1) << 7);
1487
1488                        /* Acquire the associated "skb". */
1489                        struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
1490                        struct sk_buff *skb = *skb_ptr;
1491
1492                        kfree_skb(skb);
1493                }
1494
1495                n++;
1496        }
1497
1498        return n;
1499}
1500
1501
1502/*
1503 * Disables a network interface.
1504 *
1505 * Returns 0, this is not allowed to fail.
1506 *
1507 * The close entry point is called when an interface is de-activated
1508 * by the OS.  The hardware is still under the drivers control, but
1509 * needs to be disabled.  A global MAC reset is issued to stop the
1510 * hardware, and all transmit and receive resources are freed.
1511 *
1512 * ISSUE: How closely does "netif_running(dev)" mirror "priv->active"?
1513 *
1514 * Before we are called by "__dev_close()", "netif_running()" will
1515 * have been cleared, so no NEW calls to "tile_net_poll()" will be
1516 * made by "netpoll_poll_dev()".
1517 *
1518 * Often, this can cause some tiles to still have packets in their
1519 * queues, so we must call "tile_net_discard_packets()" later.
1520 *
1521 * Note that some other tile may still be INSIDE "tile_net_poll()",
1522 * and in fact, many will be, if there is heavy network load.
1523 *
1524 * Calling "on_each_cpu(tile_net_stop_disable, (void *)dev, 1)" when
1525 * any tile is still "napi_schedule()"'d will induce a horrible crash
1526 * when "msleep()" is called.  This includes tiles which are inside
1527 * "tile_net_poll()" which have not yet called "napi_complete()".
1528 *
1529 * So, we must first try to wait long enough for other tiles to finish
1530 * with any current "tile_net_poll()" call, and, hopefully, to clear
1531 * the "scheduled" flag.  ISSUE: It is unclear what happens to tiles
1532 * which have called "napi_schedule()" but which had not yet tried to
1533 * call "tile_net_poll()", or which exhausted their budget inside
1534 * "tile_net_poll()" just before this function was called.
1535 */
1536static int tile_net_stop(struct net_device *dev)
1537{
1538        struct tile_net_priv *priv = netdev_priv(dev);
1539
1540        PDEBUG("tile_net_stop()\n");
1541
1542        /* Start discarding packets. */
1543        priv->active = false;
1544
1545        /* Make sure "active" is visible to all tiles. */
1546        mb();
1547
1548        /*
1549         * On each tile, make sure no NEW packets get delivered, and
1550         * disable the ingress interrupt.
1551         *
1552         * Note that the ingress interrupt can fire AFTER this,
1553         * presumably due to packets which were recently delivered,
1554         * but it will have no effect.
1555         */
1556        on_each_cpu(tile_net_deregister, (void *)dev, 1);
1557
1558        /* Optimistically drain LIPP buffers. */
1559        (void)tile_net_drain_lipp_buffers(priv);
1560
1561        /* ISSUE: Only needed if not yet fully open. */
1562        cancel_delayed_work_sync(&priv->retry_work);
1563
1564        /* Can't transmit any more. */
1565        netif_stop_queue(dev);
1566
1567        /* Disable NAPI on each tile. */
1568        on_each_cpu(tile_net_stop_disable, (void *)dev, 1);
1569
1570        /*
1571         * Drain any remaining LIPP buffers.  NOTE: This "printk()"
1572         * has never been observed, but in theory it could happen.
1573         */
1574        if (tile_net_drain_lipp_buffers(priv) != 0)
1575                printk("Had to drain some extra LIPP buffers!\n");
1576
1577        /* Stop LIPP/LEPP. */
1578        tile_net_stop_aux(dev);
1579
1580        /*
1581         * ISSUE: It appears that, in practice anyway, by the time we
1582         * get here, there are no pending completions, but just in case,
1583         * we free (all of) them anyway.
1584         */
1585        while (tile_net_lepp_free_comps(dev, true))
1586                /* loop */;
1587
1588        /* Wipe the EPP queue, and wait till the stores hit the EPP. */
1589        memset(priv->eq, 0, sizeof(lepp_queue_t));
1590        mb();
1591
1592        return 0;
1593}
1594
1595
1596/*
1597 * Prepare the "frags" info for the resulting LEPP command.
1598 *
1599 * If needed, flush the memory used by the frags.
1600 */
1601static unsigned int tile_net_tx_frags(lepp_frag_t *frags,
1602                                      struct sk_buff *skb,
1603                                      void *b_data, unsigned int b_len)
1604{
1605        unsigned int i, n = 0;
1606
1607        struct skb_shared_info *sh = skb_shinfo(skb);
1608
1609        phys_addr_t cpa;
1610
1611        if (b_len != 0) {
1612
1613                if (!hash_default)
1614                        finv_buffer_remote(b_data, b_len, 0);
1615
1616                cpa = __pa(b_data);
1617                frags[n].cpa_lo = cpa;
1618                frags[n].cpa_hi = cpa >> 32;
1619                frags[n].length = b_len;
1620                frags[n].hash_for_home = hash_default;
1621                n++;
1622        }
1623
1624        for (i = 0; i < sh->nr_frags; i++) {
1625
1626                skb_frag_t *f = &sh->frags[i];
1627                unsigned long pfn = page_to_pfn(skb_frag_page(f));
1628
1629                /* FIXME: Compute "hash_for_home" properly. */
1630                /* ISSUE: The hypervisor checks CHIP_HAS_REV1_DMA_PACKETS(). */
1631                int hash_for_home = hash_default;
1632
1633                /* FIXME: Hmmm. */
1634                if (!hash_default) {
1635                        void *va = pfn_to_kaddr(pfn) + f->page_offset;
1636                        BUG_ON(PageHighMem(skb_frag_page(f)));
1637                        finv_buffer_remote(va, skb_frag_size(f), 0);
1638                }
1639
1640                cpa = ((phys_addr_t)pfn << PAGE_SHIFT) + f->page_offset;
1641                frags[n].cpa_lo = cpa;
1642                frags[n].cpa_hi = cpa >> 32;
1643                frags[n].length = skb_frag_size(f);
1644                frags[n].hash_for_home = hash_for_home;
1645                n++;
1646        }
1647
1648        return n;
1649}
1650
1651
1652/*
1653 * This function takes "skb", consisting of a header template and a
1654 * payload, and hands it to LEPP, to emit as one or more segments,
1655 * each consisting of a possibly modified header, plus a piece of the
1656 * payload, via a process known as "tcp segmentation offload".
1657 *
1658 * Usually, "data" will contain the header template, of size "sh_len",
1659 * and "sh->frags" will contain "skb->data_len" bytes of payload, and
1660 * there will be "sh->gso_segs" segments.
1661 *
1662 * Sometimes, if "sendfile()" requires copying, we will be called with
1663 * "data" containing the header and payload, with "frags" being empty.
1664 *
1665 * Sometimes, for example when using NFS over TCP, a single segment can
1666 * span 3 fragments, which must be handled carefully in LEPP.
1667 *
1668 * See "emulate_large_send_offload()" for some reference code, which
1669 * does not handle checksumming.
1670 *
1671 * ISSUE: How do we make sure that high memory DMA does not migrate?
1672 */
1673static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
1674{
1675        struct tile_net_priv *priv = netdev_priv(dev);
1676        int my_cpu = smp_processor_id();
1677        struct tile_net_cpu *info = priv->cpu[my_cpu];
1678        struct tile_net_stats_t *stats = &info->stats;
1679
1680        struct skb_shared_info *sh = skb_shinfo(skb);
1681
1682        unsigned char *data = skb->data;
1683
1684        /* The ip header follows the ethernet header. */
1685        struct iphdr *ih = ip_hdr(skb);
1686        unsigned int ih_len = ih->ihl * 4;
1687
1688        /* Note that "nh == ih", by definition. */
1689        unsigned char *nh = skb_network_header(skb);
1690        unsigned int eh_len = nh - data;
1691
1692        /* The tcp header follows the ip header. */
1693        struct tcphdr *th = (struct tcphdr *)(nh + ih_len);
1694        unsigned int th_len = th->doff * 4;
1695
1696        /* The total number of header bytes. */
1697        /* NOTE: This may be less than skb_headlen(skb). */
1698        unsigned int sh_len = eh_len + ih_len + th_len;
1699
1700        /* The number of payload bytes at "skb->data + sh_len". */
1701        /* This is non-zero for sendfile() without HIGHDMA. */
1702        unsigned int b_len = skb_headlen(skb) - sh_len;
1703
1704        /* The total number of payload bytes. */
1705        unsigned int d_len = b_len + skb->data_len;
1706
1707        /* The maximum payload size. */
1708        unsigned int p_len = sh->gso_size;
1709
1710        /* The total number of segments. */
1711        unsigned int num_segs = sh->gso_segs;
1712
1713        /* The temporary copy of the command. */
1714        u32 cmd_body[(LEPP_MAX_CMD_SIZE + 3) / 4];
1715        lepp_tso_cmd_t *cmd = (lepp_tso_cmd_t *)cmd_body;
1716
1717        /* Analyze the "frags". */
1718        unsigned int num_frags =
1719                tile_net_tx_frags(cmd->frags, skb, data + sh_len, b_len);
1720
1721        /* The size of the command, including frags and header. */
1722        size_t cmd_size = LEPP_TSO_CMD_SIZE(num_frags, sh_len);
1723
1724        /* The command header. */
1725        lepp_tso_cmd_t cmd_init = {
1726                .tso = true,
1727                .header_size = sh_len,
1728                .ip_offset = eh_len,
1729                .tcp_offset = eh_len + ih_len,
1730                .payload_size = p_len,
1731                .num_frags = num_frags,
1732        };
1733
1734        unsigned long irqflags;
1735
1736        lepp_queue_t *eq = priv->eq;
1737
1738        struct sk_buff *olds[8];
1739        unsigned int wanted = 8;
1740        unsigned int i, nolds = 0;
1741
1742        unsigned int cmd_head, cmd_tail, cmd_next;
1743        unsigned int comp_tail;
1744
1745
1746        /* Paranoia. */
1747        BUG_ON(skb->protocol != htons(ETH_P_IP));
1748        BUG_ON(ih->protocol != IPPROTO_TCP);
1749        BUG_ON(skb->ip_summed != CHECKSUM_PARTIAL);
1750        BUG_ON(num_frags > LEPP_MAX_FRAGS);
1751        /*--BUG_ON(num_segs != (d_len + (p_len - 1)) / p_len); */
1752        BUG_ON(num_segs <= 1);
1753
1754
1755        /* Finish preparing the command. */
1756
1757        /* Copy the command header. */
1758        *cmd = cmd_init;
1759
1760        /* Copy the "header". */
1761        memcpy(&cmd->frags[num_frags], data, sh_len);
1762
1763
1764        /* Prefetch and wait, to minimize time spent holding the spinlock. */
1765        prefetch_L1(&eq->comp_tail);
1766        prefetch_L1(&eq->cmd_tail);
1767        mb();
1768
1769
1770        /* Enqueue the command. */
1771
1772        spin_lock_irqsave(&priv->eq_lock, irqflags);
1773
1774        /* Handle completions if needed to make room. */
1775        /* NOTE: Return NETDEV_TX_BUSY if there is still no room. */
1776        if (lepp_num_free_comp_slots(eq) == 0) {
1777                nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
1778                if (nolds == 0) {
1779busy:
1780                        spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1781                        return NETDEV_TX_BUSY;
1782                }
1783        }
1784
1785        cmd_head = eq->cmd_head;
1786        cmd_tail = eq->cmd_tail;
1787
1788        /* Prepare to advance, detecting full queue. */
1789        /* NOTE: Return NETDEV_TX_BUSY if the queue is full. */
1790        cmd_next = cmd_tail + cmd_size;
1791        if (cmd_tail < cmd_head && cmd_next >= cmd_head)
1792                goto busy;
1793        if (cmd_next > LEPP_CMD_LIMIT) {
1794                cmd_next = 0;
1795                if (cmd_next == cmd_head)
1796                        goto busy;
1797        }
1798
1799        /* Copy the command. */
1800        memcpy(&eq->cmds[cmd_tail], cmd, cmd_size);
1801
1802        /* Advance. */
1803        cmd_tail = cmd_next;
1804
1805        /* Record "skb" for eventual freeing. */
1806        comp_tail = eq->comp_tail;
1807        eq->comps[comp_tail] = skb;
1808        LEPP_QINC(comp_tail);
1809        eq->comp_tail = comp_tail;
1810
1811        /* Flush before allowing LEPP to handle the command. */
1812        /* ISSUE: Is this the optimal location for the flush? */
1813        __insn_mf();
1814
1815        eq->cmd_tail = cmd_tail;
1816
1817        /* NOTE: Using "4" here is more efficient than "0" or "2", */
1818        /* and, strangely, more efficient than pre-checking the number */
1819        /* of available completions, and comparing it to 4. */
1820        if (nolds == 0)
1821                nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4);
1822
1823        spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1824
1825        /* Handle completions. */
1826        for (i = 0; i < nolds; i++)
1827                dev_consume_skb_any(olds[i]);
1828
1829        /* Update stats. */
1830        u64_stats_update_begin(&stats->syncp);
1831        stats->tx_packets += num_segs;
1832        stats->tx_bytes += (num_segs * sh_len) + d_len;
1833        u64_stats_update_end(&stats->syncp);
1834
1835        /* Make sure the egress timer is scheduled. */
1836        tile_net_schedule_egress_timer(info);
1837
1838        return NETDEV_TX_OK;
1839}
1840
1841
1842/*
1843 * Transmit a packet (called by the kernel via "hard_start_xmit" hook).
1844 */
1845static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
1846{
1847        struct tile_net_priv *priv = netdev_priv(dev);
1848        int my_cpu = smp_processor_id();
1849        struct tile_net_cpu *info = priv->cpu[my_cpu];
1850        struct tile_net_stats_t *stats = &info->stats;
1851
1852        unsigned long irqflags;
1853
1854        struct skb_shared_info *sh = skb_shinfo(skb);
1855
1856        unsigned int len = skb->len;
1857        unsigned char *data = skb->data;
1858
1859        unsigned int csum_start = skb_checksum_start_offset(skb);
1860
1861        lepp_frag_t frags[1 + MAX_SKB_FRAGS];
1862
1863        unsigned int num_frags;
1864
1865        lepp_queue_t *eq = priv->eq;
1866
1867        struct sk_buff *olds[8];
1868        unsigned int wanted = 8;
1869        unsigned int i, nolds = 0;
1870
1871        unsigned int cmd_size = sizeof(lepp_cmd_t);
1872
1873        unsigned int cmd_head, cmd_tail, cmd_next;
1874        unsigned int comp_tail;
1875
1876        lepp_cmd_t cmds[1 + MAX_SKB_FRAGS];
1877
1878
1879        /*
1880         * This is paranoia, since we think that if the link doesn't come
1881         * up, telling Linux we have no carrier will keep it from trying
1882         * to transmit.  If it does, though, we can't execute this routine,
1883         * since data structures we depend on aren't set up yet.
1884         */
1885        if (!info->registered)
1886                return NETDEV_TX_BUSY;
1887
1888
1889        /* Save the timestamp. */
1890        dev->trans_start = jiffies;
1891
1892
1893#ifdef TILE_NET_PARANOIA
1894#if CHIP_HAS_CBOX_HOME_MAP()
1895        if (hash_default) {
1896                HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)data);
1897                if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
1898                        panic("Non-HFH egress buffer! VA=%p Mode=%d PTE=%llx",
1899                              data, hv_pte_get_mode(pte), hv_pte_val(pte));
1900        }
1901#endif
1902#endif
1903
1904
1905#ifdef TILE_NET_DUMP_PACKETS
1906        /* ISSUE: Does not dump the "frags". */
1907        dump_packet(data, skb_headlen(skb), "tx");
1908#endif /* TILE_NET_DUMP_PACKETS */
1909
1910
1911        if (sh->gso_size != 0)
1912                return tile_net_tx_tso(skb, dev);
1913
1914
1915        /* Prepare the commands. */
1916
1917        num_frags = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
1918
1919        for (i = 0; i < num_frags; i++) {
1920
1921                bool final = (i == num_frags - 1);
1922
1923                lepp_cmd_t cmd = {
1924                        .cpa_lo = frags[i].cpa_lo,
1925                        .cpa_hi = frags[i].cpa_hi,
1926                        .length = frags[i].length,
1927                        .hash_for_home = frags[i].hash_for_home,
1928                        .send_completion = final,
1929                        .end_of_packet = final
1930                };
1931
1932                if (i == 0 && skb->ip_summed == CHECKSUM_PARTIAL) {
1933                        cmd.compute_checksum = 1;
1934                        cmd.checksum_data.bits.start_byte = csum_start;
1935                        cmd.checksum_data.bits.count = len - csum_start;
1936                        cmd.checksum_data.bits.destination_byte =
1937                                csum_start + skb->csum_offset;
1938                }
1939
1940                cmds[i] = cmd;
1941        }
1942
1943
1944        /* Prefetch and wait, to minimize time spent holding the spinlock. */
1945        prefetch_L1(&eq->comp_tail);
1946        prefetch_L1(&eq->cmd_tail);
1947        mb();
1948
1949
1950        /* Enqueue the commands. */
1951
1952        spin_lock_irqsave(&priv->eq_lock, irqflags);
1953
1954        /* Handle completions if needed to make room. */
1955        /* NOTE: Return NETDEV_TX_BUSY if there is still no room. */
1956        if (lepp_num_free_comp_slots(eq) == 0) {
1957                nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
1958                if (nolds == 0) {
1959busy:
1960                        spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1961                        return NETDEV_TX_BUSY;
1962                }
1963        }
1964
1965        cmd_head = eq->cmd_head;
1966        cmd_tail = eq->cmd_tail;
1967
1968        /* Copy the commands, or fail. */
1969        /* NOTE: Return NETDEV_TX_BUSY if the queue is full. */
1970        for (i = 0; i < num_frags; i++) {
1971
1972                /* Prepare to advance, detecting full queue. */
1973                cmd_next = cmd_tail + cmd_size;
1974                if (cmd_tail < cmd_head && cmd_next >= cmd_head)
1975                        goto busy;
1976                if (cmd_next > LEPP_CMD_LIMIT) {
1977                        cmd_next = 0;
1978                        if (cmd_next == cmd_head)
1979                                goto busy;
1980                }
1981
1982                /* Copy the command. */
1983                *(lepp_cmd_t *)&eq->cmds[cmd_tail] = cmds[i];
1984
1985                /* Advance. */
1986                cmd_tail = cmd_next;
1987        }
1988
1989        /* Record "skb" for eventual freeing. */
1990        comp_tail = eq->comp_tail;
1991        eq->comps[comp_tail] = skb;
1992        LEPP_QINC(comp_tail);
1993        eq->comp_tail = comp_tail;
1994
1995        /* Flush before allowing LEPP to handle the command. */
1996        /* ISSUE: Is this the optimal location for the flush? */
1997        __insn_mf();
1998
1999        eq->cmd_tail = cmd_tail;
2000
2001        /* NOTE: Using "4" here is more efficient than "0" or "2", */
2002        /* and, strangely, more efficient than pre-checking the number */
2003        /* of available completions, and comparing it to 4. */
2004        if (nolds == 0)
2005                nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4);
2006
2007        spin_unlock_irqrestore(&priv->eq_lock, irqflags);
2008
2009        /* Handle completions. */
2010        for (i = 0; i < nolds; i++)
2011                dev_consume_skb_any(olds[i]);
2012
2013        /* HACK: Track "expanded" size for short packets (e.g. 42 < 60). */
2014        u64_stats_update_begin(&stats->syncp);
2015        stats->tx_packets++;
2016        stats->tx_bytes += ((len >= ETH_ZLEN) ? len : ETH_ZLEN);
2017        u64_stats_update_end(&stats->syncp);
2018
2019        /* Make sure the egress timer is scheduled. */
2020        tile_net_schedule_egress_timer(info);
2021
2022        return NETDEV_TX_OK;
2023}
2024
2025
2026/*
2027 * Deal with a transmit timeout.
2028 */
2029static void tile_net_tx_timeout(struct net_device *dev)
2030{
2031        PDEBUG("tile_net_tx_timeout()\n");
2032        PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies,
2033               jiffies - dev->trans_start);
2034
2035        /* XXX: ISSUE: This doesn't seem useful for us. */
2036        netif_wake_queue(dev);
2037}
2038
2039
2040/*
2041 * Ioctl commands.
2042 */
2043static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2044{
2045        return -EOPNOTSUPP;
2046}
2047
2048
2049/*
2050 * Get System Network Statistics.
2051 *
2052 * Returns the address of the device statistics structure.
2053 */
2054static struct rtnl_link_stats64 *tile_net_get_stats64(struct net_device *dev,
2055                struct rtnl_link_stats64 *stats)
2056{
2057        struct tile_net_priv *priv = netdev_priv(dev);
2058        u64 rx_packets = 0, tx_packets = 0;
2059        u64 rx_bytes = 0, tx_bytes = 0;
2060        u64 rx_errors = 0, rx_dropped = 0;
2061        int i;
2062
2063        for_each_online_cpu(i) {
2064                struct tile_net_stats_t *cpu_stats;
2065                u64 trx_packets, ttx_packets, trx_bytes, ttx_bytes;
2066                u64 trx_errors, trx_dropped;
2067                unsigned int start;
2068
2069                if (priv->cpu[i] == NULL)
2070                        continue;
2071                cpu_stats = &priv->cpu[i]->stats;
2072
2073                do {
2074                        start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
2075                        trx_packets = cpu_stats->rx_packets;
2076                        ttx_packets = cpu_stats->tx_packets;
2077                        trx_bytes   = cpu_stats->rx_bytes;
2078                        ttx_bytes   = cpu_stats->tx_bytes;
2079                        trx_errors  = cpu_stats->rx_errors;
2080                        trx_dropped = cpu_stats->rx_dropped;
2081                } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
2082
2083                rx_packets += trx_packets;
2084                tx_packets += ttx_packets;
2085                rx_bytes   += trx_bytes;
2086                tx_bytes   += ttx_bytes;
2087                rx_errors  += trx_errors;
2088                rx_dropped += trx_dropped;
2089        }
2090
2091        stats->rx_packets = rx_packets;
2092        stats->tx_packets = tx_packets;
2093        stats->rx_bytes   = rx_bytes;
2094        stats->tx_bytes   = tx_bytes;
2095        stats->rx_errors  = rx_errors;
2096        stats->rx_dropped = rx_dropped;
2097
2098        return stats;
2099}
2100
2101
2102/*
2103 * Change the "mtu".
2104 *
2105 * The "change_mtu" method is usually not needed.
2106 * If you need it, it must be like this.
2107 */
2108static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
2109{
2110        PDEBUG("tile_net_change_mtu()\n");
2111
2112        /* Check ranges. */
2113        if ((new_mtu < 68) || (new_mtu > 1500))
2114                return -EINVAL;
2115
2116        /* Accept the value. */
2117        dev->mtu = new_mtu;
2118
2119        return 0;
2120}
2121
2122
2123/*
2124 * Change the Ethernet Address of the NIC.
2125 *
2126 * The hypervisor driver does not support changing MAC address.  However,
2127 * the IPP does not do anything with the MAC address, so the address which
2128 * gets used on outgoing packets, and which is accepted on incoming packets,
2129 * is completely up to the NetIO program or kernel driver which is actually
2130 * handling them.
2131 *
2132 * Returns 0 on success, negative on failure.
2133 */
2134static int tile_net_set_mac_address(struct net_device *dev, void *p)
2135{
2136        struct sockaddr *addr = p;
2137
2138        if (!is_valid_ether_addr(addr->sa_data))
2139                return -EADDRNOTAVAIL;
2140
2141        /* ISSUE: Note that "dev_addr" is now a pointer. */
2142        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2143
2144        return 0;
2145}
2146
2147
2148/*
2149 * Obtain the MAC address from the hypervisor.
2150 * This must be done before opening the device.
2151 */
2152static int tile_net_get_mac(struct net_device *dev)
2153{
2154        struct tile_net_priv *priv = netdev_priv(dev);
2155
2156        char hv_dev_name[32];
2157        int len;
2158
2159        __netio_getset_offset_t offset = { .word = NETIO_IPP_PARAM_OFF };
2160
2161        int ret;
2162
2163        /* For example, "xgbe0". */
2164        strcpy(hv_dev_name, dev->name);
2165        len = strlen(hv_dev_name);
2166
2167        /* For example, "xgbe/0". */
2168        hv_dev_name[len] = hv_dev_name[len - 1];
2169        hv_dev_name[len - 1] = '/';
2170        len++;
2171
2172        /* For example, "xgbe/0/native_hash". */
2173        strcpy(hv_dev_name + len, hash_default ? "/native_hash" : "/native");
2174
2175        /* Get the hypervisor handle for this device. */
2176        priv->hv_devhdl = hv_dev_open((HV_VirtAddr)hv_dev_name, 0);
2177        PDEBUG("hv_dev_open(%s) returned %d %p\n",
2178               hv_dev_name, priv->hv_devhdl, &priv->hv_devhdl);
2179        if (priv->hv_devhdl < 0) {
2180                if (priv->hv_devhdl == HV_ENODEV)
2181                        printk(KERN_DEBUG "Ignoring unconfigured device %s\n",
2182                                 hv_dev_name);
2183                else
2184                        printk(KERN_DEBUG "hv_dev_open(%s) returned %d\n",
2185                                 hv_dev_name, priv->hv_devhdl);
2186                return -1;
2187        }
2188
2189        /*
2190         * Read the hardware address from the hypervisor.
2191         * ISSUE: Note that "dev_addr" is now a pointer.
2192         */
2193        offset.bits.class = NETIO_PARAM;
2194        offset.bits.addr = NETIO_PARAM_MAC;
2195        ret = hv_dev_pread(priv->hv_devhdl, 0,
2196                           (HV_VirtAddr)dev->dev_addr, dev->addr_len,
2197                           offset.word);
2198        PDEBUG("hv_dev_pread(NETIO_PARAM_MAC) returned %d\n", ret);
2199        if (ret <= 0) {
2200                printk(KERN_DEBUG "hv_dev_pread(NETIO_PARAM_MAC) %s failed\n",
2201                       dev->name);
2202                /*
2203                 * Since the device is configured by the hypervisor but we
2204                 * can't get its MAC address, we are most likely running
2205                 * the simulator, so let's generate a random MAC address.
2206                 */
2207                eth_hw_addr_random(dev);
2208        }
2209
2210        return 0;
2211}
2212
2213
2214#ifdef CONFIG_NET_POLL_CONTROLLER
2215/*
2216 * Polling 'interrupt' - used by things like netconsole to send skbs
2217 * without having to re-enable interrupts. It's not called while
2218 * the interrupt routine is executing.
2219 */
2220static void tile_net_netpoll(struct net_device *dev)
2221{
2222        struct tile_net_priv *priv = netdev_priv(dev);
2223        disable_percpu_irq(priv->intr_id);
2224        tile_net_handle_ingress_interrupt(priv->intr_id, dev);
2225        enable_percpu_irq(priv->intr_id, 0);
2226}
2227#endif
2228
2229
2230static const struct net_device_ops tile_net_ops = {
2231        .ndo_open = tile_net_open,
2232        .ndo_stop = tile_net_stop,
2233        .ndo_start_xmit = tile_net_tx,
2234        .ndo_do_ioctl = tile_net_ioctl,
2235        .ndo_get_stats64 = tile_net_get_stats64,
2236        .ndo_change_mtu = tile_net_change_mtu,
2237        .ndo_tx_timeout = tile_net_tx_timeout,
2238        .ndo_set_mac_address = tile_net_set_mac_address,
2239#ifdef CONFIG_NET_POLL_CONTROLLER
2240        .ndo_poll_controller = tile_net_netpoll,
2241#endif
2242};
2243
2244
2245/*
2246 * The setup function.
2247 *
2248 * This uses ether_setup() to assign various fields in dev, including
2249 * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2250 */
2251static void tile_net_setup(struct net_device *dev)
2252{
2253        netdev_features_t features = 0;
2254
2255        ether_setup(dev);
2256        dev->netdev_ops = &tile_net_ops;
2257        dev->watchdog_timeo = TILE_NET_TIMEOUT;
2258        dev->tx_queue_len = TILE_NET_TX_QUEUE_LEN;
2259        dev->mtu = TILE_NET_MTU;
2260
2261        features |= NETIF_F_HW_CSUM;
2262        features |= NETIF_F_SG;
2263
2264        /* We support TSO iff the HV supports sufficient frags. */
2265        if (LEPP_MAX_FRAGS >= 1 + MAX_SKB_FRAGS)
2266                features |= NETIF_F_TSO;
2267
2268        /* We can't support HIGHDMA without hash_default, since we need
2269         * to be able to finv() with a VA if we don't have hash_default.
2270         */
2271        if (hash_default)
2272                features |= NETIF_F_HIGHDMA;
2273
2274        dev->hw_features   |= features;
2275        dev->vlan_features |= features;
2276        dev->features      |= features;
2277}
2278
2279
2280/*
2281 * Allocate the device structure, register the device, and obtain the
2282 * MAC address from the hypervisor.
2283 */
2284static struct net_device *tile_net_dev_init(const char *name)
2285{
2286        int ret;
2287        struct net_device *dev;
2288        struct tile_net_priv *priv;
2289
2290        /*
2291         * Allocate the device structure.  This allocates "priv", calls
2292         * tile_net_setup(), and saves "name".  Normally, "name" is a
2293         * template, instantiated by register_netdev(), but not for us.
2294         */
2295        dev = alloc_netdev(sizeof(*priv), name, NET_NAME_UNKNOWN,
2296                           tile_net_setup);
2297        if (!dev) {
2298                pr_err("alloc_netdev(%s) failed\n", name);
2299                return NULL;
2300        }
2301
2302        priv = netdev_priv(dev);
2303
2304        /* Initialize "priv". */
2305
2306        memset(priv, 0, sizeof(*priv));
2307
2308        /* Save "dev" for "tile_net_open_retry()". */
2309        priv->dev = dev;
2310
2311        INIT_DELAYED_WORK(&priv->retry_work, tile_net_open_retry);
2312
2313        spin_lock_init(&priv->eq_lock);
2314
2315        /* Allocate "eq". */
2316        priv->eq_pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, EQ_ORDER);
2317        if (!priv->eq_pages) {
2318                free_netdev(dev);
2319                return NULL;
2320        }
2321        priv->eq = page_address(priv->eq_pages);
2322
2323        /* Register the network device. */
2324        ret = register_netdev(dev);
2325        if (ret) {
2326                pr_err("register_netdev %s failed %d\n", dev->name, ret);
2327                __free_pages(priv->eq_pages, EQ_ORDER);
2328                free_netdev(dev);
2329                return NULL;
2330        }
2331
2332        /* Get the MAC address. */
2333        ret = tile_net_get_mac(dev);
2334        if (ret < 0) {
2335                unregister_netdev(dev);
2336                __free_pages(priv->eq_pages, EQ_ORDER);
2337                free_netdev(dev);
2338                return NULL;
2339        }
2340
2341        return dev;
2342}
2343
2344
2345/*
2346 * Module cleanup.
2347 *
2348 * FIXME: If compiled as a module, this module cannot be "unloaded",
2349 * because the "ingress interrupt handler" is registered permanently.
2350 */
2351static void tile_net_cleanup(void)
2352{
2353        int i;
2354
2355        for (i = 0; i < TILE_NET_DEVS; i++) {
2356                if (tile_net_devs[i]) {
2357                        struct net_device *dev = tile_net_devs[i];
2358                        struct tile_net_priv *priv = netdev_priv(dev);
2359                        unregister_netdev(dev);
2360                        finv_buffer_remote(priv->eq, EQ_SIZE, 0);
2361                        __free_pages(priv->eq_pages, EQ_ORDER);
2362                        free_netdev(dev);
2363                }
2364        }
2365}
2366
2367
2368/*
2369 * Module initialization.
2370 */
2371static int tile_net_init_module(void)
2372{
2373        pr_info("Tilera Network Driver\n");
2374
2375        tile_net_devs[0] = tile_net_dev_init("xgbe0");
2376        tile_net_devs[1] = tile_net_dev_init("xgbe1");
2377        tile_net_devs[2] = tile_net_dev_init("gbe0");
2378        tile_net_devs[3] = tile_net_dev_init("gbe1");
2379
2380        return 0;
2381}
2382
2383
2384module_init(tile_net_init_module);
2385module_exit(tile_net_cleanup);
2386
2387
2388#ifndef MODULE
2389
2390/*
2391 * The "network_cpus" boot argument specifies the cpus that are dedicated
2392 * to handle ingress packets.
2393 *
2394 * The parameter should be in the form "network_cpus=m-n[,x-y]", where
2395 * m, n, x, y are integer numbers that represent the cpus that can be
2396 * neither a dedicated cpu nor a dataplane cpu.
2397 */
2398static int __init network_cpus_setup(char *str)
2399{
2400        int rc = cpulist_parse_crop(str, &network_cpus_map);
2401        if (rc != 0) {
2402                pr_warn("network_cpus=%s: malformed cpu list\n", str);
2403        } else {
2404
2405                /* Remove dedicated cpus. */
2406                cpumask_and(&network_cpus_map, &network_cpus_map,
2407                            cpu_possible_mask);
2408
2409
2410                if (cpumask_empty(&network_cpus_map)) {
2411                        pr_warn("Ignoring network_cpus='%s'\n", str);
2412                } else {
2413                        pr_info("Linux network CPUs: %*pbl\n",
2414                                cpumask_pr_args(&network_cpus_map));
2415                        network_cpus_used = true;
2416                }
2417        }
2418
2419        return 0;
2420}
2421__setup("network_cpus=", network_cpus_setup);
2422
2423#endif
2424