linux/drivers/pci/pci.c
<<
>>
Prefs
   1/*
   2 *      PCI Bus Services, see include/linux/pci.h for further explanation.
   3 *
   4 *      Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   5 *      David Mosberger-Tang
   6 *
   7 *      Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/of.h>
  14#include <linux/of_pci.h>
  15#include <linux/pci.h>
  16#include <linux/pm.h>
  17#include <linux/slab.h>
  18#include <linux/module.h>
  19#include <linux/spinlock.h>
  20#include <linux/string.h>
  21#include <linux/log2.h>
  22#include <linux/pci-aspm.h>
  23#include <linux/pm_wakeup.h>
  24#include <linux/interrupt.h>
  25#include <linux/device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/pci_hotplug.h>
  28#include <asm-generic/pci-bridge.h>
  29#include <asm/setup.h>
  30#include "pci.h"
  31
  32const char *pci_power_names[] = {
  33        "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  34};
  35EXPORT_SYMBOL_GPL(pci_power_names);
  36
  37int isa_dma_bridge_buggy;
  38EXPORT_SYMBOL(isa_dma_bridge_buggy);
  39
  40int pci_pci_problems;
  41EXPORT_SYMBOL(pci_pci_problems);
  42
  43unsigned int pci_pm_d3_delay;
  44
  45static void pci_pme_list_scan(struct work_struct *work);
  46
  47static LIST_HEAD(pci_pme_list);
  48static DEFINE_MUTEX(pci_pme_list_mutex);
  49static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  50
  51struct pci_pme_device {
  52        struct list_head list;
  53        struct pci_dev *dev;
  54};
  55
  56#define PME_TIMEOUT 1000 /* How long between PME checks */
  57
  58static void pci_dev_d3_sleep(struct pci_dev *dev)
  59{
  60        unsigned int delay = dev->d3_delay;
  61
  62        if (delay < pci_pm_d3_delay)
  63                delay = pci_pm_d3_delay;
  64
  65        msleep(delay);
  66}
  67
  68#ifdef CONFIG_PCI_DOMAINS
  69int pci_domains_supported = 1;
  70#endif
  71
  72#define DEFAULT_CARDBUS_IO_SIZE         (256)
  73#define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
  74/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  75unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  76unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  77
  78#define DEFAULT_HOTPLUG_IO_SIZE         (256)
  79#define DEFAULT_HOTPLUG_MEM_SIZE        (2*1024*1024)
  80/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  81unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  82unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  83
  84enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
  85
  86/*
  87 * The default CLS is used if arch didn't set CLS explicitly and not
  88 * all pci devices agree on the same value.  Arch can override either
  89 * the dfl or actual value as it sees fit.  Don't forget this is
  90 * measured in 32-bit words, not bytes.
  91 */
  92u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
  93u8 pci_cache_line_size;
  94
  95/*
  96 * If we set up a device for bus mastering, we need to check the latency
  97 * timer as certain BIOSes forget to set it properly.
  98 */
  99unsigned int pcibios_max_latency = 255;
 100
 101/* If set, the PCIe ARI capability will not be used. */
 102static bool pcie_ari_disabled;
 103
 104/**
 105 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 106 * @bus: pointer to PCI bus structure to search
 107 *
 108 * Given a PCI bus, returns the highest PCI bus number present in the set
 109 * including the given PCI bus and its list of child PCI buses.
 110 */
 111unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 112{
 113        struct pci_bus *tmp;
 114        unsigned char max, n;
 115
 116        max = bus->busn_res.end;
 117        list_for_each_entry(tmp, &bus->children, node) {
 118                n = pci_bus_max_busnr(tmp);
 119                if (n > max)
 120                        max = n;
 121        }
 122        return max;
 123}
 124EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 125
 126#ifdef CONFIG_HAS_IOMEM
 127void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 128{
 129        struct resource *res = &pdev->resource[bar];
 130
 131        /*
 132         * Make sure the BAR is actually a memory resource, not an IO resource
 133         */
 134        if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 135                dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
 136                return NULL;
 137        }
 138        return ioremap_nocache(res->start, resource_size(res));
 139}
 140EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 141#endif
 142
 143#define PCI_FIND_CAP_TTL        48
 144
 145static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 146                                   u8 pos, int cap, int *ttl)
 147{
 148        u8 id;
 149        u16 ent;
 150
 151        pci_bus_read_config_byte(bus, devfn, pos, &pos);
 152
 153        while ((*ttl)--) {
 154                if (pos < 0x40)
 155                        break;
 156                pos &= ~3;
 157                pci_bus_read_config_word(bus, devfn, pos, &ent);
 158
 159                id = ent & 0xff;
 160                if (id == 0xff)
 161                        break;
 162                if (id == cap)
 163                        return pos;
 164                pos = (ent >> 8);
 165        }
 166        return 0;
 167}
 168
 169static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 170                               u8 pos, int cap)
 171{
 172        int ttl = PCI_FIND_CAP_TTL;
 173
 174        return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 175}
 176
 177int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 178{
 179        return __pci_find_next_cap(dev->bus, dev->devfn,
 180                                   pos + PCI_CAP_LIST_NEXT, cap);
 181}
 182EXPORT_SYMBOL_GPL(pci_find_next_capability);
 183
 184static int __pci_bus_find_cap_start(struct pci_bus *bus,
 185                                    unsigned int devfn, u8 hdr_type)
 186{
 187        u16 status;
 188
 189        pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 190        if (!(status & PCI_STATUS_CAP_LIST))
 191                return 0;
 192
 193        switch (hdr_type) {
 194        case PCI_HEADER_TYPE_NORMAL:
 195        case PCI_HEADER_TYPE_BRIDGE:
 196                return PCI_CAPABILITY_LIST;
 197        case PCI_HEADER_TYPE_CARDBUS:
 198                return PCI_CB_CAPABILITY_LIST;
 199        default:
 200                return 0;
 201        }
 202
 203        return 0;
 204}
 205
 206/**
 207 * pci_find_capability - query for devices' capabilities
 208 * @dev: PCI device to query
 209 * @cap: capability code
 210 *
 211 * Tell if a device supports a given PCI capability.
 212 * Returns the address of the requested capability structure within the
 213 * device's PCI configuration space or 0 in case the device does not
 214 * support it.  Possible values for @cap:
 215 *
 216 *  %PCI_CAP_ID_PM           Power Management
 217 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 218 *  %PCI_CAP_ID_VPD          Vital Product Data
 219 *  %PCI_CAP_ID_SLOTID       Slot Identification
 220 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 221 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 222 *  %PCI_CAP_ID_PCIX         PCI-X
 223 *  %PCI_CAP_ID_EXP          PCI Express
 224 */
 225int pci_find_capability(struct pci_dev *dev, int cap)
 226{
 227        int pos;
 228
 229        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 230        if (pos)
 231                pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 232
 233        return pos;
 234}
 235EXPORT_SYMBOL(pci_find_capability);
 236
 237/**
 238 * pci_bus_find_capability - query for devices' capabilities
 239 * @bus:   the PCI bus to query
 240 * @devfn: PCI device to query
 241 * @cap:   capability code
 242 *
 243 * Like pci_find_capability() but works for pci devices that do not have a
 244 * pci_dev structure set up yet.
 245 *
 246 * Returns the address of the requested capability structure within the
 247 * device's PCI configuration space or 0 in case the device does not
 248 * support it.
 249 */
 250int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 251{
 252        int pos;
 253        u8 hdr_type;
 254
 255        pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 256
 257        pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 258        if (pos)
 259                pos = __pci_find_next_cap(bus, devfn, pos, cap);
 260
 261        return pos;
 262}
 263EXPORT_SYMBOL(pci_bus_find_capability);
 264
 265/**
 266 * pci_find_next_ext_capability - Find an extended capability
 267 * @dev: PCI device to query
 268 * @start: address at which to start looking (0 to start at beginning of list)
 269 * @cap: capability code
 270 *
 271 * Returns the address of the next matching extended capability structure
 272 * within the device's PCI configuration space or 0 if the device does
 273 * not support it.  Some capabilities can occur several times, e.g., the
 274 * vendor-specific capability, and this provides a way to find them all.
 275 */
 276int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 277{
 278        u32 header;
 279        int ttl;
 280        int pos = PCI_CFG_SPACE_SIZE;
 281
 282        /* minimum 8 bytes per capability */
 283        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 284
 285        if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 286                return 0;
 287
 288        if (start)
 289                pos = start;
 290
 291        if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 292                return 0;
 293
 294        /*
 295         * If we have no capabilities, this is indicated by cap ID,
 296         * cap version and next pointer all being 0.
 297         */
 298        if (header == 0)
 299                return 0;
 300
 301        while (ttl-- > 0) {
 302                if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 303                        return pos;
 304
 305                pos = PCI_EXT_CAP_NEXT(header);
 306                if (pos < PCI_CFG_SPACE_SIZE)
 307                        break;
 308
 309                if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 310                        break;
 311        }
 312
 313        return 0;
 314}
 315EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 316
 317/**
 318 * pci_find_ext_capability - Find an extended capability
 319 * @dev: PCI device to query
 320 * @cap: capability code
 321 *
 322 * Returns the address of the requested extended capability structure
 323 * within the device's PCI configuration space or 0 if the device does
 324 * not support it.  Possible values for @cap:
 325 *
 326 *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
 327 *  %PCI_EXT_CAP_ID_VC          Virtual Channel
 328 *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
 329 *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
 330 */
 331int pci_find_ext_capability(struct pci_dev *dev, int cap)
 332{
 333        return pci_find_next_ext_capability(dev, 0, cap);
 334}
 335EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 336
 337static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 338{
 339        int rc, ttl = PCI_FIND_CAP_TTL;
 340        u8 cap, mask;
 341
 342        if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 343                mask = HT_3BIT_CAP_MASK;
 344        else
 345                mask = HT_5BIT_CAP_MASK;
 346
 347        pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 348                                      PCI_CAP_ID_HT, &ttl);
 349        while (pos) {
 350                rc = pci_read_config_byte(dev, pos + 3, &cap);
 351                if (rc != PCIBIOS_SUCCESSFUL)
 352                        return 0;
 353
 354                if ((cap & mask) == ht_cap)
 355                        return pos;
 356
 357                pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 358                                              pos + PCI_CAP_LIST_NEXT,
 359                                              PCI_CAP_ID_HT, &ttl);
 360        }
 361
 362        return 0;
 363}
 364/**
 365 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 366 * @dev: PCI device to query
 367 * @pos: Position from which to continue searching
 368 * @ht_cap: Hypertransport capability code
 369 *
 370 * To be used in conjunction with pci_find_ht_capability() to search for
 371 * all capabilities matching @ht_cap. @pos should always be a value returned
 372 * from pci_find_ht_capability().
 373 *
 374 * NB. To be 100% safe against broken PCI devices, the caller should take
 375 * steps to avoid an infinite loop.
 376 */
 377int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 378{
 379        return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 380}
 381EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 382
 383/**
 384 * pci_find_ht_capability - query a device's Hypertransport capabilities
 385 * @dev: PCI device to query
 386 * @ht_cap: Hypertransport capability code
 387 *
 388 * Tell if a device supports a given Hypertransport capability.
 389 * Returns an address within the device's PCI configuration space
 390 * or 0 in case the device does not support the request capability.
 391 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 392 * which has a Hypertransport capability matching @ht_cap.
 393 */
 394int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 395{
 396        int pos;
 397
 398        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 399        if (pos)
 400                pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 401
 402        return pos;
 403}
 404EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 405
 406/**
 407 * pci_find_parent_resource - return resource region of parent bus of given region
 408 * @dev: PCI device structure contains resources to be searched
 409 * @res: child resource record for which parent is sought
 410 *
 411 *  For given resource region of given device, return the resource
 412 *  region of parent bus the given region is contained in.
 413 */
 414struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 415                                          struct resource *res)
 416{
 417        const struct pci_bus *bus = dev->bus;
 418        struct resource *r;
 419        int i;
 420
 421        pci_bus_for_each_resource(bus, r, i) {
 422                if (!r)
 423                        continue;
 424                if (res->start && resource_contains(r, res)) {
 425
 426                        /*
 427                         * If the window is prefetchable but the BAR is
 428                         * not, the allocator made a mistake.
 429                         */
 430                        if (r->flags & IORESOURCE_PREFETCH &&
 431                            !(res->flags & IORESOURCE_PREFETCH))
 432                                return NULL;
 433
 434                        /*
 435                         * If we're below a transparent bridge, there may
 436                         * be both a positively-decoded aperture and a
 437                         * subtractively-decoded region that contain the BAR.
 438                         * We want the positively-decoded one, so this depends
 439                         * on pci_bus_for_each_resource() giving us those
 440                         * first.
 441                         */
 442                        return r;
 443                }
 444        }
 445        return NULL;
 446}
 447EXPORT_SYMBOL(pci_find_parent_resource);
 448
 449/**
 450 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 451 * @dev: the PCI device to operate on
 452 * @pos: config space offset of status word
 453 * @mask: mask of bit(s) to care about in status word
 454 *
 455 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 456 */
 457int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 458{
 459        int i;
 460
 461        /* Wait for Transaction Pending bit clean */
 462        for (i = 0; i < 4; i++) {
 463                u16 status;
 464                if (i)
 465                        msleep((1 << (i - 1)) * 100);
 466
 467                pci_read_config_word(dev, pos, &status);
 468                if (!(status & mask))
 469                        return 1;
 470        }
 471
 472        return 0;
 473}
 474
 475/**
 476 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
 477 * @dev: PCI device to have its BARs restored
 478 *
 479 * Restore the BAR values for a given device, so as to make it
 480 * accessible by its driver.
 481 */
 482static void pci_restore_bars(struct pci_dev *dev)
 483{
 484        int i;
 485
 486        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 487                pci_update_resource(dev, i);
 488}
 489
 490static struct pci_platform_pm_ops *pci_platform_pm;
 491
 492int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
 493{
 494        if (!ops->is_manageable || !ops->set_state || !ops->choose_state
 495            || !ops->sleep_wake)
 496                return -EINVAL;
 497        pci_platform_pm = ops;
 498        return 0;
 499}
 500
 501static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 502{
 503        return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 504}
 505
 506static inline int platform_pci_set_power_state(struct pci_dev *dev,
 507                                               pci_power_t t)
 508{
 509        return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 510}
 511
 512static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 513{
 514        return pci_platform_pm ?
 515                        pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 516}
 517
 518static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
 519{
 520        return pci_platform_pm ?
 521                        pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
 522}
 523
 524static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
 525{
 526        return pci_platform_pm ?
 527                        pci_platform_pm->run_wake(dev, enable) : -ENODEV;
 528}
 529
 530static inline bool platform_pci_need_resume(struct pci_dev *dev)
 531{
 532        return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 533}
 534
 535/**
 536 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 537 *                           given PCI device
 538 * @dev: PCI device to handle.
 539 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 540 *
 541 * RETURN VALUE:
 542 * -EINVAL if the requested state is invalid.
 543 * -EIO if device does not support PCI PM or its PM capabilities register has a
 544 * wrong version, or device doesn't support the requested state.
 545 * 0 if device already is in the requested state.
 546 * 0 if device's power state has been successfully changed.
 547 */
 548static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 549{
 550        u16 pmcsr;
 551        bool need_restore = false;
 552
 553        /* Check if we're already there */
 554        if (dev->current_state == state)
 555                return 0;
 556
 557        if (!dev->pm_cap)
 558                return -EIO;
 559
 560        if (state < PCI_D0 || state > PCI_D3hot)
 561                return -EINVAL;
 562
 563        /* Validate current state:
 564         * Can enter D0 from any state, but if we can only go deeper
 565         * to sleep if we're already in a low power state
 566         */
 567        if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 568            && dev->current_state > state) {
 569                dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
 570                        dev->current_state, state);
 571                return -EINVAL;
 572        }
 573
 574        /* check if this device supports the desired state */
 575        if ((state == PCI_D1 && !dev->d1_support)
 576           || (state == PCI_D2 && !dev->d2_support))
 577                return -EIO;
 578
 579        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 580
 581        /* If we're (effectively) in D3, force entire word to 0.
 582         * This doesn't affect PME_Status, disables PME_En, and
 583         * sets PowerState to 0.
 584         */
 585        switch (dev->current_state) {
 586        case PCI_D0:
 587        case PCI_D1:
 588        case PCI_D2:
 589                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 590                pmcsr |= state;
 591                break;
 592        case PCI_D3hot:
 593        case PCI_D3cold:
 594        case PCI_UNKNOWN: /* Boot-up */
 595                if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 596                 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 597                        need_restore = true;
 598                /* Fall-through: force to D0 */
 599        default:
 600                pmcsr = 0;
 601                break;
 602        }
 603
 604        /* enter specified state */
 605        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 606
 607        /* Mandatory power management transition delays */
 608        /* see PCI PM 1.1 5.6.1 table 18 */
 609        if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 610                pci_dev_d3_sleep(dev);
 611        else if (state == PCI_D2 || dev->current_state == PCI_D2)
 612                udelay(PCI_PM_D2_DELAY);
 613
 614        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 615        dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 616        if (dev->current_state != state && printk_ratelimit())
 617                dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
 618                         dev->current_state);
 619
 620        /*
 621         * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 622         * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 623         * from D3hot to D0 _may_ perform an internal reset, thereby
 624         * going to "D0 Uninitialized" rather than "D0 Initialized".
 625         * For example, at least some versions of the 3c905B and the
 626         * 3c556B exhibit this behaviour.
 627         *
 628         * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 629         * devices in a D3hot state at boot.  Consequently, we need to
 630         * restore at least the BARs so that the device will be
 631         * accessible to its driver.
 632         */
 633        if (need_restore)
 634                pci_restore_bars(dev);
 635
 636        if (dev->bus->self)
 637                pcie_aspm_pm_state_change(dev->bus->self);
 638
 639        return 0;
 640}
 641
 642/**
 643 * pci_update_current_state - Read PCI power state of given device from its
 644 *                            PCI PM registers and cache it
 645 * @dev: PCI device to handle.
 646 * @state: State to cache in case the device doesn't have the PM capability
 647 */
 648void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 649{
 650        if (dev->pm_cap) {
 651                u16 pmcsr;
 652
 653                /*
 654                 * Configuration space is not accessible for device in
 655                 * D3cold, so just keep or set D3cold for safety
 656                 */
 657                if (dev->current_state == PCI_D3cold)
 658                        return;
 659                if (state == PCI_D3cold) {
 660                        dev->current_state = PCI_D3cold;
 661                        return;
 662                }
 663                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 664                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 665        } else {
 666                dev->current_state = state;
 667        }
 668}
 669
 670/**
 671 * pci_power_up - Put the given device into D0 forcibly
 672 * @dev: PCI device to power up
 673 */
 674void pci_power_up(struct pci_dev *dev)
 675{
 676        if (platform_pci_power_manageable(dev))
 677                platform_pci_set_power_state(dev, PCI_D0);
 678
 679        pci_raw_set_power_state(dev, PCI_D0);
 680        pci_update_current_state(dev, PCI_D0);
 681}
 682
 683/**
 684 * pci_platform_power_transition - Use platform to change device power state
 685 * @dev: PCI device to handle.
 686 * @state: State to put the device into.
 687 */
 688static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 689{
 690        int error;
 691
 692        if (platform_pci_power_manageable(dev)) {
 693                error = platform_pci_set_power_state(dev, state);
 694                if (!error)
 695                        pci_update_current_state(dev, state);
 696        } else
 697                error = -ENODEV;
 698
 699        if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 700                dev->current_state = PCI_D0;
 701
 702        return error;
 703}
 704
 705/**
 706 * pci_wakeup - Wake up a PCI device
 707 * @pci_dev: Device to handle.
 708 * @ign: ignored parameter
 709 */
 710static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
 711{
 712        pci_wakeup_event(pci_dev);
 713        pm_request_resume(&pci_dev->dev);
 714        return 0;
 715}
 716
 717/**
 718 * pci_wakeup_bus - Walk given bus and wake up devices on it
 719 * @bus: Top bus of the subtree to walk.
 720 */
 721static void pci_wakeup_bus(struct pci_bus *bus)
 722{
 723        if (bus)
 724                pci_walk_bus(bus, pci_wakeup, NULL);
 725}
 726
 727/**
 728 * __pci_start_power_transition - Start power transition of a PCI device
 729 * @dev: PCI device to handle.
 730 * @state: State to put the device into.
 731 */
 732static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 733{
 734        if (state == PCI_D0) {
 735                pci_platform_power_transition(dev, PCI_D0);
 736                /*
 737                 * Mandatory power management transition delays, see
 738                 * PCI Express Base Specification Revision 2.0 Section
 739                 * 6.6.1: Conventional Reset.  Do not delay for
 740                 * devices powered on/off by corresponding bridge,
 741                 * because have already delayed for the bridge.
 742                 */
 743                if (dev->runtime_d3cold) {
 744                        msleep(dev->d3cold_delay);
 745                        /*
 746                         * When powering on a bridge from D3cold, the
 747                         * whole hierarchy may be powered on into
 748                         * D0uninitialized state, resume them to give
 749                         * them a chance to suspend again
 750                         */
 751                        pci_wakeup_bus(dev->subordinate);
 752                }
 753        }
 754}
 755
 756/**
 757 * __pci_dev_set_current_state - Set current state of a PCI device
 758 * @dev: Device to handle
 759 * @data: pointer to state to be set
 760 */
 761static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
 762{
 763        pci_power_t state = *(pci_power_t *)data;
 764
 765        dev->current_state = state;
 766        return 0;
 767}
 768
 769/**
 770 * __pci_bus_set_current_state - Walk given bus and set current state of devices
 771 * @bus: Top bus of the subtree to walk.
 772 * @state: state to be set
 773 */
 774static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
 775{
 776        if (bus)
 777                pci_walk_bus(bus, __pci_dev_set_current_state, &state);
 778}
 779
 780/**
 781 * __pci_complete_power_transition - Complete power transition of a PCI device
 782 * @dev: PCI device to handle.
 783 * @state: State to put the device into.
 784 *
 785 * This function should not be called directly by device drivers.
 786 */
 787int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 788{
 789        int ret;
 790
 791        if (state <= PCI_D0)
 792                return -EINVAL;
 793        ret = pci_platform_power_transition(dev, state);
 794        /* Power off the bridge may power off the whole hierarchy */
 795        if (!ret && state == PCI_D3cold)
 796                __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 797        return ret;
 798}
 799EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 800
 801/**
 802 * pci_set_power_state - Set the power state of a PCI device
 803 * @dev: PCI device to handle.
 804 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 805 *
 806 * Transition a device to a new power state, using the platform firmware and/or
 807 * the device's PCI PM registers.
 808 *
 809 * RETURN VALUE:
 810 * -EINVAL if the requested state is invalid.
 811 * -EIO if device does not support PCI PM or its PM capabilities register has a
 812 * wrong version, or device doesn't support the requested state.
 813 * 0 if device already is in the requested state.
 814 * 0 if device's power state has been successfully changed.
 815 */
 816int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 817{
 818        int error;
 819
 820        /* bound the state we're entering */
 821        if (state > PCI_D3cold)
 822                state = PCI_D3cold;
 823        else if (state < PCI_D0)
 824                state = PCI_D0;
 825        else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 826                /*
 827                 * If the device or the parent bridge do not support PCI PM,
 828                 * ignore the request if we're doing anything other than putting
 829                 * it into D0 (which would only happen on boot).
 830                 */
 831                return 0;
 832
 833        /* Check if we're already there */
 834        if (dev->current_state == state)
 835                return 0;
 836
 837        __pci_start_power_transition(dev, state);
 838
 839        /* This device is quirked not to be put into D3, so
 840           don't put it in D3 */
 841        if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 842                return 0;
 843
 844        /*
 845         * To put device in D3cold, we put device into D3hot in native
 846         * way, then put device into D3cold with platform ops
 847         */
 848        error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
 849                                        PCI_D3hot : state);
 850
 851        if (!__pci_complete_power_transition(dev, state))
 852                error = 0;
 853
 854        return error;
 855}
 856EXPORT_SYMBOL(pci_set_power_state);
 857
 858/**
 859 * pci_choose_state - Choose the power state of a PCI device
 860 * @dev: PCI device to be suspended
 861 * @state: target sleep state for the whole system. This is the value
 862 *      that is passed to suspend() function.
 863 *
 864 * Returns PCI power state suitable for given device and given system
 865 * message.
 866 */
 867
 868pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 869{
 870        pci_power_t ret;
 871
 872        if (!dev->pm_cap)
 873                return PCI_D0;
 874
 875        ret = platform_pci_choose_state(dev);
 876        if (ret != PCI_POWER_ERROR)
 877                return ret;
 878
 879        switch (state.event) {
 880        case PM_EVENT_ON:
 881                return PCI_D0;
 882        case PM_EVENT_FREEZE:
 883        case PM_EVENT_PRETHAW:
 884                /* REVISIT both freeze and pre-thaw "should" use D0 */
 885        case PM_EVENT_SUSPEND:
 886        case PM_EVENT_HIBERNATE:
 887                return PCI_D3hot;
 888        default:
 889                dev_info(&dev->dev, "unrecognized suspend event %d\n",
 890                         state.event);
 891                BUG();
 892        }
 893        return PCI_D0;
 894}
 895EXPORT_SYMBOL(pci_choose_state);
 896
 897#define PCI_EXP_SAVE_REGS       7
 898
 899static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
 900                                                       u16 cap, bool extended)
 901{
 902        struct pci_cap_saved_state *tmp;
 903
 904        hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
 905                if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
 906                        return tmp;
 907        }
 908        return NULL;
 909}
 910
 911struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
 912{
 913        return _pci_find_saved_cap(dev, cap, false);
 914}
 915
 916struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
 917{
 918        return _pci_find_saved_cap(dev, cap, true);
 919}
 920
 921static int pci_save_pcie_state(struct pci_dev *dev)
 922{
 923        int i = 0;
 924        struct pci_cap_saved_state *save_state;
 925        u16 *cap;
 926
 927        if (!pci_is_pcie(dev))
 928                return 0;
 929
 930        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 931        if (!save_state) {
 932                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 933                return -ENOMEM;
 934        }
 935
 936        cap = (u16 *)&save_state->cap.data[0];
 937        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
 938        pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
 939        pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
 940        pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
 941        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
 942        pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
 943        pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
 944
 945        return 0;
 946}
 947
 948static void pci_restore_pcie_state(struct pci_dev *dev)
 949{
 950        int i = 0;
 951        struct pci_cap_saved_state *save_state;
 952        u16 *cap;
 953
 954        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 955        if (!save_state)
 956                return;
 957
 958        cap = (u16 *)&save_state->cap.data[0];
 959        pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
 960        pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
 961        pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
 962        pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
 963        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
 964        pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
 965        pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
 966}
 967
 968
 969static int pci_save_pcix_state(struct pci_dev *dev)
 970{
 971        int pos;
 972        struct pci_cap_saved_state *save_state;
 973
 974        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 975        if (pos <= 0)
 976                return 0;
 977
 978        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 979        if (!save_state) {
 980                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 981                return -ENOMEM;
 982        }
 983
 984        pci_read_config_word(dev, pos + PCI_X_CMD,
 985                             (u16 *)save_state->cap.data);
 986
 987        return 0;
 988}
 989
 990static void pci_restore_pcix_state(struct pci_dev *dev)
 991{
 992        int i = 0, pos;
 993        struct pci_cap_saved_state *save_state;
 994        u16 *cap;
 995
 996        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 997        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 998        if (!save_state || pos <= 0)
 999                return;
1000        cap = (u16 *)&save_state->cap.data[0];
1001
1002        pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1003}
1004
1005
1006/**
1007 * pci_save_state - save the PCI configuration space of a device before suspending
1008 * @dev: - PCI device that we're dealing with
1009 */
1010int pci_save_state(struct pci_dev *dev)
1011{
1012        int i;
1013        /* XXX: 100% dword access ok here? */
1014        for (i = 0; i < 16; i++)
1015                pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1016        dev->state_saved = true;
1017
1018        i = pci_save_pcie_state(dev);
1019        if (i != 0)
1020                return i;
1021
1022        i = pci_save_pcix_state(dev);
1023        if (i != 0)
1024                return i;
1025
1026        return pci_save_vc_state(dev);
1027}
1028EXPORT_SYMBOL(pci_save_state);
1029
1030static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1031                                     u32 saved_val, int retry)
1032{
1033        u32 val;
1034
1035        pci_read_config_dword(pdev, offset, &val);
1036        if (val == saved_val)
1037                return;
1038
1039        for (;;) {
1040                dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1041                        offset, val, saved_val);
1042                pci_write_config_dword(pdev, offset, saved_val);
1043                if (retry-- <= 0)
1044                        return;
1045
1046                pci_read_config_dword(pdev, offset, &val);
1047                if (val == saved_val)
1048                        return;
1049
1050                mdelay(1);
1051        }
1052}
1053
1054static void pci_restore_config_space_range(struct pci_dev *pdev,
1055                                           int start, int end, int retry)
1056{
1057        int index;
1058
1059        for (index = end; index >= start; index--)
1060                pci_restore_config_dword(pdev, 4 * index,
1061                                         pdev->saved_config_space[index],
1062                                         retry);
1063}
1064
1065static void pci_restore_config_space(struct pci_dev *pdev)
1066{
1067        if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1068                pci_restore_config_space_range(pdev, 10, 15, 0);
1069                /* Restore BARs before the command register. */
1070                pci_restore_config_space_range(pdev, 4, 9, 10);
1071                pci_restore_config_space_range(pdev, 0, 3, 0);
1072        } else {
1073                pci_restore_config_space_range(pdev, 0, 15, 0);
1074        }
1075}
1076
1077/**
1078 * pci_restore_state - Restore the saved state of a PCI device
1079 * @dev: - PCI device that we're dealing with
1080 */
1081void pci_restore_state(struct pci_dev *dev)
1082{
1083        if (!dev->state_saved)
1084                return;
1085
1086        /* PCI Express register must be restored first */
1087        pci_restore_pcie_state(dev);
1088        pci_restore_ats_state(dev);
1089        pci_restore_vc_state(dev);
1090
1091        pci_restore_config_space(dev);
1092
1093        pci_restore_pcix_state(dev);
1094        pci_restore_msi_state(dev);
1095        pci_restore_iov_state(dev);
1096
1097        dev->state_saved = false;
1098}
1099EXPORT_SYMBOL(pci_restore_state);
1100
1101struct pci_saved_state {
1102        u32 config_space[16];
1103        struct pci_cap_saved_data cap[0];
1104};
1105
1106/**
1107 * pci_store_saved_state - Allocate and return an opaque struct containing
1108 *                         the device saved state.
1109 * @dev: PCI device that we're dealing with
1110 *
1111 * Return NULL if no state or error.
1112 */
1113struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1114{
1115        struct pci_saved_state *state;
1116        struct pci_cap_saved_state *tmp;
1117        struct pci_cap_saved_data *cap;
1118        size_t size;
1119
1120        if (!dev->state_saved)
1121                return NULL;
1122
1123        size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1124
1125        hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1126                size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1127
1128        state = kzalloc(size, GFP_KERNEL);
1129        if (!state)
1130                return NULL;
1131
1132        memcpy(state->config_space, dev->saved_config_space,
1133               sizeof(state->config_space));
1134
1135        cap = state->cap;
1136        hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1137                size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1138                memcpy(cap, &tmp->cap, len);
1139                cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1140        }
1141        /* Empty cap_save terminates list */
1142
1143        return state;
1144}
1145EXPORT_SYMBOL_GPL(pci_store_saved_state);
1146
1147/**
1148 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1149 * @dev: PCI device that we're dealing with
1150 * @state: Saved state returned from pci_store_saved_state()
1151 */
1152int pci_load_saved_state(struct pci_dev *dev,
1153                         struct pci_saved_state *state)
1154{
1155        struct pci_cap_saved_data *cap;
1156
1157        dev->state_saved = false;
1158
1159        if (!state)
1160                return 0;
1161
1162        memcpy(dev->saved_config_space, state->config_space,
1163               sizeof(state->config_space));
1164
1165        cap = state->cap;
1166        while (cap->size) {
1167                struct pci_cap_saved_state *tmp;
1168
1169                tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1170                if (!tmp || tmp->cap.size != cap->size)
1171                        return -EINVAL;
1172
1173                memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1174                cap = (struct pci_cap_saved_data *)((u8 *)cap +
1175                       sizeof(struct pci_cap_saved_data) + cap->size);
1176        }
1177
1178        dev->state_saved = true;
1179        return 0;
1180}
1181EXPORT_SYMBOL_GPL(pci_load_saved_state);
1182
1183/**
1184 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1185 *                                 and free the memory allocated for it.
1186 * @dev: PCI device that we're dealing with
1187 * @state: Pointer to saved state returned from pci_store_saved_state()
1188 */
1189int pci_load_and_free_saved_state(struct pci_dev *dev,
1190                                  struct pci_saved_state **state)
1191{
1192        int ret = pci_load_saved_state(dev, *state);
1193        kfree(*state);
1194        *state = NULL;
1195        return ret;
1196}
1197EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1198
1199int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1200{
1201        return pci_enable_resources(dev, bars);
1202}
1203
1204static int do_pci_enable_device(struct pci_dev *dev, int bars)
1205{
1206        int err;
1207        struct pci_dev *bridge;
1208        u16 cmd;
1209        u8 pin;
1210
1211        err = pci_set_power_state(dev, PCI_D0);
1212        if (err < 0 && err != -EIO)
1213                return err;
1214
1215        bridge = pci_upstream_bridge(dev);
1216        if (bridge)
1217                pcie_aspm_powersave_config_link(bridge);
1218
1219        err = pcibios_enable_device(dev, bars);
1220        if (err < 0)
1221                return err;
1222        pci_fixup_device(pci_fixup_enable, dev);
1223
1224        if (dev->msi_enabled || dev->msix_enabled)
1225                return 0;
1226
1227        pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1228        if (pin) {
1229                pci_read_config_word(dev, PCI_COMMAND, &cmd);
1230                if (cmd & PCI_COMMAND_INTX_DISABLE)
1231                        pci_write_config_word(dev, PCI_COMMAND,
1232                                              cmd & ~PCI_COMMAND_INTX_DISABLE);
1233        }
1234
1235        return 0;
1236}
1237
1238/**
1239 * pci_reenable_device - Resume abandoned device
1240 * @dev: PCI device to be resumed
1241 *
1242 *  Note this function is a backend of pci_default_resume and is not supposed
1243 *  to be called by normal code, write proper resume handler and use it instead.
1244 */
1245int pci_reenable_device(struct pci_dev *dev)
1246{
1247        if (pci_is_enabled(dev))
1248                return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1249        return 0;
1250}
1251EXPORT_SYMBOL(pci_reenable_device);
1252
1253static void pci_enable_bridge(struct pci_dev *dev)
1254{
1255        struct pci_dev *bridge;
1256        int retval;
1257
1258        bridge = pci_upstream_bridge(dev);
1259        if (bridge)
1260                pci_enable_bridge(bridge);
1261
1262        if (pci_is_enabled(dev)) {
1263                if (!dev->is_busmaster)
1264                        pci_set_master(dev);
1265                return;
1266        }
1267
1268        retval = pci_enable_device(dev);
1269        if (retval)
1270                dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1271                        retval);
1272        pci_set_master(dev);
1273}
1274
1275static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1276{
1277        struct pci_dev *bridge;
1278        int err;
1279        int i, bars = 0;
1280
1281        /*
1282         * Power state could be unknown at this point, either due to a fresh
1283         * boot or a device removal call.  So get the current power state
1284         * so that things like MSI message writing will behave as expected
1285         * (e.g. if the device really is in D0 at enable time).
1286         */
1287        if (dev->pm_cap) {
1288                u16 pmcsr;
1289                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1290                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1291        }
1292
1293        if (atomic_inc_return(&dev->enable_cnt) > 1)
1294                return 0;               /* already enabled */
1295
1296        bridge = pci_upstream_bridge(dev);
1297        if (bridge)
1298                pci_enable_bridge(bridge);
1299
1300        /* only skip sriov related */
1301        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1302                if (dev->resource[i].flags & flags)
1303                        bars |= (1 << i);
1304        for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1305                if (dev->resource[i].flags & flags)
1306                        bars |= (1 << i);
1307
1308        err = do_pci_enable_device(dev, bars);
1309        if (err < 0)
1310                atomic_dec(&dev->enable_cnt);
1311        return err;
1312}
1313
1314/**
1315 * pci_enable_device_io - Initialize a device for use with IO space
1316 * @dev: PCI device to be initialized
1317 *
1318 *  Initialize device before it's used by a driver. Ask low-level code
1319 *  to enable I/O resources. Wake up the device if it was suspended.
1320 *  Beware, this function can fail.
1321 */
1322int pci_enable_device_io(struct pci_dev *dev)
1323{
1324        return pci_enable_device_flags(dev, IORESOURCE_IO);
1325}
1326EXPORT_SYMBOL(pci_enable_device_io);
1327
1328/**
1329 * pci_enable_device_mem - Initialize a device for use with Memory space
1330 * @dev: PCI device to be initialized
1331 *
1332 *  Initialize device before it's used by a driver. Ask low-level code
1333 *  to enable Memory resources. Wake up the device if it was suspended.
1334 *  Beware, this function can fail.
1335 */
1336int pci_enable_device_mem(struct pci_dev *dev)
1337{
1338        return pci_enable_device_flags(dev, IORESOURCE_MEM);
1339}
1340EXPORT_SYMBOL(pci_enable_device_mem);
1341
1342/**
1343 * pci_enable_device - Initialize device before it's used by a driver.
1344 * @dev: PCI device to be initialized
1345 *
1346 *  Initialize device before it's used by a driver. Ask low-level code
1347 *  to enable I/O and memory. Wake up the device if it was suspended.
1348 *  Beware, this function can fail.
1349 *
1350 *  Note we don't actually enable the device many times if we call
1351 *  this function repeatedly (we just increment the count).
1352 */
1353int pci_enable_device(struct pci_dev *dev)
1354{
1355        return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1356}
1357EXPORT_SYMBOL(pci_enable_device);
1358
1359/*
1360 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1361 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1362 * there's no need to track it separately.  pci_devres is initialized
1363 * when a device is enabled using managed PCI device enable interface.
1364 */
1365struct pci_devres {
1366        unsigned int enabled:1;
1367        unsigned int pinned:1;
1368        unsigned int orig_intx:1;
1369        unsigned int restore_intx:1;
1370        u32 region_mask;
1371};
1372
1373static void pcim_release(struct device *gendev, void *res)
1374{
1375        struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1376        struct pci_devres *this = res;
1377        int i;
1378
1379        if (dev->msi_enabled)
1380                pci_disable_msi(dev);
1381        if (dev->msix_enabled)
1382                pci_disable_msix(dev);
1383
1384        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1385                if (this->region_mask & (1 << i))
1386                        pci_release_region(dev, i);
1387
1388        if (this->restore_intx)
1389                pci_intx(dev, this->orig_intx);
1390
1391        if (this->enabled && !this->pinned)
1392                pci_disable_device(dev);
1393}
1394
1395static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1396{
1397        struct pci_devres *dr, *new_dr;
1398
1399        dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1400        if (dr)
1401                return dr;
1402
1403        new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1404        if (!new_dr)
1405                return NULL;
1406        return devres_get(&pdev->dev, new_dr, NULL, NULL);
1407}
1408
1409static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1410{
1411        if (pci_is_managed(pdev))
1412                return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1413        return NULL;
1414}
1415
1416/**
1417 * pcim_enable_device - Managed pci_enable_device()
1418 * @pdev: PCI device to be initialized
1419 *
1420 * Managed pci_enable_device().
1421 */
1422int pcim_enable_device(struct pci_dev *pdev)
1423{
1424        struct pci_devres *dr;
1425        int rc;
1426
1427        dr = get_pci_dr(pdev);
1428        if (unlikely(!dr))
1429                return -ENOMEM;
1430        if (dr->enabled)
1431                return 0;
1432
1433        rc = pci_enable_device(pdev);
1434        if (!rc) {
1435                pdev->is_managed = 1;
1436                dr->enabled = 1;
1437        }
1438        return rc;
1439}
1440EXPORT_SYMBOL(pcim_enable_device);
1441
1442/**
1443 * pcim_pin_device - Pin managed PCI device
1444 * @pdev: PCI device to pin
1445 *
1446 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1447 * driver detach.  @pdev must have been enabled with
1448 * pcim_enable_device().
1449 */
1450void pcim_pin_device(struct pci_dev *pdev)
1451{
1452        struct pci_devres *dr;
1453
1454        dr = find_pci_dr(pdev);
1455        WARN_ON(!dr || !dr->enabled);
1456        if (dr)
1457                dr->pinned = 1;
1458}
1459EXPORT_SYMBOL(pcim_pin_device);
1460
1461/*
1462 * pcibios_add_device - provide arch specific hooks when adding device dev
1463 * @dev: the PCI device being added
1464 *
1465 * Permits the platform to provide architecture specific functionality when
1466 * devices are added. This is the default implementation. Architecture
1467 * implementations can override this.
1468 */
1469int __weak pcibios_add_device(struct pci_dev *dev)
1470{
1471        return 0;
1472}
1473
1474/**
1475 * pcibios_release_device - provide arch specific hooks when releasing device dev
1476 * @dev: the PCI device being released
1477 *
1478 * Permits the platform to provide architecture specific functionality when
1479 * devices are released. This is the default implementation. Architecture
1480 * implementations can override this.
1481 */
1482void __weak pcibios_release_device(struct pci_dev *dev) {}
1483
1484/**
1485 * pcibios_disable_device - disable arch specific PCI resources for device dev
1486 * @dev: the PCI device to disable
1487 *
1488 * Disables architecture specific PCI resources for the device. This
1489 * is the default implementation. Architecture implementations can
1490 * override this.
1491 */
1492void __weak pcibios_disable_device (struct pci_dev *dev) {}
1493
1494/**
1495 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1496 * @irq: ISA IRQ to penalize
1497 * @active: IRQ active or not
1498 *
1499 * Permits the platform to provide architecture-specific functionality when
1500 * penalizing ISA IRQs. This is the default implementation. Architecture
1501 * implementations can override this.
1502 */
1503void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1504
1505static void do_pci_disable_device(struct pci_dev *dev)
1506{
1507        u16 pci_command;
1508
1509        pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1510        if (pci_command & PCI_COMMAND_MASTER) {
1511                pci_command &= ~PCI_COMMAND_MASTER;
1512                pci_write_config_word(dev, PCI_COMMAND, pci_command);
1513        }
1514
1515        pcibios_disable_device(dev);
1516}
1517
1518/**
1519 * pci_disable_enabled_device - Disable device without updating enable_cnt
1520 * @dev: PCI device to disable
1521 *
1522 * NOTE: This function is a backend of PCI power management routines and is
1523 * not supposed to be called drivers.
1524 */
1525void pci_disable_enabled_device(struct pci_dev *dev)
1526{
1527        if (pci_is_enabled(dev))
1528                do_pci_disable_device(dev);
1529}
1530
1531/**
1532 * pci_disable_device - Disable PCI device after use
1533 * @dev: PCI device to be disabled
1534 *
1535 * Signal to the system that the PCI device is not in use by the system
1536 * anymore.  This only involves disabling PCI bus-mastering, if active.
1537 *
1538 * Note we don't actually disable the device until all callers of
1539 * pci_enable_device() have called pci_disable_device().
1540 */
1541void pci_disable_device(struct pci_dev *dev)
1542{
1543        struct pci_devres *dr;
1544
1545        dr = find_pci_dr(dev);
1546        if (dr)
1547                dr->enabled = 0;
1548
1549        dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1550                      "disabling already-disabled device");
1551
1552        if (atomic_dec_return(&dev->enable_cnt) != 0)
1553                return;
1554
1555        do_pci_disable_device(dev);
1556
1557        dev->is_busmaster = 0;
1558}
1559EXPORT_SYMBOL(pci_disable_device);
1560
1561/**
1562 * pcibios_set_pcie_reset_state - set reset state for device dev
1563 * @dev: the PCIe device reset
1564 * @state: Reset state to enter into
1565 *
1566 *
1567 * Sets the PCIe reset state for the device. This is the default
1568 * implementation. Architecture implementations can override this.
1569 */
1570int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1571                                        enum pcie_reset_state state)
1572{
1573        return -EINVAL;
1574}
1575
1576/**
1577 * pci_set_pcie_reset_state - set reset state for device dev
1578 * @dev: the PCIe device reset
1579 * @state: Reset state to enter into
1580 *
1581 *
1582 * Sets the PCI reset state for the device.
1583 */
1584int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1585{
1586        return pcibios_set_pcie_reset_state(dev, state);
1587}
1588EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1589
1590/**
1591 * pci_check_pme_status - Check if given device has generated PME.
1592 * @dev: Device to check.
1593 *
1594 * Check the PME status of the device and if set, clear it and clear PME enable
1595 * (if set).  Return 'true' if PME status and PME enable were both set or
1596 * 'false' otherwise.
1597 */
1598bool pci_check_pme_status(struct pci_dev *dev)
1599{
1600        int pmcsr_pos;
1601        u16 pmcsr;
1602        bool ret = false;
1603
1604        if (!dev->pm_cap)
1605                return false;
1606
1607        pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1608        pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1609        if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1610                return false;
1611
1612        /* Clear PME status. */
1613        pmcsr |= PCI_PM_CTRL_PME_STATUS;
1614        if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1615                /* Disable PME to avoid interrupt flood. */
1616                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1617                ret = true;
1618        }
1619
1620        pci_write_config_word(dev, pmcsr_pos, pmcsr);
1621
1622        return ret;
1623}
1624
1625/**
1626 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1627 * @dev: Device to handle.
1628 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1629 *
1630 * Check if @dev has generated PME and queue a resume request for it in that
1631 * case.
1632 */
1633static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1634{
1635        if (pme_poll_reset && dev->pme_poll)
1636                dev->pme_poll = false;
1637
1638        if (pci_check_pme_status(dev)) {
1639                pci_wakeup_event(dev);
1640                pm_request_resume(&dev->dev);
1641        }
1642        return 0;
1643}
1644
1645/**
1646 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1647 * @bus: Top bus of the subtree to walk.
1648 */
1649void pci_pme_wakeup_bus(struct pci_bus *bus)
1650{
1651        if (bus)
1652                pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1653}
1654
1655
1656/**
1657 * pci_pme_capable - check the capability of PCI device to generate PME#
1658 * @dev: PCI device to handle.
1659 * @state: PCI state from which device will issue PME#.
1660 */
1661bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1662{
1663        if (!dev->pm_cap)
1664                return false;
1665
1666        return !!(dev->pme_support & (1 << state));
1667}
1668EXPORT_SYMBOL(pci_pme_capable);
1669
1670static void pci_pme_list_scan(struct work_struct *work)
1671{
1672        struct pci_pme_device *pme_dev, *n;
1673
1674        mutex_lock(&pci_pme_list_mutex);
1675        list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1676                if (pme_dev->dev->pme_poll) {
1677                        struct pci_dev *bridge;
1678
1679                        bridge = pme_dev->dev->bus->self;
1680                        /*
1681                         * If bridge is in low power state, the
1682                         * configuration space of subordinate devices
1683                         * may be not accessible
1684                         */
1685                        if (bridge && bridge->current_state != PCI_D0)
1686                                continue;
1687                        pci_pme_wakeup(pme_dev->dev, NULL);
1688                } else {
1689                        list_del(&pme_dev->list);
1690                        kfree(pme_dev);
1691                }
1692        }
1693        if (!list_empty(&pci_pme_list))
1694                schedule_delayed_work(&pci_pme_work,
1695                                      msecs_to_jiffies(PME_TIMEOUT));
1696        mutex_unlock(&pci_pme_list_mutex);
1697}
1698
1699/**
1700 * pci_pme_active - enable or disable PCI device's PME# function
1701 * @dev: PCI device to handle.
1702 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1703 *
1704 * The caller must verify that the device is capable of generating PME# before
1705 * calling this function with @enable equal to 'true'.
1706 */
1707void pci_pme_active(struct pci_dev *dev, bool enable)
1708{
1709        u16 pmcsr;
1710
1711        if (!dev->pme_support)
1712                return;
1713
1714        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1715        /* Clear PME_Status by writing 1 to it and enable PME# */
1716        pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1717        if (!enable)
1718                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1719
1720        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1721
1722        /*
1723         * PCI (as opposed to PCIe) PME requires that the device have
1724         * its PME# line hooked up correctly. Not all hardware vendors
1725         * do this, so the PME never gets delivered and the device
1726         * remains asleep. The easiest way around this is to
1727         * periodically walk the list of suspended devices and check
1728         * whether any have their PME flag set. The assumption is that
1729         * we'll wake up often enough anyway that this won't be a huge
1730         * hit, and the power savings from the devices will still be a
1731         * win.
1732         *
1733         * Although PCIe uses in-band PME message instead of PME# line
1734         * to report PME, PME does not work for some PCIe devices in
1735         * reality.  For example, there are devices that set their PME
1736         * status bits, but don't really bother to send a PME message;
1737         * there are PCI Express Root Ports that don't bother to
1738         * trigger interrupts when they receive PME messages from the
1739         * devices below.  So PME poll is used for PCIe devices too.
1740         */
1741
1742        if (dev->pme_poll) {
1743                struct pci_pme_device *pme_dev;
1744                if (enable) {
1745                        pme_dev = kmalloc(sizeof(struct pci_pme_device),
1746                                          GFP_KERNEL);
1747                        if (!pme_dev) {
1748                                dev_warn(&dev->dev, "can't enable PME#\n");
1749                                return;
1750                        }
1751                        pme_dev->dev = dev;
1752                        mutex_lock(&pci_pme_list_mutex);
1753                        list_add(&pme_dev->list, &pci_pme_list);
1754                        if (list_is_singular(&pci_pme_list))
1755                                schedule_delayed_work(&pci_pme_work,
1756                                                      msecs_to_jiffies(PME_TIMEOUT));
1757                        mutex_unlock(&pci_pme_list_mutex);
1758                } else {
1759                        mutex_lock(&pci_pme_list_mutex);
1760                        list_for_each_entry(pme_dev, &pci_pme_list, list) {
1761                                if (pme_dev->dev == dev) {
1762                                        list_del(&pme_dev->list);
1763                                        kfree(pme_dev);
1764                                        break;
1765                                }
1766                        }
1767                        mutex_unlock(&pci_pme_list_mutex);
1768                }
1769        }
1770
1771        dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1772}
1773EXPORT_SYMBOL(pci_pme_active);
1774
1775/**
1776 * __pci_enable_wake - enable PCI device as wakeup event source
1777 * @dev: PCI device affected
1778 * @state: PCI state from which device will issue wakeup events
1779 * @runtime: True if the events are to be generated at run time
1780 * @enable: True to enable event generation; false to disable
1781 *
1782 * This enables the device as a wakeup event source, or disables it.
1783 * When such events involves platform-specific hooks, those hooks are
1784 * called automatically by this routine.
1785 *
1786 * Devices with legacy power management (no standard PCI PM capabilities)
1787 * always require such platform hooks.
1788 *
1789 * RETURN VALUE:
1790 * 0 is returned on success
1791 * -EINVAL is returned if device is not supposed to wake up the system
1792 * Error code depending on the platform is returned if both the platform and
1793 * the native mechanism fail to enable the generation of wake-up events
1794 */
1795int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1796                      bool runtime, bool enable)
1797{
1798        int ret = 0;
1799
1800        if (enable && !runtime && !device_may_wakeup(&dev->dev))
1801                return -EINVAL;
1802
1803        /* Don't do the same thing twice in a row for one device. */
1804        if (!!enable == !!dev->wakeup_prepared)
1805                return 0;
1806
1807        /*
1808         * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1809         * Anderson we should be doing PME# wake enable followed by ACPI wake
1810         * enable.  To disable wake-up we call the platform first, for symmetry.
1811         */
1812
1813        if (enable) {
1814                int error;
1815
1816                if (pci_pme_capable(dev, state))
1817                        pci_pme_active(dev, true);
1818                else
1819                        ret = 1;
1820                error = runtime ? platform_pci_run_wake(dev, true) :
1821                                        platform_pci_sleep_wake(dev, true);
1822                if (ret)
1823                        ret = error;
1824                if (!ret)
1825                        dev->wakeup_prepared = true;
1826        } else {
1827                if (runtime)
1828                        platform_pci_run_wake(dev, false);
1829                else
1830                        platform_pci_sleep_wake(dev, false);
1831                pci_pme_active(dev, false);
1832                dev->wakeup_prepared = false;
1833        }
1834
1835        return ret;
1836}
1837EXPORT_SYMBOL(__pci_enable_wake);
1838
1839/**
1840 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1841 * @dev: PCI device to prepare
1842 * @enable: True to enable wake-up event generation; false to disable
1843 *
1844 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1845 * and this function allows them to set that up cleanly - pci_enable_wake()
1846 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1847 * ordering constraints.
1848 *
1849 * This function only returns error code if the device is not capable of
1850 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1851 * enable wake-up power for it.
1852 */
1853int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1854{
1855        return pci_pme_capable(dev, PCI_D3cold) ?
1856                        pci_enable_wake(dev, PCI_D3cold, enable) :
1857                        pci_enable_wake(dev, PCI_D3hot, enable);
1858}
1859EXPORT_SYMBOL(pci_wake_from_d3);
1860
1861/**
1862 * pci_target_state - find an appropriate low power state for a given PCI dev
1863 * @dev: PCI device
1864 *
1865 * Use underlying platform code to find a supported low power state for @dev.
1866 * If the platform can't manage @dev, return the deepest state from which it
1867 * can generate wake events, based on any available PME info.
1868 */
1869static pci_power_t pci_target_state(struct pci_dev *dev)
1870{
1871        pci_power_t target_state = PCI_D3hot;
1872
1873        if (platform_pci_power_manageable(dev)) {
1874                /*
1875                 * Call the platform to choose the target state of the device
1876                 * and enable wake-up from this state if supported.
1877                 */
1878                pci_power_t state = platform_pci_choose_state(dev);
1879
1880                switch (state) {
1881                case PCI_POWER_ERROR:
1882                case PCI_UNKNOWN:
1883                        break;
1884                case PCI_D1:
1885                case PCI_D2:
1886                        if (pci_no_d1d2(dev))
1887                                break;
1888                default:
1889                        target_state = state;
1890                }
1891        } else if (!dev->pm_cap) {
1892                target_state = PCI_D0;
1893        } else if (device_may_wakeup(&dev->dev)) {
1894                /*
1895                 * Find the deepest state from which the device can generate
1896                 * wake-up events, make it the target state and enable device
1897                 * to generate PME#.
1898                 */
1899                if (dev->pme_support) {
1900                        while (target_state
1901                              && !(dev->pme_support & (1 << target_state)))
1902                                target_state--;
1903                }
1904        }
1905
1906        return target_state;
1907}
1908
1909/**
1910 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1911 * @dev: Device to handle.
1912 *
1913 * Choose the power state appropriate for the device depending on whether
1914 * it can wake up the system and/or is power manageable by the platform
1915 * (PCI_D3hot is the default) and put the device into that state.
1916 */
1917int pci_prepare_to_sleep(struct pci_dev *dev)
1918{
1919        pci_power_t target_state = pci_target_state(dev);
1920        int error;
1921
1922        if (target_state == PCI_POWER_ERROR)
1923                return -EIO;
1924
1925        pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1926
1927        error = pci_set_power_state(dev, target_state);
1928
1929        if (error)
1930                pci_enable_wake(dev, target_state, false);
1931
1932        return error;
1933}
1934EXPORT_SYMBOL(pci_prepare_to_sleep);
1935
1936/**
1937 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1938 * @dev: Device to handle.
1939 *
1940 * Disable device's system wake-up capability and put it into D0.
1941 */
1942int pci_back_from_sleep(struct pci_dev *dev)
1943{
1944        pci_enable_wake(dev, PCI_D0, false);
1945        return pci_set_power_state(dev, PCI_D0);
1946}
1947EXPORT_SYMBOL(pci_back_from_sleep);
1948
1949/**
1950 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1951 * @dev: PCI device being suspended.
1952 *
1953 * Prepare @dev to generate wake-up events at run time and put it into a low
1954 * power state.
1955 */
1956int pci_finish_runtime_suspend(struct pci_dev *dev)
1957{
1958        pci_power_t target_state = pci_target_state(dev);
1959        int error;
1960
1961        if (target_state == PCI_POWER_ERROR)
1962                return -EIO;
1963
1964        dev->runtime_d3cold = target_state == PCI_D3cold;
1965
1966        __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1967
1968        error = pci_set_power_state(dev, target_state);
1969
1970        if (error) {
1971                __pci_enable_wake(dev, target_state, true, false);
1972                dev->runtime_d3cold = false;
1973        }
1974
1975        return error;
1976}
1977
1978/**
1979 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1980 * @dev: Device to check.
1981 *
1982 * Return true if the device itself is capable of generating wake-up events
1983 * (through the platform or using the native PCIe PME) or if the device supports
1984 * PME and one of its upstream bridges can generate wake-up events.
1985 */
1986bool pci_dev_run_wake(struct pci_dev *dev)
1987{
1988        struct pci_bus *bus = dev->bus;
1989
1990        if (device_run_wake(&dev->dev))
1991                return true;
1992
1993        if (!dev->pme_support)
1994                return false;
1995
1996        while (bus->parent) {
1997                struct pci_dev *bridge = bus->self;
1998
1999                if (device_run_wake(&bridge->dev))
2000                        return true;
2001
2002                bus = bus->parent;
2003        }
2004
2005        /* We have reached the root bus. */
2006        if (bus->bridge)
2007                return device_run_wake(bus->bridge);
2008
2009        return false;
2010}
2011EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2012
2013/**
2014 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2015 * @pci_dev: Device to check.
2016 *
2017 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2018 * reconfigured due to wakeup settings difference between system and runtime
2019 * suspend and the current power state of it is suitable for the upcoming
2020 * (system) transition.
2021 */
2022bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2023{
2024        struct device *dev = &pci_dev->dev;
2025
2026        if (!pm_runtime_suspended(dev)
2027            || (device_can_wakeup(dev) && !device_may_wakeup(dev))
2028            || platform_pci_need_resume(pci_dev))
2029                return false;
2030
2031        return pci_target_state(pci_dev) == pci_dev->current_state;
2032}
2033
2034void pci_config_pm_runtime_get(struct pci_dev *pdev)
2035{
2036        struct device *dev = &pdev->dev;
2037        struct device *parent = dev->parent;
2038
2039        if (parent)
2040                pm_runtime_get_sync(parent);
2041        pm_runtime_get_noresume(dev);
2042        /*
2043         * pdev->current_state is set to PCI_D3cold during suspending,
2044         * so wait until suspending completes
2045         */
2046        pm_runtime_barrier(dev);
2047        /*
2048         * Only need to resume devices in D3cold, because config
2049         * registers are still accessible for devices suspended but
2050         * not in D3cold.
2051         */
2052        if (pdev->current_state == PCI_D3cold)
2053                pm_runtime_resume(dev);
2054}
2055
2056void pci_config_pm_runtime_put(struct pci_dev *pdev)
2057{
2058        struct device *dev = &pdev->dev;
2059        struct device *parent = dev->parent;
2060
2061        pm_runtime_put(dev);
2062        if (parent)
2063                pm_runtime_put_sync(parent);
2064}
2065
2066/**
2067 * pci_pm_init - Initialize PM functions of given PCI device
2068 * @dev: PCI device to handle.
2069 */
2070void pci_pm_init(struct pci_dev *dev)
2071{
2072        int pm;
2073        u16 pmc;
2074
2075        pm_runtime_forbid(&dev->dev);
2076        pm_runtime_set_active(&dev->dev);
2077        pm_runtime_enable(&dev->dev);
2078        device_enable_async_suspend(&dev->dev);
2079        dev->wakeup_prepared = false;
2080
2081        dev->pm_cap = 0;
2082        dev->pme_support = 0;
2083
2084        /* find PCI PM capability in list */
2085        pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2086        if (!pm)
2087                return;
2088        /* Check device's ability to generate PME# */
2089        pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2090
2091        if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2092                dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2093                        pmc & PCI_PM_CAP_VER_MASK);
2094                return;
2095        }
2096
2097        dev->pm_cap = pm;
2098        dev->d3_delay = PCI_PM_D3_WAIT;
2099        dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2100        dev->d3cold_allowed = true;
2101
2102        dev->d1_support = false;
2103        dev->d2_support = false;
2104        if (!pci_no_d1d2(dev)) {
2105                if (pmc & PCI_PM_CAP_D1)
2106                        dev->d1_support = true;
2107                if (pmc & PCI_PM_CAP_D2)
2108                        dev->d2_support = true;
2109
2110                if (dev->d1_support || dev->d2_support)
2111                        dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2112                                   dev->d1_support ? " D1" : "",
2113                                   dev->d2_support ? " D2" : "");
2114        }
2115
2116        pmc &= PCI_PM_CAP_PME_MASK;
2117        if (pmc) {
2118                dev_printk(KERN_DEBUG, &dev->dev,
2119                         "PME# supported from%s%s%s%s%s\n",
2120                         (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2121                         (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2122                         (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2123                         (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2124                         (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2125                dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2126                dev->pme_poll = true;
2127                /*
2128                 * Make device's PM flags reflect the wake-up capability, but
2129                 * let the user space enable it to wake up the system as needed.
2130                 */
2131                device_set_wakeup_capable(&dev->dev, true);
2132                /* Disable the PME# generation functionality */
2133                pci_pme_active(dev, false);
2134        }
2135}
2136
2137static void pci_add_saved_cap(struct pci_dev *pci_dev,
2138        struct pci_cap_saved_state *new_cap)
2139{
2140        hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2141}
2142
2143/**
2144 * _pci_add_cap_save_buffer - allocate buffer for saving given
2145 *                            capability registers
2146 * @dev: the PCI device
2147 * @cap: the capability to allocate the buffer for
2148 * @extended: Standard or Extended capability ID
2149 * @size: requested size of the buffer
2150 */
2151static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2152                                    bool extended, unsigned int size)
2153{
2154        int pos;
2155        struct pci_cap_saved_state *save_state;
2156
2157        if (extended)
2158                pos = pci_find_ext_capability(dev, cap);
2159        else
2160                pos = pci_find_capability(dev, cap);
2161
2162        if (pos <= 0)
2163                return 0;
2164
2165        save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2166        if (!save_state)
2167                return -ENOMEM;
2168
2169        save_state->cap.cap_nr = cap;
2170        save_state->cap.cap_extended = extended;
2171        save_state->cap.size = size;
2172        pci_add_saved_cap(dev, save_state);
2173
2174        return 0;
2175}
2176
2177int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2178{
2179        return _pci_add_cap_save_buffer(dev, cap, false, size);
2180}
2181
2182int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2183{
2184        return _pci_add_cap_save_buffer(dev, cap, true, size);
2185}
2186
2187/**
2188 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2189 * @dev: the PCI device
2190 */
2191void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2192{
2193        int error;
2194
2195        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2196                                        PCI_EXP_SAVE_REGS * sizeof(u16));
2197        if (error)
2198                dev_err(&dev->dev,
2199                        "unable to preallocate PCI Express save buffer\n");
2200
2201        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2202        if (error)
2203                dev_err(&dev->dev,
2204                        "unable to preallocate PCI-X save buffer\n");
2205
2206        pci_allocate_vc_save_buffers(dev);
2207}
2208
2209void pci_free_cap_save_buffers(struct pci_dev *dev)
2210{
2211        struct pci_cap_saved_state *tmp;
2212        struct hlist_node *n;
2213
2214        hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2215                kfree(tmp);
2216}
2217
2218/**
2219 * pci_configure_ari - enable or disable ARI forwarding
2220 * @dev: the PCI device
2221 *
2222 * If @dev and its upstream bridge both support ARI, enable ARI in the
2223 * bridge.  Otherwise, disable ARI in the bridge.
2224 */
2225void pci_configure_ari(struct pci_dev *dev)
2226{
2227        u32 cap;
2228        struct pci_dev *bridge;
2229
2230        if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2231                return;
2232
2233        bridge = dev->bus->self;
2234        if (!bridge)
2235                return;
2236
2237        pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2238        if (!(cap & PCI_EXP_DEVCAP2_ARI))
2239                return;
2240
2241        if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2242                pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2243                                         PCI_EXP_DEVCTL2_ARI);
2244                bridge->ari_enabled = 1;
2245        } else {
2246                pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2247                                           PCI_EXP_DEVCTL2_ARI);
2248                bridge->ari_enabled = 0;
2249        }
2250}
2251
2252static int pci_acs_enable;
2253
2254/**
2255 * pci_request_acs - ask for ACS to be enabled if supported
2256 */
2257void pci_request_acs(void)
2258{
2259        pci_acs_enable = 1;
2260}
2261
2262/**
2263 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2264 * @dev: the PCI device
2265 */
2266static int pci_std_enable_acs(struct pci_dev *dev)
2267{
2268        int pos;
2269        u16 cap;
2270        u16 ctrl;
2271
2272        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2273        if (!pos)
2274                return -ENODEV;
2275
2276        pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2277        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2278
2279        /* Source Validation */
2280        ctrl |= (cap & PCI_ACS_SV);
2281
2282        /* P2P Request Redirect */
2283        ctrl |= (cap & PCI_ACS_RR);
2284
2285        /* P2P Completion Redirect */
2286        ctrl |= (cap & PCI_ACS_CR);
2287
2288        /* Upstream Forwarding */
2289        ctrl |= (cap & PCI_ACS_UF);
2290
2291        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2292
2293        return 0;
2294}
2295
2296/**
2297 * pci_enable_acs - enable ACS if hardware support it
2298 * @dev: the PCI device
2299 */
2300void pci_enable_acs(struct pci_dev *dev)
2301{
2302        if (!pci_acs_enable)
2303                return;
2304
2305        if (!pci_std_enable_acs(dev))
2306                return;
2307
2308        pci_dev_specific_enable_acs(dev);
2309}
2310
2311static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2312{
2313        int pos;
2314        u16 cap, ctrl;
2315
2316        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2317        if (!pos)
2318                return false;
2319
2320        /*
2321         * Except for egress control, capabilities are either required
2322         * or only required if controllable.  Features missing from the
2323         * capability field can therefore be assumed as hard-wired enabled.
2324         */
2325        pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2326        acs_flags &= (cap | PCI_ACS_EC);
2327
2328        pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2329        return (ctrl & acs_flags) == acs_flags;
2330}
2331
2332/**
2333 * pci_acs_enabled - test ACS against required flags for a given device
2334 * @pdev: device to test
2335 * @acs_flags: required PCI ACS flags
2336 *
2337 * Return true if the device supports the provided flags.  Automatically
2338 * filters out flags that are not implemented on multifunction devices.
2339 *
2340 * Note that this interface checks the effective ACS capabilities of the
2341 * device rather than the actual capabilities.  For instance, most single
2342 * function endpoints are not required to support ACS because they have no
2343 * opportunity for peer-to-peer access.  We therefore return 'true'
2344 * regardless of whether the device exposes an ACS capability.  This makes
2345 * it much easier for callers of this function to ignore the actual type
2346 * or topology of the device when testing ACS support.
2347 */
2348bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2349{
2350        int ret;
2351
2352        ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2353        if (ret >= 0)
2354                return ret > 0;
2355
2356        /*
2357         * Conventional PCI and PCI-X devices never support ACS, either
2358         * effectively or actually.  The shared bus topology implies that
2359         * any device on the bus can receive or snoop DMA.
2360         */
2361        if (!pci_is_pcie(pdev))
2362                return false;
2363
2364        switch (pci_pcie_type(pdev)) {
2365        /*
2366         * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2367         * but since their primary interface is PCI/X, we conservatively
2368         * handle them as we would a non-PCIe device.
2369         */
2370        case PCI_EXP_TYPE_PCIE_BRIDGE:
2371        /*
2372         * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2373         * applicable... must never implement an ACS Extended Capability...".
2374         * This seems arbitrary, but we take a conservative interpretation
2375         * of this statement.
2376         */
2377        case PCI_EXP_TYPE_PCI_BRIDGE:
2378        case PCI_EXP_TYPE_RC_EC:
2379                return false;
2380        /*
2381         * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2382         * implement ACS in order to indicate their peer-to-peer capabilities,
2383         * regardless of whether they are single- or multi-function devices.
2384         */
2385        case PCI_EXP_TYPE_DOWNSTREAM:
2386        case PCI_EXP_TYPE_ROOT_PORT:
2387                return pci_acs_flags_enabled(pdev, acs_flags);
2388        /*
2389         * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2390         * implemented by the remaining PCIe types to indicate peer-to-peer
2391         * capabilities, but only when they are part of a multifunction
2392         * device.  The footnote for section 6.12 indicates the specific
2393         * PCIe types included here.
2394         */
2395        case PCI_EXP_TYPE_ENDPOINT:
2396        case PCI_EXP_TYPE_UPSTREAM:
2397        case PCI_EXP_TYPE_LEG_END:
2398        case PCI_EXP_TYPE_RC_END:
2399                if (!pdev->multifunction)
2400                        break;
2401
2402                return pci_acs_flags_enabled(pdev, acs_flags);
2403        }
2404
2405        /*
2406         * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2407         * to single function devices with the exception of downstream ports.
2408         */
2409        return true;
2410}
2411
2412/**
2413 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2414 * @start: starting downstream device
2415 * @end: ending upstream device or NULL to search to the root bus
2416 * @acs_flags: required flags
2417 *
2418 * Walk up a device tree from start to end testing PCI ACS support.  If
2419 * any step along the way does not support the required flags, return false.
2420 */
2421bool pci_acs_path_enabled(struct pci_dev *start,
2422                          struct pci_dev *end, u16 acs_flags)
2423{
2424        struct pci_dev *pdev, *parent = start;
2425
2426        do {
2427                pdev = parent;
2428
2429                if (!pci_acs_enabled(pdev, acs_flags))
2430                        return false;
2431
2432                if (pci_is_root_bus(pdev->bus))
2433                        return (end == NULL);
2434
2435                parent = pdev->bus->self;
2436        } while (pdev != end);
2437
2438        return true;
2439}
2440
2441/**
2442 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2443 * @dev: the PCI device
2444 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2445 *
2446 * Perform INTx swizzling for a device behind one level of bridge.  This is
2447 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2448 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2449 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2450 * the PCI Express Base Specification, Revision 2.1)
2451 */
2452u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2453{
2454        int slot;
2455
2456        if (pci_ari_enabled(dev->bus))
2457                slot = 0;
2458        else
2459                slot = PCI_SLOT(dev->devfn);
2460
2461        return (((pin - 1) + slot) % 4) + 1;
2462}
2463
2464int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2465{
2466        u8 pin;
2467
2468        pin = dev->pin;
2469        if (!pin)
2470                return -1;
2471
2472        while (!pci_is_root_bus(dev->bus)) {
2473                pin = pci_swizzle_interrupt_pin(dev, pin);
2474                dev = dev->bus->self;
2475        }
2476        *bridge = dev;
2477        return pin;
2478}
2479
2480/**
2481 * pci_common_swizzle - swizzle INTx all the way to root bridge
2482 * @dev: the PCI device
2483 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2484 *
2485 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2486 * bridges all the way up to a PCI root bus.
2487 */
2488u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2489{
2490        u8 pin = *pinp;
2491
2492        while (!pci_is_root_bus(dev->bus)) {
2493                pin = pci_swizzle_interrupt_pin(dev, pin);
2494                dev = dev->bus->self;
2495        }
2496        *pinp = pin;
2497        return PCI_SLOT(dev->devfn);
2498}
2499EXPORT_SYMBOL_GPL(pci_common_swizzle);
2500
2501/**
2502 *      pci_release_region - Release a PCI bar
2503 *      @pdev: PCI device whose resources were previously reserved by pci_request_region
2504 *      @bar: BAR to release
2505 *
2506 *      Releases the PCI I/O and memory resources previously reserved by a
2507 *      successful call to pci_request_region.  Call this function only
2508 *      after all use of the PCI regions has ceased.
2509 */
2510void pci_release_region(struct pci_dev *pdev, int bar)
2511{
2512        struct pci_devres *dr;
2513
2514        if (pci_resource_len(pdev, bar) == 0)
2515                return;
2516        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2517                release_region(pci_resource_start(pdev, bar),
2518                                pci_resource_len(pdev, bar));
2519        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2520                release_mem_region(pci_resource_start(pdev, bar),
2521                                pci_resource_len(pdev, bar));
2522
2523        dr = find_pci_dr(pdev);
2524        if (dr)
2525                dr->region_mask &= ~(1 << bar);
2526}
2527EXPORT_SYMBOL(pci_release_region);
2528
2529/**
2530 *      __pci_request_region - Reserved PCI I/O and memory resource
2531 *      @pdev: PCI device whose resources are to be reserved
2532 *      @bar: BAR to be reserved
2533 *      @res_name: Name to be associated with resource.
2534 *      @exclusive: whether the region access is exclusive or not
2535 *
2536 *      Mark the PCI region associated with PCI device @pdev BR @bar as
2537 *      being reserved by owner @res_name.  Do not access any
2538 *      address inside the PCI regions unless this call returns
2539 *      successfully.
2540 *
2541 *      If @exclusive is set, then the region is marked so that userspace
2542 *      is explicitly not allowed to map the resource via /dev/mem or
2543 *      sysfs MMIO access.
2544 *
2545 *      Returns 0 on success, or %EBUSY on error.  A warning
2546 *      message is also printed on failure.
2547 */
2548static int __pci_request_region(struct pci_dev *pdev, int bar,
2549                                const char *res_name, int exclusive)
2550{
2551        struct pci_devres *dr;
2552
2553        if (pci_resource_len(pdev, bar) == 0)
2554                return 0;
2555
2556        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2557                if (!request_region(pci_resource_start(pdev, bar),
2558                            pci_resource_len(pdev, bar), res_name))
2559                        goto err_out;
2560        } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2561                if (!__request_mem_region(pci_resource_start(pdev, bar),
2562                                        pci_resource_len(pdev, bar), res_name,
2563                                        exclusive))
2564                        goto err_out;
2565        }
2566
2567        dr = find_pci_dr(pdev);
2568        if (dr)
2569                dr->region_mask |= 1 << bar;
2570
2571        return 0;
2572
2573err_out:
2574        dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2575                 &pdev->resource[bar]);
2576        return -EBUSY;
2577}
2578
2579/**
2580 *      pci_request_region - Reserve PCI I/O and memory resource
2581 *      @pdev: PCI device whose resources are to be reserved
2582 *      @bar: BAR to be reserved
2583 *      @res_name: Name to be associated with resource
2584 *
2585 *      Mark the PCI region associated with PCI device @pdev BAR @bar as
2586 *      being reserved by owner @res_name.  Do not access any
2587 *      address inside the PCI regions unless this call returns
2588 *      successfully.
2589 *
2590 *      Returns 0 on success, or %EBUSY on error.  A warning
2591 *      message is also printed on failure.
2592 */
2593int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2594{
2595        return __pci_request_region(pdev, bar, res_name, 0);
2596}
2597EXPORT_SYMBOL(pci_request_region);
2598
2599/**
2600 *      pci_request_region_exclusive - Reserved PCI I/O and memory resource
2601 *      @pdev: PCI device whose resources are to be reserved
2602 *      @bar: BAR to be reserved
2603 *      @res_name: Name to be associated with resource.
2604 *
2605 *      Mark the PCI region associated with PCI device @pdev BR @bar as
2606 *      being reserved by owner @res_name.  Do not access any
2607 *      address inside the PCI regions unless this call returns
2608 *      successfully.
2609 *
2610 *      Returns 0 on success, or %EBUSY on error.  A warning
2611 *      message is also printed on failure.
2612 *
2613 *      The key difference that _exclusive makes it that userspace is
2614 *      explicitly not allowed to map the resource via /dev/mem or
2615 *      sysfs.
2616 */
2617int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2618                                 const char *res_name)
2619{
2620        return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2621}
2622EXPORT_SYMBOL(pci_request_region_exclusive);
2623
2624/**
2625 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2626 * @pdev: PCI device whose resources were previously reserved
2627 * @bars: Bitmask of BARs to be released
2628 *
2629 * Release selected PCI I/O and memory resources previously reserved.
2630 * Call this function only after all use of the PCI regions has ceased.
2631 */
2632void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2633{
2634        int i;
2635
2636        for (i = 0; i < 6; i++)
2637                if (bars & (1 << i))
2638                        pci_release_region(pdev, i);
2639}
2640EXPORT_SYMBOL(pci_release_selected_regions);
2641
2642static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2643                                          const char *res_name, int excl)
2644{
2645        int i;
2646
2647        for (i = 0; i < 6; i++)
2648                if (bars & (1 << i))
2649                        if (__pci_request_region(pdev, i, res_name, excl))
2650                                goto err_out;
2651        return 0;
2652
2653err_out:
2654        while (--i >= 0)
2655                if (bars & (1 << i))
2656                        pci_release_region(pdev, i);
2657
2658        return -EBUSY;
2659}
2660
2661
2662/**
2663 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2664 * @pdev: PCI device whose resources are to be reserved
2665 * @bars: Bitmask of BARs to be requested
2666 * @res_name: Name to be associated with resource
2667 */
2668int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2669                                 const char *res_name)
2670{
2671        return __pci_request_selected_regions(pdev, bars, res_name, 0);
2672}
2673EXPORT_SYMBOL(pci_request_selected_regions);
2674
2675int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2676                                           const char *res_name)
2677{
2678        return __pci_request_selected_regions(pdev, bars, res_name,
2679                        IORESOURCE_EXCLUSIVE);
2680}
2681EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2682
2683/**
2684 *      pci_release_regions - Release reserved PCI I/O and memory resources
2685 *      @pdev: PCI device whose resources were previously reserved by pci_request_regions
2686 *
2687 *      Releases all PCI I/O and memory resources previously reserved by a
2688 *      successful call to pci_request_regions.  Call this function only
2689 *      after all use of the PCI regions has ceased.
2690 */
2691
2692void pci_release_regions(struct pci_dev *pdev)
2693{
2694        pci_release_selected_regions(pdev, (1 << 6) - 1);
2695}
2696EXPORT_SYMBOL(pci_release_regions);
2697
2698/**
2699 *      pci_request_regions - Reserved PCI I/O and memory resources
2700 *      @pdev: PCI device whose resources are to be reserved
2701 *      @res_name: Name to be associated with resource.
2702 *
2703 *      Mark all PCI regions associated with PCI device @pdev as
2704 *      being reserved by owner @res_name.  Do not access any
2705 *      address inside the PCI regions unless this call returns
2706 *      successfully.
2707 *
2708 *      Returns 0 on success, or %EBUSY on error.  A warning
2709 *      message is also printed on failure.
2710 */
2711int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2712{
2713        return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2714}
2715EXPORT_SYMBOL(pci_request_regions);
2716
2717/**
2718 *      pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2719 *      @pdev: PCI device whose resources are to be reserved
2720 *      @res_name: Name to be associated with resource.
2721 *
2722 *      Mark all PCI regions associated with PCI device @pdev as
2723 *      being reserved by owner @res_name.  Do not access any
2724 *      address inside the PCI regions unless this call returns
2725 *      successfully.
2726 *
2727 *      pci_request_regions_exclusive() will mark the region so that
2728 *      /dev/mem and the sysfs MMIO access will not be allowed.
2729 *
2730 *      Returns 0 on success, or %EBUSY on error.  A warning
2731 *      message is also printed on failure.
2732 */
2733int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2734{
2735        return pci_request_selected_regions_exclusive(pdev,
2736                                        ((1 << 6) - 1), res_name);
2737}
2738EXPORT_SYMBOL(pci_request_regions_exclusive);
2739
2740/**
2741 *      pci_remap_iospace - Remap the memory mapped I/O space
2742 *      @res: Resource describing the I/O space
2743 *      @phys_addr: physical address of range to be mapped
2744 *
2745 *      Remap the memory mapped I/O space described by the @res
2746 *      and the CPU physical address @phys_addr into virtual address space.
2747 *      Only architectures that have memory mapped IO functions defined
2748 *      (and the PCI_IOBASE value defined) should call this function.
2749 */
2750int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
2751{
2752#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
2753        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
2754
2755        if (!(res->flags & IORESOURCE_IO))
2756                return -EINVAL;
2757
2758        if (res->end > IO_SPACE_LIMIT)
2759                return -EINVAL;
2760
2761        return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
2762                                  pgprot_device(PAGE_KERNEL));
2763#else
2764        /* this architecture does not have memory mapped I/O space,
2765           so this function should never be called */
2766        WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
2767        return -ENODEV;
2768#endif
2769}
2770
2771static void __pci_set_master(struct pci_dev *dev, bool enable)
2772{
2773        u16 old_cmd, cmd;
2774
2775        pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2776        if (enable)
2777                cmd = old_cmd | PCI_COMMAND_MASTER;
2778        else
2779                cmd = old_cmd & ~PCI_COMMAND_MASTER;
2780        if (cmd != old_cmd) {
2781                dev_dbg(&dev->dev, "%s bus mastering\n",
2782                        enable ? "enabling" : "disabling");
2783                pci_write_config_word(dev, PCI_COMMAND, cmd);
2784        }
2785        dev->is_busmaster = enable;
2786}
2787
2788/**
2789 * pcibios_setup - process "pci=" kernel boot arguments
2790 * @str: string used to pass in "pci=" kernel boot arguments
2791 *
2792 * Process kernel boot arguments.  This is the default implementation.
2793 * Architecture specific implementations can override this as necessary.
2794 */
2795char * __weak __init pcibios_setup(char *str)
2796{
2797        return str;
2798}
2799
2800/**
2801 * pcibios_set_master - enable PCI bus-mastering for device dev
2802 * @dev: the PCI device to enable
2803 *
2804 * Enables PCI bus-mastering for the device.  This is the default
2805 * implementation.  Architecture specific implementations can override
2806 * this if necessary.
2807 */
2808void __weak pcibios_set_master(struct pci_dev *dev)
2809{
2810        u8 lat;
2811
2812        /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2813        if (pci_is_pcie(dev))
2814                return;
2815
2816        pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2817        if (lat < 16)
2818                lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2819        else if (lat > pcibios_max_latency)
2820                lat = pcibios_max_latency;
2821        else
2822                return;
2823
2824        pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2825}
2826
2827/**
2828 * pci_set_master - enables bus-mastering for device dev
2829 * @dev: the PCI device to enable
2830 *
2831 * Enables bus-mastering on the device and calls pcibios_set_master()
2832 * to do the needed arch specific settings.
2833 */
2834void pci_set_master(struct pci_dev *dev)
2835{
2836        __pci_set_master(dev, true);
2837        pcibios_set_master(dev);
2838}
2839EXPORT_SYMBOL(pci_set_master);
2840
2841/**
2842 * pci_clear_master - disables bus-mastering for device dev
2843 * @dev: the PCI device to disable
2844 */
2845void pci_clear_master(struct pci_dev *dev)
2846{
2847        __pci_set_master(dev, false);
2848}
2849EXPORT_SYMBOL(pci_clear_master);
2850
2851/**
2852 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2853 * @dev: the PCI device for which MWI is to be enabled
2854 *
2855 * Helper function for pci_set_mwi.
2856 * Originally copied from drivers/net/acenic.c.
2857 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2858 *
2859 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2860 */
2861int pci_set_cacheline_size(struct pci_dev *dev)
2862{
2863        u8 cacheline_size;
2864
2865        if (!pci_cache_line_size)
2866                return -EINVAL;
2867
2868        /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2869           equal to or multiple of the right value. */
2870        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2871        if (cacheline_size >= pci_cache_line_size &&
2872            (cacheline_size % pci_cache_line_size) == 0)
2873                return 0;
2874
2875        /* Write the correct value. */
2876        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2877        /* Read it back. */
2878        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2879        if (cacheline_size == pci_cache_line_size)
2880                return 0;
2881
2882        dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
2883                   pci_cache_line_size << 2);
2884
2885        return -EINVAL;
2886}
2887EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2888
2889/**
2890 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2891 * @dev: the PCI device for which MWI is enabled
2892 *
2893 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2894 *
2895 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2896 */
2897int pci_set_mwi(struct pci_dev *dev)
2898{
2899#ifdef PCI_DISABLE_MWI
2900        return 0;
2901#else
2902        int rc;
2903        u16 cmd;
2904
2905        rc = pci_set_cacheline_size(dev);
2906        if (rc)
2907                return rc;
2908
2909        pci_read_config_word(dev, PCI_COMMAND, &cmd);
2910        if (!(cmd & PCI_COMMAND_INVALIDATE)) {
2911                dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2912                cmd |= PCI_COMMAND_INVALIDATE;
2913                pci_write_config_word(dev, PCI_COMMAND, cmd);
2914        }
2915        return 0;
2916#endif
2917}
2918EXPORT_SYMBOL(pci_set_mwi);
2919
2920/**
2921 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2922 * @dev: the PCI device for which MWI is enabled
2923 *
2924 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2925 * Callers are not required to check the return value.
2926 *
2927 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2928 */
2929int pci_try_set_mwi(struct pci_dev *dev)
2930{
2931#ifdef PCI_DISABLE_MWI
2932        return 0;
2933#else
2934        return pci_set_mwi(dev);
2935#endif
2936}
2937EXPORT_SYMBOL(pci_try_set_mwi);
2938
2939/**
2940 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2941 * @dev: the PCI device to disable
2942 *
2943 * Disables PCI Memory-Write-Invalidate transaction on the device
2944 */
2945void pci_clear_mwi(struct pci_dev *dev)
2946{
2947#ifndef PCI_DISABLE_MWI
2948        u16 cmd;
2949
2950        pci_read_config_word(dev, PCI_COMMAND, &cmd);
2951        if (cmd & PCI_COMMAND_INVALIDATE) {
2952                cmd &= ~PCI_COMMAND_INVALIDATE;
2953                pci_write_config_word(dev, PCI_COMMAND, cmd);
2954        }
2955#endif
2956}
2957EXPORT_SYMBOL(pci_clear_mwi);
2958
2959/**
2960 * pci_intx - enables/disables PCI INTx for device dev
2961 * @pdev: the PCI device to operate on
2962 * @enable: boolean: whether to enable or disable PCI INTx
2963 *
2964 * Enables/disables PCI INTx for device dev
2965 */
2966void pci_intx(struct pci_dev *pdev, int enable)
2967{
2968        u16 pci_command, new;
2969
2970        pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2971
2972        if (enable)
2973                new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2974        else
2975                new = pci_command | PCI_COMMAND_INTX_DISABLE;
2976
2977        if (new != pci_command) {
2978                struct pci_devres *dr;
2979
2980                pci_write_config_word(pdev, PCI_COMMAND, new);
2981
2982                dr = find_pci_dr(pdev);
2983                if (dr && !dr->restore_intx) {
2984                        dr->restore_intx = 1;
2985                        dr->orig_intx = !enable;
2986                }
2987        }
2988}
2989EXPORT_SYMBOL_GPL(pci_intx);
2990
2991/**
2992 * pci_intx_mask_supported - probe for INTx masking support
2993 * @dev: the PCI device to operate on
2994 *
2995 * Check if the device dev support INTx masking via the config space
2996 * command word.
2997 */
2998bool pci_intx_mask_supported(struct pci_dev *dev)
2999{
3000        bool mask_supported = false;
3001        u16 orig, new;
3002
3003        if (dev->broken_intx_masking)
3004                return false;
3005
3006        pci_cfg_access_lock(dev);
3007
3008        pci_read_config_word(dev, PCI_COMMAND, &orig);
3009        pci_write_config_word(dev, PCI_COMMAND,
3010                              orig ^ PCI_COMMAND_INTX_DISABLE);
3011        pci_read_config_word(dev, PCI_COMMAND, &new);
3012
3013        /*
3014         * There's no way to protect against hardware bugs or detect them
3015         * reliably, but as long as we know what the value should be, let's
3016         * go ahead and check it.
3017         */
3018        if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3019                dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3020                        orig, new);
3021        } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3022                mask_supported = true;
3023                pci_write_config_word(dev, PCI_COMMAND, orig);
3024        }
3025
3026        pci_cfg_access_unlock(dev);
3027        return mask_supported;
3028}
3029EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3030
3031static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3032{
3033        struct pci_bus *bus = dev->bus;
3034        bool mask_updated = true;
3035        u32 cmd_status_dword;
3036        u16 origcmd, newcmd;
3037        unsigned long flags;
3038        bool irq_pending;
3039
3040        /*
3041         * We do a single dword read to retrieve both command and status.
3042         * Document assumptions that make this possible.
3043         */
3044        BUILD_BUG_ON(PCI_COMMAND % 4);
3045        BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3046
3047        raw_spin_lock_irqsave(&pci_lock, flags);
3048
3049        bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3050
3051        irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3052
3053        /*
3054         * Check interrupt status register to see whether our device
3055         * triggered the interrupt (when masking) or the next IRQ is
3056         * already pending (when unmasking).
3057         */
3058        if (mask != irq_pending) {
3059                mask_updated = false;
3060                goto done;
3061        }
3062
3063        origcmd = cmd_status_dword;
3064        newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3065        if (mask)
3066                newcmd |= PCI_COMMAND_INTX_DISABLE;
3067        if (newcmd != origcmd)
3068                bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3069
3070done:
3071        raw_spin_unlock_irqrestore(&pci_lock, flags);
3072
3073        return mask_updated;
3074}
3075
3076/**
3077 * pci_check_and_mask_intx - mask INTx on pending interrupt
3078 * @dev: the PCI device to operate on
3079 *
3080 * Check if the device dev has its INTx line asserted, mask it and
3081 * return true in that case. False is returned if not interrupt was
3082 * pending.
3083 */
3084bool pci_check_and_mask_intx(struct pci_dev *dev)
3085{
3086        return pci_check_and_set_intx_mask(dev, true);
3087}
3088EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3089
3090/**
3091 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3092 * @dev: the PCI device to operate on
3093 *
3094 * Check if the device dev has its INTx line asserted, unmask it if not
3095 * and return true. False is returned and the mask remains active if
3096 * there was still an interrupt pending.
3097 */
3098bool pci_check_and_unmask_intx(struct pci_dev *dev)
3099{
3100        return pci_check_and_set_intx_mask(dev, false);
3101}
3102EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3103
3104/**
3105 * pci_msi_off - disables any MSI or MSI-X capabilities
3106 * @dev: the PCI device to operate on
3107 *
3108 * If you want to use MSI, see pci_enable_msi() and friends.
3109 * This is a lower-level primitive that allows us to disable
3110 * MSI operation at the device level.
3111 */
3112void pci_msi_off(struct pci_dev *dev)
3113{
3114        int pos;
3115        u16 control;
3116
3117        /*
3118         * This looks like it could go in msi.c, but we need it even when
3119         * CONFIG_PCI_MSI=n.  For the same reason, we can't use
3120         * dev->msi_cap or dev->msix_cap here.
3121         */
3122        pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3123        if (pos) {
3124                pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3125                control &= ~PCI_MSI_FLAGS_ENABLE;
3126                pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3127        }
3128        pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3129        if (pos) {
3130                pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3131                control &= ~PCI_MSIX_FLAGS_ENABLE;
3132                pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3133        }
3134}
3135EXPORT_SYMBOL_GPL(pci_msi_off);
3136
3137int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3138{
3139        return dma_set_max_seg_size(&dev->dev, size);
3140}
3141EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3142
3143int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3144{
3145        return dma_set_seg_boundary(&dev->dev, mask);
3146}
3147EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3148
3149/**
3150 * pci_wait_for_pending_transaction - waits for pending transaction
3151 * @dev: the PCI device to operate on
3152 *
3153 * Return 0 if transaction is pending 1 otherwise.
3154 */
3155int pci_wait_for_pending_transaction(struct pci_dev *dev)
3156{
3157        if (!pci_is_pcie(dev))
3158                return 1;
3159
3160        return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3161                                    PCI_EXP_DEVSTA_TRPND);
3162}
3163EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3164
3165static int pcie_flr(struct pci_dev *dev, int probe)
3166{
3167        u32 cap;
3168
3169        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3170        if (!(cap & PCI_EXP_DEVCAP_FLR))
3171                return -ENOTTY;
3172
3173        if (probe)
3174                return 0;
3175
3176        if (!pci_wait_for_pending_transaction(dev))
3177                dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3178
3179        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3180        msleep(100);
3181        return 0;
3182}
3183
3184static int pci_af_flr(struct pci_dev *dev, int probe)
3185{
3186        int pos;
3187        u8 cap;
3188
3189        pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3190        if (!pos)
3191                return -ENOTTY;
3192
3193        pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3194        if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3195                return -ENOTTY;
3196
3197        if (probe)
3198                return 0;
3199
3200        /*
3201         * Wait for Transaction Pending bit to clear.  A word-aligned test
3202         * is used, so we use the conrol offset rather than status and shift
3203         * the test bit to match.
3204         */
3205        if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3206                                 PCI_AF_STATUS_TP << 8))
3207                dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3208
3209        pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3210        msleep(100);
3211        return 0;
3212}
3213
3214/**
3215 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3216 * @dev: Device to reset.
3217 * @probe: If set, only check if the device can be reset this way.
3218 *
3219 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3220 * unset, it will be reinitialized internally when going from PCI_D3hot to
3221 * PCI_D0.  If that's the case and the device is not in a low-power state
3222 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3223 *
3224 * NOTE: This causes the caller to sleep for twice the device power transition
3225 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3226 * by default (i.e. unless the @dev's d3_delay field has a different value).
3227 * Moreover, only devices in D0 can be reset by this function.
3228 */
3229static int pci_pm_reset(struct pci_dev *dev, int probe)
3230{
3231        u16 csr;
3232
3233        if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3234                return -ENOTTY;
3235
3236        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3237        if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3238                return -ENOTTY;
3239
3240        if (probe)
3241                return 0;
3242
3243        if (dev->current_state != PCI_D0)
3244                return -EINVAL;
3245
3246        csr &= ~PCI_PM_CTRL_STATE_MASK;
3247        csr |= PCI_D3hot;
3248        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3249        pci_dev_d3_sleep(dev);
3250
3251        csr &= ~PCI_PM_CTRL_STATE_MASK;
3252        csr |= PCI_D0;
3253        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3254        pci_dev_d3_sleep(dev);
3255
3256        return 0;
3257}
3258
3259void pci_reset_secondary_bus(struct pci_dev *dev)
3260{
3261        u16 ctrl;
3262
3263        pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3264        ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3265        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3266        /*
3267         * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3268         * this to 2ms to ensure that we meet the minimum requirement.
3269         */
3270        msleep(2);
3271
3272        ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3273        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3274
3275        /*
3276         * Trhfa for conventional PCI is 2^25 clock cycles.
3277         * Assuming a minimum 33MHz clock this results in a 1s
3278         * delay before we can consider subordinate devices to
3279         * be re-initialized.  PCIe has some ways to shorten this,
3280         * but we don't make use of them yet.
3281         */
3282        ssleep(1);
3283}
3284
3285void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3286{
3287        pci_reset_secondary_bus(dev);
3288}
3289
3290/**
3291 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3292 * @dev: Bridge device
3293 *
3294 * Use the bridge control register to assert reset on the secondary bus.
3295 * Devices on the secondary bus are left in power-on state.
3296 */
3297void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3298{
3299        pcibios_reset_secondary_bus(dev);
3300}
3301EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3302
3303static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3304{
3305        struct pci_dev *pdev;
3306
3307        if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3308            !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3309                return -ENOTTY;
3310
3311        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3312                if (pdev != dev)
3313                        return -ENOTTY;
3314
3315        if (probe)
3316                return 0;
3317
3318        pci_reset_bridge_secondary_bus(dev->bus->self);
3319
3320        return 0;
3321}
3322
3323static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3324{
3325        int rc = -ENOTTY;
3326
3327        if (!hotplug || !try_module_get(hotplug->ops->owner))
3328                return rc;
3329
3330        if (hotplug->ops->reset_slot)
3331                rc = hotplug->ops->reset_slot(hotplug, probe);
3332
3333        module_put(hotplug->ops->owner);
3334
3335        return rc;
3336}
3337
3338static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3339{
3340        struct pci_dev *pdev;
3341
3342        if (dev->subordinate || !dev->slot ||
3343            dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3344                return -ENOTTY;
3345
3346        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3347                if (pdev != dev && pdev->slot == dev->slot)
3348                        return -ENOTTY;
3349
3350        return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3351}
3352
3353static int __pci_dev_reset(struct pci_dev *dev, int probe)
3354{
3355        int rc;
3356
3357        might_sleep();
3358
3359        rc = pci_dev_specific_reset(dev, probe);
3360        if (rc != -ENOTTY)
3361                goto done;
3362
3363        rc = pcie_flr(dev, probe);
3364        if (rc != -ENOTTY)
3365                goto done;
3366
3367        rc = pci_af_flr(dev, probe);
3368        if (rc != -ENOTTY)
3369                goto done;
3370
3371        rc = pci_pm_reset(dev, probe);
3372        if (rc != -ENOTTY)
3373                goto done;
3374
3375        rc = pci_dev_reset_slot_function(dev, probe);
3376        if (rc != -ENOTTY)
3377                goto done;
3378
3379        rc = pci_parent_bus_reset(dev, probe);
3380done:
3381        return rc;
3382}
3383
3384static void pci_dev_lock(struct pci_dev *dev)
3385{
3386        pci_cfg_access_lock(dev);
3387        /* block PM suspend, driver probe, etc. */
3388        device_lock(&dev->dev);
3389}
3390
3391/* Return 1 on successful lock, 0 on contention */
3392static int pci_dev_trylock(struct pci_dev *dev)
3393{
3394        if (pci_cfg_access_trylock(dev)) {
3395                if (device_trylock(&dev->dev))
3396                        return 1;
3397                pci_cfg_access_unlock(dev);
3398        }
3399
3400        return 0;
3401}
3402
3403static void pci_dev_unlock(struct pci_dev *dev)
3404{
3405        device_unlock(&dev->dev);
3406        pci_cfg_access_unlock(dev);
3407}
3408
3409/**
3410 * pci_reset_notify - notify device driver of reset
3411 * @dev: device to be notified of reset
3412 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3413 *           completed
3414 *
3415 * Must be called prior to device access being disabled and after device
3416 * access is restored.
3417 */
3418static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3419{
3420        const struct pci_error_handlers *err_handler =
3421                        dev->driver ? dev->driver->err_handler : NULL;
3422        if (err_handler && err_handler->reset_notify)
3423                err_handler->reset_notify(dev, prepare);
3424}
3425
3426static void pci_dev_save_and_disable(struct pci_dev *dev)
3427{
3428        pci_reset_notify(dev, true);
3429
3430        /*
3431         * Wake-up device prior to save.  PM registers default to D0 after
3432         * reset and a simple register restore doesn't reliably return
3433         * to a non-D0 state anyway.
3434         */
3435        pci_set_power_state(dev, PCI_D0);
3436
3437        pci_save_state(dev);
3438        /*
3439         * Disable the device by clearing the Command register, except for
3440         * INTx-disable which is set.  This not only disables MMIO and I/O port
3441         * BARs, but also prevents the device from being Bus Master, preventing
3442         * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3443         * compliant devices, INTx-disable prevents legacy interrupts.
3444         */
3445        pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3446}
3447
3448static void pci_dev_restore(struct pci_dev *dev)
3449{
3450        pci_restore_state(dev);
3451        pci_reset_notify(dev, false);
3452}
3453
3454static int pci_dev_reset(struct pci_dev *dev, int probe)
3455{
3456        int rc;
3457
3458        if (!probe)
3459                pci_dev_lock(dev);
3460
3461        rc = __pci_dev_reset(dev, probe);
3462
3463        if (!probe)
3464                pci_dev_unlock(dev);
3465
3466        return rc;
3467}
3468
3469/**
3470 * __pci_reset_function - reset a PCI device function
3471 * @dev: PCI device to reset
3472 *
3473 * Some devices allow an individual function to be reset without affecting
3474 * other functions in the same device.  The PCI device must be responsive
3475 * to PCI config space in order to use this function.
3476 *
3477 * The device function is presumed to be unused when this function is called.
3478 * Resetting the device will make the contents of PCI configuration space
3479 * random, so any caller of this must be prepared to reinitialise the
3480 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3481 * etc.
3482 *
3483 * Returns 0 if the device function was successfully reset or negative if the
3484 * device doesn't support resetting a single function.
3485 */
3486int __pci_reset_function(struct pci_dev *dev)
3487{
3488        return pci_dev_reset(dev, 0);
3489}
3490EXPORT_SYMBOL_GPL(__pci_reset_function);
3491
3492/**
3493 * __pci_reset_function_locked - reset a PCI device function while holding
3494 * the @dev mutex lock.
3495 * @dev: PCI device to reset
3496 *
3497 * Some devices allow an individual function to be reset without affecting
3498 * other functions in the same device.  The PCI device must be responsive
3499 * to PCI config space in order to use this function.
3500 *
3501 * The device function is presumed to be unused and the caller is holding
3502 * the device mutex lock when this function is called.
3503 * Resetting the device will make the contents of PCI configuration space
3504 * random, so any caller of this must be prepared to reinitialise the
3505 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3506 * etc.
3507 *
3508 * Returns 0 if the device function was successfully reset or negative if the
3509 * device doesn't support resetting a single function.
3510 */
3511int __pci_reset_function_locked(struct pci_dev *dev)
3512{
3513        return __pci_dev_reset(dev, 0);
3514}
3515EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3516
3517/**
3518 * pci_probe_reset_function - check whether the device can be safely reset
3519 * @dev: PCI device to reset
3520 *
3521 * Some devices allow an individual function to be reset without affecting
3522 * other functions in the same device.  The PCI device must be responsive
3523 * to PCI config space in order to use this function.
3524 *
3525 * Returns 0 if the device function can be reset or negative if the
3526 * device doesn't support resetting a single function.
3527 */
3528int pci_probe_reset_function(struct pci_dev *dev)
3529{
3530        return pci_dev_reset(dev, 1);
3531}
3532
3533/**
3534 * pci_reset_function - quiesce and reset a PCI device function
3535 * @dev: PCI device to reset
3536 *
3537 * Some devices allow an individual function to be reset without affecting
3538 * other functions in the same device.  The PCI device must be responsive
3539 * to PCI config space in order to use this function.
3540 *
3541 * This function does not just reset the PCI portion of a device, but
3542 * clears all the state associated with the device.  This function differs
3543 * from __pci_reset_function in that it saves and restores device state
3544 * over the reset.
3545 *
3546 * Returns 0 if the device function was successfully reset or negative if the
3547 * device doesn't support resetting a single function.
3548 */
3549int pci_reset_function(struct pci_dev *dev)
3550{
3551        int rc;
3552
3553        rc = pci_dev_reset(dev, 1);
3554        if (rc)
3555                return rc;
3556
3557        pci_dev_save_and_disable(dev);
3558
3559        rc = pci_dev_reset(dev, 0);
3560
3561        pci_dev_restore(dev);
3562
3563        return rc;
3564}
3565EXPORT_SYMBOL_GPL(pci_reset_function);
3566
3567/**
3568 * pci_try_reset_function - quiesce and reset a PCI device function
3569 * @dev: PCI device to reset
3570 *
3571 * Same as above, except return -EAGAIN if unable to lock device.
3572 */
3573int pci_try_reset_function(struct pci_dev *dev)
3574{
3575        int rc;
3576
3577        rc = pci_dev_reset(dev, 1);
3578        if (rc)
3579                return rc;
3580
3581        pci_dev_save_and_disable(dev);
3582
3583        if (pci_dev_trylock(dev)) {
3584                rc = __pci_dev_reset(dev, 0);
3585                pci_dev_unlock(dev);
3586        } else
3587                rc = -EAGAIN;
3588
3589        pci_dev_restore(dev);
3590
3591        return rc;
3592}
3593EXPORT_SYMBOL_GPL(pci_try_reset_function);
3594
3595/* Do any devices on or below this bus prevent a bus reset? */
3596static bool pci_bus_resetable(struct pci_bus *bus)
3597{
3598        struct pci_dev *dev;
3599
3600        list_for_each_entry(dev, &bus->devices, bus_list) {
3601                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3602                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3603                        return false;
3604        }
3605
3606        return true;
3607}
3608
3609/* Lock devices from the top of the tree down */
3610static void pci_bus_lock(struct pci_bus *bus)
3611{
3612        struct pci_dev *dev;
3613
3614        list_for_each_entry(dev, &bus->devices, bus_list) {
3615                pci_dev_lock(dev);
3616                if (dev->subordinate)
3617                        pci_bus_lock(dev->subordinate);
3618        }
3619}
3620
3621/* Unlock devices from the bottom of the tree up */
3622static void pci_bus_unlock(struct pci_bus *bus)
3623{
3624        struct pci_dev *dev;
3625
3626        list_for_each_entry(dev, &bus->devices, bus_list) {
3627                if (dev->subordinate)
3628                        pci_bus_unlock(dev->subordinate);
3629                pci_dev_unlock(dev);
3630        }
3631}
3632
3633/* Return 1 on successful lock, 0 on contention */
3634static int pci_bus_trylock(struct pci_bus *bus)
3635{
3636        struct pci_dev *dev;
3637
3638        list_for_each_entry(dev, &bus->devices, bus_list) {
3639                if (!pci_dev_trylock(dev))
3640                        goto unlock;
3641                if (dev->subordinate) {
3642                        if (!pci_bus_trylock(dev->subordinate)) {
3643                                pci_dev_unlock(dev);
3644                                goto unlock;
3645                        }
3646                }
3647        }
3648        return 1;
3649
3650unlock:
3651        list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3652                if (dev->subordinate)
3653                        pci_bus_unlock(dev->subordinate);
3654                pci_dev_unlock(dev);
3655        }
3656        return 0;
3657}
3658
3659/* Do any devices on or below this slot prevent a bus reset? */
3660static bool pci_slot_resetable(struct pci_slot *slot)
3661{
3662        struct pci_dev *dev;
3663
3664        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3665                if (!dev->slot || dev->slot != slot)
3666                        continue;
3667                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3668                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3669                        return false;
3670        }
3671
3672        return true;
3673}
3674
3675/* Lock devices from the top of the tree down */
3676static void pci_slot_lock(struct pci_slot *slot)
3677{
3678        struct pci_dev *dev;
3679
3680        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3681                if (!dev->slot || dev->slot != slot)
3682                        continue;
3683                pci_dev_lock(dev);
3684                if (dev->subordinate)
3685                        pci_bus_lock(dev->subordinate);
3686        }
3687}
3688
3689/* Unlock devices from the bottom of the tree up */
3690static void pci_slot_unlock(struct pci_slot *slot)
3691{
3692        struct pci_dev *dev;
3693
3694        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3695                if (!dev->slot || dev->slot != slot)
3696                        continue;
3697                if (dev->subordinate)
3698                        pci_bus_unlock(dev->subordinate);
3699                pci_dev_unlock(dev);
3700        }
3701}
3702
3703/* Return 1 on successful lock, 0 on contention */
3704static int pci_slot_trylock(struct pci_slot *slot)
3705{
3706        struct pci_dev *dev;
3707
3708        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3709                if (!dev->slot || dev->slot != slot)
3710                        continue;
3711                if (!pci_dev_trylock(dev))
3712                        goto unlock;
3713                if (dev->subordinate) {
3714                        if (!pci_bus_trylock(dev->subordinate)) {
3715                                pci_dev_unlock(dev);
3716                                goto unlock;
3717                        }
3718                }
3719        }
3720        return 1;
3721
3722unlock:
3723        list_for_each_entry_continue_reverse(dev,
3724                                             &slot->bus->devices, bus_list) {
3725                if (!dev->slot || dev->slot != slot)
3726                        continue;
3727                if (dev->subordinate)
3728                        pci_bus_unlock(dev->subordinate);
3729                pci_dev_unlock(dev);
3730        }
3731        return 0;
3732}
3733
3734/* Save and disable devices from the top of the tree down */
3735static void pci_bus_save_and_disable(struct pci_bus *bus)
3736{
3737        struct pci_dev *dev;
3738
3739        list_for_each_entry(dev, &bus->devices, bus_list) {
3740                pci_dev_save_and_disable(dev);
3741                if (dev->subordinate)
3742                        pci_bus_save_and_disable(dev->subordinate);
3743        }
3744}
3745
3746/*
3747 * Restore devices from top of the tree down - parent bridges need to be
3748 * restored before we can get to subordinate devices.
3749 */
3750static void pci_bus_restore(struct pci_bus *bus)
3751{
3752        struct pci_dev *dev;
3753
3754        list_for_each_entry(dev, &bus->devices, bus_list) {
3755                pci_dev_restore(dev);
3756                if (dev->subordinate)
3757                        pci_bus_restore(dev->subordinate);
3758        }
3759}
3760
3761/* Save and disable devices from the top of the tree down */
3762static void pci_slot_save_and_disable(struct pci_slot *slot)
3763{
3764        struct pci_dev *dev;
3765
3766        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3767                if (!dev->slot || dev->slot != slot)
3768                        continue;
3769                pci_dev_save_and_disable(dev);
3770                if (dev->subordinate)
3771                        pci_bus_save_and_disable(dev->subordinate);
3772        }
3773}
3774
3775/*
3776 * Restore devices from top of the tree down - parent bridges need to be
3777 * restored before we can get to subordinate devices.
3778 */
3779static void pci_slot_restore(struct pci_slot *slot)
3780{
3781        struct pci_dev *dev;
3782
3783        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3784                if (!dev->slot || dev->slot != slot)
3785                        continue;
3786                pci_dev_restore(dev);
3787                if (dev->subordinate)
3788                        pci_bus_restore(dev->subordinate);
3789        }
3790}
3791
3792static int pci_slot_reset(struct pci_slot *slot, int probe)
3793{
3794        int rc;
3795
3796        if (!slot || !pci_slot_resetable(slot))
3797                return -ENOTTY;
3798
3799        if (!probe)
3800                pci_slot_lock(slot);
3801
3802        might_sleep();
3803
3804        rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3805
3806        if (!probe)
3807                pci_slot_unlock(slot);
3808
3809        return rc;
3810}
3811
3812/**
3813 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3814 * @slot: PCI slot to probe
3815 *
3816 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3817 */
3818int pci_probe_reset_slot(struct pci_slot *slot)
3819{
3820        return pci_slot_reset(slot, 1);
3821}
3822EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3823
3824/**
3825 * pci_reset_slot - reset a PCI slot
3826 * @slot: PCI slot to reset
3827 *
3828 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3829 * independent of other slots.  For instance, some slots may support slot power
3830 * control.  In the case of a 1:1 bus to slot architecture, this function may
3831 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3832 * Generally a slot reset should be attempted before a bus reset.  All of the
3833 * function of the slot and any subordinate buses behind the slot are reset
3834 * through this function.  PCI config space of all devices in the slot and
3835 * behind the slot is saved before and restored after reset.
3836 *
3837 * Return 0 on success, non-zero on error.
3838 */
3839int pci_reset_slot(struct pci_slot *slot)
3840{
3841        int rc;
3842
3843        rc = pci_slot_reset(slot, 1);
3844        if (rc)
3845                return rc;
3846
3847        pci_slot_save_and_disable(slot);
3848
3849        rc = pci_slot_reset(slot, 0);
3850
3851        pci_slot_restore(slot);
3852
3853        return rc;
3854}
3855EXPORT_SYMBOL_GPL(pci_reset_slot);
3856
3857/**
3858 * pci_try_reset_slot - Try to reset a PCI slot
3859 * @slot: PCI slot to reset
3860 *
3861 * Same as above except return -EAGAIN if the slot cannot be locked
3862 */
3863int pci_try_reset_slot(struct pci_slot *slot)
3864{
3865        int rc;
3866
3867        rc = pci_slot_reset(slot, 1);
3868        if (rc)
3869                return rc;
3870
3871        pci_slot_save_and_disable(slot);
3872
3873        if (pci_slot_trylock(slot)) {
3874                might_sleep();
3875                rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3876                pci_slot_unlock(slot);
3877        } else
3878                rc = -EAGAIN;
3879
3880        pci_slot_restore(slot);
3881
3882        return rc;
3883}
3884EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3885
3886static int pci_bus_reset(struct pci_bus *bus, int probe)
3887{
3888        if (!bus->self || !pci_bus_resetable(bus))
3889                return -ENOTTY;
3890
3891        if (probe)
3892                return 0;
3893
3894        pci_bus_lock(bus);
3895
3896        might_sleep();
3897
3898        pci_reset_bridge_secondary_bus(bus->self);
3899
3900        pci_bus_unlock(bus);
3901
3902        return 0;
3903}
3904
3905/**
3906 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3907 * @bus: PCI bus to probe
3908 *
3909 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3910 */
3911int pci_probe_reset_bus(struct pci_bus *bus)
3912{
3913        return pci_bus_reset(bus, 1);
3914}
3915EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3916
3917/**
3918 * pci_reset_bus - reset a PCI bus
3919 * @bus: top level PCI bus to reset
3920 *
3921 * Do a bus reset on the given bus and any subordinate buses, saving
3922 * and restoring state of all devices.
3923 *
3924 * Return 0 on success, non-zero on error.
3925 */
3926int pci_reset_bus(struct pci_bus *bus)
3927{
3928        int rc;
3929
3930        rc = pci_bus_reset(bus, 1);
3931        if (rc)
3932                return rc;
3933
3934        pci_bus_save_and_disable(bus);
3935
3936        rc = pci_bus_reset(bus, 0);
3937
3938        pci_bus_restore(bus);
3939
3940        return rc;
3941}
3942EXPORT_SYMBOL_GPL(pci_reset_bus);
3943
3944/**
3945 * pci_try_reset_bus - Try to reset a PCI bus
3946 * @bus: top level PCI bus to reset
3947 *
3948 * Same as above except return -EAGAIN if the bus cannot be locked
3949 */
3950int pci_try_reset_bus(struct pci_bus *bus)
3951{
3952        int rc;
3953
3954        rc = pci_bus_reset(bus, 1);
3955        if (rc)
3956                return rc;
3957
3958        pci_bus_save_and_disable(bus);
3959
3960        if (pci_bus_trylock(bus)) {
3961                might_sleep();
3962                pci_reset_bridge_secondary_bus(bus->self);
3963                pci_bus_unlock(bus);
3964        } else
3965                rc = -EAGAIN;
3966
3967        pci_bus_restore(bus);
3968
3969        return rc;
3970}
3971EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3972
3973/**
3974 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3975 * @dev: PCI device to query
3976 *
3977 * Returns mmrbc: maximum designed memory read count in bytes
3978 *    or appropriate error value.
3979 */
3980int pcix_get_max_mmrbc(struct pci_dev *dev)
3981{
3982        int cap;
3983        u32 stat;
3984
3985        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3986        if (!cap)
3987                return -EINVAL;
3988
3989        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3990                return -EINVAL;
3991
3992        return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3993}
3994EXPORT_SYMBOL(pcix_get_max_mmrbc);
3995
3996/**
3997 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3998 * @dev: PCI device to query
3999 *
4000 * Returns mmrbc: maximum memory read count in bytes
4001 *    or appropriate error value.
4002 */
4003int pcix_get_mmrbc(struct pci_dev *dev)
4004{
4005        int cap;
4006        u16 cmd;
4007
4008        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4009        if (!cap)
4010                return -EINVAL;
4011
4012        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4013                return -EINVAL;
4014
4015        return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4016}
4017EXPORT_SYMBOL(pcix_get_mmrbc);
4018
4019/**
4020 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4021 * @dev: PCI device to query
4022 * @mmrbc: maximum memory read count in bytes
4023 *    valid values are 512, 1024, 2048, 4096
4024 *
4025 * If possible sets maximum memory read byte count, some bridges have erratas
4026 * that prevent this.
4027 */
4028int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4029{
4030        int cap;
4031        u32 stat, v, o;
4032        u16 cmd;
4033
4034        if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4035                return -EINVAL;
4036
4037        v = ffs(mmrbc) - 10;
4038
4039        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4040        if (!cap)
4041                return -EINVAL;
4042
4043        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4044                return -EINVAL;
4045
4046        if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4047                return -E2BIG;
4048
4049        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4050                return -EINVAL;
4051
4052        o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4053        if (o != v) {
4054                if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4055                        return -EIO;
4056
4057                cmd &= ~PCI_X_CMD_MAX_READ;
4058                cmd |= v << 2;
4059                if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4060                        return -EIO;
4061        }
4062        return 0;
4063}
4064EXPORT_SYMBOL(pcix_set_mmrbc);
4065
4066/**
4067 * pcie_get_readrq - get PCI Express read request size
4068 * @dev: PCI device to query
4069 *
4070 * Returns maximum memory read request in bytes
4071 *    or appropriate error value.
4072 */
4073int pcie_get_readrq(struct pci_dev *dev)
4074{
4075        u16 ctl;
4076
4077        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4078
4079        return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4080}
4081EXPORT_SYMBOL(pcie_get_readrq);
4082
4083/**
4084 * pcie_set_readrq - set PCI Express maximum memory read request
4085 * @dev: PCI device to query
4086 * @rq: maximum memory read count in bytes
4087 *    valid values are 128, 256, 512, 1024, 2048, 4096
4088 *
4089 * If possible sets maximum memory read request in bytes
4090 */
4091int pcie_set_readrq(struct pci_dev *dev, int rq)
4092{
4093        u16 v;
4094
4095        if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4096                return -EINVAL;
4097
4098        /*
4099         * If using the "performance" PCIe config, we clamp the
4100         * read rq size to the max packet size to prevent the
4101         * host bridge generating requests larger than we can
4102         * cope with
4103         */
4104        if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4105                int mps = pcie_get_mps(dev);
4106
4107                if (mps < rq)
4108                        rq = mps;
4109        }
4110
4111        v = (ffs(rq) - 8) << 12;
4112
4113        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4114                                                  PCI_EXP_DEVCTL_READRQ, v);
4115}
4116EXPORT_SYMBOL(pcie_set_readrq);
4117
4118/**
4119 * pcie_get_mps - get PCI Express maximum payload size
4120 * @dev: PCI device to query
4121 *
4122 * Returns maximum payload size in bytes
4123 */
4124int pcie_get_mps(struct pci_dev *dev)
4125{
4126        u16 ctl;
4127
4128        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4129
4130        return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4131}
4132EXPORT_SYMBOL(pcie_get_mps);
4133
4134/**
4135 * pcie_set_mps - set PCI Express maximum payload size
4136 * @dev: PCI device to query
4137 * @mps: maximum payload size in bytes
4138 *    valid values are 128, 256, 512, 1024, 2048, 4096
4139 *
4140 * If possible sets maximum payload size
4141 */
4142int pcie_set_mps(struct pci_dev *dev, int mps)
4143{
4144        u16 v;
4145
4146        if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4147                return -EINVAL;
4148
4149        v = ffs(mps) - 8;
4150        if (v > dev->pcie_mpss)
4151                return -EINVAL;
4152        v <<= 5;
4153
4154        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4155                                                  PCI_EXP_DEVCTL_PAYLOAD, v);
4156}
4157EXPORT_SYMBOL(pcie_set_mps);
4158
4159/**
4160 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4161 * @dev: PCI device to query
4162 * @speed: storage for minimum speed
4163 * @width: storage for minimum width
4164 *
4165 * This function will walk up the PCI device chain and determine the minimum
4166 * link width and speed of the device.
4167 */
4168int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4169                          enum pcie_link_width *width)
4170{
4171        int ret;
4172
4173        *speed = PCI_SPEED_UNKNOWN;
4174        *width = PCIE_LNK_WIDTH_UNKNOWN;
4175
4176        while (dev) {
4177                u16 lnksta;
4178                enum pci_bus_speed next_speed;
4179                enum pcie_link_width next_width;
4180
4181                ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4182                if (ret)
4183                        return ret;
4184
4185                next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4186                next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4187                        PCI_EXP_LNKSTA_NLW_SHIFT;
4188
4189                if (next_speed < *speed)
4190                        *speed = next_speed;
4191
4192                if (next_width < *width)
4193                        *width = next_width;
4194
4195                dev = dev->bus->self;
4196        }
4197
4198        return 0;
4199}
4200EXPORT_SYMBOL(pcie_get_minimum_link);
4201
4202/**
4203 * pci_select_bars - Make BAR mask from the type of resource
4204 * @dev: the PCI device for which BAR mask is made
4205 * @flags: resource type mask to be selected
4206 *
4207 * This helper routine makes bar mask from the type of resource.
4208 */
4209int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4210{
4211        int i, bars = 0;
4212        for (i = 0; i < PCI_NUM_RESOURCES; i++)
4213                if (pci_resource_flags(dev, i) & flags)
4214                        bars |= (1 << i);
4215        return bars;
4216}
4217EXPORT_SYMBOL(pci_select_bars);
4218
4219/**
4220 * pci_resource_bar - get position of the BAR associated with a resource
4221 * @dev: the PCI device
4222 * @resno: the resource number
4223 * @type: the BAR type to be filled in
4224 *
4225 * Returns BAR position in config space, or 0 if the BAR is invalid.
4226 */
4227int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4228{
4229        int reg;
4230
4231        if (resno < PCI_ROM_RESOURCE) {
4232                *type = pci_bar_unknown;
4233                return PCI_BASE_ADDRESS_0 + 4 * resno;
4234        } else if (resno == PCI_ROM_RESOURCE) {
4235                *type = pci_bar_mem32;
4236                return dev->rom_base_reg;
4237        } else if (resno < PCI_BRIDGE_RESOURCES) {
4238                /* device specific resource */
4239                *type = pci_bar_unknown;
4240                reg = pci_iov_resource_bar(dev, resno);
4241                if (reg)
4242                        return reg;
4243        }
4244
4245        dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4246        return 0;
4247}
4248
4249/* Some architectures require additional programming to enable VGA */
4250static arch_set_vga_state_t arch_set_vga_state;
4251
4252void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4253{
4254        arch_set_vga_state = func;      /* NULL disables */
4255}
4256
4257static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4258                                  unsigned int command_bits, u32 flags)
4259{
4260        if (arch_set_vga_state)
4261                return arch_set_vga_state(dev, decode, command_bits,
4262                                                flags);
4263        return 0;
4264}
4265
4266/**
4267 * pci_set_vga_state - set VGA decode state on device and parents if requested
4268 * @dev: the PCI device
4269 * @decode: true = enable decoding, false = disable decoding
4270 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4271 * @flags: traverse ancestors and change bridges
4272 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4273 */
4274int pci_set_vga_state(struct pci_dev *dev, bool decode,
4275                      unsigned int command_bits, u32 flags)
4276{
4277        struct pci_bus *bus;
4278        struct pci_dev *bridge;
4279        u16 cmd;
4280        int rc;
4281
4282        WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4283
4284        /* ARCH specific VGA enables */
4285        rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4286        if (rc)
4287                return rc;
4288
4289        if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4290                pci_read_config_word(dev, PCI_COMMAND, &cmd);
4291                if (decode == true)
4292                        cmd |= command_bits;
4293                else
4294                        cmd &= ~command_bits;
4295                pci_write_config_word(dev, PCI_COMMAND, cmd);
4296        }
4297
4298        if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4299                return 0;
4300
4301        bus = dev->bus;
4302        while (bus) {
4303                bridge = bus->self;
4304                if (bridge) {
4305                        pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4306                                             &cmd);
4307                        if (decode == true)
4308                                cmd |= PCI_BRIDGE_CTL_VGA;
4309                        else
4310                                cmd &= ~PCI_BRIDGE_CTL_VGA;
4311                        pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4312                                              cmd);
4313                }
4314                bus = bus->parent;
4315        }
4316        return 0;
4317}
4318
4319bool pci_device_is_present(struct pci_dev *pdev)
4320{
4321        u32 v;
4322
4323        return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4324}
4325EXPORT_SYMBOL_GPL(pci_device_is_present);
4326
4327#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4328static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4329static DEFINE_SPINLOCK(resource_alignment_lock);
4330
4331/**
4332 * pci_specified_resource_alignment - get resource alignment specified by user.
4333 * @dev: the PCI device to get
4334 *
4335 * RETURNS: Resource alignment if it is specified.
4336 *          Zero if it is not specified.
4337 */
4338static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4339{
4340        int seg, bus, slot, func, align_order, count;
4341        resource_size_t align = 0;
4342        char *p;
4343
4344        spin_lock(&resource_alignment_lock);
4345        p = resource_alignment_param;
4346        while (*p) {
4347                count = 0;
4348                if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4349                                                        p[count] == '@') {
4350                        p += count + 1;
4351                } else {
4352                        align_order = -1;
4353                }
4354                if (sscanf(p, "%x:%x:%x.%x%n",
4355                        &seg, &bus, &slot, &func, &count) != 4) {
4356                        seg = 0;
4357                        if (sscanf(p, "%x:%x.%x%n",
4358                                        &bus, &slot, &func, &count) != 3) {
4359                                /* Invalid format */
4360                                printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4361                                        p);
4362                                break;
4363                        }
4364                }
4365                p += count;
4366                if (seg == pci_domain_nr(dev->bus) &&
4367                        bus == dev->bus->number &&
4368                        slot == PCI_SLOT(dev->devfn) &&
4369                        func == PCI_FUNC(dev->devfn)) {
4370                        if (align_order == -1)
4371                                align = PAGE_SIZE;
4372                        else
4373                                align = 1 << align_order;
4374                        /* Found */
4375                        break;
4376                }
4377                if (*p != ';' && *p != ',') {
4378                        /* End of param or invalid format */
4379                        break;
4380                }
4381                p++;
4382        }
4383        spin_unlock(&resource_alignment_lock);
4384        return align;
4385}
4386
4387/*
4388 * This function disables memory decoding and releases memory resources
4389 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4390 * It also rounds up size to specified alignment.
4391 * Later on, the kernel will assign page-aligned memory resource back
4392 * to the device.
4393 */
4394void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4395{
4396        int i;
4397        struct resource *r;
4398        resource_size_t align, size;
4399        u16 command;
4400
4401        /* check if specified PCI is target device to reassign */
4402        align = pci_specified_resource_alignment(dev);
4403        if (!align)
4404                return;
4405
4406        if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4407            (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4408                dev_warn(&dev->dev,
4409                        "Can't reassign resources to host bridge.\n");
4410                return;
4411        }
4412
4413        dev_info(&dev->dev,
4414                "Disabling memory decoding and releasing memory resources.\n");
4415        pci_read_config_word(dev, PCI_COMMAND, &command);
4416        command &= ~PCI_COMMAND_MEMORY;
4417        pci_write_config_word(dev, PCI_COMMAND, command);
4418
4419        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4420                r = &dev->resource[i];
4421                if (!(r->flags & IORESOURCE_MEM))
4422                        continue;
4423                size = resource_size(r);
4424                if (size < align) {
4425                        size = align;
4426                        dev_info(&dev->dev,
4427                                "Rounding up size of resource #%d to %#llx.\n",
4428                                i, (unsigned long long)size);
4429                }
4430                r->flags |= IORESOURCE_UNSET;
4431                r->end = size - 1;
4432                r->start = 0;
4433        }
4434        /* Need to disable bridge's resource window,
4435         * to enable the kernel to reassign new resource
4436         * window later on.
4437         */
4438        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4439            (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4440                for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4441                        r = &dev->resource[i];
4442                        if (!(r->flags & IORESOURCE_MEM))
4443                                continue;
4444                        r->flags |= IORESOURCE_UNSET;
4445                        r->end = resource_size(r) - 1;
4446                        r->start = 0;
4447                }
4448                pci_disable_bridge_window(dev);
4449        }
4450}
4451
4452static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4453{
4454        if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4455                count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4456        spin_lock(&resource_alignment_lock);
4457        strncpy(resource_alignment_param, buf, count);
4458        resource_alignment_param[count] = '\0';
4459        spin_unlock(&resource_alignment_lock);
4460        return count;
4461}
4462
4463static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4464{
4465        size_t count;
4466        spin_lock(&resource_alignment_lock);
4467        count = snprintf(buf, size, "%s", resource_alignment_param);
4468        spin_unlock(&resource_alignment_lock);
4469        return count;
4470}
4471
4472static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4473{
4474        return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4475}
4476
4477static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4478                                        const char *buf, size_t count)
4479{
4480        return pci_set_resource_alignment_param(buf, count);
4481}
4482
4483BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4484                                        pci_resource_alignment_store);
4485
4486static int __init pci_resource_alignment_sysfs_init(void)
4487{
4488        return bus_create_file(&pci_bus_type,
4489                                        &bus_attr_resource_alignment);
4490}
4491late_initcall(pci_resource_alignment_sysfs_init);
4492
4493static void pci_no_domains(void)
4494{
4495#ifdef CONFIG_PCI_DOMAINS
4496        pci_domains_supported = 0;
4497#endif
4498}
4499
4500#ifdef CONFIG_PCI_DOMAINS
4501static atomic_t __domain_nr = ATOMIC_INIT(-1);
4502
4503int pci_get_new_domain_nr(void)
4504{
4505        return atomic_inc_return(&__domain_nr);
4506}
4507
4508#ifdef CONFIG_PCI_DOMAINS_GENERIC
4509void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent)
4510{
4511        static int use_dt_domains = -1;
4512        int domain = of_get_pci_domain_nr(parent->of_node);
4513
4514        /*
4515         * Check DT domain and use_dt_domains values.
4516         *
4517         * If DT domain property is valid (domain >= 0) and
4518         * use_dt_domains != 0, the DT assignment is valid since this means
4519         * we have not previously allocated a domain number by using
4520         * pci_get_new_domain_nr(); we should also update use_dt_domains to
4521         * 1, to indicate that we have just assigned a domain number from
4522         * DT.
4523         *
4524         * If DT domain property value is not valid (ie domain < 0), and we
4525         * have not previously assigned a domain number from DT
4526         * (use_dt_domains != 1) we should assign a domain number by
4527         * using the:
4528         *
4529         * pci_get_new_domain_nr()
4530         *
4531         * API and update the use_dt_domains value to keep track of method we
4532         * are using to assign domain numbers (use_dt_domains = 0).
4533         *
4534         * All other combinations imply we have a platform that is trying
4535         * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4536         * which is a recipe for domain mishandling and it is prevented by
4537         * invalidating the domain value (domain = -1) and printing a
4538         * corresponding error.
4539         */
4540        if (domain >= 0 && use_dt_domains) {
4541                use_dt_domains = 1;
4542        } else if (domain < 0 && use_dt_domains != 1) {
4543                use_dt_domains = 0;
4544                domain = pci_get_new_domain_nr();
4545        } else {
4546                dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4547                        parent->of_node->full_name);
4548                domain = -1;
4549        }
4550
4551        bus->domain_nr = domain;
4552}
4553#endif
4554#endif
4555
4556/**
4557 * pci_ext_cfg_avail - can we access extended PCI config space?
4558 *
4559 * Returns 1 if we can access PCI extended config space (offsets
4560 * greater than 0xff). This is the default implementation. Architecture
4561 * implementations can override this.
4562 */
4563int __weak pci_ext_cfg_avail(void)
4564{
4565        return 1;
4566}
4567
4568void __weak pci_fixup_cardbus(struct pci_bus *bus)
4569{
4570}
4571EXPORT_SYMBOL(pci_fixup_cardbus);
4572
4573static int __init pci_setup(char *str)
4574{
4575        while (str) {
4576                char *k = strchr(str, ',');
4577                if (k)
4578                        *k++ = 0;
4579                if (*str && (str = pcibios_setup(str)) && *str) {
4580                        if (!strcmp(str, "nomsi")) {
4581                                pci_no_msi();
4582                        } else if (!strcmp(str, "noaer")) {
4583                                pci_no_aer();
4584                        } else if (!strncmp(str, "realloc=", 8)) {
4585                                pci_realloc_get_opt(str + 8);
4586                        } else if (!strncmp(str, "realloc", 7)) {
4587                                pci_realloc_get_opt("on");
4588                        } else if (!strcmp(str, "nodomains")) {
4589                                pci_no_domains();
4590                        } else if (!strncmp(str, "noari", 5)) {
4591                                pcie_ari_disabled = true;
4592                        } else if (!strncmp(str, "cbiosize=", 9)) {
4593                                pci_cardbus_io_size = memparse(str + 9, &str);
4594                        } else if (!strncmp(str, "cbmemsize=", 10)) {
4595                                pci_cardbus_mem_size = memparse(str + 10, &str);
4596                        } else if (!strncmp(str, "resource_alignment=", 19)) {
4597                                pci_set_resource_alignment_param(str + 19,
4598                                                        strlen(str + 19));
4599                        } else if (!strncmp(str, "ecrc=", 5)) {
4600                                pcie_ecrc_get_policy(str + 5);
4601                        } else if (!strncmp(str, "hpiosize=", 9)) {
4602                                pci_hotplug_io_size = memparse(str + 9, &str);
4603                        } else if (!strncmp(str, "hpmemsize=", 10)) {
4604                                pci_hotplug_mem_size = memparse(str + 10, &str);
4605                        } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4606                                pcie_bus_config = PCIE_BUS_TUNE_OFF;
4607                        } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4608                                pcie_bus_config = PCIE_BUS_SAFE;
4609                        } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4610                                pcie_bus_config = PCIE_BUS_PERFORMANCE;
4611                        } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4612                                pcie_bus_config = PCIE_BUS_PEER2PEER;
4613                        } else if (!strncmp(str, "pcie_scan_all", 13)) {
4614                                pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4615                        } else {
4616                                printk(KERN_ERR "PCI: Unknown option `%s'\n",
4617                                                str);
4618                        }
4619                }
4620                str = k;
4621        }
4622        return 0;
4623}
4624early_param("pci", pci_setup);
4625