linux/drivers/scsi/advansys.c
<<
>>
Prefs
   1#define DRV_NAME "advansys"
   2#define ASC_VERSION "3.4"       /* AdvanSys Driver Version */
   3
   4/*
   5 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
   6 *
   7 * Copyright (c) 1995-2000 Advanced System Products, Inc.
   8 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
   9 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
  10 * All Rights Reserved.
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License, or
  15 * (at your option) any later version.
  16 */
  17
  18/*
  19 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
  20 * changed its name to ConnectCom Solutions, Inc.
  21 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/string.h>
  26#include <linux/kernel.h>
  27#include <linux/types.h>
  28#include <linux/ioport.h>
  29#include <linux/interrupt.h>
  30#include <linux/delay.h>
  31#include <linux/slab.h>
  32#include <linux/mm.h>
  33#include <linux/proc_fs.h>
  34#include <linux/init.h>
  35#include <linux/blkdev.h>
  36#include <linux/isa.h>
  37#include <linux/eisa.h>
  38#include <linux/pci.h>
  39#include <linux/spinlock.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/firmware.h>
  42
  43#include <asm/io.h>
  44#include <asm/dma.h>
  45
  46#include <scsi/scsi_cmnd.h>
  47#include <scsi/scsi_device.h>
  48#include <scsi/scsi_tcq.h>
  49#include <scsi/scsi.h>
  50#include <scsi/scsi_host.h>
  51
  52/* FIXME:
  53 *
  54 *  1. Although all of the necessary command mapping places have the
  55 *     appropriate dma_map.. APIs, the driver still processes its internal
  56 *     queue using bus_to_virt() and virt_to_bus() which are illegal under
  57 *     the API.  The entire queue processing structure will need to be
  58 *     altered to fix this.
  59 *  2. Need to add memory mapping workaround. Test the memory mapping.
  60 *     If it doesn't work revert to I/O port access. Can a test be done
  61 *     safely?
  62 *  3. Handle an interrupt not working. Keep an interrupt counter in
  63 *     the interrupt handler. In the timeout function if the interrupt
  64 *     has not occurred then print a message and run in polled mode.
  65 *  4. Need to add support for target mode commands, cf. CAM XPT.
  66 *  5. check DMA mapping functions for failure
  67 *  6. Use scsi_transport_spi
  68 *  7. advansys_info is not safe against multiple simultaneous callers
  69 *  8. Add module_param to override ISA/VLB ioport array
  70 */
  71#warning this driver is still not properly converted to the DMA API
  72
  73/* Enable driver /proc statistics. */
  74#define ADVANSYS_STATS
  75
  76/* Enable driver tracing. */
  77#undef ADVANSYS_DEBUG
  78
  79/*
  80 * Portable Data Types
  81 *
  82 * Any instance where a 32-bit long or pointer type is assumed
  83 * for precision or HW defined structures, the following define
  84 * types must be used. In Linux the char, short, and int types
  85 * are all consistent at 8, 16, and 32 bits respectively. Pointers
  86 * and long types are 64 bits on Alpha and UltraSPARC.
  87 */
  88#define ASC_PADDR __u32         /* Physical/Bus address data type. */
  89#define ASC_VADDR __u32         /* Virtual address data type. */
  90#define ASC_DCNT  __u32         /* Unsigned Data count type. */
  91#define ASC_SDCNT __s32         /* Signed Data count type. */
  92
  93typedef unsigned char uchar;
  94
  95#ifndef TRUE
  96#define TRUE     (1)
  97#endif
  98#ifndef FALSE
  99#define FALSE    (0)
 100#endif
 101
 102#define ERR      (-1)
 103#define UW_ERR   (uint)(0xFFFF)
 104#define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
 105
 106#define PCI_VENDOR_ID_ASP               0x10cd
 107#define PCI_DEVICE_ID_ASP_1200A         0x1100
 108#define PCI_DEVICE_ID_ASP_ABP940        0x1200
 109#define PCI_DEVICE_ID_ASP_ABP940U       0x1300
 110#define PCI_DEVICE_ID_ASP_ABP940UW      0x2300
 111#define PCI_DEVICE_ID_38C0800_REV1      0x2500
 112#define PCI_DEVICE_ID_38C1600_REV1      0x2700
 113
 114/*
 115 * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
 116 * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
 117 * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
 118 * SRB structure.
 119 */
 120#define CC_VERY_LONG_SG_LIST 0
 121#define ASC_SRB2SCSIQ(srb_ptr)  (srb_ptr)
 122
 123#define PortAddr                 unsigned int   /* port address size  */
 124#define inp(port)                inb(port)
 125#define outp(port, byte)         outb((byte), (port))
 126
 127#define inpw(port)               inw(port)
 128#define outpw(port, word)        outw((word), (port))
 129
 130#define ASC_MAX_SG_QUEUE    7
 131#define ASC_MAX_SG_LIST     255
 132
 133#define ASC_CS_TYPE  unsigned short
 134
 135#define ASC_IS_ISA          (0x0001)
 136#define ASC_IS_ISAPNP       (0x0081)
 137#define ASC_IS_EISA         (0x0002)
 138#define ASC_IS_PCI          (0x0004)
 139#define ASC_IS_PCI_ULTRA    (0x0104)
 140#define ASC_IS_PCMCIA       (0x0008)
 141#define ASC_IS_MCA          (0x0020)
 142#define ASC_IS_VL           (0x0040)
 143#define ASC_IS_WIDESCSI_16  (0x0100)
 144#define ASC_IS_WIDESCSI_32  (0x0200)
 145#define ASC_IS_BIG_ENDIAN   (0x8000)
 146
 147#define ASC_CHIP_MIN_VER_VL      (0x01)
 148#define ASC_CHIP_MAX_VER_VL      (0x07)
 149#define ASC_CHIP_MIN_VER_PCI     (0x09)
 150#define ASC_CHIP_MAX_VER_PCI     (0x0F)
 151#define ASC_CHIP_VER_PCI_BIT     (0x08)
 152#define ASC_CHIP_MIN_VER_ISA     (0x11)
 153#define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
 154#define ASC_CHIP_MAX_VER_ISA     (0x27)
 155#define ASC_CHIP_VER_ISA_BIT     (0x30)
 156#define ASC_CHIP_VER_ISAPNP_BIT  (0x20)
 157#define ASC_CHIP_VER_ASYN_BUG    (0x21)
 158#define ASC_CHIP_VER_PCI             0x08
 159#define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
 160#define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
 161#define ASC_CHIP_MIN_VER_EISA (0x41)
 162#define ASC_CHIP_MAX_VER_EISA (0x47)
 163#define ASC_CHIP_VER_EISA_BIT (0x40)
 164#define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
 165#define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
 166#define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
 167#define ASC_MAX_ISA_DMA_COUNT   (0x00FFFFFFL)
 168
 169#define ASC_SCSI_ID_BITS  3
 170#define ASC_SCSI_TIX_TYPE     uchar
 171#define ASC_ALL_DEVICE_BIT_SET  0xFF
 172#define ASC_SCSI_BIT_ID_TYPE  uchar
 173#define ASC_MAX_TID       7
 174#define ASC_MAX_LUN       7
 175#define ASC_SCSI_WIDTH_BIT_SET  0xFF
 176#define ASC_MAX_SENSE_LEN   32
 177#define ASC_MIN_SENSE_LEN   14
 178#define ASC_SCSI_RESET_HOLD_TIME_US  60
 179
 180/*
 181 * Narrow boards only support 12-byte commands, while wide boards
 182 * extend to 16-byte commands.
 183 */
 184#define ASC_MAX_CDB_LEN     12
 185#define ADV_MAX_CDB_LEN     16
 186
 187#define MS_SDTR_LEN    0x03
 188#define MS_WDTR_LEN    0x02
 189
 190#define ASC_SG_LIST_PER_Q   7
 191#define QS_FREE        0x00
 192#define QS_READY       0x01
 193#define QS_DISC1       0x02
 194#define QS_DISC2       0x04
 195#define QS_BUSY        0x08
 196#define QS_ABORTED     0x40
 197#define QS_DONE        0x80
 198#define QC_NO_CALLBACK   0x01
 199#define QC_SG_SWAP_QUEUE 0x02
 200#define QC_SG_HEAD       0x04
 201#define QC_DATA_IN       0x08
 202#define QC_DATA_OUT      0x10
 203#define QC_URGENT        0x20
 204#define QC_MSG_OUT       0x40
 205#define QC_REQ_SENSE     0x80
 206#define QCSG_SG_XFER_LIST  0x02
 207#define QCSG_SG_XFER_MORE  0x04
 208#define QCSG_SG_XFER_END   0x08
 209#define QD_IN_PROGRESS       0x00
 210#define QD_NO_ERROR          0x01
 211#define QD_ABORTED_BY_HOST   0x02
 212#define QD_WITH_ERROR        0x04
 213#define QD_INVALID_REQUEST   0x80
 214#define QD_INVALID_HOST_NUM  0x81
 215#define QD_INVALID_DEVICE    0x82
 216#define QD_ERR_INTERNAL      0xFF
 217#define QHSTA_NO_ERROR               0x00
 218#define QHSTA_M_SEL_TIMEOUT          0x11
 219#define QHSTA_M_DATA_OVER_RUN        0x12
 220#define QHSTA_M_DATA_UNDER_RUN       0x12
 221#define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
 222#define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
 223#define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
 224#define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
 225#define QHSTA_D_HOST_ABORT_FAILED       0x23
 226#define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
 227#define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
 228#define QHSTA_D_ASPI_NO_BUF_POOL        0x26
 229#define QHSTA_M_WTM_TIMEOUT         0x41
 230#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
 231#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
 232#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
 233#define QHSTA_M_TARGET_STATUS_BUSY  0x45
 234#define QHSTA_M_BAD_TAG_CODE        0x46
 235#define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
 236#define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
 237#define QHSTA_D_LRAM_CMP_ERROR        0x81
 238#define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
 239#define ASC_FLAG_SCSIQ_REQ        0x01
 240#define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
 241#define ASC_FLAG_BIOS_ASYNC_IO    0x04
 242#define ASC_FLAG_SRB_LINEAR_ADDR  0x08
 243#define ASC_FLAG_WIN16            0x10
 244#define ASC_FLAG_WIN32            0x20
 245#define ASC_FLAG_ISA_OVER_16MB    0x40
 246#define ASC_FLAG_DOS_VM_CALLBACK  0x80
 247#define ASC_TAG_FLAG_EXTRA_BYTES               0x10
 248#define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
 249#define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
 250#define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
 251#define ASC_SCSIQ_CPY_BEG              4
 252#define ASC_SCSIQ_SGHD_CPY_BEG         2
 253#define ASC_SCSIQ_B_FWD                0
 254#define ASC_SCSIQ_B_BWD                1
 255#define ASC_SCSIQ_B_STATUS             2
 256#define ASC_SCSIQ_B_QNO                3
 257#define ASC_SCSIQ_B_CNTL               4
 258#define ASC_SCSIQ_B_SG_QUEUE_CNT       5
 259#define ASC_SCSIQ_D_DATA_ADDR          8
 260#define ASC_SCSIQ_D_DATA_CNT          12
 261#define ASC_SCSIQ_B_SENSE_LEN         20
 262#define ASC_SCSIQ_DONE_INFO_BEG       22
 263#define ASC_SCSIQ_D_SRBPTR            22
 264#define ASC_SCSIQ_B_TARGET_IX         26
 265#define ASC_SCSIQ_B_CDB_LEN           28
 266#define ASC_SCSIQ_B_TAG_CODE          29
 267#define ASC_SCSIQ_W_VM_ID             30
 268#define ASC_SCSIQ_DONE_STATUS         32
 269#define ASC_SCSIQ_HOST_STATUS         33
 270#define ASC_SCSIQ_SCSI_STATUS         34
 271#define ASC_SCSIQ_CDB_BEG             36
 272#define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
 273#define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
 274#define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
 275#define ASC_SCSIQ_B_SG_WK_QP          49
 276#define ASC_SCSIQ_B_SG_WK_IX          50
 277#define ASC_SCSIQ_W_ALT_DC1           52
 278#define ASC_SCSIQ_B_LIST_CNT          6
 279#define ASC_SCSIQ_B_CUR_LIST_CNT      7
 280#define ASC_SGQ_B_SG_CNTL             4
 281#define ASC_SGQ_B_SG_HEAD_QP          5
 282#define ASC_SGQ_B_SG_LIST_CNT         6
 283#define ASC_SGQ_B_SG_CUR_LIST_CNT     7
 284#define ASC_SGQ_LIST_BEG              8
 285#define ASC_DEF_SCSI1_QNG    4
 286#define ASC_MAX_SCSI1_QNG    4
 287#define ASC_DEF_SCSI2_QNG    16
 288#define ASC_MAX_SCSI2_QNG    32
 289#define ASC_TAG_CODE_MASK    0x23
 290#define ASC_STOP_REQ_RISC_STOP      0x01
 291#define ASC_STOP_ACK_RISC_STOP      0x03
 292#define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
 293#define ASC_STOP_CLEAN_UP_DISC_Q    0x20
 294#define ASC_STOP_HOST_REQ_RISC_HALT 0x40
 295#define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
 296#define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
 297#define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
 298#define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
 299#define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
 300#define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
 301#define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
 302
 303typedef struct asc_scsiq_1 {
 304        uchar status;
 305        uchar q_no;
 306        uchar cntl;
 307        uchar sg_queue_cnt;
 308        uchar target_id;
 309        uchar target_lun;
 310        ASC_PADDR data_addr;
 311        ASC_DCNT data_cnt;
 312        ASC_PADDR sense_addr;
 313        uchar sense_len;
 314        uchar extra_bytes;
 315} ASC_SCSIQ_1;
 316
 317typedef struct asc_scsiq_2 {
 318        ASC_VADDR srb_ptr;
 319        uchar target_ix;
 320        uchar flag;
 321        uchar cdb_len;
 322        uchar tag_code;
 323        ushort vm_id;
 324} ASC_SCSIQ_2;
 325
 326typedef struct asc_scsiq_3 {
 327        uchar done_stat;
 328        uchar host_stat;
 329        uchar scsi_stat;
 330        uchar scsi_msg;
 331} ASC_SCSIQ_3;
 332
 333typedef struct asc_scsiq_4 {
 334        uchar cdb[ASC_MAX_CDB_LEN];
 335        uchar y_first_sg_list_qp;
 336        uchar y_working_sg_qp;
 337        uchar y_working_sg_ix;
 338        uchar y_res;
 339        ushort x_req_count;
 340        ushort x_reconnect_rtn;
 341        ASC_PADDR x_saved_data_addr;
 342        ASC_DCNT x_saved_data_cnt;
 343} ASC_SCSIQ_4;
 344
 345typedef struct asc_q_done_info {
 346        ASC_SCSIQ_2 d2;
 347        ASC_SCSIQ_3 d3;
 348        uchar q_status;
 349        uchar q_no;
 350        uchar cntl;
 351        uchar sense_len;
 352        uchar extra_bytes;
 353        uchar res;
 354        ASC_DCNT remain_bytes;
 355} ASC_QDONE_INFO;
 356
 357typedef struct asc_sg_list {
 358        ASC_PADDR addr;
 359        ASC_DCNT bytes;
 360} ASC_SG_LIST;
 361
 362typedef struct asc_sg_head {
 363        ushort entry_cnt;
 364        ushort queue_cnt;
 365        ushort entry_to_copy;
 366        ushort res;
 367        ASC_SG_LIST sg_list[0];
 368} ASC_SG_HEAD;
 369
 370typedef struct asc_scsi_q {
 371        ASC_SCSIQ_1 q1;
 372        ASC_SCSIQ_2 q2;
 373        uchar *cdbptr;
 374        ASC_SG_HEAD *sg_head;
 375        ushort remain_sg_entry_cnt;
 376        ushort next_sg_index;
 377} ASC_SCSI_Q;
 378
 379typedef struct asc_scsi_req_q {
 380        ASC_SCSIQ_1 r1;
 381        ASC_SCSIQ_2 r2;
 382        uchar *cdbptr;
 383        ASC_SG_HEAD *sg_head;
 384        uchar *sense_ptr;
 385        ASC_SCSIQ_3 r3;
 386        uchar cdb[ASC_MAX_CDB_LEN];
 387        uchar sense[ASC_MIN_SENSE_LEN];
 388} ASC_SCSI_REQ_Q;
 389
 390typedef struct asc_scsi_bios_req_q {
 391        ASC_SCSIQ_1 r1;
 392        ASC_SCSIQ_2 r2;
 393        uchar *cdbptr;
 394        ASC_SG_HEAD *sg_head;
 395        uchar *sense_ptr;
 396        ASC_SCSIQ_3 r3;
 397        uchar cdb[ASC_MAX_CDB_LEN];
 398        uchar sense[ASC_MIN_SENSE_LEN];
 399} ASC_SCSI_BIOS_REQ_Q;
 400
 401typedef struct asc_risc_q {
 402        uchar fwd;
 403        uchar bwd;
 404        ASC_SCSIQ_1 i1;
 405        ASC_SCSIQ_2 i2;
 406        ASC_SCSIQ_3 i3;
 407        ASC_SCSIQ_4 i4;
 408} ASC_RISC_Q;
 409
 410typedef struct asc_sg_list_q {
 411        uchar seq_no;
 412        uchar q_no;
 413        uchar cntl;
 414        uchar sg_head_qp;
 415        uchar sg_list_cnt;
 416        uchar sg_cur_list_cnt;
 417} ASC_SG_LIST_Q;
 418
 419typedef struct asc_risc_sg_list_q {
 420        uchar fwd;
 421        uchar bwd;
 422        ASC_SG_LIST_Q sg;
 423        ASC_SG_LIST sg_list[7];
 424} ASC_RISC_SG_LIST_Q;
 425
 426#define ASCQ_ERR_Q_STATUS             0x0D
 427#define ASCQ_ERR_CUR_QNG              0x17
 428#define ASCQ_ERR_SG_Q_LINKS           0x18
 429#define ASCQ_ERR_ISR_RE_ENTRY         0x1A
 430#define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
 431#define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
 432
 433/*
 434 * Warning code values are set in ASC_DVC_VAR  'warn_code'.
 435 */
 436#define ASC_WARN_NO_ERROR             0x0000
 437#define ASC_WARN_IO_PORT_ROTATE       0x0001
 438#define ASC_WARN_EEPROM_CHKSUM        0x0002
 439#define ASC_WARN_IRQ_MODIFIED         0x0004
 440#define ASC_WARN_AUTO_CONFIG          0x0008
 441#define ASC_WARN_CMD_QNG_CONFLICT     0x0010
 442#define ASC_WARN_EEPROM_RECOVER       0x0020
 443#define ASC_WARN_CFG_MSW_RECOVER      0x0040
 444
 445/*
 446 * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
 447 */
 448#define ASC_IERR_NO_CARRIER             0x0001  /* No more carrier memory */
 449#define ASC_IERR_MCODE_CHKSUM           0x0002  /* micro code check sum error */
 450#define ASC_IERR_SET_PC_ADDR            0x0004
 451#define ASC_IERR_START_STOP_CHIP        0x0008  /* start/stop chip failed */
 452#define ASC_IERR_ILLEGAL_CONNECTION     0x0010  /* Illegal cable connection */
 453#define ASC_IERR_SINGLE_END_DEVICE      0x0020  /* SE device on DIFF bus */
 454#define ASC_IERR_REVERSED_CABLE         0x0040  /* Narrow flat cable reversed */
 455#define ASC_IERR_SET_SCSI_ID            0x0080  /* set SCSI ID failed */
 456#define ASC_IERR_HVD_DEVICE             0x0100  /* HVD device on LVD port */
 457#define ASC_IERR_BAD_SIGNATURE          0x0200  /* signature not found */
 458#define ASC_IERR_NO_BUS_TYPE            0x0400
 459#define ASC_IERR_BIST_PRE_TEST          0x0800  /* BIST pre-test error */
 460#define ASC_IERR_BIST_RAM_TEST          0x1000  /* BIST RAM test error */
 461#define ASC_IERR_BAD_CHIPTYPE           0x2000  /* Invalid chip_type setting */
 462
 463#define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
 464#define ASC_MIN_TAG_Q_PER_DVC   (0x04)
 465#define ASC_MIN_FREE_Q        (0x02)
 466#define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
 467#define ASC_MAX_TOTAL_QNG 240
 468#define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
 469#define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
 470#define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
 471#define ASC_MAX_INRAM_TAG_QNG   16
 472#define ASC_IOADR_GAP   0x10
 473#define ASC_SYN_MAX_OFFSET         0x0F
 474#define ASC_DEF_SDTR_OFFSET        0x0F
 475#define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
 476#define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
 477
 478/* The narrow chip only supports a limited selection of transfer rates.
 479 * These are encoded in the range 0..7 or 0..15 depending whether the chip
 480 * is Ultra-capable or not.  These tables let us convert from one to the other.
 481 */
 482static const unsigned char asc_syn_xfer_period[8] = {
 483        25, 30, 35, 40, 50, 60, 70, 85
 484};
 485
 486static const unsigned char asc_syn_ultra_xfer_period[16] = {
 487        12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
 488};
 489
 490typedef struct ext_msg {
 491        uchar msg_type;
 492        uchar msg_len;
 493        uchar msg_req;
 494        union {
 495                struct {
 496                        uchar sdtr_xfer_period;
 497                        uchar sdtr_req_ack_offset;
 498                } sdtr;
 499                struct {
 500                        uchar wdtr_width;
 501                } wdtr;
 502                struct {
 503                        uchar mdp_b3;
 504                        uchar mdp_b2;
 505                        uchar mdp_b1;
 506                        uchar mdp_b0;
 507                } mdp;
 508        } u_ext_msg;
 509        uchar res;
 510} EXT_MSG;
 511
 512#define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
 513#define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
 514#define wdtr_width      u_ext_msg.wdtr.wdtr_width
 515#define mdp_b3          u_ext_msg.mdp_b3
 516#define mdp_b2          u_ext_msg.mdp_b2
 517#define mdp_b1          u_ext_msg.mdp_b1
 518#define mdp_b0          u_ext_msg.mdp_b0
 519
 520typedef struct asc_dvc_cfg {
 521        ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
 522        ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
 523        ASC_SCSI_BIT_ID_TYPE disc_enable;
 524        ASC_SCSI_BIT_ID_TYPE sdtr_enable;
 525        uchar chip_scsi_id;
 526        uchar isa_dma_speed;
 527        uchar isa_dma_channel;
 528        uchar chip_version;
 529        ushort mcode_date;
 530        ushort mcode_version;
 531        uchar max_tag_qng[ASC_MAX_TID + 1];
 532        uchar sdtr_period_offset[ASC_MAX_TID + 1];
 533        uchar adapter_info[6];
 534} ASC_DVC_CFG;
 535
 536#define ASC_DEF_DVC_CNTL       0xFFFF
 537#define ASC_DEF_CHIP_SCSI_ID   7
 538#define ASC_DEF_ISA_DMA_SPEED  4
 539#define ASC_INIT_STATE_BEG_GET_CFG   0x0001
 540#define ASC_INIT_STATE_END_GET_CFG   0x0002
 541#define ASC_INIT_STATE_BEG_SET_CFG   0x0004
 542#define ASC_INIT_STATE_END_SET_CFG   0x0008
 543#define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
 544#define ASC_INIT_STATE_END_LOAD_MC   0x0020
 545#define ASC_INIT_STATE_BEG_INQUIRY   0x0040
 546#define ASC_INIT_STATE_END_INQUIRY   0x0080
 547#define ASC_INIT_RESET_SCSI_DONE     0x0100
 548#define ASC_INIT_STATE_WITHOUT_EEP   0x8000
 549#define ASC_BUG_FIX_IF_NOT_DWB       0x0001
 550#define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
 551#define ASC_MIN_TAGGED_CMD  7
 552#define ASC_MAX_SCSI_RESET_WAIT      30
 553#define ASC_OVERRUN_BSIZE               64
 554
 555struct asc_dvc_var;             /* Forward Declaration. */
 556
 557typedef struct asc_dvc_var {
 558        PortAddr iop_base;
 559        ushort err_code;
 560        ushort dvc_cntl;
 561        ushort bug_fix_cntl;
 562        ushort bus_type;
 563        ASC_SCSI_BIT_ID_TYPE init_sdtr;
 564        ASC_SCSI_BIT_ID_TYPE sdtr_done;
 565        ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
 566        ASC_SCSI_BIT_ID_TYPE unit_not_ready;
 567        ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
 568        ASC_SCSI_BIT_ID_TYPE start_motor;
 569        uchar *overrun_buf;
 570        dma_addr_t overrun_dma;
 571        uchar scsi_reset_wait;
 572        uchar chip_no;
 573        char is_in_int;
 574        uchar max_total_qng;
 575        uchar cur_total_qng;
 576        uchar in_critical_cnt;
 577        uchar last_q_shortage;
 578        ushort init_state;
 579        uchar cur_dvc_qng[ASC_MAX_TID + 1];
 580        uchar max_dvc_qng[ASC_MAX_TID + 1];
 581        ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
 582        ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
 583        const uchar *sdtr_period_tbl;
 584        ASC_DVC_CFG *cfg;
 585        ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
 586        char redo_scam;
 587        ushort res2;
 588        uchar dos_int13_table[ASC_MAX_TID + 1];
 589        ASC_DCNT max_dma_count;
 590        ASC_SCSI_BIT_ID_TYPE no_scam;
 591        ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
 592        uchar min_sdtr_index;
 593        uchar max_sdtr_index;
 594        struct asc_board *drv_ptr;
 595        int ptr_map_count;
 596        void **ptr_map;
 597        ASC_DCNT uc_break;
 598} ASC_DVC_VAR;
 599
 600typedef struct asc_dvc_inq_info {
 601        uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
 602} ASC_DVC_INQ_INFO;
 603
 604typedef struct asc_cap_info {
 605        ASC_DCNT lba;
 606        ASC_DCNT blk_size;
 607} ASC_CAP_INFO;
 608
 609typedef struct asc_cap_info_array {
 610        ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
 611} ASC_CAP_INFO_ARRAY;
 612
 613#define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
 614#define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
 615#define ASC_CNTL_INITIATOR         (ushort)0x0001
 616#define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
 617#define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
 618#define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
 619#define ASC_CNTL_NO_SCAM           (ushort)0x0010
 620#define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
 621#define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
 622#define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
 623#define ASC_CNTL_RESET_SCSI        (ushort)0x0200
 624#define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
 625#define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
 626#define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
 627#define ASC_CNTL_BURST_MODE        (ushort)0x2000
 628#define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
 629#define ASC_EEP_DVC_CFG_BEG_VL    2
 630#define ASC_EEP_MAX_DVC_ADDR_VL   15
 631#define ASC_EEP_DVC_CFG_BEG      32
 632#define ASC_EEP_MAX_DVC_ADDR     45
 633#define ASC_EEP_MAX_RETRY        20
 634
 635/*
 636 * These macros keep the chip SCSI id and ISA DMA speed
 637 * bitfields in board order. C bitfields aren't portable
 638 * between big and little-endian platforms so they are
 639 * not used.
 640 */
 641
 642#define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
 643#define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
 644#define ASC_EEP_SET_CHIP_ID(cfg, sid) \
 645   ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
 646#define ASC_EEP_SET_DMA_SPD(cfg, spd) \
 647   ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
 648
 649typedef struct asceep_config {
 650        ushort cfg_lsw;
 651        ushort cfg_msw;
 652        uchar init_sdtr;
 653        uchar disc_enable;
 654        uchar use_cmd_qng;
 655        uchar start_motor;
 656        uchar max_total_qng;
 657        uchar max_tag_qng;
 658        uchar bios_scan;
 659        uchar power_up_wait;
 660        uchar no_scam;
 661        uchar id_speed;         /* low order 4 bits is chip scsi id */
 662        /* high order 4 bits is isa dma speed */
 663        uchar dos_int13_table[ASC_MAX_TID + 1];
 664        uchar adapter_info[6];
 665        ushort cntl;
 666        ushort chksum;
 667} ASCEEP_CONFIG;
 668
 669#define ASC_EEP_CMD_READ          0x80
 670#define ASC_EEP_CMD_WRITE         0x40
 671#define ASC_EEP_CMD_WRITE_ABLE    0x30
 672#define ASC_EEP_CMD_WRITE_DISABLE 0x00
 673#define ASCV_MSGOUT_BEG         0x0000
 674#define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
 675#define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
 676#define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
 677#define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
 678#define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
 679#define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
 680#define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
 681#define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
 682#define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
 683#define ASCV_BREAK_ADDR           (ushort)0x0028
 684#define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
 685#define ASCV_BREAK_CONTROL        (ushort)0x002C
 686#define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
 687
 688#define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
 689#define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
 690#define ASCV_MCODE_SIZE_W     (ushort)0x0034
 691#define ASCV_STOP_CODE_B      (ushort)0x0036
 692#define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
 693#define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
 694#define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
 695#define ASCV_HALTCODE_W       (ushort)0x0040
 696#define ASCV_CHKSUM_W         (ushort)0x0042
 697#define ASCV_MC_DATE_W        (ushort)0x0044
 698#define ASCV_MC_VER_W         (ushort)0x0046
 699#define ASCV_NEXTRDY_B        (ushort)0x0048
 700#define ASCV_DONENEXT_B       (ushort)0x0049
 701#define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
 702#define ASCV_SCSIBUSY_B       (ushort)0x004B
 703#define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
 704#define ASCV_CURCDB_B         (ushort)0x004D
 705#define ASCV_RCLUN_B          (ushort)0x004E
 706#define ASCV_BUSY_QHEAD_B     (ushort)0x004F
 707#define ASCV_DISC1_QHEAD_B    (ushort)0x0050
 708#define ASCV_DISC_ENABLE_B    (ushort)0x0052
 709#define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
 710#define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
 711#define ASCV_MCODE_CNTL_B     (ushort)0x0056
 712#define ASCV_NULL_TARGET_B    (ushort)0x0057
 713#define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
 714#define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
 715#define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
 716#define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
 717#define ASCV_HOST_FLAG_B      (ushort)0x005D
 718#define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
 719#define ASCV_VER_SERIAL_B     (ushort)0x0065
 720#define ASCV_HALTCODE_SAVED_W (ushort)0x0066
 721#define ASCV_WTM_FLAG_B       (ushort)0x0068
 722#define ASCV_RISC_FLAG_B      (ushort)0x006A
 723#define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
 724#define ASC_HOST_FLAG_IN_ISR        0x01
 725#define ASC_HOST_FLAG_ACK_INT       0x02
 726#define ASC_RISC_FLAG_GEN_INT      0x01
 727#define ASC_RISC_FLAG_REQ_SG_LIST  0x02
 728#define IOP_CTRL         (0x0F)
 729#define IOP_STATUS       (0x0E)
 730#define IOP_INT_ACK      IOP_STATUS
 731#define IOP_REG_IFC      (0x0D)
 732#define IOP_SYN_OFFSET    (0x0B)
 733#define IOP_EXTRA_CONTROL (0x0D)
 734#define IOP_REG_PC        (0x0C)
 735#define IOP_RAM_ADDR      (0x0A)
 736#define IOP_RAM_DATA      (0x08)
 737#define IOP_EEP_DATA      (0x06)
 738#define IOP_EEP_CMD       (0x07)
 739#define IOP_VERSION       (0x03)
 740#define IOP_CONFIG_HIGH   (0x04)
 741#define IOP_CONFIG_LOW    (0x02)
 742#define IOP_SIG_BYTE      (0x01)
 743#define IOP_SIG_WORD      (0x00)
 744#define IOP_REG_DC1      (0x0E)
 745#define IOP_REG_DC0      (0x0C)
 746#define IOP_REG_SB       (0x0B)
 747#define IOP_REG_DA1      (0x0A)
 748#define IOP_REG_DA0      (0x08)
 749#define IOP_REG_SC       (0x09)
 750#define IOP_DMA_SPEED    (0x07)
 751#define IOP_REG_FLAG     (0x07)
 752#define IOP_FIFO_H       (0x06)
 753#define IOP_FIFO_L       (0x04)
 754#define IOP_REG_ID       (0x05)
 755#define IOP_REG_QP       (0x03)
 756#define IOP_REG_IH       (0x02)
 757#define IOP_REG_IX       (0x01)
 758#define IOP_REG_AX       (0x00)
 759#define IFC_REG_LOCK      (0x00)
 760#define IFC_REG_UNLOCK    (0x09)
 761#define IFC_WR_EN_FILTER  (0x10)
 762#define IFC_RD_NO_EEPROM  (0x10)
 763#define IFC_SLEW_RATE     (0x20)
 764#define IFC_ACT_NEG       (0x40)
 765#define IFC_INP_FILTER    (0x80)
 766#define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
 767#define SC_SEL   (uchar)(0x80)
 768#define SC_BSY   (uchar)(0x40)
 769#define SC_ACK   (uchar)(0x20)
 770#define SC_REQ   (uchar)(0x10)
 771#define SC_ATN   (uchar)(0x08)
 772#define SC_IO    (uchar)(0x04)
 773#define SC_CD    (uchar)(0x02)
 774#define SC_MSG   (uchar)(0x01)
 775#define SEC_SCSI_CTL         (uchar)(0x80)
 776#define SEC_ACTIVE_NEGATE    (uchar)(0x40)
 777#define SEC_SLEW_RATE        (uchar)(0x20)
 778#define SEC_ENABLE_FILTER    (uchar)(0x10)
 779#define ASC_HALT_EXTMSG_IN     (ushort)0x8000
 780#define ASC_HALT_CHK_CONDITION (ushort)0x8100
 781#define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
 782#define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
 783#define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
 784#define ASC_HALT_SDTR_REJECTED (ushort)0x4000
 785#define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
 786#define ASC_MAX_QNO        0xF8
 787#define ASC_DATA_SEC_BEG   (ushort)0x0080
 788#define ASC_DATA_SEC_END   (ushort)0x0080
 789#define ASC_CODE_SEC_BEG   (ushort)0x0080
 790#define ASC_CODE_SEC_END   (ushort)0x0080
 791#define ASC_QADR_BEG       (0x4000)
 792#define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
 793#define ASC_QADR_END       (ushort)0x7FFF
 794#define ASC_QLAST_ADR      (ushort)0x7FC0
 795#define ASC_QBLK_SIZE      0x40
 796#define ASC_BIOS_DATA_QBEG 0xF8
 797#define ASC_MIN_ACTIVE_QNO 0x01
 798#define ASC_QLINK_END      0xFF
 799#define ASC_EEPROM_WORDS   0x10
 800#define ASC_MAX_MGS_LEN    0x10
 801#define ASC_BIOS_ADDR_DEF  0xDC00
 802#define ASC_BIOS_SIZE      0x3800
 803#define ASC_BIOS_RAM_OFF   0x3800
 804#define ASC_BIOS_RAM_SIZE  0x800
 805#define ASC_BIOS_MIN_ADDR  0xC000
 806#define ASC_BIOS_MAX_ADDR  0xEC00
 807#define ASC_BIOS_BANK_SIZE 0x0400
 808#define ASC_MCODE_START_ADDR  0x0080
 809#define ASC_CFG0_HOST_INT_ON    0x0020
 810#define ASC_CFG0_BIOS_ON        0x0040
 811#define ASC_CFG0_VERA_BURST_ON  0x0080
 812#define ASC_CFG0_SCSI_PARITY_ON 0x0800
 813#define ASC_CFG1_SCSI_TARGET_ON 0x0080
 814#define ASC_CFG1_LRAM_8BITS_ON  0x0800
 815#define ASC_CFG_MSW_CLR_MASK    0x3080
 816#define CSW_TEST1             (ASC_CS_TYPE)0x8000
 817#define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
 818#define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
 819#define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
 820#define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
 821#define CSW_TEST2             (ASC_CS_TYPE)0x0400
 822#define CSW_TEST3             (ASC_CS_TYPE)0x0200
 823#define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
 824#define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
 825#define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
 826#define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
 827#define CSW_HALTED            (ASC_CS_TYPE)0x0010
 828#define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
 829#define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
 830#define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
 831#define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
 832#define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
 833#define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
 834#define CIW_TEST1        (ASC_CS_TYPE)0x0200
 835#define CIW_TEST2        (ASC_CS_TYPE)0x0400
 836#define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
 837#define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
 838#define CC_CHIP_RESET   (uchar)0x80
 839#define CC_SCSI_RESET   (uchar)0x40
 840#define CC_HALT         (uchar)0x20
 841#define CC_SINGLE_STEP  (uchar)0x10
 842#define CC_DMA_ABLE     (uchar)0x08
 843#define CC_TEST         (uchar)0x04
 844#define CC_BANK_ONE     (uchar)0x02
 845#define CC_DIAG         (uchar)0x01
 846#define ASC_1000_ID0W      0x04C1
 847#define ASC_1000_ID0W_FIX  0x00C1
 848#define ASC_1000_ID1B      0x25
 849#define ASC_EISA_REV_IOP_MASK  (0x0C83)
 850#define ASC_EISA_CFG_IOP_MASK  (0x0C86)
 851#define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
 852#define INS_HALTINT        (ushort)0x6281
 853#define INS_HALT           (ushort)0x6280
 854#define INS_SINT           (ushort)0x6200
 855#define INS_RFLAG_WTM      (ushort)0x7380
 856#define ASC_MC_SAVE_CODE_WSIZE  0x500
 857#define ASC_MC_SAVE_DATA_WSIZE  0x40
 858
 859typedef struct asc_mc_saved {
 860        ushort data[ASC_MC_SAVE_DATA_WSIZE];
 861        ushort code[ASC_MC_SAVE_CODE_WSIZE];
 862} ASC_MC_SAVED;
 863
 864#define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
 865#define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
 866#define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
 867#define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
 868#define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
 869#define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
 870#define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
 871#define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
 872#define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
 873#define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
 874#define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
 875#define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
 876#define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
 877#define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
 878#define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
 879#define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
 880#define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
 881#define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
 882#define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
 883#define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
 884#define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
 885#define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
 886#define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
 887#define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
 888#define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
 889#define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
 890#define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
 891#define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
 892#define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
 893#define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
 894#define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
 895#define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
 896#define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
 897#define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
 898#define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
 899#define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
 900#define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
 901#define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
 902#define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
 903#define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
 904#define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
 905#define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
 906#define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
 907#define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
 908#define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
 909#define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
 910#define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
 911#define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
 912#define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
 913#define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
 914#define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
 915#define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
 916#define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
 917#define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
 918#define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
 919#define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
 920#define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
 921#define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
 922#define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
 923#define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
 924#define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
 925#define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
 926#define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
 927#define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
 928#define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
 929#define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
 930#define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
 931
 932/*
 933 * Portable Data Types
 934 *
 935 * Any instance where a 32-bit long or pointer type is assumed
 936 * for precision or HW defined structures, the following define
 937 * types must be used. In Linux the char, short, and int types
 938 * are all consistent at 8, 16, and 32 bits respectively. Pointers
 939 * and long types are 64 bits on Alpha and UltraSPARC.
 940 */
 941#define ADV_PADDR __u32         /* Physical address data type. */
 942#define ADV_VADDR __u32         /* Virtual address data type. */
 943#define ADV_DCNT  __u32         /* Unsigned Data count type. */
 944#define ADV_SDCNT __s32         /* Signed Data count type. */
 945
 946/*
 947 * These macros are used to convert a virtual address to a
 948 * 32-bit value. This currently can be used on Linux Alpha
 949 * which uses 64-bit virtual address but a 32-bit bus address.
 950 * This is likely to break in the future, but doing this now
 951 * will give us time to change the HW and FW to handle 64-bit
 952 * addresses.
 953 */
 954#define ADV_VADDR_TO_U32   virt_to_bus
 955#define ADV_U32_TO_VADDR   bus_to_virt
 956
 957#define AdvPortAddr  void __iomem *     /* Virtual memory address size */
 958
 959/*
 960 * Define Adv Library required memory access macros.
 961 */
 962#define ADV_MEM_READB(addr) readb(addr)
 963#define ADV_MEM_READW(addr) readw(addr)
 964#define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
 965#define ADV_MEM_WRITEW(addr, word) writew(word, addr)
 966#define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
 967
 968#define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
 969
 970/*
 971 * Define total number of simultaneous maximum element scatter-gather
 972 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
 973 * maximum number of outstanding commands per wide host adapter. Each
 974 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
 975 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
 976 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
 977 * structures or 255 scatter-gather elements.
 978 */
 979#define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
 980
 981/*
 982 * Define maximum number of scatter-gather elements per request.
 983 */
 984#define ADV_MAX_SG_LIST         255
 985#define NO_OF_SG_PER_BLOCK              15
 986
 987#define ADV_EEP_DVC_CFG_BEGIN           (0x00)
 988#define ADV_EEP_DVC_CFG_END             (0x15)
 989#define ADV_EEP_DVC_CTL_BEGIN           (0x16)  /* location of OEM name */
 990#define ADV_EEP_MAX_WORD_ADDR           (0x1E)
 991
 992#define ADV_EEP_DELAY_MS                100
 993
 994#define ADV_EEPROM_BIG_ENDIAN          0x8000   /* EEPROM Bit 15 */
 995#define ADV_EEPROM_BIOS_ENABLE         0x4000   /* EEPROM Bit 14 */
 996/*
 997 * For the ASC3550 Bit 13 is Termination Polarity control bit.
 998 * For later ICs Bit 13 controls whether the CIS (Card Information
 999 * Service Section) is loaded from EEPROM.
1000 */
1001#define ADV_EEPROM_TERM_POL            0x2000   /* EEPROM Bit 13 */
1002#define ADV_EEPROM_CIS_LD              0x2000   /* EEPROM Bit 13 */
1003/*
1004 * ASC38C1600 Bit 11
1005 *
1006 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1007 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1008 * Function 0 will specify INT B.
1009 *
1010 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1011 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1012 * Function 1 will specify INT A.
1013 */
1014#define ADV_EEPROM_INTAB               0x0800   /* EEPROM Bit 11 */
1015
1016typedef struct adveep_3550_config {
1017        /* Word Offset, Description */
1018
1019        ushort cfg_lsw;         /* 00 power up initialization */
1020        /*  bit 13 set - Term Polarity Control */
1021        /*  bit 14 set - BIOS Enable */
1022        /*  bit 15 set - Big Endian Mode */
1023        ushort cfg_msw;         /* 01 unused      */
1024        ushort disc_enable;     /* 02 disconnect enable */
1025        ushort wdtr_able;       /* 03 Wide DTR able */
1026        ushort sdtr_able;       /* 04 Synchronous DTR able */
1027        ushort start_motor;     /* 05 send start up motor */
1028        ushort tagqng_able;     /* 06 tag queuing able */
1029        ushort bios_scan;       /* 07 BIOS device control */
1030        ushort scam_tolerant;   /* 08 no scam */
1031
1032        uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1033        uchar bios_boot_delay;  /*    power up wait */
1034
1035        uchar scsi_reset_delay; /* 10 reset delay */
1036        uchar bios_id_lun;      /*    first boot device scsi id & lun */
1037        /*    high nibble is lun */
1038        /*    low nibble is scsi id */
1039
1040        uchar termination;      /* 11 0 - automatic */
1041        /*    1 - low off / high off */
1042        /*    2 - low off / high on */
1043        /*    3 - low on  / high on */
1044        /*    There is no low on  / high off */
1045
1046        uchar reserved1;        /*    reserved byte (not used) */
1047
1048        ushort bios_ctrl;       /* 12 BIOS control bits */
1049        /*  bit 0  BIOS don't act as initiator. */
1050        /*  bit 1  BIOS > 1 GB support */
1051        /*  bit 2  BIOS > 2 Disk Support */
1052        /*  bit 3  BIOS don't support removables */
1053        /*  bit 4  BIOS support bootable CD */
1054        /*  bit 5  BIOS scan enabled */
1055        /*  bit 6  BIOS support multiple LUNs */
1056        /*  bit 7  BIOS display of message */
1057        /*  bit 8  SCAM disabled */
1058        /*  bit 9  Reset SCSI bus during init. */
1059        /*  bit 10 */
1060        /*  bit 11 No verbose initialization. */
1061        /*  bit 12 SCSI parity enabled */
1062        /*  bit 13 */
1063        /*  bit 14 */
1064        /*  bit 15 */
1065        ushort ultra_able;      /* 13 ULTRA speed able */
1066        ushort reserved2;       /* 14 reserved */
1067        uchar max_host_qng;     /* 15 maximum host queuing */
1068        uchar max_dvc_qng;      /*    maximum per device queuing */
1069        ushort dvc_cntl;        /* 16 control bit for driver */
1070        ushort bug_fix;         /* 17 control bit for bug fix */
1071        ushort serial_number_word1;     /* 18 Board serial number word 1 */
1072        ushort serial_number_word2;     /* 19 Board serial number word 2 */
1073        ushort serial_number_word3;     /* 20 Board serial number word 3 */
1074        ushort check_sum;       /* 21 EEP check sum */
1075        uchar oem_name[16];     /* 22 OEM name */
1076        ushort dvc_err_code;    /* 30 last device driver error code */
1077        ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1078        ushort adv_err_addr;    /* 32 last uc error address */
1079        ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
1080        ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
1081        ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
1082        ushort num_of_err;      /* 36 number of error */
1083} ADVEEP_3550_CONFIG;
1084
1085typedef struct adveep_38C0800_config {
1086        /* Word Offset, Description */
1087
1088        ushort cfg_lsw;         /* 00 power up initialization */
1089        /*  bit 13 set - Load CIS */
1090        /*  bit 14 set - BIOS Enable */
1091        /*  bit 15 set - Big Endian Mode */
1092        ushort cfg_msw;         /* 01 unused      */
1093        ushort disc_enable;     /* 02 disconnect enable */
1094        ushort wdtr_able;       /* 03 Wide DTR able */
1095        ushort sdtr_speed1;     /* 04 SDTR Speed TID 0-3 */
1096        ushort start_motor;     /* 05 send start up motor */
1097        ushort tagqng_able;     /* 06 tag queuing able */
1098        ushort bios_scan;       /* 07 BIOS device control */
1099        ushort scam_tolerant;   /* 08 no scam */
1100
1101        uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1102        uchar bios_boot_delay;  /*    power up wait */
1103
1104        uchar scsi_reset_delay; /* 10 reset delay */
1105        uchar bios_id_lun;      /*    first boot device scsi id & lun */
1106        /*    high nibble is lun */
1107        /*    low nibble is scsi id */
1108
1109        uchar termination_se;   /* 11 0 - automatic */
1110        /*    1 - low off / high off */
1111        /*    2 - low off / high on */
1112        /*    3 - low on  / high on */
1113        /*    There is no low on  / high off */
1114
1115        uchar termination_lvd;  /* 11 0 - automatic */
1116        /*    1 - low off / high off */
1117        /*    2 - low off / high on */
1118        /*    3 - low on  / high on */
1119        /*    There is no low on  / high off */
1120
1121        ushort bios_ctrl;       /* 12 BIOS control bits */
1122        /*  bit 0  BIOS don't act as initiator. */
1123        /*  bit 1  BIOS > 1 GB support */
1124        /*  bit 2  BIOS > 2 Disk Support */
1125        /*  bit 3  BIOS don't support removables */
1126        /*  bit 4  BIOS support bootable CD */
1127        /*  bit 5  BIOS scan enabled */
1128        /*  bit 6  BIOS support multiple LUNs */
1129        /*  bit 7  BIOS display of message */
1130        /*  bit 8  SCAM disabled */
1131        /*  bit 9  Reset SCSI bus during init. */
1132        /*  bit 10 */
1133        /*  bit 11 No verbose initialization. */
1134        /*  bit 12 SCSI parity enabled */
1135        /*  bit 13 */
1136        /*  bit 14 */
1137        /*  bit 15 */
1138        ushort sdtr_speed2;     /* 13 SDTR speed TID 4-7 */
1139        ushort sdtr_speed3;     /* 14 SDTR speed TID 8-11 */
1140        uchar max_host_qng;     /* 15 maximum host queueing */
1141        uchar max_dvc_qng;      /*    maximum per device queuing */
1142        ushort dvc_cntl;        /* 16 control bit for driver */
1143        ushort sdtr_speed4;     /* 17 SDTR speed 4 TID 12-15 */
1144        ushort serial_number_word1;     /* 18 Board serial number word 1 */
1145        ushort serial_number_word2;     /* 19 Board serial number word 2 */
1146        ushort serial_number_word3;     /* 20 Board serial number word 3 */
1147        ushort check_sum;       /* 21 EEP check sum */
1148        uchar oem_name[16];     /* 22 OEM name */
1149        ushort dvc_err_code;    /* 30 last device driver error code */
1150        ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1151        ushort adv_err_addr;    /* 32 last uc error address */
1152        ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
1153        ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
1154        ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
1155        ushort reserved36;      /* 36 reserved */
1156        ushort reserved37;      /* 37 reserved */
1157        ushort reserved38;      /* 38 reserved */
1158        ushort reserved39;      /* 39 reserved */
1159        ushort reserved40;      /* 40 reserved */
1160        ushort reserved41;      /* 41 reserved */
1161        ushort reserved42;      /* 42 reserved */
1162        ushort reserved43;      /* 43 reserved */
1163        ushort reserved44;      /* 44 reserved */
1164        ushort reserved45;      /* 45 reserved */
1165        ushort reserved46;      /* 46 reserved */
1166        ushort reserved47;      /* 47 reserved */
1167        ushort reserved48;      /* 48 reserved */
1168        ushort reserved49;      /* 49 reserved */
1169        ushort reserved50;      /* 50 reserved */
1170        ushort reserved51;      /* 51 reserved */
1171        ushort reserved52;      /* 52 reserved */
1172        ushort reserved53;      /* 53 reserved */
1173        ushort reserved54;      /* 54 reserved */
1174        ushort reserved55;      /* 55 reserved */
1175        ushort cisptr_lsw;      /* 56 CIS PTR LSW */
1176        ushort cisprt_msw;      /* 57 CIS PTR MSW */
1177        ushort subsysvid;       /* 58 SubSystem Vendor ID */
1178        ushort subsysid;        /* 59 SubSystem ID */
1179        ushort reserved60;      /* 60 reserved */
1180        ushort reserved61;      /* 61 reserved */
1181        ushort reserved62;      /* 62 reserved */
1182        ushort reserved63;      /* 63 reserved */
1183} ADVEEP_38C0800_CONFIG;
1184
1185typedef struct adveep_38C1600_config {
1186        /* Word Offset, Description */
1187
1188        ushort cfg_lsw;         /* 00 power up initialization */
1189        /*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1190        /*       clear - Func. 0 INTA, Func. 1 INTB */
1191        /*  bit 13 set - Load CIS */
1192        /*  bit 14 set - BIOS Enable */
1193        /*  bit 15 set - Big Endian Mode */
1194        ushort cfg_msw;         /* 01 unused */
1195        ushort disc_enable;     /* 02 disconnect enable */
1196        ushort wdtr_able;       /* 03 Wide DTR able */
1197        ushort sdtr_speed1;     /* 04 SDTR Speed TID 0-3 */
1198        ushort start_motor;     /* 05 send start up motor */
1199        ushort tagqng_able;     /* 06 tag queuing able */
1200        ushort bios_scan;       /* 07 BIOS device control */
1201        ushort scam_tolerant;   /* 08 no scam */
1202
1203        uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1204        uchar bios_boot_delay;  /*    power up wait */
1205
1206        uchar scsi_reset_delay; /* 10 reset delay */
1207        uchar bios_id_lun;      /*    first boot device scsi id & lun */
1208        /*    high nibble is lun */
1209        /*    low nibble is scsi id */
1210
1211        uchar termination_se;   /* 11 0 - automatic */
1212        /*    1 - low off / high off */
1213        /*    2 - low off / high on */
1214        /*    3 - low on  / high on */
1215        /*    There is no low on  / high off */
1216
1217        uchar termination_lvd;  /* 11 0 - automatic */
1218        /*    1 - low off / high off */
1219        /*    2 - low off / high on */
1220        /*    3 - low on  / high on */
1221        /*    There is no low on  / high off */
1222
1223        ushort bios_ctrl;       /* 12 BIOS control bits */
1224        /*  bit 0  BIOS don't act as initiator. */
1225        /*  bit 1  BIOS > 1 GB support */
1226        /*  bit 2  BIOS > 2 Disk Support */
1227        /*  bit 3  BIOS don't support removables */
1228        /*  bit 4  BIOS support bootable CD */
1229        /*  bit 5  BIOS scan enabled */
1230        /*  bit 6  BIOS support multiple LUNs */
1231        /*  bit 7  BIOS display of message */
1232        /*  bit 8  SCAM disabled */
1233        /*  bit 9  Reset SCSI bus during init. */
1234        /*  bit 10 Basic Integrity Checking disabled */
1235        /*  bit 11 No verbose initialization. */
1236        /*  bit 12 SCSI parity enabled */
1237        /*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1238        /*  bit 14 */
1239        /*  bit 15 */
1240        ushort sdtr_speed2;     /* 13 SDTR speed TID 4-7 */
1241        ushort sdtr_speed3;     /* 14 SDTR speed TID 8-11 */
1242        uchar max_host_qng;     /* 15 maximum host queueing */
1243        uchar max_dvc_qng;      /*    maximum per device queuing */
1244        ushort dvc_cntl;        /* 16 control bit for driver */
1245        ushort sdtr_speed4;     /* 17 SDTR speed 4 TID 12-15 */
1246        ushort serial_number_word1;     /* 18 Board serial number word 1 */
1247        ushort serial_number_word2;     /* 19 Board serial number word 2 */
1248        ushort serial_number_word3;     /* 20 Board serial number word 3 */
1249        ushort check_sum;       /* 21 EEP check sum */
1250        uchar oem_name[16];     /* 22 OEM name */
1251        ushort dvc_err_code;    /* 30 last device driver error code */
1252        ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1253        ushort adv_err_addr;    /* 32 last uc error address */
1254        ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
1255        ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
1256        ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
1257        ushort reserved36;      /* 36 reserved */
1258        ushort reserved37;      /* 37 reserved */
1259        ushort reserved38;      /* 38 reserved */
1260        ushort reserved39;      /* 39 reserved */
1261        ushort reserved40;      /* 40 reserved */
1262        ushort reserved41;      /* 41 reserved */
1263        ushort reserved42;      /* 42 reserved */
1264        ushort reserved43;      /* 43 reserved */
1265        ushort reserved44;      /* 44 reserved */
1266        ushort reserved45;      /* 45 reserved */
1267        ushort reserved46;      /* 46 reserved */
1268        ushort reserved47;      /* 47 reserved */
1269        ushort reserved48;      /* 48 reserved */
1270        ushort reserved49;      /* 49 reserved */
1271        ushort reserved50;      /* 50 reserved */
1272        ushort reserved51;      /* 51 reserved */
1273        ushort reserved52;      /* 52 reserved */
1274        ushort reserved53;      /* 53 reserved */
1275        ushort reserved54;      /* 54 reserved */
1276        ushort reserved55;      /* 55 reserved */
1277        ushort cisptr_lsw;      /* 56 CIS PTR LSW */
1278        ushort cisprt_msw;      /* 57 CIS PTR MSW */
1279        ushort subsysvid;       /* 58 SubSystem Vendor ID */
1280        ushort subsysid;        /* 59 SubSystem ID */
1281        ushort reserved60;      /* 60 reserved */
1282        ushort reserved61;      /* 61 reserved */
1283        ushort reserved62;      /* 62 reserved */
1284        ushort reserved63;      /* 63 reserved */
1285} ADVEEP_38C1600_CONFIG;
1286
1287/*
1288 * EEPROM Commands
1289 */
1290#define ASC_EEP_CMD_DONE             0x0200
1291
1292/* bios_ctrl */
1293#define BIOS_CTRL_BIOS               0x0001
1294#define BIOS_CTRL_EXTENDED_XLAT      0x0002
1295#define BIOS_CTRL_GT_2_DISK          0x0004
1296#define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1297#define BIOS_CTRL_BOOTABLE_CD        0x0010
1298#define BIOS_CTRL_MULTIPLE_LUN       0x0040
1299#define BIOS_CTRL_DISPLAY_MSG        0x0080
1300#define BIOS_CTRL_NO_SCAM            0x0100
1301#define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1302#define BIOS_CTRL_INIT_VERBOSE       0x0800
1303#define BIOS_CTRL_SCSI_PARITY        0x1000
1304#define BIOS_CTRL_AIPP_DIS           0x2000
1305
1306#define ADV_3550_MEMSIZE   0x2000       /* 8 KB Internal Memory */
1307
1308#define ADV_38C0800_MEMSIZE  0x4000     /* 16 KB Internal Memory */
1309
1310/*
1311 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1312 * a special 16K Adv Library and Microcode version. After the issue is
1313 * resolved, should restore 32K support.
1314 *
1315 * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1316 */
1317#define ADV_38C1600_MEMSIZE  0x4000     /* 16 KB Internal Memory */
1318
1319/*
1320 * Byte I/O register address from base of 'iop_base'.
1321 */
1322#define IOPB_INTR_STATUS_REG    0x00
1323#define IOPB_CHIP_ID_1          0x01
1324#define IOPB_INTR_ENABLES       0x02
1325#define IOPB_CHIP_TYPE_REV      0x03
1326#define IOPB_RES_ADDR_4         0x04
1327#define IOPB_RES_ADDR_5         0x05
1328#define IOPB_RAM_DATA           0x06
1329#define IOPB_RES_ADDR_7         0x07
1330#define IOPB_FLAG_REG           0x08
1331#define IOPB_RES_ADDR_9         0x09
1332#define IOPB_RISC_CSR           0x0A
1333#define IOPB_RES_ADDR_B         0x0B
1334#define IOPB_RES_ADDR_C         0x0C
1335#define IOPB_RES_ADDR_D         0x0D
1336#define IOPB_SOFT_OVER_WR       0x0E
1337#define IOPB_RES_ADDR_F         0x0F
1338#define IOPB_MEM_CFG            0x10
1339#define IOPB_RES_ADDR_11        0x11
1340#define IOPB_GPIO_DATA          0x12
1341#define IOPB_RES_ADDR_13        0x13
1342#define IOPB_FLASH_PAGE         0x14
1343#define IOPB_RES_ADDR_15        0x15
1344#define IOPB_GPIO_CNTL          0x16
1345#define IOPB_RES_ADDR_17        0x17
1346#define IOPB_FLASH_DATA         0x18
1347#define IOPB_RES_ADDR_19        0x19
1348#define IOPB_RES_ADDR_1A        0x1A
1349#define IOPB_RES_ADDR_1B        0x1B
1350#define IOPB_RES_ADDR_1C        0x1C
1351#define IOPB_RES_ADDR_1D        0x1D
1352#define IOPB_RES_ADDR_1E        0x1E
1353#define IOPB_RES_ADDR_1F        0x1F
1354#define IOPB_DMA_CFG0           0x20
1355#define IOPB_DMA_CFG1           0x21
1356#define IOPB_TICKLE             0x22
1357#define IOPB_DMA_REG_WR         0x23
1358#define IOPB_SDMA_STATUS        0x24
1359#define IOPB_SCSI_BYTE_CNT      0x25
1360#define IOPB_HOST_BYTE_CNT      0x26
1361#define IOPB_BYTE_LEFT_TO_XFER  0x27
1362#define IOPB_BYTE_TO_XFER_0     0x28
1363#define IOPB_BYTE_TO_XFER_1     0x29
1364#define IOPB_BYTE_TO_XFER_2     0x2A
1365#define IOPB_BYTE_TO_XFER_3     0x2B
1366#define IOPB_ACC_GRP            0x2C
1367#define IOPB_RES_ADDR_2D        0x2D
1368#define IOPB_DEV_ID             0x2E
1369#define IOPB_RES_ADDR_2F        0x2F
1370#define IOPB_SCSI_DATA          0x30
1371#define IOPB_RES_ADDR_31        0x31
1372#define IOPB_RES_ADDR_32        0x32
1373#define IOPB_SCSI_DATA_HSHK     0x33
1374#define IOPB_SCSI_CTRL          0x34
1375#define IOPB_RES_ADDR_35        0x35
1376#define IOPB_RES_ADDR_36        0x36
1377#define IOPB_RES_ADDR_37        0x37
1378#define IOPB_RAM_BIST           0x38
1379#define IOPB_PLL_TEST           0x39
1380#define IOPB_PCI_INT_CFG        0x3A
1381#define IOPB_RES_ADDR_3B        0x3B
1382#define IOPB_RFIFO_CNT          0x3C
1383#define IOPB_RES_ADDR_3D        0x3D
1384#define IOPB_RES_ADDR_3E        0x3E
1385#define IOPB_RES_ADDR_3F        0x3F
1386
1387/*
1388 * Word I/O register address from base of 'iop_base'.
1389 */
1390#define IOPW_CHIP_ID_0          0x00    /* CID0  */
1391#define IOPW_CTRL_REG           0x02    /* CC    */
1392#define IOPW_RAM_ADDR           0x04    /* LA    */
1393#define IOPW_RAM_DATA           0x06    /* LD    */
1394#define IOPW_RES_ADDR_08        0x08
1395#define IOPW_RISC_CSR           0x0A    /* CSR   */
1396#define IOPW_SCSI_CFG0          0x0C    /* CFG0  */
1397#define IOPW_SCSI_CFG1          0x0E    /* CFG1  */
1398#define IOPW_RES_ADDR_10        0x10
1399#define IOPW_SEL_MASK           0x12    /* SM    */
1400#define IOPW_RES_ADDR_14        0x14
1401#define IOPW_FLASH_ADDR         0x16    /* FA    */
1402#define IOPW_RES_ADDR_18        0x18
1403#define IOPW_EE_CMD             0x1A    /* EC    */
1404#define IOPW_EE_DATA            0x1C    /* ED    */
1405#define IOPW_SFIFO_CNT          0x1E    /* SFC   */
1406#define IOPW_RES_ADDR_20        0x20
1407#define IOPW_Q_BASE             0x22    /* QB    */
1408#define IOPW_QP                 0x24    /* QP    */
1409#define IOPW_IX                 0x26    /* IX    */
1410#define IOPW_SP                 0x28    /* SP    */
1411#define IOPW_PC                 0x2A    /* PC    */
1412#define IOPW_RES_ADDR_2C        0x2C
1413#define IOPW_RES_ADDR_2E        0x2E
1414#define IOPW_SCSI_DATA          0x30    /* SD    */
1415#define IOPW_SCSI_DATA_HSHK     0x32    /* SDH   */
1416#define IOPW_SCSI_CTRL          0x34    /* SC    */
1417#define IOPW_HSHK_CFG           0x36    /* HCFG  */
1418#define IOPW_SXFR_STATUS        0x36    /* SXS   */
1419#define IOPW_SXFR_CNTL          0x38    /* SXL   */
1420#define IOPW_SXFR_CNTH          0x3A    /* SXH   */
1421#define IOPW_RES_ADDR_3C        0x3C
1422#define IOPW_RFIFO_DATA         0x3E    /* RFD   */
1423
1424/*
1425 * Doubleword I/O register address from base of 'iop_base'.
1426 */
1427#define IOPDW_RES_ADDR_0         0x00
1428#define IOPDW_RAM_DATA           0x04
1429#define IOPDW_RES_ADDR_8         0x08
1430#define IOPDW_RES_ADDR_C         0x0C
1431#define IOPDW_RES_ADDR_10        0x10
1432#define IOPDW_COMMA              0x14
1433#define IOPDW_COMMB              0x18
1434#define IOPDW_RES_ADDR_1C        0x1C
1435#define IOPDW_SDMA_ADDR0         0x20
1436#define IOPDW_SDMA_ADDR1         0x24
1437#define IOPDW_SDMA_COUNT         0x28
1438#define IOPDW_SDMA_ERROR         0x2C
1439#define IOPDW_RDMA_ADDR0         0x30
1440#define IOPDW_RDMA_ADDR1         0x34
1441#define IOPDW_RDMA_COUNT         0x38
1442#define IOPDW_RDMA_ERROR         0x3C
1443
1444#define ADV_CHIP_ID_BYTE         0x25
1445#define ADV_CHIP_ID_WORD         0x04C1
1446
1447#define ADV_INTR_ENABLE_HOST_INTR                   0x01
1448#define ADV_INTR_ENABLE_SEL_INTR                    0x02
1449#define ADV_INTR_ENABLE_DPR_INTR                    0x04
1450#define ADV_INTR_ENABLE_RTA_INTR                    0x08
1451#define ADV_INTR_ENABLE_RMA_INTR                    0x10
1452#define ADV_INTR_ENABLE_RST_INTR                    0x20
1453#define ADV_INTR_ENABLE_DPE_INTR                    0x40
1454#define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1455
1456#define ADV_INTR_STATUS_INTRA            0x01
1457#define ADV_INTR_STATUS_INTRB            0x02
1458#define ADV_INTR_STATUS_INTRC            0x04
1459
1460#define ADV_RISC_CSR_STOP           (0x0000)
1461#define ADV_RISC_TEST_COND          (0x2000)
1462#define ADV_RISC_CSR_RUN            (0x4000)
1463#define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1464
1465#define ADV_CTRL_REG_HOST_INTR      0x0100
1466#define ADV_CTRL_REG_SEL_INTR       0x0200
1467#define ADV_CTRL_REG_DPR_INTR       0x0400
1468#define ADV_CTRL_REG_RTA_INTR       0x0800
1469#define ADV_CTRL_REG_RMA_INTR       0x1000
1470#define ADV_CTRL_REG_RES_BIT14      0x2000
1471#define ADV_CTRL_REG_DPE_INTR       0x4000
1472#define ADV_CTRL_REG_POWER_DONE     0x8000
1473#define ADV_CTRL_REG_ANY_INTR       0xFF00
1474
1475#define ADV_CTRL_REG_CMD_RESET             0x00C6
1476#define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1477#define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1478#define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1479#define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1480
1481#define ADV_TICKLE_NOP                      0x00
1482#define ADV_TICKLE_A                        0x01
1483#define ADV_TICKLE_B                        0x02
1484#define ADV_TICKLE_C                        0x03
1485
1486#define AdvIsIntPending(port) \
1487    (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1488
1489/*
1490 * SCSI_CFG0 Register bit definitions
1491 */
1492#define TIMER_MODEAB    0xC000  /* Watchdog, Second, and Select. Timer Ctrl. */
1493#define PARITY_EN       0x2000  /* Enable SCSI Parity Error detection */
1494#define EVEN_PARITY     0x1000  /* Select Even Parity */
1495#define WD_LONG         0x0800  /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1496#define QUEUE_128       0x0400  /* Queue Size, 1: 128 byte, 0: 64 byte */
1497#define PRIM_MODE       0x0100  /* Primitive SCSI mode */
1498#define SCAM_EN         0x0080  /* Enable SCAM selection */
1499#define SEL_TMO_LONG    0x0040  /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1500#define CFRM_ID         0x0020  /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1501#define OUR_ID_EN       0x0010  /* Enable OUR_ID bits */
1502#define OUR_ID          0x000F  /* SCSI ID */
1503
1504/*
1505 * SCSI_CFG1 Register bit definitions
1506 */
1507#define BIG_ENDIAN      0x8000  /* Enable Big Endian Mode MIO:15, EEP:15 */
1508#define TERM_POL        0x2000  /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1509#define SLEW_RATE       0x1000  /* SCSI output buffer slew rate */
1510#define FILTER_SEL      0x0C00  /* Filter Period Selection */
1511#define  FLTR_DISABLE    0x0000 /* Input Filtering Disabled */
1512#define  FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1513#define  FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1514#define ACTIVE_DBL      0x0200  /* Disable Active Negation */
1515#define DIFF_MODE       0x0100  /* SCSI differential Mode (Read-Only) */
1516#define DIFF_SENSE      0x0080  /* 1: No SE cables, 0: SE cable (Read-Only) */
1517#define TERM_CTL_SEL    0x0040  /* Enable TERM_CTL_H and TERM_CTL_L */
1518#define TERM_CTL        0x0030  /* External SCSI Termination Bits */
1519#define  TERM_CTL_H      0x0020 /* Enable External SCSI Upper Termination */
1520#define  TERM_CTL_L      0x0010 /* Enable External SCSI Lower Termination */
1521#define CABLE_DETECT    0x000F  /* External SCSI Cable Connection Status */
1522
1523/*
1524 * Addendum for ASC-38C0800 Chip
1525 *
1526 * The ASC-38C1600 Chip uses the same definitions except that the
1527 * bus mode override bits [12:10] have been moved to byte register
1528 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1529 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1530 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1531 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1532 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1533 */
1534#define DIS_TERM_DRV    0x4000  /* 1: Read c_det[3:0], 0: cannot read */
1535#define HVD_LVD_SE      0x1C00  /* Device Detect Bits */
1536#define  HVD             0x1000 /* HVD Device Detect */
1537#define  LVD             0x0800 /* LVD Device Detect */
1538#define  SE              0x0400 /* SE Device Detect */
1539#define TERM_LVD        0x00C0  /* LVD Termination Bits */
1540#define  TERM_LVD_HI     0x0080 /* Enable LVD Upper Termination */
1541#define  TERM_LVD_LO     0x0040 /* Enable LVD Lower Termination */
1542#define TERM_SE         0x0030  /* SE Termination Bits */
1543#define  TERM_SE_HI      0x0020 /* Enable SE Upper Termination */
1544#define  TERM_SE_LO      0x0010 /* Enable SE Lower Termination */
1545#define C_DET_LVD       0x000C  /* LVD Cable Detect Bits */
1546#define  C_DET3          0x0008 /* Cable Detect for LVD External Wide */
1547#define  C_DET2          0x0004 /* Cable Detect for LVD Internal Wide */
1548#define C_DET_SE        0x0003  /* SE Cable Detect Bits */
1549#define  C_DET1          0x0002 /* Cable Detect for SE Internal Wide */
1550#define  C_DET0          0x0001 /* Cable Detect for SE Internal Narrow */
1551
1552#define CABLE_ILLEGAL_A 0x7
1553    /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1554
1555#define CABLE_ILLEGAL_B 0xB
1556    /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1557
1558/*
1559 * MEM_CFG Register bit definitions
1560 */
1561#define BIOS_EN         0x40    /* BIOS Enable MIO:14,EEP:14 */
1562#define FAST_EE_CLK     0x20    /* Diagnostic Bit */
1563#define RAM_SZ          0x1C    /* Specify size of RAM to RISC */
1564#define  RAM_SZ_2KB      0x00   /* 2 KB */
1565#define  RAM_SZ_4KB      0x04   /* 4 KB */
1566#define  RAM_SZ_8KB      0x08   /* 8 KB */
1567#define  RAM_SZ_16KB     0x0C   /* 16 KB */
1568#define  RAM_SZ_32KB     0x10   /* 32 KB */
1569#define  RAM_SZ_64KB     0x14   /* 64 KB */
1570
1571/*
1572 * DMA_CFG0 Register bit definitions
1573 *
1574 * This register is only accessible to the host.
1575 */
1576#define BC_THRESH_ENB   0x80    /* PCI DMA Start Conditions */
1577#define FIFO_THRESH     0x70    /* PCI DMA FIFO Threshold */
1578#define  FIFO_THRESH_16B  0x00  /* 16 bytes */
1579#define  FIFO_THRESH_32B  0x20  /* 32 bytes */
1580#define  FIFO_THRESH_48B  0x30  /* 48 bytes */
1581#define  FIFO_THRESH_64B  0x40  /* 64 bytes */
1582#define  FIFO_THRESH_80B  0x50  /* 80 bytes (default) */
1583#define  FIFO_THRESH_96B  0x60  /* 96 bytes */
1584#define  FIFO_THRESH_112B 0x70  /* 112 bytes */
1585#define START_CTL       0x0C    /* DMA start conditions */
1586#define  START_CTL_TH    0x00   /* Wait threshold level (default) */
1587#define  START_CTL_ID    0x04   /* Wait SDMA/SBUS idle */
1588#define  START_CTL_THID  0x08   /* Wait threshold and SDMA/SBUS idle */
1589#define  START_CTL_EMFU  0x0C   /* Wait SDMA FIFO empty/full */
1590#define READ_CMD        0x03    /* Memory Read Method */
1591#define  READ_CMD_MR     0x00   /* Memory Read */
1592#define  READ_CMD_MRL    0x02   /* Memory Read Long */
1593#define  READ_CMD_MRM    0x03   /* Memory Read Multiple (default) */
1594
1595/*
1596 * ASC-38C0800 RAM BIST Register bit definitions
1597 */
1598#define RAM_TEST_MODE         0x80
1599#define PRE_TEST_MODE         0x40
1600#define NORMAL_MODE           0x00
1601#define RAM_TEST_DONE         0x10
1602#define RAM_TEST_STATUS       0x0F
1603#define  RAM_TEST_HOST_ERROR   0x08
1604#define  RAM_TEST_INTRAM_ERROR 0x04
1605#define  RAM_TEST_RISC_ERROR   0x02
1606#define  RAM_TEST_SCSI_ERROR   0x01
1607#define  RAM_TEST_SUCCESS      0x00
1608#define PRE_TEST_VALUE        0x05
1609#define NORMAL_VALUE          0x00
1610
1611/*
1612 * ASC38C1600 Definitions
1613 *
1614 * IOPB_PCI_INT_CFG Bit Field Definitions
1615 */
1616
1617#define INTAB_LD        0x80    /* Value loaded from EEPROM Bit 11. */
1618
1619/*
1620 * Bit 1 can be set to change the interrupt for the Function to operate in
1621 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1622 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1623 * mode, otherwise the operating mode is undefined.
1624 */
1625#define TOTEMPOLE       0x02
1626
1627/*
1628 * Bit 0 can be used to change the Int Pin for the Function. The value is
1629 * 0 by default for both Functions with Function 0 using INT A and Function
1630 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1631 * INT A is used.
1632 *
1633 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1634 * value specified in the PCI Configuration Space.
1635 */
1636#define INTAB           0x01
1637
1638/*
1639 * Adv Library Status Definitions
1640 */
1641#define ADV_TRUE        1
1642#define ADV_FALSE       0
1643#define ADV_SUCCESS     1
1644#define ADV_BUSY        0
1645#define ADV_ERROR       (-1)
1646
1647/*
1648 * ADV_DVC_VAR 'warn_code' values
1649 */
1650#define ASC_WARN_BUSRESET_ERROR         0x0001  /* SCSI Bus Reset error */
1651#define ASC_WARN_EEPROM_CHKSUM          0x0002  /* EEP check sum error */
1652#define ASC_WARN_EEPROM_TERMINATION     0x0004  /* EEP termination bad field */
1653#define ASC_WARN_ERROR                  0xFFFF  /* ADV_ERROR return */
1654
1655#define ADV_MAX_TID                     15      /* max. target identifier */
1656#define ADV_MAX_LUN                     7       /* max. logical unit number */
1657
1658/*
1659 * Fixed locations of microcode operating variables.
1660 */
1661#define ASC_MC_CODE_BEGIN_ADDR          0x0028  /* microcode start address */
1662#define ASC_MC_CODE_END_ADDR            0x002A  /* microcode end address */
1663#define ASC_MC_CODE_CHK_SUM             0x002C  /* microcode code checksum */
1664#define ASC_MC_VERSION_DATE             0x0038  /* microcode version */
1665#define ASC_MC_VERSION_NUM              0x003A  /* microcode number */
1666#define ASC_MC_BIOSMEM                  0x0040  /* BIOS RISC Memory Start */
1667#define ASC_MC_BIOSLEN                  0x0050  /* BIOS RISC Memory Length */
1668#define ASC_MC_BIOS_SIGNATURE           0x0058  /* BIOS Signature 0x55AA */
1669#define ASC_MC_BIOS_VERSION             0x005A  /* BIOS Version (2 bytes) */
1670#define ASC_MC_SDTR_SPEED1              0x0090  /* SDTR Speed for TID 0-3 */
1671#define ASC_MC_SDTR_SPEED2              0x0092  /* SDTR Speed for TID 4-7 */
1672#define ASC_MC_SDTR_SPEED3              0x0094  /* SDTR Speed for TID 8-11 */
1673#define ASC_MC_SDTR_SPEED4              0x0096  /* SDTR Speed for TID 12-15 */
1674#define ASC_MC_CHIP_TYPE                0x009A
1675#define ASC_MC_INTRB_CODE               0x009B
1676#define ASC_MC_WDTR_ABLE                0x009C
1677#define ASC_MC_SDTR_ABLE                0x009E
1678#define ASC_MC_TAGQNG_ABLE              0x00A0
1679#define ASC_MC_DISC_ENABLE              0x00A2
1680#define ASC_MC_IDLE_CMD_STATUS          0x00A4
1681#define ASC_MC_IDLE_CMD                 0x00A6
1682#define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1683#define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1684#define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1685#define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1686#define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1687#define ASC_MC_SDTR_DONE                0x00B6
1688#define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1689#define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1690#define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1691#define ASC_MC_CONTROL_FLAG             0x0122  /* Microcode control flag. */
1692#define ASC_MC_WDTR_DONE                0x0124
1693#define ASC_MC_CAM_MODE_MASK            0x015E  /* CAM mode TID bitmask. */
1694#define ASC_MC_ICQ                      0x0160
1695#define ASC_MC_IRQ                      0x0164
1696#define ASC_MC_PPR_ABLE                 0x017A
1697
1698/*
1699 * BIOS LRAM variable absolute offsets.
1700 */
1701#define BIOS_CODESEG    0x54
1702#define BIOS_CODELEN    0x56
1703#define BIOS_SIGNATURE  0x58
1704#define BIOS_VERSION    0x5A
1705
1706/*
1707 * Microcode Control Flags
1708 *
1709 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1710 * and handled by the microcode.
1711 */
1712#define CONTROL_FLAG_IGNORE_PERR        0x0001  /* Ignore DMA Parity Errors */
1713#define CONTROL_FLAG_ENABLE_AIPP        0x0002  /* Enabled AIPP checking. */
1714
1715/*
1716 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1717 */
1718#define HSHK_CFG_WIDE_XFR       0x8000
1719#define HSHK_CFG_RATE           0x0F00
1720#define HSHK_CFG_OFFSET         0x001F
1721
1722#define ASC_DEF_MAX_HOST_QNG    0xFD    /* Max. number of host commands (253) */
1723#define ASC_DEF_MIN_HOST_QNG    0x10    /* Min. number of host commands (16) */
1724#define ASC_DEF_MAX_DVC_QNG     0x3F    /* Max. number commands per device (63) */
1725#define ASC_DEF_MIN_DVC_QNG     0x04    /* Min. number commands per device (4) */
1726
1727#define ASC_QC_DATA_CHECK  0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1728#define ASC_QC_DATA_OUT    0x02 /* Data out DMA transfer. */
1729#define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1730#define ASC_QC_NO_OVERRUN  0x08 /* Don't report overrun. */
1731#define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1732
1733#define ASC_QSC_NO_DISC     0x01        /* Don't allow disconnect for request. */
1734#define ASC_QSC_NO_TAGMSG   0x02        /* Don't allow tag queuing for request. */
1735#define ASC_QSC_NO_SYNC     0x04        /* Don't use Synch. transfer on request. */
1736#define ASC_QSC_NO_WIDE     0x08        /* Don't use Wide transfer on request. */
1737#define ASC_QSC_REDO_DTR    0x10        /* Renegotiate WDTR/SDTR before request. */
1738/*
1739 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1740 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1741 */
1742#define ASC_QSC_HEAD_TAG    0x40        /* Use Head Tag Message (0x21). */
1743#define ASC_QSC_ORDERED_TAG 0x80        /* Use Ordered Tag Message (0x22). */
1744
1745/*
1746 * All fields here are accessed by the board microcode and need to be
1747 * little-endian.
1748 */
1749typedef struct adv_carr_t {
1750        ADV_VADDR carr_va;      /* Carrier Virtual Address */
1751        ADV_PADDR carr_pa;      /* Carrier Physical Address */
1752        ADV_VADDR areq_vpa;     /* ASC_SCSI_REQ_Q Virtual or Physical Address */
1753        /*
1754         * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1755         *
1756         * next_vpa [3:1]             Reserved Bits
1757         * next_vpa [0]               Done Flag set in Response Queue.
1758         */
1759        ADV_VADDR next_vpa;
1760} ADV_CARR_T;
1761
1762/*
1763 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1764 */
1765#define ASC_NEXT_VPA_MASK       0xFFFFFFF0
1766
1767#define ASC_RQ_DONE             0x00000001
1768#define ASC_RQ_GOOD             0x00000002
1769#define ASC_CQ_STOPPER          0x00000000
1770
1771#define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1772
1773#define ADV_CARRIER_NUM_PAGE_CROSSING \
1774    (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1775
1776#define ADV_CARRIER_BUFSIZE \
1777    ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1778
1779/*
1780 * ASC_SCSI_REQ_Q 'a_flag' definitions
1781 *
1782 * The Adv Library should limit use to the lower nibble (4 bits) of
1783 * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1784 */
1785#define ADV_POLL_REQUEST                0x01    /* poll for request completion */
1786#define ADV_SCSIQ_DONE                  0x02    /* request done */
1787#define ADV_DONT_RETRY                  0x08    /* don't do retry */
1788
1789#define ADV_CHIP_ASC3550          0x01  /* Ultra-Wide IC */
1790#define ADV_CHIP_ASC38C0800       0x02  /* Ultra2-Wide/LVD IC */
1791#define ADV_CHIP_ASC38C1600       0x03  /* Ultra3-Wide/LVD2 IC */
1792
1793/*
1794 * Adapter temporary configuration structure
1795 *
1796 * This structure can be discarded after initialization. Don't add
1797 * fields here needed after initialization.
1798 *
1799 * Field naming convention:
1800 *
1801 *  *_enable indicates the field enables or disables a feature. The
1802 *  value of the field is never reset.
1803 */
1804typedef struct adv_dvc_cfg {
1805        ushort disc_enable;     /* enable disconnection */
1806        uchar chip_version;     /* chip version */
1807        uchar termination;      /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1808        ushort control_flag;    /* Microcode Control Flag */
1809        ushort mcode_date;      /* Microcode date */
1810        ushort mcode_version;   /* Microcode version */
1811        ushort serial1;         /* EEPROM serial number word 1 */
1812        ushort serial2;         /* EEPROM serial number word 2 */
1813        ushort serial3;         /* EEPROM serial number word 3 */
1814} ADV_DVC_CFG;
1815
1816struct adv_dvc_var;
1817struct adv_scsi_req_q;
1818
1819typedef struct asc_sg_block {
1820        uchar reserved1;
1821        uchar reserved2;
1822        uchar reserved3;
1823        uchar sg_cnt;           /* Valid entries in block. */
1824        ADV_PADDR sg_ptr;       /* Pointer to next sg block. */
1825        struct {
1826                ADV_PADDR sg_addr;      /* SG element address. */
1827                ADV_DCNT sg_count;      /* SG element count. */
1828        } sg_list[NO_OF_SG_PER_BLOCK];
1829} ADV_SG_BLOCK;
1830
1831/*
1832 * ADV_SCSI_REQ_Q - microcode request structure
1833 *
1834 * All fields in this structure up to byte 60 are used by the microcode.
1835 * The microcode makes assumptions about the size and ordering of fields
1836 * in this structure. Do not change the structure definition here without
1837 * coordinating the change with the microcode.
1838 *
1839 * All fields accessed by microcode must be maintained in little_endian
1840 * order.
1841 */
1842typedef struct adv_scsi_req_q {
1843        uchar cntl;             /* Ucode flags and state (ASC_MC_QC_*). */
1844        uchar target_cmd;
1845        uchar target_id;        /* Device target identifier. */
1846        uchar target_lun;       /* Device target logical unit number. */
1847        ADV_PADDR data_addr;    /* Data buffer physical address. */
1848        ADV_DCNT data_cnt;      /* Data count. Ucode sets to residual. */
1849        ADV_PADDR sense_addr;
1850        ADV_PADDR carr_pa;
1851        uchar mflag;
1852        uchar sense_len;
1853        uchar cdb_len;          /* SCSI CDB length. Must <= 16 bytes. */
1854        uchar scsi_cntl;
1855        uchar done_status;      /* Completion status. */
1856        uchar scsi_status;      /* SCSI status byte. */
1857        uchar host_status;      /* Ucode host status. */
1858        uchar sg_working_ix;
1859        uchar cdb[12];          /* SCSI CDB bytes 0-11. */
1860        ADV_PADDR sg_real_addr; /* SG list physical address. */
1861        ADV_PADDR scsiq_rptr;
1862        uchar cdb16[4];         /* SCSI CDB bytes 12-15. */
1863        ADV_VADDR scsiq_ptr;
1864        ADV_VADDR carr_va;
1865        /*
1866         * End of microcode structure - 60 bytes. The rest of the structure
1867         * is used by the Adv Library and ignored by the microcode.
1868         */
1869        ADV_VADDR srb_ptr;
1870        ADV_SG_BLOCK *sg_list_ptr;      /* SG list virtual address. */
1871        char *vdata_addr;       /* Data buffer virtual address. */
1872        uchar a_flag;
1873        uchar pad[2];           /* Pad out to a word boundary. */
1874} ADV_SCSI_REQ_Q;
1875
1876/*
1877 * The following two structures are used to process Wide Board requests.
1878 *
1879 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1880 * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1881 * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1882 * Mid-Level SCSI request structure.
1883 *
1884 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1885 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1886 * up to 255 scatter-gather elements may be used per request or
1887 * ADV_SCSI_REQ_Q.
1888 *
1889 * Both structures must be 32 byte aligned.
1890 */
1891typedef struct adv_sgblk {
1892        ADV_SG_BLOCK sg_block;  /* Sgblock structure. */
1893        uchar align[32];        /* Sgblock structure padding. */
1894        struct adv_sgblk *next_sgblkp;  /* Next scatter-gather structure. */
1895} adv_sgblk_t;
1896
1897typedef struct adv_req {
1898        ADV_SCSI_REQ_Q scsi_req_q;      /* Adv Library request structure. */
1899        uchar align[32];        /* Request structure padding. */
1900        struct scsi_cmnd *cmndp;        /* Mid-Level SCSI command pointer. */
1901        adv_sgblk_t *sgblkp;    /* Adv Library scatter-gather pointer. */
1902        struct adv_req *next_reqp;      /* Next Request Structure. */
1903} adv_req_t;
1904
1905/*
1906 * Adapter operation variable structure.
1907 *
1908 * One structure is required per host adapter.
1909 *
1910 * Field naming convention:
1911 *
1912 *  *_able indicates both whether a feature should be enabled or disabled
1913 *  and whether a device isi capable of the feature. At initialization
1914 *  this field may be set, but later if a device is found to be incapable
1915 *  of the feature, the field is cleared.
1916 */
1917typedef struct adv_dvc_var {
1918        AdvPortAddr iop_base;   /* I/O port address */
1919        ushort err_code;        /* fatal error code */
1920        ushort bios_ctrl;       /* BIOS control word, EEPROM word 12 */
1921        ushort wdtr_able;       /* try WDTR for a device */
1922        ushort sdtr_able;       /* try SDTR for a device */
1923        ushort ultra_able;      /* try SDTR Ultra speed for a device */
1924        ushort sdtr_speed1;     /* EEPROM SDTR Speed for TID 0-3   */
1925        ushort sdtr_speed2;     /* EEPROM SDTR Speed for TID 4-7   */
1926        ushort sdtr_speed3;     /* EEPROM SDTR Speed for TID 8-11  */
1927        ushort sdtr_speed4;     /* EEPROM SDTR Speed for TID 12-15 */
1928        ushort tagqng_able;     /* try tagged queuing with a device */
1929        ushort ppr_able;        /* PPR message capable per TID bitmask. */
1930        uchar max_dvc_qng;      /* maximum number of tagged commands per device */
1931        ushort start_motor;     /* start motor command allowed */
1932        uchar scsi_reset_wait;  /* delay in seconds after scsi bus reset */
1933        uchar chip_no;          /* should be assigned by caller */
1934        uchar max_host_qng;     /* maximum number of Q'ed command allowed */
1935        ushort no_scam;         /* scam_tolerant of EEPROM */
1936        struct asc_board *drv_ptr;      /* driver pointer to private structure */
1937        uchar chip_scsi_id;     /* chip SCSI target ID */
1938        uchar chip_type;
1939        uchar bist_err_code;
1940        ADV_CARR_T *carrier_buf;
1941        ADV_CARR_T *carr_freelist;      /* Carrier free list. */
1942        ADV_CARR_T *icq_sp;     /* Initiator command queue stopper pointer. */
1943        ADV_CARR_T *irq_sp;     /* Initiator response queue stopper pointer. */
1944        ushort carr_pending_cnt;        /* Count of pending carriers. */
1945        struct adv_req *orig_reqp;      /* adv_req_t memory block. */
1946        /*
1947         * Note: The following fields will not be used after initialization. The
1948         * driver may discard the buffer after initialization is done.
1949         */
1950        ADV_DVC_CFG *cfg;       /* temporary configuration structure  */
1951} ADV_DVC_VAR;
1952
1953/*
1954 * Microcode idle loop commands
1955 */
1956#define IDLE_CMD_COMPLETED           0
1957#define IDLE_CMD_STOP_CHIP           0x0001
1958#define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1959#define IDLE_CMD_SEND_INT            0x0004
1960#define IDLE_CMD_ABORT               0x0008
1961#define IDLE_CMD_DEVICE_RESET        0x0010
1962#define IDLE_CMD_SCSI_RESET_START    0x0020     /* Assert SCSI Bus Reset */
1963#define IDLE_CMD_SCSI_RESET_END      0x0040     /* Deassert SCSI Bus Reset */
1964#define IDLE_CMD_SCSIREQ             0x0080
1965
1966#define IDLE_CMD_STATUS_SUCCESS      0x0001
1967#define IDLE_CMD_STATUS_FAILURE      0x0002
1968
1969/*
1970 * AdvSendIdleCmd() flag definitions.
1971 */
1972#define ADV_NOWAIT     0x01
1973
1974/*
1975 * Wait loop time out values.
1976 */
1977#define SCSI_WAIT_100_MSEC           100UL      /* 100 milliseconds */
1978#define SCSI_US_PER_MSEC             1000       /* microseconds per millisecond */
1979#define SCSI_MAX_RETRY               10 /* retry count */
1980
1981#define ADV_ASYNC_RDMA_FAILURE          0x01    /* Fatal RDMA failure. */
1982#define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02    /* Detected SCSI Bus Reset. */
1983#define ADV_ASYNC_CARRIER_READY_FAILURE 0x03    /* Carrier Ready failure. */
1984#define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04    /* RDMAed-in data invalid. */
1985
1986#define ADV_HOST_SCSI_BUS_RESET      0x80       /* Host Initiated SCSI Bus Reset. */
1987
1988/* Read byte from a register. */
1989#define AdvReadByteRegister(iop_base, reg_off) \
1990     (ADV_MEM_READB((iop_base) + (reg_off)))
1991
1992/* Write byte to a register. */
1993#define AdvWriteByteRegister(iop_base, reg_off, byte) \
1994     (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1995
1996/* Read word (2 bytes) from a register. */
1997#define AdvReadWordRegister(iop_base, reg_off) \
1998     (ADV_MEM_READW((iop_base) + (reg_off)))
1999
2000/* Write word (2 bytes) to a register. */
2001#define AdvWriteWordRegister(iop_base, reg_off, word) \
2002     (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2003
2004/* Write dword (4 bytes) to a register. */
2005#define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2006     (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2007
2008/* Read byte from LRAM. */
2009#define AdvReadByteLram(iop_base, addr, byte) \
2010do { \
2011    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2012    (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2013} while (0)
2014
2015/* Write byte to LRAM. */
2016#define AdvWriteByteLram(iop_base, addr, byte) \
2017    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2018     ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2019
2020/* Read word (2 bytes) from LRAM. */
2021#define AdvReadWordLram(iop_base, addr, word) \
2022do { \
2023    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2024    (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2025} while (0)
2026
2027/* Write word (2 bytes) to LRAM. */
2028#define AdvWriteWordLram(iop_base, addr, word) \
2029    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2030     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2031
2032/* Write little-endian double word (4 bytes) to LRAM */
2033/* Because of unspecified C language ordering don't use auto-increment. */
2034#define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2035    ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2036      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2037                     cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2038     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2039      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2040                     cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2041
2042/* Read word (2 bytes) from LRAM assuming that the address is already set. */
2043#define AdvReadWordAutoIncLram(iop_base) \
2044     (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2045
2046/* Write word (2 bytes) to LRAM assuming that the address is already set. */
2047#define AdvWriteWordAutoIncLram(iop_base, word) \
2048     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2049
2050/*
2051 * Define macro to check for Condor signature.
2052 *
2053 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2054 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2055 */
2056#define AdvFindSignature(iop_base) \
2057    (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2058    ADV_CHIP_ID_BYTE) && \
2059     (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2060    ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
2061
2062/*
2063 * Define macro to Return the version number of the chip at 'iop_base'.
2064 *
2065 * The second parameter 'bus_type' is currently unused.
2066 */
2067#define AdvGetChipVersion(iop_base, bus_type) \
2068    AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2069
2070/*
2071 * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2072 * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2073 *
2074 * If the request has not yet been sent to the device it will simply be
2075 * aborted from RISC memory. If the request is disconnected it will be
2076 * aborted on reselection by sending an Abort Message to the target ID.
2077 *
2078 * Return value:
2079 *      ADV_TRUE(1) - Queue was successfully aborted.
2080 *      ADV_FALSE(0) - Queue was not found on the active queue list.
2081 */
2082#define AdvAbortQueue(asc_dvc, scsiq) \
2083        AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2084                       (ADV_DCNT) (scsiq))
2085
2086/*
2087 * Send a Bus Device Reset Message to the specified target ID.
2088 *
2089 * All outstanding commands will be purged if sending the
2090 * Bus Device Reset Message is successful.
2091 *
2092 * Return Value:
2093 *      ADV_TRUE(1) - All requests on the target are purged.
2094 *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2095 *                     are not purged.
2096 */
2097#define AdvResetDevice(asc_dvc, target_id) \
2098        AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2099                    (ADV_DCNT) (target_id))
2100
2101/*
2102 * SCSI Wide Type definition.
2103 */
2104#define ADV_SCSI_BIT_ID_TYPE   ushort
2105
2106/*
2107 * AdvInitScsiTarget() 'cntl_flag' options.
2108 */
2109#define ADV_SCAN_LUN           0x01
2110#define ADV_CAPINFO_NOLUN      0x02
2111
2112/*
2113 * Convert target id to target id bit mask.
2114 */
2115#define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2116
2117/*
2118 * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2119 */
2120
2121#define QD_NO_STATUS         0x00       /* Request not completed yet. */
2122#define QD_NO_ERROR          0x01
2123#define QD_ABORTED_BY_HOST   0x02
2124#define QD_WITH_ERROR        0x04
2125
2126#define QHSTA_NO_ERROR              0x00
2127#define QHSTA_M_SEL_TIMEOUT         0x11
2128#define QHSTA_M_DATA_OVER_RUN       0x12
2129#define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2130#define QHSTA_M_QUEUE_ABORTED       0x15
2131#define QHSTA_M_SXFR_SDMA_ERR       0x16        /* SXFR_STATUS SCSI DMA Error */
2132#define QHSTA_M_SXFR_SXFR_PERR      0x17        /* SXFR_STATUS SCSI Bus Parity Error */
2133#define QHSTA_M_RDMA_PERR           0x18        /* RISC PCI DMA parity error */
2134#define QHSTA_M_SXFR_OFF_UFLW       0x19        /* SXFR_STATUS Offset Underflow */
2135#define QHSTA_M_SXFR_OFF_OFLW       0x20        /* SXFR_STATUS Offset Overflow */
2136#define QHSTA_M_SXFR_WD_TMO         0x21        /* SXFR_STATUS Watchdog Timeout */
2137#define QHSTA_M_SXFR_DESELECTED     0x22        /* SXFR_STATUS Deselected */
2138/* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2139#define QHSTA_M_SXFR_XFR_OFLW       0x12        /* SXFR_STATUS Transfer Overflow */
2140#define QHSTA_M_SXFR_XFR_PH_ERR     0x24        /* SXFR_STATUS Transfer Phase Error */
2141#define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25        /* SXFR_STATUS Unknown Error */
2142#define QHSTA_M_SCSI_BUS_RESET      0x30        /* Request aborted from SBR */
2143#define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31       /* Request aborted from unsol. SBR */
2144#define QHSTA_M_BUS_DEVICE_RESET    0x32        /* Request aborted from BDR */
2145#define QHSTA_M_DIRECTION_ERR       0x35        /* Data Phase mismatch */
2146#define QHSTA_M_DIRECTION_ERR_HUNG  0x36        /* Data Phase mismatch and bus hang */
2147#define QHSTA_M_WTM_TIMEOUT         0x41
2148#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2149#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2150#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2151#define QHSTA_M_INVALID_DEVICE      0x45        /* Bad target ID */
2152#define QHSTA_M_FROZEN_TIDQ         0x46        /* TID Queue frozen. */
2153#define QHSTA_M_SGBACKUP_ERROR      0x47        /* Scatter-Gather backup error */
2154
2155/* Return the address that is aligned at the next doubleword >= to 'addr'. */
2156#define ADV_8BALIGN(addr)      (((ulong) (addr) + 0x7) & ~0x7)
2157#define ADV_16BALIGN(addr)     (((ulong) (addr) + 0xF) & ~0xF)
2158#define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2159
2160/*
2161 * Total contiguous memory needed for driver SG blocks.
2162 *
2163 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2164 * number of scatter-gather elements the driver supports in a
2165 * single request.
2166 */
2167
2168#define ADV_SG_LIST_MAX_BYTE_SIZE \
2169         (sizeof(ADV_SG_BLOCK) * \
2170          ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2171
2172/* struct asc_board flags */
2173#define ASC_IS_WIDE_BOARD       0x04    /* AdvanSys Wide Board */
2174
2175#define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2176
2177#define NO_ISA_DMA              0xff    /* No ISA DMA Channel Used */
2178
2179#define ASC_INFO_SIZE           128     /* advansys_info() line size */
2180
2181/* Asc Library return codes */
2182#define ASC_TRUE        1
2183#define ASC_FALSE       0
2184#define ASC_NOERROR     1
2185#define ASC_BUSY        0
2186#define ASC_ERROR       (-1)
2187
2188/* struct scsi_cmnd function return codes */
2189#define STATUS_BYTE(byte)   (byte)
2190#define MSG_BYTE(byte)      ((byte) << 8)
2191#define HOST_BYTE(byte)     ((byte) << 16)
2192#define DRIVER_BYTE(byte)   ((byte) << 24)
2193
2194#define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2195#ifndef ADVANSYS_STATS
2196#define ASC_STATS_ADD(shost, counter, count)
2197#else /* ADVANSYS_STATS */
2198#define ASC_STATS_ADD(shost, counter, count) \
2199        (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2200#endif /* ADVANSYS_STATS */
2201
2202/* If the result wraps when calculating tenths, return 0. */
2203#define ASC_TENTHS(num, den) \
2204    (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2205    0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2206
2207/*
2208 * Display a message to the console.
2209 */
2210#define ASC_PRINT(s) \
2211    { \
2212        printk("advansys: "); \
2213        printk(s); \
2214    }
2215
2216#define ASC_PRINT1(s, a1) \
2217    { \
2218        printk("advansys: "); \
2219        printk((s), (a1)); \
2220    }
2221
2222#define ASC_PRINT2(s, a1, a2) \
2223    { \
2224        printk("advansys: "); \
2225        printk((s), (a1), (a2)); \
2226    }
2227
2228#define ASC_PRINT3(s, a1, a2, a3) \
2229    { \
2230        printk("advansys: "); \
2231        printk((s), (a1), (a2), (a3)); \
2232    }
2233
2234#define ASC_PRINT4(s, a1, a2, a3, a4) \
2235    { \
2236        printk("advansys: "); \
2237        printk((s), (a1), (a2), (a3), (a4)); \
2238    }
2239
2240#ifndef ADVANSYS_DEBUG
2241
2242#define ASC_DBG(lvl, s...)
2243#define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2244#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2245#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2246#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2247#define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2248#define ASC_DBG_PRT_HEX(lvl, name, start, length)
2249#define ASC_DBG_PRT_CDB(lvl, cdb, len)
2250#define ASC_DBG_PRT_SENSE(lvl, sense, len)
2251#define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2252
2253#else /* ADVANSYS_DEBUG */
2254
2255/*
2256 * Debugging Message Levels:
2257 * 0: Errors Only
2258 * 1: High-Level Tracing
2259 * 2-N: Verbose Tracing
2260 */
2261
2262#define ASC_DBG(lvl, format, arg...) {                                  \
2263        if (asc_dbglvl >= (lvl))                                        \
2264                printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,          \
2265                        __func__ , ## arg);                             \
2266}
2267
2268#define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2269    { \
2270        if (asc_dbglvl >= (lvl)) { \
2271            asc_prt_scsi_host(s); \
2272        } \
2273    }
2274
2275#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2276    { \
2277        if (asc_dbglvl >= (lvl)) { \
2278            asc_prt_asc_scsi_q(scsiqp); \
2279        } \
2280    }
2281
2282#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2283    { \
2284        if (asc_dbglvl >= (lvl)) { \
2285            asc_prt_asc_qdone_info(qdone); \
2286        } \
2287    }
2288
2289#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2290    { \
2291        if (asc_dbglvl >= (lvl)) { \
2292            asc_prt_adv_scsi_req_q(scsiqp); \
2293        } \
2294    }
2295
2296#define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2297    { \
2298        if (asc_dbglvl >= (lvl)) { \
2299            asc_prt_hex((name), (start), (length)); \
2300        } \
2301    }
2302
2303#define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2304        ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2305
2306#define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2307        ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2308
2309#define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2310        ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2311#endif /* ADVANSYS_DEBUG */
2312
2313#ifdef ADVANSYS_STATS
2314
2315/* Per board statistics structure */
2316struct asc_stats {
2317        /* Driver Entrypoint Statistics */
2318        ADV_DCNT queuecommand;  /* # calls to advansys_queuecommand() */
2319        ADV_DCNT reset;         /* # calls to advansys_eh_bus_reset() */
2320        ADV_DCNT biosparam;     /* # calls to advansys_biosparam() */
2321        ADV_DCNT interrupt;     /* # advansys_interrupt() calls */
2322        ADV_DCNT callback;      /* # calls to asc/adv_isr_callback() */
2323        ADV_DCNT done;          /* # calls to request's scsi_done function */
2324        ADV_DCNT build_error;   /* # asc/adv_build_req() ASC_ERROR returns. */
2325        ADV_DCNT adv_build_noreq;       /* # adv_build_req() adv_req_t alloc. fail. */
2326        ADV_DCNT adv_build_nosg;        /* # adv_build_req() adv_sgblk_t alloc. fail. */
2327        /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2328        ADV_DCNT exe_noerror;   /* # ASC_NOERROR returns. */
2329        ADV_DCNT exe_busy;      /* # ASC_BUSY returns. */
2330        ADV_DCNT exe_error;     /* # ASC_ERROR returns. */
2331        ADV_DCNT exe_unknown;   /* # unknown returns. */
2332        /* Data Transfer Statistics */
2333        ADV_DCNT xfer_cnt;      /* # I/O requests received */
2334        ADV_DCNT xfer_elem;     /* # scatter-gather elements */
2335        ADV_DCNT xfer_sect;     /* # 512-byte blocks */
2336};
2337#endif /* ADVANSYS_STATS */
2338
2339/*
2340 * Structure allocated for each board.
2341 *
2342 * This structure is allocated by scsi_host_alloc() at the end
2343 * of the 'Scsi_Host' structure starting at the 'hostdata'
2344 * field. It is guaranteed to be allocated from DMA-able memory.
2345 */
2346struct asc_board {
2347        struct device *dev;
2348        uint flags;             /* Board flags */
2349        unsigned int irq;
2350        union {
2351                ASC_DVC_VAR asc_dvc_var;        /* Narrow board */
2352                ADV_DVC_VAR adv_dvc_var;        /* Wide board */
2353        } dvc_var;
2354        union {
2355                ASC_DVC_CFG asc_dvc_cfg;        /* Narrow board */
2356                ADV_DVC_CFG adv_dvc_cfg;        /* Wide board */
2357        } dvc_cfg;
2358        ushort asc_n_io_port;   /* Number I/O ports. */
2359        ADV_SCSI_BIT_ID_TYPE init_tidmask;      /* Target init./valid mask */
2360        ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
2361        ADV_SCSI_BIT_ID_TYPE queue_full;        /* Queue full mask */
2362        ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
2363        union {
2364                ASCEEP_CONFIG asc_eep;  /* Narrow EEPROM config. */
2365                ADVEEP_3550_CONFIG adv_3550_eep;        /* 3550 EEPROM config. */
2366                ADVEEP_38C0800_CONFIG adv_38C0800_eep;  /* 38C0800 EEPROM config. */
2367                ADVEEP_38C1600_CONFIG adv_38C1600_eep;  /* 38C1600 EEPROM config. */
2368        } eep_config;
2369        ulong last_reset;       /* Saved last reset time */
2370        /* /proc/scsi/advansys/[0...] */
2371#ifdef ADVANSYS_STATS
2372        struct asc_stats asc_stats;     /* Board statistics */
2373#endif                          /* ADVANSYS_STATS */
2374        /*
2375         * The following fields are used only for Narrow Boards.
2376         */
2377        uchar sdtr_data[ASC_MAX_TID + 1];       /* SDTR information */
2378        /*
2379         * The following fields are used only for Wide Boards.
2380         */
2381        void __iomem *ioremap_addr;     /* I/O Memory remap address. */
2382        ushort ioport;          /* I/O Port address. */
2383        adv_req_t *adv_reqp;    /* Request structures. */
2384        adv_sgblk_t *adv_sgblkp;        /* Scatter-gather structures. */
2385        ushort bios_signature;  /* BIOS Signature. */
2386        ushort bios_version;    /* BIOS Version. */
2387        ushort bios_codeseg;    /* BIOS Code Segment. */
2388        ushort bios_codelen;    /* BIOS Code Segment Length. */
2389};
2390
2391#define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2392                                                        dvc_var.asc_dvc_var)
2393#define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2394                                                        dvc_var.adv_dvc_var)
2395#define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2396
2397#ifdef ADVANSYS_DEBUG
2398static int asc_dbglvl = 3;
2399
2400/*
2401 * asc_prt_asc_dvc_var()
2402 */
2403static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2404{
2405        printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2406
2407        printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2408               "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2409
2410        printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2411                (unsigned)h->init_sdtr);
2412
2413        printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2414               "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2415               (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2416               (unsigned)h->chip_no);
2417
2418        printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2419               "%u,\n", (unsigned)h->queue_full_or_busy,
2420               (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2421
2422        printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2423               "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2424               (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2425               (unsigned)h->in_critical_cnt);
2426
2427        printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2428               "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2429               (unsigned)h->init_state, (unsigned)h->no_scam,
2430               (unsigned)h->pci_fix_asyn_xfer);
2431
2432        printk(" cfg 0x%lx\n", (ulong)h->cfg);
2433}
2434
2435/*
2436 * asc_prt_asc_dvc_cfg()
2437 */
2438static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2439{
2440        printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2441
2442        printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2443               h->can_tagged_qng, h->cmd_qng_enabled);
2444        printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2445               h->disc_enable, h->sdtr_enable);
2446
2447        printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2448                "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2449                h->isa_dma_channel, h->chip_version);
2450
2451        printk(" mcode_date 0x%x, mcode_version %d\n",
2452                h->mcode_date, h->mcode_version);
2453}
2454
2455/*
2456 * asc_prt_adv_dvc_var()
2457 *
2458 * Display an ADV_DVC_VAR structure.
2459 */
2460static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2461{
2462        printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2463
2464        printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2465               (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2466
2467        printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2468               (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2469
2470        printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2471               (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2472
2473        printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2474               (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2475               (ulong)h->carr_freelist);
2476
2477        printk("  icq_sp 0x%lx, irq_sp 0x%lx\n",
2478               (ulong)h->icq_sp, (ulong)h->irq_sp);
2479
2480        printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2481               (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2482
2483        printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2484               (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2485}
2486
2487/*
2488 * asc_prt_adv_dvc_cfg()
2489 *
2490 * Display an ADV_DVC_CFG structure.
2491 */
2492static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2493{
2494        printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2495
2496        printk("  disc_enable 0x%x, termination 0x%x\n",
2497               h->disc_enable, h->termination);
2498
2499        printk("  chip_version 0x%x, mcode_date 0x%x\n",
2500               h->chip_version, h->mcode_date);
2501
2502        printk("  mcode_version 0x%x, control_flag 0x%x\n",
2503               h->mcode_version, h->control_flag);
2504}
2505
2506/*
2507 * asc_prt_scsi_host()
2508 */
2509static void asc_prt_scsi_host(struct Scsi_Host *s)
2510{
2511        struct asc_board *boardp = shost_priv(s);
2512
2513        printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2514        printk(" host_busy %u, host_no %d,\n",
2515               atomic_read(&s->host_busy), s->host_no);
2516
2517        printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2518               (ulong)s->base, (ulong)s->io_port, boardp->irq);
2519
2520        printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2521               s->dma_channel, s->this_id, s->can_queue);
2522
2523        printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2524               s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2525
2526        if (ASC_NARROW_BOARD(boardp)) {
2527                asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2528                asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2529        } else {
2530                asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2531                asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2532        }
2533}
2534
2535/*
2536 * asc_prt_hex()
2537 *
2538 * Print hexadecimal output in 4 byte groupings 32 bytes
2539 * or 8 double-words per line.
2540 */
2541static void asc_prt_hex(char *f, uchar *s, int l)
2542{
2543        int i;
2544        int j;
2545        int k;
2546        int m;
2547
2548        printk("%s: (%d bytes)\n", f, l);
2549
2550        for (i = 0; i < l; i += 32) {
2551
2552                /* Display a maximum of 8 double-words per line. */
2553                if ((k = (l - i) / 4) >= 8) {
2554                        k = 8;
2555                        m = 0;
2556                } else {
2557                        m = (l - i) % 4;
2558                }
2559
2560                for (j = 0; j < k; j++) {
2561                        printk(" %2.2X%2.2X%2.2X%2.2X",
2562                               (unsigned)s[i + (j * 4)],
2563                               (unsigned)s[i + (j * 4) + 1],
2564                               (unsigned)s[i + (j * 4) + 2],
2565                               (unsigned)s[i + (j * 4) + 3]);
2566                }
2567
2568                switch (m) {
2569                case 0:
2570                default:
2571                        break;
2572                case 1:
2573                        printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2574                        break;
2575                case 2:
2576                        printk(" %2.2X%2.2X",
2577                               (unsigned)s[i + (j * 4)],
2578                               (unsigned)s[i + (j * 4) + 1]);
2579                        break;
2580                case 3:
2581                        printk(" %2.2X%2.2X%2.2X",
2582                               (unsigned)s[i + (j * 4) + 1],
2583                               (unsigned)s[i + (j * 4) + 2],
2584                               (unsigned)s[i + (j * 4) + 3]);
2585                        break;
2586                }
2587
2588                printk("\n");
2589        }
2590}
2591
2592/*
2593 * asc_prt_asc_scsi_q()
2594 */
2595static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2596{
2597        ASC_SG_HEAD *sgp;
2598        int i;
2599
2600        printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2601
2602        printk
2603            (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2604             q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr,
2605             q->q2.tag_code);
2606
2607        printk
2608            (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2609             (ulong)le32_to_cpu(q->q1.data_addr),
2610             (ulong)le32_to_cpu(q->q1.data_cnt),
2611             (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2612
2613        printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2614               (ulong)q->cdbptr, q->q2.cdb_len,
2615               (ulong)q->sg_head, q->q1.sg_queue_cnt);
2616
2617        if (q->sg_head) {
2618                sgp = q->sg_head;
2619                printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2620                printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2621                       sgp->queue_cnt);
2622                for (i = 0; i < sgp->entry_cnt; i++) {
2623                        printk(" [%u]: addr 0x%lx, bytes %lu\n",
2624                               i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2625                               (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2626                }
2627
2628        }
2629}
2630
2631/*
2632 * asc_prt_asc_qdone_info()
2633 */
2634static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2635{
2636        printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2637        printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2638               (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len,
2639               q->d2.tag_code);
2640        printk
2641            (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2642             q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2643}
2644
2645/*
2646 * asc_prt_adv_sgblock()
2647 *
2648 * Display an ADV_SG_BLOCK structure.
2649 */
2650static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2651{
2652        int i;
2653
2654        printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2655               (ulong)b, sgblockno);
2656        printk("  sg_cnt %u, sg_ptr 0x%lx\n",
2657               b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr));
2658        BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2659        if (b->sg_ptr != 0)
2660                BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2661        for (i = 0; i < b->sg_cnt; i++) {
2662                printk("  [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2663                       i, (ulong)b->sg_list[i].sg_addr,
2664                       (ulong)b->sg_list[i].sg_count);
2665        }
2666}
2667
2668/*
2669 * asc_prt_adv_scsi_req_q()
2670 *
2671 * Display an ADV_SCSI_REQ_Q structure.
2672 */
2673static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2674{
2675        int sg_blk_cnt;
2676        struct asc_sg_block *sg_ptr;
2677
2678        printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2679
2680        printk("  target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2681               q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag);
2682
2683        printk("  cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2684               q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr);
2685
2686        printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2687               (ulong)le32_to_cpu(q->data_cnt),
2688               (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2689
2690        printk
2691            ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2692             q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2693
2694        printk("  sg_working_ix 0x%x, target_cmd %u\n",
2695               q->sg_working_ix, q->target_cmd);
2696
2697        printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2698               (ulong)le32_to_cpu(q->scsiq_rptr),
2699               (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2700
2701        /* Display the request's ADV_SG_BLOCK structures. */
2702        if (q->sg_list_ptr != NULL) {
2703                sg_blk_cnt = 0;
2704                while (1) {
2705                        /*
2706                         * 'sg_ptr' is a physical address. Convert it to a virtual
2707                         * address by indexing 'sg_blk_cnt' into the virtual address
2708                         * array 'sg_list_ptr'.
2709                         *
2710                         * XXX - Assumes all SG physical blocks are virtually contiguous.
2711                         */
2712                        sg_ptr =
2713                            &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]);
2714                        asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2715                        if (sg_ptr->sg_ptr == 0) {
2716                                break;
2717                        }
2718                        sg_blk_cnt++;
2719                }
2720        }
2721}
2722#endif /* ADVANSYS_DEBUG */
2723
2724/*
2725 * The advansys chip/microcode contains a 32-bit identifier for each command
2726 * known as the 'srb'.  I don't know what it stands for.  The driver used
2727 * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2728 * with bus_to_virt.  Now the driver keeps a per-host map of integers to
2729 * pointers.  It auto-expands when full, unless it can't allocate memory.
2730 * Note that an srb of 0 is treated specially by the chip/firmware, hence
2731 * the return of i+1 in this routine, and the corresponding subtraction in
2732 * the inverse routine.
2733 */
2734#define BAD_SRB 0
2735static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr)
2736{
2737        int i;
2738        void **new_ptr;
2739
2740        for (i = 0; i < asc_dvc->ptr_map_count; i++) {
2741                if (!asc_dvc->ptr_map[i])
2742                        goto out;
2743        }
2744
2745        if (asc_dvc->ptr_map_count == 0)
2746                asc_dvc->ptr_map_count = 1;
2747        else
2748                asc_dvc->ptr_map_count *= 2;
2749
2750        new_ptr = krealloc(asc_dvc->ptr_map,
2751                        asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC);
2752        if (!new_ptr)
2753                return BAD_SRB;
2754        asc_dvc->ptr_map = new_ptr;
2755 out:
2756        ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i);
2757        asc_dvc->ptr_map[i] = ptr;
2758        return i + 1;
2759}
2760
2761static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb)
2762{
2763        void *ptr;
2764
2765        srb--;
2766        if (srb >= asc_dvc->ptr_map_count) {
2767                printk("advansys: bad SRB %u, max %u\n", srb,
2768                                                        asc_dvc->ptr_map_count);
2769                return NULL;
2770        }
2771        ptr = asc_dvc->ptr_map[srb];
2772        asc_dvc->ptr_map[srb] = NULL;
2773        ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb);
2774        return ptr;
2775}
2776
2777/*
2778 * advansys_info()
2779 *
2780 * Return suitable for printing on the console with the argument
2781 * adapter's configuration information.
2782 *
2783 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2784 * otherwise the static 'info' array will be overrun.
2785 */
2786static const char *advansys_info(struct Scsi_Host *shost)
2787{
2788        static char info[ASC_INFO_SIZE];
2789        struct asc_board *boardp = shost_priv(shost);
2790        ASC_DVC_VAR *asc_dvc_varp;
2791        ADV_DVC_VAR *adv_dvc_varp;
2792        char *busname;
2793        char *widename = NULL;
2794
2795        if (ASC_NARROW_BOARD(boardp)) {
2796                asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2797                ASC_DBG(1, "begin\n");
2798                if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2799                        if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2800                            ASC_IS_ISAPNP) {
2801                                busname = "ISA PnP";
2802                        } else {
2803                                busname = "ISA";
2804                        }
2805                        sprintf(info,
2806                                "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2807                                ASC_VERSION, busname,
2808                                (ulong)shost->io_port,
2809                                (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2810                                boardp->irq, shost->dma_channel);
2811                } else {
2812                        if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2813                                busname = "VL";
2814                        } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2815                                busname = "EISA";
2816                        } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2817                                if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2818                                    == ASC_IS_PCI_ULTRA) {
2819                                        busname = "PCI Ultra";
2820                                } else {
2821                                        busname = "PCI";
2822                                }
2823                        } else {
2824                                busname = "?";
2825                                shost_printk(KERN_ERR, shost, "unknown bus "
2826                                        "type %d\n", asc_dvc_varp->bus_type);
2827                        }
2828                        sprintf(info,
2829                                "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2830                                ASC_VERSION, busname, (ulong)shost->io_port,
2831                                (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2832                                boardp->irq);
2833                }
2834        } else {
2835                /*
2836                 * Wide Adapter Information
2837                 *
2838                 * Memory-mapped I/O is used instead of I/O space to access
2839                 * the adapter, but display the I/O Port range. The Memory
2840                 * I/O address is displayed through the driver /proc file.
2841                 */
2842                adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2843                if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2844                        widename = "Ultra-Wide";
2845                } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2846                        widename = "Ultra2-Wide";
2847                } else {
2848                        widename = "Ultra3-Wide";
2849                }
2850                sprintf(info,
2851                        "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2852                        ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2853                        (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2854        }
2855        BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2856        ASC_DBG(1, "end\n");
2857        return info;
2858}
2859
2860#ifdef CONFIG_PROC_FS
2861
2862/*
2863 * asc_prt_board_devices()
2864 *
2865 * Print driver information for devices attached to the board.
2866 */
2867static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2868{
2869        struct asc_board *boardp = shost_priv(shost);
2870        int chip_scsi_id;
2871        int i;
2872
2873        seq_printf(m,
2874                   "\nDevice Information for AdvanSys SCSI Host %d:\n",
2875                   shost->host_no);
2876
2877        if (ASC_NARROW_BOARD(boardp)) {
2878                chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2879        } else {
2880                chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2881        }
2882
2883        seq_puts(m, "Target IDs Detected:");
2884        for (i = 0; i <= ADV_MAX_TID; i++) {
2885                if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2886                        seq_printf(m, " %X,", i);
2887        }
2888        seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2889}
2890
2891/*
2892 * Display Wide Board BIOS Information.
2893 */
2894static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2895{
2896        struct asc_board *boardp = shost_priv(shost);
2897        ushort major, minor, letter;
2898
2899        seq_puts(m, "\nROM BIOS Version: ");
2900
2901        /*
2902         * If the BIOS saved a valid signature, then fill in
2903         * the BIOS code segment base address.
2904         */
2905        if (boardp->bios_signature != 0x55AA) {
2906                seq_puts(m, "Disabled or Pre-3.1\n"
2907                        "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2908                        "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2909        } else {
2910                major = (boardp->bios_version >> 12) & 0xF;
2911                minor = (boardp->bios_version >> 8) & 0xF;
2912                letter = (boardp->bios_version & 0xFF);
2913
2914                seq_printf(m, "%d.%d%c\n",
2915                                   major, minor,
2916                                   letter >= 26 ? '?' : letter + 'A');
2917                /*
2918                 * Current available ROM BIOS release is 3.1I for UW
2919                 * and 3.2I for U2W. This code doesn't differentiate
2920                 * UW and U2W boards.
2921                 */
2922                if (major < 3 || (major <= 3 && minor < 1) ||
2923                    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2924                        seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2925                                "ftp://ftp.connectcom.net/pub\n");
2926                }
2927        }
2928}
2929
2930/*
2931 * Add serial number to information bar if signature AAh
2932 * is found in at bit 15-9 (7 bits) of word 1.
2933 *
2934 * Serial Number consists fo 12 alpha-numeric digits.
2935 *
2936 *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
2937 *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
2938 *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
2939 *       5 - Product revision (A-J)    Word0:  "         "
2940 *
2941 *           Signature                 Word1: 15-9 (7 bits)
2942 *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2943 *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
2944 *
2945 *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2946 *
2947 * Note 1: Only production cards will have a serial number.
2948 *
2949 * Note 2: Signature is most significant 7 bits (0xFE).
2950 *
2951 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2952 */
2953static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2954{
2955        ushort w, num;
2956
2957        if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2958                return ASC_FALSE;
2959        } else {
2960                /*
2961                 * First word - 6 digits.
2962                 */
2963                w = serialnum[0];
2964
2965                /* Product type - 1st digit. */
2966                if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2967                        /* Product type is P=Prototype */
2968                        *cp += 0x8;
2969                }
2970                cp++;
2971
2972                /* Manufacturing location - 2nd digit. */
2973                *cp++ = 'A' + ((w & 0x1C00) >> 10);
2974
2975                /* Product ID - 3rd, 4th digits. */
2976                num = w & 0x3FF;
2977                *cp++ = '0' + (num / 100);
2978                num %= 100;
2979                *cp++ = '0' + (num / 10);
2980
2981                /* Product revision - 5th digit. */
2982                *cp++ = 'A' + (num % 10);
2983
2984                /*
2985                 * Second word
2986                 */
2987                w = serialnum[1];
2988
2989                /*
2990                 * Year - 6th digit.
2991                 *
2992                 * If bit 15 of third word is set, then the
2993                 * last digit of the year is greater than 7.
2994                 */
2995                if (serialnum[2] & 0x8000) {
2996                        *cp++ = '8' + ((w & 0x1C0) >> 6);
2997                } else {
2998                        *cp++ = '0' + ((w & 0x1C0) >> 6);
2999                }
3000
3001                /* Week of year - 7th, 8th digits. */
3002                num = w & 0x003F;
3003                *cp++ = '0' + num / 10;
3004                num %= 10;
3005                *cp++ = '0' + num;
3006
3007                /*
3008                 * Third word
3009                 */
3010                w = serialnum[2] & 0x7FFF;
3011
3012                /* Serial number - 9th digit. */
3013                *cp++ = 'A' + (w / 1000);
3014
3015                /* 10th, 11th, 12th digits. */
3016                num = w % 1000;
3017                *cp++ = '0' + num / 100;
3018                num %= 100;
3019                *cp++ = '0' + num / 10;
3020                num %= 10;
3021                *cp++ = '0' + num;
3022
3023                *cp = '\0';     /* Null Terminate the string. */
3024                return ASC_TRUE;
3025        }
3026}
3027
3028/*
3029 * asc_prt_asc_board_eeprom()
3030 *
3031 * Print board EEPROM configuration.
3032 */
3033static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
3034{
3035        struct asc_board *boardp = shost_priv(shost);
3036        ASC_DVC_VAR *asc_dvc_varp;
3037        ASCEEP_CONFIG *ep;
3038        int i;
3039#ifdef CONFIG_ISA
3040        int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3041#endif /* CONFIG_ISA */
3042        uchar serialstr[13];
3043
3044        asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
3045        ep = &boardp->eep_config.asc_eep;
3046
3047        seq_printf(m,
3048                   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3049                   shost->host_no);
3050
3051        if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
3052            == ASC_TRUE)
3053                seq_printf(m, " Serial Number: %s\n", serialstr);
3054        else if (ep->adapter_info[5] == 0xBB)
3055                seq_puts(m,
3056                         " Default Settings Used for EEPROM-less Adapter.\n");
3057        else
3058                seq_puts(m, " Serial Number Signature Not Present.\n");
3059
3060        seq_printf(m,
3061                   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3062                   ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
3063                   ep->max_tag_qng);
3064
3065        seq_printf(m,
3066                   " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
3067
3068        seq_puts(m, " Target ID:           ");
3069        for (i = 0; i <= ASC_MAX_TID; i++)
3070                seq_printf(m, " %d", i);
3071
3072        seq_puts(m, "\n Disconnects:         ");
3073        for (i = 0; i <= ASC_MAX_TID; i++)
3074                seq_printf(m, " %c",
3075                           (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3076
3077        seq_puts(m, "\n Command Queuing:     ");
3078        for (i = 0; i <= ASC_MAX_TID; i++)
3079                seq_printf(m, " %c",
3080                           (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3081
3082        seq_puts(m, "\n Start Motor:         ");
3083        for (i = 0; i <= ASC_MAX_TID; i++)
3084                seq_printf(m, " %c",
3085                           (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3086
3087        seq_puts(m, "\n Synchronous Transfer:");
3088        for (i = 0; i <= ASC_MAX_TID; i++)
3089                seq_printf(m, " %c",
3090                           (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3091        seq_putc(m, '\n');
3092
3093#ifdef CONFIG_ISA
3094        if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
3095                seq_printf(m,
3096                           " Host ISA DMA speed:   %d MB/S\n",
3097                           isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
3098        }
3099#endif /* CONFIG_ISA */
3100}
3101
3102/*
3103 * asc_prt_adv_board_eeprom()
3104 *
3105 * Print board EEPROM configuration.
3106 */
3107static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
3108{
3109        struct asc_board *boardp = shost_priv(shost);
3110        ADV_DVC_VAR *adv_dvc_varp;
3111        int i;
3112        char *termstr;
3113        uchar serialstr[13];
3114        ADVEEP_3550_CONFIG *ep_3550 = NULL;
3115        ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
3116        ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
3117        ushort word;
3118        ushort *wordp;
3119        ushort sdtr_speed = 0;
3120
3121        adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
3122        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3123                ep_3550 = &boardp->eep_config.adv_3550_eep;
3124        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3125                ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
3126        } else {
3127                ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
3128        }
3129
3130        seq_printf(m,
3131                   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3132                   shost->host_no);
3133
3134        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3135                wordp = &ep_3550->serial_number_word1;
3136        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3137                wordp = &ep_38C0800->serial_number_word1;
3138        } else {
3139                wordp = &ep_38C1600->serial_number_word1;
3140        }
3141
3142        if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
3143                seq_printf(m, " Serial Number: %s\n", serialstr);
3144        else
3145                seq_puts(m, " Serial Number Signature Not Present.\n");
3146
3147        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3148                seq_printf(m,
3149                           " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3150                           ep_3550->adapter_scsi_id,
3151                           ep_3550->max_host_qng, ep_3550->max_dvc_qng);
3152        else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3153                seq_printf(m,
3154                           " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3155                           ep_38C0800->adapter_scsi_id,
3156                           ep_38C0800->max_host_qng,
3157                           ep_38C0800->max_dvc_qng);
3158        else
3159                seq_printf(m,
3160                           " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3161                           ep_38C1600->adapter_scsi_id,
3162                           ep_38C1600->max_host_qng,
3163                           ep_38C1600->max_dvc_qng);
3164        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3165                word = ep_3550->termination;
3166        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3167                word = ep_38C0800->termination_lvd;
3168        } else {
3169                word = ep_38C1600->termination_lvd;
3170        }
3171        switch (word) {
3172        case 1:
3173                termstr = "Low Off/High Off";
3174                break;
3175        case 2:
3176                termstr = "Low Off/High On";
3177                break;
3178        case 3:
3179                termstr = "Low On/High On";
3180                break;
3181        default:
3182        case 0:
3183                termstr = "Automatic";
3184                break;
3185        }
3186
3187        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3188                seq_printf(m,
3189                           " termination: %u (%s), bios_ctrl: 0x%x\n",
3190                           ep_3550->termination, termstr,
3191                           ep_3550->bios_ctrl);
3192        else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3193                seq_printf(m,
3194                           " termination: %u (%s), bios_ctrl: 0x%x\n",
3195                           ep_38C0800->termination_lvd, termstr,
3196                           ep_38C0800->bios_ctrl);
3197        else
3198                seq_printf(m,
3199                           " termination: %u (%s), bios_ctrl: 0x%x\n",
3200                           ep_38C1600->termination_lvd, termstr,
3201                           ep_38C1600->bios_ctrl);
3202
3203        seq_puts(m, " Target ID:           ");
3204        for (i = 0; i <= ADV_MAX_TID; i++)
3205                seq_printf(m, " %X", i);
3206        seq_putc(m, '\n');
3207
3208        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3209                word = ep_3550->disc_enable;
3210        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3211                word = ep_38C0800->disc_enable;
3212        } else {
3213                word = ep_38C1600->disc_enable;
3214        }
3215        seq_puts(m, " Disconnects:         ");
3216        for (i = 0; i <= ADV_MAX_TID; i++)
3217                seq_printf(m, " %c",
3218                           (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3219        seq_putc(m, '\n');
3220
3221        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3222                word = ep_3550->tagqng_able;
3223        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3224                word = ep_38C0800->tagqng_able;
3225        } else {
3226                word = ep_38C1600->tagqng_able;
3227        }
3228        seq_puts(m, " Command Queuing:     ");
3229        for (i = 0; i <= ADV_MAX_TID; i++)
3230                seq_printf(m, " %c",
3231                           (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3232        seq_putc(m, '\n');
3233
3234        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3235                word = ep_3550->start_motor;
3236        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3237                word = ep_38C0800->start_motor;
3238        } else {
3239                word = ep_38C1600->start_motor;
3240        }
3241        seq_puts(m, " Start Motor:         ");
3242        for (i = 0; i <= ADV_MAX_TID; i++)
3243                seq_printf(m, " %c",
3244                           (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3245        seq_putc(m, '\n');
3246
3247        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3248                seq_puts(m, " Synchronous Transfer:");
3249                for (i = 0; i <= ADV_MAX_TID; i++)
3250                        seq_printf(m, " %c",
3251                                   (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3252                                   'Y' : 'N');
3253                seq_putc(m, '\n');
3254        }
3255
3256        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3257                seq_puts(m, " Ultra Transfer:      ");
3258                for (i = 0; i <= ADV_MAX_TID; i++)
3259                        seq_printf(m, " %c",
3260                                   (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3261                                   ? 'Y' : 'N');
3262                seq_putc(m, '\n');
3263        }
3264
3265        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3266                word = ep_3550->wdtr_able;
3267        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3268                word = ep_38C0800->wdtr_able;
3269        } else {
3270                word = ep_38C1600->wdtr_able;
3271        }
3272        seq_puts(m, " Wide Transfer:       ");
3273        for (i = 0; i <= ADV_MAX_TID; i++)
3274                seq_printf(m, " %c",
3275                           (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3276        seq_putc(m, '\n');
3277
3278        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3279            adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3280                seq_puts(m, " Synchronous Transfer Speed (Mhz):\n  ");
3281                for (i = 0; i <= ADV_MAX_TID; i++) {
3282                        char *speed_str;
3283
3284                        if (i == 0) {
3285                                sdtr_speed = adv_dvc_varp->sdtr_speed1;
3286                        } else if (i == 4) {
3287                                sdtr_speed = adv_dvc_varp->sdtr_speed2;
3288                        } else if (i == 8) {
3289                                sdtr_speed = adv_dvc_varp->sdtr_speed3;
3290                        } else if (i == 12) {
3291                                sdtr_speed = adv_dvc_varp->sdtr_speed4;
3292                        }
3293                        switch (sdtr_speed & ADV_MAX_TID) {
3294                        case 0:
3295                                speed_str = "Off";
3296                                break;
3297                        case 1:
3298                                speed_str = "  5";
3299                                break;
3300                        case 2:
3301                                speed_str = " 10";
3302                                break;
3303                        case 3:
3304                                speed_str = " 20";
3305                                break;
3306                        case 4:
3307                                speed_str = " 40";
3308                                break;
3309                        case 5:
3310                                speed_str = " 80";
3311                                break;
3312                        default:
3313                                speed_str = "Unk";
3314                                break;
3315                        }
3316                        seq_printf(m, "%X:%s ", i, speed_str);
3317                        if (i == 7)
3318                                seq_puts(m, "\n  ");
3319                        sdtr_speed >>= 4;
3320                }
3321                seq_putc(m, '\n');
3322        }
3323}
3324
3325/*
3326 * asc_prt_driver_conf()
3327 */
3328static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3329{
3330        struct asc_board *boardp = shost_priv(shost);
3331        int chip_scsi_id;
3332
3333        seq_printf(m,
3334                "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3335                shost->host_no);
3336
3337        seq_printf(m,
3338                   " host_busy %u, max_id %u, max_lun %llu, max_channel %u\n",
3339                   atomic_read(&shost->host_busy), shost->max_id,
3340                   shost->max_lun, shost->max_channel);
3341
3342        seq_printf(m,
3343                   " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3344                   shost->unique_id, shost->can_queue, shost->this_id,
3345                   shost->sg_tablesize, shost->cmd_per_lun);
3346
3347        seq_printf(m,
3348                   " unchecked_isa_dma %d, use_clustering %d\n",
3349                   shost->unchecked_isa_dma, shost->use_clustering);
3350
3351        seq_printf(m,
3352                   " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3353                   boardp->flags, boardp->last_reset, jiffies,
3354                   boardp->asc_n_io_port);
3355
3356        seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3357
3358        if (ASC_NARROW_BOARD(boardp)) {
3359                chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3360        } else {
3361                chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3362        }
3363}
3364
3365/*
3366 * asc_prt_asc_board_info()
3367 *
3368 * Print dynamic board configuration information.
3369 */
3370static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3371{
3372        struct asc_board *boardp = shost_priv(shost);
3373        int chip_scsi_id;
3374        ASC_DVC_VAR *v;
3375        ASC_DVC_CFG *c;
3376        int i;
3377        int renegotiate = 0;
3378
3379        v = &boardp->dvc_var.asc_dvc_var;
3380        c = &boardp->dvc_cfg.asc_dvc_cfg;
3381        chip_scsi_id = c->chip_scsi_id;
3382
3383        seq_printf(m,
3384                   "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3385                   shost->host_no);
3386
3387        seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3388                   "mcode_version 0x%x, err_code %u\n",
3389                   c->chip_version, c->mcode_date, c->mcode_version,
3390                   v->err_code);
3391
3392        /* Current number of commands waiting for the host. */
3393        seq_printf(m,
3394                   " Total Command Pending: %d\n", v->cur_total_qng);
3395
3396        seq_puts(m, " Command Queuing:");
3397        for (i = 0; i <= ASC_MAX_TID; i++) {
3398                if ((chip_scsi_id == i) ||
3399                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3400                        continue;
3401                }
3402                seq_printf(m, " %X:%c",
3403                           i,
3404                           (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3405        }
3406
3407        /* Current number of commands waiting for a device. */
3408        seq_puts(m, "\n Command Queue Pending:");
3409        for (i = 0; i <= ASC_MAX_TID; i++) {
3410                if ((chip_scsi_id == i) ||
3411                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3412                        continue;
3413                }
3414                seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3415        }
3416
3417        /* Current limit on number of commands that can be sent to a device. */
3418        seq_puts(m, "\n Command Queue Limit:");
3419        for (i = 0; i <= ASC_MAX_TID; i++) {
3420                if ((chip_scsi_id == i) ||
3421                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3422                        continue;
3423                }
3424                seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3425        }
3426
3427        /* Indicate whether the device has returned queue full status. */
3428        seq_puts(m, "\n Command Queue Full:");
3429        for (i = 0; i <= ASC_MAX_TID; i++) {
3430                if ((chip_scsi_id == i) ||
3431                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3432                        continue;
3433                }
3434                if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3435                        seq_printf(m, " %X:Y-%d",
3436                                   i, boardp->queue_full_cnt[i]);
3437                else
3438                        seq_printf(m, " %X:N", i);
3439        }
3440
3441        seq_puts(m, "\n Synchronous Transfer:");
3442        for (i = 0; i <= ASC_MAX_TID; i++) {
3443                if ((chip_scsi_id == i) ||
3444                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3445                        continue;
3446                }
3447                seq_printf(m, " %X:%c",
3448                           i,
3449                           (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3450        }
3451        seq_putc(m, '\n');
3452
3453        for (i = 0; i <= ASC_MAX_TID; i++) {
3454                uchar syn_period_ix;
3455
3456                if ((chip_scsi_id == i) ||
3457                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3458                    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3459                        continue;
3460                }
3461
3462                seq_printf(m, "  %X:", i);
3463
3464                if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3465                        seq_puts(m, " Asynchronous");
3466                } else {
3467                        syn_period_ix =
3468                            (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3469                                                           1);
3470
3471                        seq_printf(m,
3472                                   " Transfer Period Factor: %d (%d.%d Mhz),",
3473                                   v->sdtr_period_tbl[syn_period_ix],
3474                                   250 / v->sdtr_period_tbl[syn_period_ix],
3475                                   ASC_TENTHS(250,
3476                                              v->sdtr_period_tbl[syn_period_ix]));
3477
3478                        seq_printf(m, " REQ/ACK Offset: %d",
3479                                   boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3480                }
3481
3482                if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3483                        seq_puts(m, "*\n");
3484                        renegotiate = 1;
3485                } else {
3486                        seq_putc(m, '\n');
3487                }
3488        }
3489
3490        if (renegotiate) {
3491                seq_puts(m, " * = Re-negotiation pending before next command.\n");
3492        }
3493}
3494
3495/*
3496 * asc_prt_adv_board_info()
3497 *
3498 * Print dynamic board configuration information.
3499 */
3500static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3501{
3502        struct asc_board *boardp = shost_priv(shost);
3503        int i;
3504        ADV_DVC_VAR *v;
3505        ADV_DVC_CFG *c;
3506        AdvPortAddr iop_base;
3507        ushort chip_scsi_id;
3508        ushort lramword;
3509        uchar lrambyte;
3510        ushort tagqng_able;
3511        ushort sdtr_able, wdtr_able;
3512        ushort wdtr_done, sdtr_done;
3513        ushort period = 0;
3514        int renegotiate = 0;
3515
3516        v = &boardp->dvc_var.adv_dvc_var;
3517        c = &boardp->dvc_cfg.adv_dvc_cfg;
3518        iop_base = v->iop_base;
3519        chip_scsi_id = v->chip_scsi_id;
3520
3521        seq_printf(m,
3522                   "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3523                   shost->host_no);
3524
3525        seq_printf(m,
3526                   " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3527                   (unsigned long)v->iop_base,
3528                   AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3529                   v->err_code);
3530
3531        seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3532                   "mcode_version 0x%x\n", c->chip_version,
3533                   c->mcode_date, c->mcode_version);
3534
3535        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3536        seq_puts(m, " Queuing Enabled:");
3537        for (i = 0; i <= ADV_MAX_TID; i++) {
3538                if ((chip_scsi_id == i) ||
3539                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3540                        continue;
3541                }
3542
3543                seq_printf(m, " %X:%c",
3544                           i,
3545                           (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3546        }
3547
3548        seq_puts(m, "\n Queue Limit:");
3549        for (i = 0; i <= ADV_MAX_TID; i++) {
3550                if ((chip_scsi_id == i) ||
3551                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3552                        continue;
3553                }
3554
3555                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3556                                lrambyte);
3557
3558                seq_printf(m, " %X:%d", i, lrambyte);
3559        }
3560
3561        seq_puts(m, "\n Command Pending:");
3562        for (i = 0; i <= ADV_MAX_TID; i++) {
3563                if ((chip_scsi_id == i) ||
3564                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3565                        continue;
3566                }
3567
3568                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3569                                lrambyte);
3570
3571                seq_printf(m, " %X:%d", i, lrambyte);
3572        }
3573        seq_putc(m, '\n');
3574
3575        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3576        seq_puts(m, " Wide Enabled:");
3577        for (i = 0; i <= ADV_MAX_TID; i++) {
3578                if ((chip_scsi_id == i) ||
3579                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3580                        continue;
3581                }
3582
3583                seq_printf(m, " %X:%c",
3584                           i,
3585                           (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3586        }
3587        seq_putc(m, '\n');
3588
3589        AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3590        seq_puts(m, " Transfer Bit Width:");
3591        for (i = 0; i <= ADV_MAX_TID; i++) {
3592                if ((chip_scsi_id == i) ||
3593                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3594                        continue;
3595                }
3596
3597                AdvReadWordLram(iop_base,
3598                                ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3599                                lramword);
3600
3601                seq_printf(m, " %X:%d",
3602                           i, (lramword & 0x8000) ? 16 : 8);
3603
3604                if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3605                    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3606                        seq_putc(m, '*');
3607                        renegotiate = 1;
3608                }
3609        }
3610        seq_putc(m, '\n');
3611
3612        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3613        seq_puts(m, " Synchronous Enabled:");
3614        for (i = 0; i <= ADV_MAX_TID; i++) {
3615                if ((chip_scsi_id == i) ||
3616                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3617                        continue;
3618                }
3619
3620                seq_printf(m, " %X:%c",
3621                           i,
3622                           (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3623        }
3624        seq_putc(m, '\n');
3625
3626        AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3627        for (i = 0; i <= ADV_MAX_TID; i++) {
3628
3629                AdvReadWordLram(iop_base,
3630                                ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3631                                lramword);
3632                lramword &= ~0x8000;
3633
3634                if ((chip_scsi_id == i) ||
3635                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3636                    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3637                        continue;
3638                }
3639
3640                seq_printf(m, "  %X:", i);
3641
3642                if ((lramword & 0x1F) == 0) {   /* Check for REQ/ACK Offset 0. */
3643                        seq_puts(m, " Asynchronous");
3644                } else {
3645                        seq_puts(m, " Transfer Period Factor: ");
3646
3647                        if ((lramword & 0x1F00) == 0x1100) {    /* 80 Mhz */
3648                                seq_puts(m, "9 (80.0 Mhz),");
3649                        } else if ((lramword & 0x1F00) == 0x1000) {     /* 40 Mhz */
3650                                seq_puts(m, "10 (40.0 Mhz),");
3651                        } else {        /* 20 Mhz or below. */
3652
3653                                period = (((lramword >> 8) * 25) + 50) / 4;
3654
3655                                if (period == 0) {      /* Should never happen. */
3656                                        seq_printf(m, "%d (? Mhz), ", period);
3657                                } else {
3658                                        seq_printf(m,
3659                                                   "%d (%d.%d Mhz),",
3660                                                   period, 250 / period,
3661                                                   ASC_TENTHS(250, period));
3662                                }
3663                        }
3664
3665                        seq_printf(m, " REQ/ACK Offset: %d",
3666                                   lramword & 0x1F);
3667                }
3668
3669                if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3670                        seq_puts(m, "*\n");
3671                        renegotiate = 1;
3672                } else {
3673                        seq_putc(m, '\n');
3674                }
3675        }
3676
3677        if (renegotiate) {
3678                seq_puts(m, " * = Re-negotiation pending before next command.\n");
3679        }
3680}
3681
3682#ifdef ADVANSYS_STATS
3683/*
3684 * asc_prt_board_stats()
3685 */
3686static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3687{
3688        struct asc_board *boardp = shost_priv(shost);
3689        struct asc_stats *s = &boardp->asc_stats;
3690
3691        seq_printf(m,
3692                   "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3693                   shost->host_no);
3694
3695        seq_printf(m,
3696                   " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3697                   s->queuecommand, s->reset, s->biosparam,
3698                   s->interrupt);
3699
3700        seq_printf(m,
3701                   " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3702                   s->callback, s->done, s->build_error,
3703                   s->adv_build_noreq, s->adv_build_nosg);
3704
3705        seq_printf(m,
3706                   " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3707                   s->exe_noerror, s->exe_busy, s->exe_error,
3708                   s->exe_unknown);
3709
3710        /*
3711         * Display data transfer statistics.
3712         */
3713        if (s->xfer_cnt > 0) {
3714                seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3715                           s->xfer_cnt, s->xfer_elem);
3716
3717                seq_printf(m, "xfer_bytes %u.%01u kb\n",
3718                           s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3719
3720                /* Scatter gather transfer statistics */
3721                seq_printf(m, " avg_num_elem %u.%01u, ",
3722                           s->xfer_elem / s->xfer_cnt,
3723                           ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3724
3725                seq_printf(m, "avg_elem_size %u.%01u kb, ",
3726                           (s->xfer_sect / 2) / s->xfer_elem,
3727                           ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3728
3729                seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3730                           (s->xfer_sect / 2) / s->xfer_cnt,
3731                           ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3732        }
3733}
3734#endif /* ADVANSYS_STATS */
3735
3736/*
3737 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3738 *
3739 * m: seq_file to print into
3740 * shost: Scsi_Host
3741 *
3742 * Return the number of bytes read from or written to a
3743 * /proc/scsi/advansys/[0...] file.
3744 */
3745static int
3746advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3747{
3748        struct asc_board *boardp = shost_priv(shost);
3749
3750        ASC_DBG(1, "begin\n");
3751
3752        /*
3753         * User read of /proc/scsi/advansys/[0...] file.
3754         */
3755
3756        /*
3757         * Get board configuration information.
3758         *
3759         * advansys_info() returns the board string from its own static buffer.
3760         */
3761        /* Copy board information. */
3762        seq_printf(m, "%s\n", (char *)advansys_info(shost));
3763        /*
3764         * Display Wide Board BIOS Information.
3765         */
3766        if (!ASC_NARROW_BOARD(boardp))
3767                asc_prt_adv_bios(m, shost);
3768
3769        /*
3770         * Display driver information for each device attached to the board.
3771         */
3772        asc_prt_board_devices(m, shost);
3773
3774        /*
3775         * Display EEPROM configuration for the board.
3776         */
3777        if (ASC_NARROW_BOARD(boardp))
3778                asc_prt_asc_board_eeprom(m, shost);
3779        else
3780                asc_prt_adv_board_eeprom(m, shost);
3781
3782        /*
3783         * Display driver configuration and information for the board.
3784         */
3785        asc_prt_driver_conf(m, shost);
3786
3787#ifdef ADVANSYS_STATS
3788        /*
3789         * Display driver statistics for the board.
3790         */
3791        asc_prt_board_stats(m, shost);
3792#endif /* ADVANSYS_STATS */
3793
3794        /*
3795         * Display Asc Library dynamic configuration information
3796         * for the board.
3797         */
3798        if (ASC_NARROW_BOARD(boardp))
3799                asc_prt_asc_board_info(m, shost);
3800        else
3801                asc_prt_adv_board_info(m, shost);
3802        return 0;
3803}
3804#endif /* CONFIG_PROC_FS */
3805
3806static void asc_scsi_done(struct scsi_cmnd *scp)
3807{
3808        scsi_dma_unmap(scp);
3809        ASC_STATS(scp->device->host, done);
3810        scp->scsi_done(scp);
3811}
3812
3813static void AscSetBank(PortAddr iop_base, uchar bank)
3814{
3815        uchar val;
3816
3817        val = AscGetChipControl(iop_base) &
3818            (~
3819             (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3820              CC_CHIP_RESET));
3821        if (bank == 1) {
3822                val |= CC_BANK_ONE;
3823        } else if (bank == 2) {
3824                val |= CC_DIAG | CC_BANK_ONE;
3825        } else {
3826                val &= ~CC_BANK_ONE;
3827        }
3828        AscSetChipControl(iop_base, val);
3829}
3830
3831static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3832{
3833        AscSetBank(iop_base, 1);
3834        AscWriteChipIH(iop_base, ins_code);
3835        AscSetBank(iop_base, 0);
3836}
3837
3838static int AscStartChip(PortAddr iop_base)
3839{
3840        AscSetChipControl(iop_base, 0);
3841        if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3842                return (0);
3843        }
3844        return (1);
3845}
3846
3847static int AscStopChip(PortAddr iop_base)
3848{
3849        uchar cc_val;
3850
3851        cc_val =
3852            AscGetChipControl(iop_base) &
3853            (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3854        AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3855        AscSetChipIH(iop_base, INS_HALT);
3856        AscSetChipIH(iop_base, INS_RFLAG_WTM);
3857        if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3858                return (0);
3859        }
3860        return (1);
3861}
3862
3863static int AscIsChipHalted(PortAddr iop_base)
3864{
3865        if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3866                if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3867                        return (1);
3868                }
3869        }
3870        return (0);
3871}
3872
3873static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3874{
3875        PortAddr iop_base;
3876        int i = 10;
3877
3878        iop_base = asc_dvc->iop_base;
3879        while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3880               && (i-- > 0)) {
3881                mdelay(100);
3882        }
3883        AscStopChip(iop_base);
3884        AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3885        udelay(60);
3886        AscSetChipIH(iop_base, INS_RFLAG_WTM);
3887        AscSetChipIH(iop_base, INS_HALT);
3888        AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3889        AscSetChipControl(iop_base, CC_HALT);
3890        mdelay(200);
3891        AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3892        AscSetChipStatus(iop_base, 0);
3893        return (AscIsChipHalted(iop_base));
3894}
3895
3896static int AscFindSignature(PortAddr iop_base)
3897{
3898        ushort sig_word;
3899
3900        ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3901                 iop_base, AscGetChipSignatureByte(iop_base));
3902        if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3903                ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3904                         iop_base, AscGetChipSignatureWord(iop_base));
3905                sig_word = AscGetChipSignatureWord(iop_base);
3906                if ((sig_word == (ushort)ASC_1000_ID0W) ||
3907                    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3908                        return (1);
3909                }
3910        }
3911        return (0);
3912}
3913
3914static void AscEnableInterrupt(PortAddr iop_base)
3915{
3916        ushort cfg;
3917
3918        cfg = AscGetChipCfgLsw(iop_base);
3919        AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3920}
3921
3922static void AscDisableInterrupt(PortAddr iop_base)
3923{
3924        ushort cfg;
3925
3926        cfg = AscGetChipCfgLsw(iop_base);
3927        AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3928}
3929
3930static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3931{
3932        unsigned char byte_data;
3933        unsigned short word_data;
3934
3935        if (isodd_word(addr)) {
3936                AscSetChipLramAddr(iop_base, addr - 1);
3937                word_data = AscGetChipLramData(iop_base);
3938                byte_data = (word_data >> 8) & 0xFF;
3939        } else {
3940                AscSetChipLramAddr(iop_base, addr);
3941                word_data = AscGetChipLramData(iop_base);
3942                byte_data = word_data & 0xFF;
3943        }
3944        return byte_data;
3945}
3946
3947static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3948{
3949        ushort word_data;
3950
3951        AscSetChipLramAddr(iop_base, addr);
3952        word_data = AscGetChipLramData(iop_base);
3953        return (word_data);
3954}
3955
3956#if CC_VERY_LONG_SG_LIST
3957static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr)
3958{
3959        ushort val_low, val_high;
3960        ASC_DCNT dword_data;
3961
3962        AscSetChipLramAddr(iop_base, addr);
3963        val_low = AscGetChipLramData(iop_base);
3964        val_high = AscGetChipLramData(iop_base);
3965        dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low;
3966        return (dword_data);
3967}
3968#endif /* CC_VERY_LONG_SG_LIST */
3969
3970static void
3971AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3972{
3973        int i;
3974
3975        AscSetChipLramAddr(iop_base, s_addr);
3976        for (i = 0; i < words; i++) {
3977                AscSetChipLramData(iop_base, set_wval);
3978        }
3979}
3980
3981static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3982{
3983        AscSetChipLramAddr(iop_base, addr);
3984        AscSetChipLramData(iop_base, word_val);
3985}
3986
3987static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3988{
3989        ushort word_data;
3990
3991        if (isodd_word(addr)) {
3992                addr--;
3993                word_data = AscReadLramWord(iop_base, addr);
3994                word_data &= 0x00FF;
3995                word_data |= (((ushort)byte_val << 8) & 0xFF00);
3996        } else {
3997                word_data = AscReadLramWord(iop_base, addr);
3998                word_data &= 0xFF00;
3999                word_data |= ((ushort)byte_val & 0x00FF);
4000        }
4001        AscWriteLramWord(iop_base, addr, word_data);
4002}
4003
4004/*
4005 * Copy 2 bytes to LRAM.
4006 *
4007 * The source data is assumed to be in little-endian order in memory
4008 * and is maintained in little-endian order when written to LRAM.
4009 */
4010static void
4011AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
4012                        const uchar *s_buffer, int words)
4013{
4014        int i;
4015
4016        AscSetChipLramAddr(iop_base, s_addr);
4017        for (i = 0; i < 2 * words; i += 2) {
4018                /*
4019                 * On a little-endian system the second argument below
4020                 * produces a little-endian ushort which is written to
4021                 * LRAM in little-endian order. On a big-endian system
4022                 * the second argument produces a big-endian ushort which
4023                 * is "transparently" byte-swapped by outpw() and written
4024                 * in little-endian order to LRAM.
4025                 */
4026                outpw(iop_base + IOP_RAM_DATA,
4027                      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
4028        }
4029}
4030
4031/*
4032 * Copy 4 bytes to LRAM.
4033 *
4034 * The source data is assumed to be in little-endian order in memory
4035 * and is maintained in little-endian order when written to LRAM.
4036 */
4037static void
4038AscMemDWordCopyPtrToLram(PortAddr iop_base,
4039                         ushort s_addr, uchar *s_buffer, int dwords)
4040{
4041        int i;
4042
4043        AscSetChipLramAddr(iop_base, s_addr);
4044        for (i = 0; i < 4 * dwords; i += 4) {
4045                outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);   /* LSW */
4046                outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);       /* MSW */
4047        }
4048}
4049
4050/*
4051 * Copy 2 bytes from LRAM.
4052 *
4053 * The source data is assumed to be in little-endian order in LRAM
4054 * and is maintained in little-endian order when written to memory.
4055 */
4056static void
4057AscMemWordCopyPtrFromLram(PortAddr iop_base,
4058                          ushort s_addr, uchar *d_buffer, int words)
4059{
4060        int i;
4061        ushort word;
4062
4063        AscSetChipLramAddr(iop_base, s_addr);
4064        for (i = 0; i < 2 * words; i += 2) {
4065                word = inpw(iop_base + IOP_RAM_DATA);
4066                d_buffer[i] = word & 0xff;
4067                d_buffer[i + 1] = (word >> 8) & 0xff;
4068        }
4069}
4070
4071static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
4072{
4073        ASC_DCNT sum;
4074        int i;
4075
4076        sum = 0L;
4077        for (i = 0; i < words; i++, s_addr += 2) {
4078                sum += AscReadLramWord(iop_base, s_addr);
4079        }
4080        return (sum);
4081}
4082
4083static ushort AscInitLram(ASC_DVC_VAR *asc_dvc)
4084{
4085        uchar i;
4086        ushort s_addr;
4087        PortAddr iop_base;
4088        ushort warn_code;
4089
4090        iop_base = asc_dvc->iop_base;
4091        warn_code = 0;
4092        AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
4093                          (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
4094                                    64) >> 1));
4095        i = ASC_MIN_ACTIVE_QNO;
4096        s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
4097        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4098                         (uchar)(i + 1));
4099        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4100                         (uchar)(asc_dvc->max_total_qng));
4101        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4102                         (uchar)i);
4103        i++;
4104        s_addr += ASC_QBLK_SIZE;
4105        for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
4106                AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4107                                 (uchar)(i + 1));
4108                AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4109                                 (uchar)(i - 1));
4110                AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4111                                 (uchar)i);
4112        }
4113        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4114                         (uchar)ASC_QLINK_END);
4115        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4116                         (uchar)(asc_dvc->max_total_qng - 1));
4117        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4118                         (uchar)asc_dvc->max_total_qng);
4119        i++;
4120        s_addr += ASC_QBLK_SIZE;
4121        for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
4122             i++, s_addr += ASC_QBLK_SIZE) {
4123                AscWriteLramByte(iop_base,
4124                                 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
4125                AscWriteLramByte(iop_base,
4126                                 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
4127                AscWriteLramByte(iop_base,
4128                                 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
4129        }
4130        return warn_code;
4131}
4132
4133static ASC_DCNT
4134AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
4135                 const uchar *mcode_buf, ushort mcode_size)
4136{
4137        ASC_DCNT chksum;
4138        ushort mcode_word_size;
4139        ushort mcode_chksum;
4140
4141        /* Write the microcode buffer starting at LRAM address 0. */
4142        mcode_word_size = (ushort)(mcode_size >> 1);
4143        AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
4144        AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
4145
4146        chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
4147        ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
4148        mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
4149                                                 (ushort)ASC_CODE_SEC_BEG,
4150                                                 (ushort)((mcode_size -
4151                                                           s_addr - (ushort)
4152                                                           ASC_CODE_SEC_BEG) /
4153                                                          2));
4154        ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
4155        AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
4156        AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
4157        return chksum;
4158}
4159
4160static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
4161{
4162        PortAddr iop_base;
4163        int i;
4164        ushort lram_addr;
4165
4166        iop_base = asc_dvc->iop_base;
4167        AscPutRiscVarFreeQHead(iop_base, 1);
4168        AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4169        AscPutVarFreeQHead(iop_base, 1);
4170        AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4171        AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
4172                         (uchar)((int)asc_dvc->max_total_qng + 1));
4173        AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
4174                         (uchar)((int)asc_dvc->max_total_qng + 2));
4175        AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4176                         asc_dvc->max_total_qng);
4177        AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4178        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4179        AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4180        AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4181        AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4182        AscPutQDoneInProgress(iop_base, 0);
4183        lram_addr = ASC_QADR_BEG;
4184        for (i = 0; i < 32; i++, lram_addr += 2) {
4185                AscWriteLramWord(iop_base, lram_addr, 0);
4186        }
4187}
4188
4189static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4190{
4191        int i;
4192        ushort warn_code;
4193        PortAddr iop_base;
4194        ASC_PADDR phy_addr;
4195        ASC_DCNT phy_size;
4196        struct asc_board *board = asc_dvc_to_board(asc_dvc);
4197
4198        iop_base = asc_dvc->iop_base;
4199        warn_code = 0;
4200        for (i = 0; i <= ASC_MAX_TID; i++) {
4201                AscPutMCodeInitSDTRAtID(iop_base, i,
4202                                        asc_dvc->cfg->sdtr_period_offset[i]);
4203        }
4204
4205        AscInitQLinkVar(asc_dvc);
4206        AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4207                         asc_dvc->cfg->disc_enable);
4208        AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4209                         ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4210
4211        /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4212        BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4213        asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4214                                        ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4215        if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4216                warn_code = -ENOMEM;
4217                goto err_dma_map;
4218        }
4219        phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4220        AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4221                                 (uchar *)&phy_addr, 1);
4222        phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4223        AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4224                                 (uchar *)&phy_size, 1);
4225
4226        asc_dvc->cfg->mcode_date =
4227            AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4228        asc_dvc->cfg->mcode_version =
4229            AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4230
4231        AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4232        if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4233                asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4234                warn_code = UW_ERR;
4235                goto err_mcode_start;
4236        }
4237        if (AscStartChip(iop_base) != 1) {
4238                asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4239                warn_code = UW_ERR;
4240                goto err_mcode_start;
4241        }
4242
4243        return warn_code;
4244
4245err_mcode_start:
4246        dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4247                         ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4248err_dma_map:
4249        asc_dvc->overrun_dma = 0;
4250        return warn_code;
4251}
4252
4253static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4254{
4255        const struct firmware *fw;
4256        const char fwname[] = "advansys/mcode.bin";
4257        int err;
4258        unsigned long chksum;
4259        ushort warn_code;
4260        PortAddr iop_base;
4261
4262        iop_base = asc_dvc->iop_base;
4263        warn_code = 0;
4264        if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4265            !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4266                AscResetChipAndScsiBus(asc_dvc);
4267                mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4268        }
4269        asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4270        if (asc_dvc->err_code != 0)
4271                return UW_ERR;
4272        if (!AscFindSignature(asc_dvc->iop_base)) {
4273                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4274                return warn_code;
4275        }
4276        AscDisableInterrupt(iop_base);
4277        warn_code |= AscInitLram(asc_dvc);
4278        if (asc_dvc->err_code != 0)
4279                return UW_ERR;
4280
4281        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4282        if (err) {
4283                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4284                       fwname, err);
4285                asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4286                return err;
4287        }
4288        if (fw->size < 4) {
4289                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4290                       fw->size, fwname);
4291                release_firmware(fw);
4292                asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4293                return -EINVAL;
4294        }
4295        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4296                 (fw->data[1] << 8) | fw->data[0];
4297        ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4298        if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4299                             fw->size - 4) != chksum) {
4300                asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4301                release_firmware(fw);
4302                return warn_code;
4303        }
4304        release_firmware(fw);
4305        warn_code |= AscInitMicroCodeVar(asc_dvc);
4306        if (!asc_dvc->overrun_dma)
4307                return warn_code;
4308        asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4309        AscEnableInterrupt(iop_base);
4310        return warn_code;
4311}
4312
4313/*
4314 * Load the Microcode
4315 *
4316 * Write the microcode image to RISC memory starting at address 0.
4317 *
4318 * The microcode is stored compressed in the following format:
4319 *
4320 *  254 word (508 byte) table indexed by byte code followed
4321 *  by the following byte codes:
4322 *
4323 *    1-Byte Code:
4324 *      00: Emit word 0 in table.
4325 *      01: Emit word 1 in table.
4326 *      .
4327 *      FD: Emit word 253 in table.
4328 *
4329 *    Multi-Byte Code:
4330 *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4331 *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4332 *
4333 * Returns 0 or an error if the checksum doesn't match
4334 */
4335static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4336                            int size, int memsize, int chksum)
4337{
4338        int i, j, end, len = 0;
4339        ADV_DCNT sum;
4340
4341        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4342
4343        for (i = 253 * 2; i < size; i++) {
4344                if (buf[i] == 0xff) {
4345                        unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4346                        for (j = 0; j < buf[i + 1]; j++) {
4347                                AdvWriteWordAutoIncLram(iop_base, word);
4348                                len += 2;
4349                        }
4350                        i += 3;
4351                } else if (buf[i] == 0xfe) {
4352                        unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4353                        AdvWriteWordAutoIncLram(iop_base, word);
4354                        i += 2;
4355                        len += 2;
4356                } else {
4357                        unsigned int off = buf[i] * 2;
4358                        unsigned short word = (buf[off + 1] << 8) | buf[off];
4359                        AdvWriteWordAutoIncLram(iop_base, word);
4360                        len += 2;
4361                }
4362        }
4363
4364        end = len;
4365
4366        while (len < memsize) {
4367                AdvWriteWordAutoIncLram(iop_base, 0);
4368                len += 2;
4369        }
4370
4371        /* Verify the microcode checksum. */
4372        sum = 0;
4373        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4374
4375        for (len = 0; len < end; len += 2) {
4376                sum += AdvReadWordAutoIncLram(iop_base);
4377        }
4378
4379        if (sum != chksum)
4380                return ASC_IERR_MCODE_CHKSUM;
4381
4382        return 0;
4383}
4384
4385static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc)
4386{
4387        ADV_CARR_T *carrp;
4388        ADV_SDCNT buf_size;
4389        ADV_PADDR carr_paddr;
4390
4391        carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf);
4392        asc_dvc->carr_freelist = NULL;
4393        if (carrp == asc_dvc->carrier_buf) {
4394                buf_size = ADV_CARRIER_BUFSIZE;
4395        } else {
4396                buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T);
4397        }
4398
4399        do {
4400                /* Get physical address of the carrier 'carrp'. */
4401                carr_paddr = cpu_to_le32(virt_to_bus(carrp));
4402
4403                buf_size -= sizeof(ADV_CARR_T);
4404
4405                carrp->carr_pa = carr_paddr;
4406                carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp));
4407
4408                /*
4409                 * Insert the carrier at the beginning of the freelist.
4410                 */
4411                carrp->next_vpa =
4412                        cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
4413                asc_dvc->carr_freelist = carrp;
4414
4415                carrp++;
4416        } while (buf_size > 0);
4417}
4418
4419/*
4420 * Send an idle command to the chip and wait for completion.
4421 *
4422 * Command completion is polled for once per microsecond.
4423 *
4424 * The function can be called from anywhere including an interrupt handler.
4425 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4426 * functions to prevent reentrancy.
4427 *
4428 * Return Values:
4429 *   ADV_TRUE - command completed successfully
4430 *   ADV_FALSE - command failed
4431 *   ADV_ERROR - command timed out
4432 */
4433static int
4434AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4435               ushort idle_cmd, ADV_DCNT idle_cmd_parameter)
4436{
4437        int result;
4438        ADV_DCNT i, j;
4439        AdvPortAddr iop_base;
4440
4441        iop_base = asc_dvc->iop_base;
4442
4443        /*
4444         * Clear the idle command status which is set by the microcode
4445         * to a non-zero value to indicate when the command is completed.
4446         * The non-zero result is one of the IDLE_CMD_STATUS_* values
4447         */
4448        AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4449
4450        /*
4451         * Write the idle command value after the idle command parameter
4452         * has been written to avoid a race condition. If the order is not
4453         * followed, the microcode may process the idle command before the
4454         * parameters have been written to LRAM.
4455         */
4456        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4457                                cpu_to_le32(idle_cmd_parameter));
4458        AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4459
4460        /*
4461         * Tickle the RISC to tell it to process the idle command.
4462         */
4463        AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4464        if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4465                /*
4466                 * Clear the tickle value. In the ASC-3550 the RISC flag
4467                 * command 'clr_tickle_b' does not work unless the host
4468                 * value is cleared.
4469                 */
4470                AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4471        }
4472
4473        /* Wait for up to 100 millisecond for the idle command to timeout. */
4474        for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4475                /* Poll once each microsecond for command completion. */
4476                for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4477                        AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4478                                        result);
4479                        if (result != 0)
4480                                return result;
4481                        udelay(1);
4482                }
4483        }
4484
4485        BUG();          /* The idle command should never timeout. */
4486        return ADV_ERROR;
4487}
4488
4489/*
4490 * Reset SCSI Bus and purge all outstanding requests.
4491 *
4492 * Return Value:
4493 *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
4494 *      ADV_FALSE(0) -  Microcode command failed.
4495 *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4496 *                      may be hung which requires driver recovery.
4497 */
4498static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4499{
4500        int status;
4501
4502        /*
4503         * Send the SCSI Bus Reset idle start idle command which asserts
4504         * the SCSI Bus Reset signal.
4505         */
4506        status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4507        if (status != ADV_TRUE) {
4508                return status;
4509        }
4510
4511        /*
4512         * Delay for the specified SCSI Bus Reset hold time.
4513         *
4514         * The hold time delay is done on the host because the RISC has no
4515         * microsecond accurate timer.
4516         */
4517        udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4518
4519        /*
4520         * Send the SCSI Bus Reset end idle command which de-asserts
4521         * the SCSI Bus Reset signal and purges any pending requests.
4522         */
4523        status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4524        if (status != ADV_TRUE) {
4525                return status;
4526        }
4527
4528        mdelay(asc_dvc->scsi_reset_wait * 1000);        /* XXX: msleep? */
4529
4530        return status;
4531}
4532
4533/*
4534 * Initialize the ASC-3550.
4535 *
4536 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4537 *
4538 * For a non-fatal error return a warning code. If there are no warnings
4539 * then 0 is returned.
4540 *
4541 * Needed after initialization for error recovery.
4542 */
4543static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4544{
4545        const struct firmware *fw;
4546        const char fwname[] = "advansys/3550.bin";
4547        AdvPortAddr iop_base;
4548        ushort warn_code;
4549        int begin_addr;
4550        int end_addr;
4551        ushort code_sum;
4552        int word;
4553        int i;
4554        int err;
4555        unsigned long chksum;
4556        ushort scsi_cfg1;
4557        uchar tid;
4558        ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
4559        ushort wdtr_able = 0, sdtr_able, tagqng_able;
4560        uchar max_cmd[ADV_MAX_TID + 1];
4561
4562        /* If there is already an error, don't continue. */
4563        if (asc_dvc->err_code != 0)
4564                return ADV_ERROR;
4565
4566        /*
4567         * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4568         */
4569        if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4570                asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4571                return ADV_ERROR;
4572        }
4573
4574        warn_code = 0;
4575        iop_base = asc_dvc->iop_base;
4576
4577        /*
4578         * Save the RISC memory BIOS region before writing the microcode.
4579         * The BIOS may already be loaded and using its RISC LRAM region
4580         * so its region must be saved and restored.
4581         *
4582         * Note: This code makes the assumption, which is currently true,
4583         * that a chip reset does not clear RISC LRAM.
4584         */
4585        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4586                AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4587                                bios_mem[i]);
4588        }
4589
4590        /*
4591         * Save current per TID negotiated values.
4592         */
4593        if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4594                ushort bios_version, major, minor;
4595
4596                bios_version =
4597                    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4598                major = (bios_version >> 12) & 0xF;
4599                minor = (bios_version >> 8) & 0xF;
4600                if (major < 3 || (major == 3 && minor == 1)) {
4601                        /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4602                        AdvReadWordLram(iop_base, 0x120, wdtr_able);
4603                } else {
4604                        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4605                }
4606        }
4607        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4608        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4609        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4610                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4611                                max_cmd[tid]);
4612        }
4613
4614        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4615        if (err) {
4616                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4617                       fwname, err);
4618                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4619                return err;
4620        }
4621        if (fw->size < 4) {
4622                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4623                       fw->size, fwname);
4624                release_firmware(fw);
4625                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4626                return -EINVAL;
4627        }
4628        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4629                 (fw->data[1] << 8) | fw->data[0];
4630        asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4631                                             fw->size - 4, ADV_3550_MEMSIZE,
4632                                             chksum);
4633        release_firmware(fw);
4634        if (asc_dvc->err_code)
4635                return ADV_ERROR;
4636
4637        /*
4638         * Restore the RISC memory BIOS region.
4639         */
4640        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4641                AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4642                                 bios_mem[i]);
4643        }
4644
4645        /*
4646         * Calculate and write the microcode code checksum to the microcode
4647         * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4648         */
4649        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4650        AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4651        code_sum = 0;
4652        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4653        for (word = begin_addr; word < end_addr; word += 2) {
4654                code_sum += AdvReadWordAutoIncLram(iop_base);
4655        }
4656        AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4657
4658        /*
4659         * Read and save microcode version and date.
4660         */
4661        AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4662                        asc_dvc->cfg->mcode_date);
4663        AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4664                        asc_dvc->cfg->mcode_version);
4665
4666        /*
4667         * Set the chip type to indicate the ASC3550.
4668         */
4669        AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4670
4671        /*
4672         * If the PCI Configuration Command Register "Parity Error Response
4673         * Control" Bit was clear (0), then set the microcode variable
4674         * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4675         * to ignore DMA parity errors.
4676         */
4677        if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4678                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4679                word |= CONTROL_FLAG_IGNORE_PERR;
4680                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4681        }
4682
4683        /*
4684         * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4685         * threshold of 128 bytes. This register is only accessible to the host.
4686         */
4687        AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4688                             START_CTL_EMFU | READ_CMD_MRM);
4689
4690        /*
4691         * Microcode operating variables for WDTR, SDTR, and command tag
4692         * queuing will be set in slave_configure() based on what a
4693         * device reports it is capable of in Inquiry byte 7.
4694         *
4695         * If SCSI Bus Resets have been disabled, then directly set
4696         * SDTR and WDTR from the EEPROM configuration. This will allow
4697         * the BIOS and warm boot to work without a SCSI bus hang on
4698         * the Inquiry caused by host and target mismatched DTR values.
4699         * Without the SCSI Bus Reset, before an Inquiry a device can't
4700         * be assumed to be in Asynchronous, Narrow mode.
4701         */
4702        if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4703                AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4704                                 asc_dvc->wdtr_able);
4705                AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4706                                 asc_dvc->sdtr_able);
4707        }
4708
4709        /*
4710         * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4711         * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4712         * bitmask. These values determine the maximum SDTR speed negotiated
4713         * with a device.
4714         *
4715         * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4716         * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4717         * without determining here whether the device supports SDTR.
4718         *
4719         * 4-bit speed  SDTR speed name
4720         * ===========  ===============
4721         * 0000b (0x0)  SDTR disabled
4722         * 0001b (0x1)  5 Mhz
4723         * 0010b (0x2)  10 Mhz
4724         * 0011b (0x3)  20 Mhz (Ultra)
4725         * 0100b (0x4)  40 Mhz (LVD/Ultra2)
4726         * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
4727         * 0110b (0x6)  Undefined
4728         * .
4729         * 1111b (0xF)  Undefined
4730         */
4731        word = 0;
4732        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4733                if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4734                        /* Set Ultra speed for TID 'tid'. */
4735                        word |= (0x3 << (4 * (tid % 4)));
4736                } else {
4737                        /* Set Fast speed for TID 'tid'. */
4738                        word |= (0x2 << (4 * (tid % 4)));
4739                }
4740                if (tid == 3) { /* Check if done with sdtr_speed1. */
4741                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4742                        word = 0;
4743                } else if (tid == 7) {  /* Check if done with sdtr_speed2. */
4744                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4745                        word = 0;
4746                } else if (tid == 11) { /* Check if done with sdtr_speed3. */
4747                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4748                        word = 0;
4749                } else if (tid == 15) { /* Check if done with sdtr_speed4. */
4750                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4751                        /* End of loop. */
4752                }
4753        }
4754
4755        /*
4756         * Set microcode operating variable for the disconnect per TID bitmask.
4757         */
4758        AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4759                         asc_dvc->cfg->disc_enable);
4760
4761        /*
4762         * Set SCSI_CFG0 Microcode Default Value.
4763         *
4764         * The microcode will set the SCSI_CFG0 register using this value
4765         * after it is started below.
4766         */
4767        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4768                         PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4769                         asc_dvc->chip_scsi_id);
4770
4771        /*
4772         * Determine SCSI_CFG1 Microcode Default Value.
4773         *
4774         * The microcode will set the SCSI_CFG1 register using this value
4775         * after it is started below.
4776         */
4777
4778        /* Read current SCSI_CFG1 Register value. */
4779        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4780
4781        /*
4782         * If all three connectors are in use, return an error.
4783         */
4784        if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4785            (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4786                asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4787                return ADV_ERROR;
4788        }
4789
4790        /*
4791         * If the internal narrow cable is reversed all of the SCSI_CTRL
4792         * register signals will be set. Check for and return an error if
4793         * this condition is found.
4794         */
4795        if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4796                asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4797                return ADV_ERROR;
4798        }
4799
4800        /*
4801         * If this is a differential board and a single-ended device
4802         * is attached to one of the connectors, return an error.
4803         */
4804        if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4805                asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4806                return ADV_ERROR;
4807        }
4808
4809        /*
4810         * If automatic termination control is enabled, then set the
4811         * termination value based on a table listed in a_condor.h.
4812         *
4813         * If manual termination was specified with an EEPROM setting
4814         * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4815         * is ready to be 'ored' into SCSI_CFG1.
4816         */
4817        if (asc_dvc->cfg->termination == 0) {
4818                /*
4819                 * The software always controls termination by setting TERM_CTL_SEL.
4820                 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4821                 */
4822                asc_dvc->cfg->termination |= TERM_CTL_SEL;
4823
4824                switch (scsi_cfg1 & CABLE_DETECT) {
4825                        /* TERM_CTL_H: on, TERM_CTL_L: on */
4826                case 0x3:
4827                case 0x7:
4828                case 0xB:
4829                case 0xD:
4830                case 0xE:
4831                case 0xF:
4832                        asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4833                        break;
4834
4835                        /* TERM_CTL_H: on, TERM_CTL_L: off */
4836                case 0x1:
4837                case 0x5:
4838                case 0x9:
4839                case 0xA:
4840                case 0xC:
4841                        asc_dvc->cfg->termination |= TERM_CTL_H;
4842                        break;
4843
4844                        /* TERM_CTL_H: off, TERM_CTL_L: off */
4845                case 0x2:
4846                case 0x6:
4847                        break;
4848                }
4849        }
4850
4851        /*
4852         * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4853         */
4854        scsi_cfg1 &= ~TERM_CTL;
4855
4856        /*
4857         * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4858         * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4859         * referenced, because the hardware internally inverts
4860         * the Termination High and Low bits if TERM_POL is set.
4861         */
4862        scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4863
4864        /*
4865         * Set SCSI_CFG1 Microcode Default Value
4866         *
4867         * Set filter value and possibly modified termination control
4868         * bits in the Microcode SCSI_CFG1 Register Value.
4869         *
4870         * The microcode will set the SCSI_CFG1 register using this value
4871         * after it is started below.
4872         */
4873        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4874                         FLTR_DISABLE | scsi_cfg1);
4875
4876        /*
4877         * Set MEM_CFG Microcode Default Value
4878         *
4879         * The microcode will set the MEM_CFG register using this value
4880         * after it is started below.
4881         *
4882         * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4883         * are defined.
4884         *
4885         * ASC-3550 has 8KB internal memory.
4886         */
4887        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4888                         BIOS_EN | RAM_SZ_8KB);
4889
4890        /*
4891         * Set SEL_MASK Microcode Default Value
4892         *
4893         * The microcode will set the SEL_MASK register using this value
4894         * after it is started below.
4895         */
4896        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4897                         ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4898
4899        AdvBuildCarrierFreelist(asc_dvc);
4900
4901        /*
4902         * Set-up the Host->RISC Initiator Command Queue (ICQ).
4903         */
4904
4905        if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
4906                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4907                return ADV_ERROR;
4908        }
4909        asc_dvc->carr_freelist = (ADV_CARR_T *)
4910            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
4911
4912        /*
4913         * The first command issued will be placed in the stopper carrier.
4914         */
4915        asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
4916
4917        /*
4918         * Set RISC ICQ physical address start value.
4919         */
4920        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4921
4922        /*
4923         * Set-up the RISC->Host Initiator Response Queue (IRQ).
4924         */
4925        if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
4926                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4927                return ADV_ERROR;
4928        }
4929        asc_dvc->carr_freelist = (ADV_CARR_T *)
4930            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
4931
4932        /*
4933         * The first command completed by the RISC will be placed in
4934         * the stopper.
4935         *
4936         * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
4937         * completed the RISC will set the ASC_RQ_STOPPER bit.
4938         */
4939        asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
4940
4941        /*
4942         * Set RISC IRQ physical address start value.
4943         */
4944        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4945        asc_dvc->carr_pending_cnt = 0;
4946
4947        AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4948                             (ADV_INTR_ENABLE_HOST_INTR |
4949                              ADV_INTR_ENABLE_GLOBAL_INTR));
4950
4951        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4952        AdvWriteWordRegister(iop_base, IOPW_PC, word);
4953
4954        /* finally, finally, gentlemen, start your engine */
4955        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4956
4957        /*
4958         * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4959         * Resets should be performed. The RISC has to be running
4960         * to issue a SCSI Bus Reset.
4961         */
4962        if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4963                /*
4964                 * If the BIOS Signature is present in memory, restore the
4965                 * BIOS Handshake Configuration Table and do not perform
4966                 * a SCSI Bus Reset.
4967                 */
4968                if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4969                    0x55AA) {
4970                        /*
4971                         * Restore per TID negotiated values.
4972                         */
4973                        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4974                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4975                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4976                                         tagqng_able);
4977                        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4978                                AdvWriteByteLram(iop_base,
4979                                                 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4980                                                 max_cmd[tid]);
4981                        }
4982                } else {
4983                        if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4984                                warn_code = ASC_WARN_BUSRESET_ERROR;
4985                        }
4986                }
4987        }
4988
4989        return warn_code;
4990}
4991
4992/*
4993 * Initialize the ASC-38C0800.
4994 *
4995 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4996 *
4997 * For a non-fatal error return a warning code. If there are no warnings
4998 * then 0 is returned.
4999 *
5000 * Needed after initialization for error recovery.
5001 */
5002static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
5003{
5004        const struct firmware *fw;
5005        const char fwname[] = "advansys/38C0800.bin";
5006        AdvPortAddr iop_base;
5007        ushort warn_code;
5008        int begin_addr;
5009        int end_addr;
5010        ushort code_sum;
5011        int word;
5012        int i;
5013        int err;
5014        unsigned long chksum;
5015        ushort scsi_cfg1;
5016        uchar byte;
5017        uchar tid;
5018        ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
5019        ushort wdtr_able, sdtr_able, tagqng_able;
5020        uchar max_cmd[ADV_MAX_TID + 1];
5021
5022        /* If there is already an error, don't continue. */
5023        if (asc_dvc->err_code != 0)
5024                return ADV_ERROR;
5025
5026        /*
5027         * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5028         */
5029        if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
5030                asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5031                return ADV_ERROR;
5032        }
5033
5034        warn_code = 0;
5035        iop_base = asc_dvc->iop_base;
5036
5037        /*
5038         * Save the RISC memory BIOS region before writing the microcode.
5039         * The BIOS may already be loaded and using its RISC LRAM region
5040         * so its region must be saved and restored.
5041         *
5042         * Note: This code makes the assumption, which is currently true,
5043         * that a chip reset does not clear RISC LRAM.
5044         */
5045        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5046                AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5047                                bios_mem[i]);
5048        }
5049
5050        /*
5051         * Save current per TID negotiated values.
5052         */
5053        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5054        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5055        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5056        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5057                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5058                                max_cmd[tid]);
5059        }
5060
5061        /*
5062         * RAM BIST (RAM Built-In Self Test)
5063         *
5064         * Address : I/O base + offset 0x38h register (byte).
5065         * Function: Bit 7-6(RW) : RAM mode
5066         *                          Normal Mode   : 0x00
5067         *                          Pre-test Mode : 0x40
5068         *                          RAM Test Mode : 0x80
5069         *           Bit 5       : unused
5070         *           Bit 4(RO)   : Done bit
5071         *           Bit 3-0(RO) : Status
5072         *                          Host Error    : 0x08
5073         *                          Int_RAM Error : 0x04
5074         *                          RISC Error    : 0x02
5075         *                          SCSI Error    : 0x01
5076         *                          No Error      : 0x00
5077         *
5078         * Note: RAM BIST code should be put right here, before loading the
5079         * microcode and after saving the RISC memory BIOS region.
5080         */
5081
5082        /*
5083         * LRAM Pre-test
5084         *
5085         * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5086         * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5087         * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5088         * to NORMAL_MODE, return an error too.
5089         */
5090        for (i = 0; i < 2; i++) {
5091                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5092                mdelay(10);     /* Wait for 10ms before reading back. */
5093                byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5094                if ((byte & RAM_TEST_DONE) == 0
5095                    || (byte & 0x0F) != PRE_TEST_VALUE) {
5096                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5097                        return ADV_ERROR;
5098                }
5099
5100                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5101                mdelay(10);     /* Wait for 10ms before reading back. */
5102                if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5103                    != NORMAL_VALUE) {
5104                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5105                        return ADV_ERROR;
5106                }
5107        }
5108
5109        /*
5110         * LRAM Test - It takes about 1.5 ms to run through the test.
5111         *
5112         * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5113         * If Done bit not set or Status not 0, save register byte, set the
5114         * err_code, and return an error.
5115         */
5116        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5117        mdelay(10);     /* Wait for 10ms before checking status. */
5118
5119        byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5120        if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5121                /* Get here if Done bit not set or Status not 0. */
5122                asc_dvc->bist_err_code = byte;  /* for BIOS display message */
5123                asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5124                return ADV_ERROR;
5125        }
5126
5127        /* We need to reset back to normal mode after LRAM test passes. */
5128        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5129
5130        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5131        if (err) {
5132                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5133                       fwname, err);
5134                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5135                return err;
5136        }
5137        if (fw->size < 4) {
5138                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5139                       fw->size, fwname);
5140                release_firmware(fw);
5141                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5142                return -EINVAL;
5143        }
5144        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5145                 (fw->data[1] << 8) | fw->data[0];
5146        asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5147                                             fw->size - 4, ADV_38C0800_MEMSIZE,
5148                                             chksum);
5149        release_firmware(fw);
5150        if (asc_dvc->err_code)
5151                return ADV_ERROR;
5152
5153        /*
5154         * Restore the RISC memory BIOS region.
5155         */
5156        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5157                AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5158                                 bios_mem[i]);
5159        }
5160
5161        /*
5162         * Calculate and write the microcode code checksum to the microcode
5163         * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5164         */
5165        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5166        AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5167        code_sum = 0;
5168        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5169        for (word = begin_addr; word < end_addr; word += 2) {
5170                code_sum += AdvReadWordAutoIncLram(iop_base);
5171        }
5172        AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5173
5174        /*
5175         * Read microcode version and date.
5176         */
5177        AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5178                        asc_dvc->cfg->mcode_date);
5179        AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5180                        asc_dvc->cfg->mcode_version);
5181
5182        /*
5183         * Set the chip type to indicate the ASC38C0800.
5184         */
5185        AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5186
5187        /*
5188         * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5189         * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5190         * cable detection and then we are able to read C_DET[3:0].
5191         *
5192         * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5193         * Microcode Default Value' section below.
5194         */
5195        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5196        AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5197                             scsi_cfg1 | DIS_TERM_DRV);
5198
5199        /*
5200         * If the PCI Configuration Command Register "Parity Error Response
5201         * Control" Bit was clear (0), then set the microcode variable
5202         * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5203         * to ignore DMA parity errors.
5204         */
5205        if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5206                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5207                word |= CONTROL_FLAG_IGNORE_PERR;
5208                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5209        }
5210
5211        /*
5212         * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5213         * bits for the default FIFO threshold.
5214         *
5215         * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5216         *
5217         * For DMA Errata #4 set the BC_THRESH_ENB bit.
5218         */
5219        AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5220                             BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5221                             READ_CMD_MRM);
5222
5223        /*
5224         * Microcode operating variables for WDTR, SDTR, and command tag
5225         * queuing will be set in slave_configure() based on what a
5226         * device reports it is capable of in Inquiry byte 7.
5227         *
5228         * If SCSI Bus Resets have been disabled, then directly set
5229         * SDTR and WDTR from the EEPROM configuration. This will allow
5230         * the BIOS and warm boot to work without a SCSI bus hang on
5231         * the Inquiry caused by host and target mismatched DTR values.
5232         * Without the SCSI Bus Reset, before an Inquiry a device can't
5233         * be assumed to be in Asynchronous, Narrow mode.
5234         */
5235        if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5236                AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5237                                 asc_dvc->wdtr_able);
5238                AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5239                                 asc_dvc->sdtr_able);
5240        }
5241
5242        /*
5243         * Set microcode operating variables for DISC and SDTR_SPEED1,
5244         * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5245         * configuration values.
5246         *
5247         * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5248         * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5249         * without determining here whether the device supports SDTR.
5250         */
5251        AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5252                         asc_dvc->cfg->disc_enable);
5253        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5254        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5255        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5256        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5257
5258        /*
5259         * Set SCSI_CFG0 Microcode Default Value.
5260         *
5261         * The microcode will set the SCSI_CFG0 register using this value
5262         * after it is started below.
5263         */
5264        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5265                         PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5266                         asc_dvc->chip_scsi_id);
5267
5268        /*
5269         * Determine SCSI_CFG1 Microcode Default Value.
5270         *
5271         * The microcode will set the SCSI_CFG1 register using this value
5272         * after it is started below.
5273         */
5274
5275        /* Read current SCSI_CFG1 Register value. */
5276        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5277
5278        /*
5279         * If the internal narrow cable is reversed all of the SCSI_CTRL
5280         * register signals will be set. Check for and return an error if
5281         * this condition is found.
5282         */
5283        if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5284                asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5285                return ADV_ERROR;
5286        }
5287
5288        /*
5289         * All kind of combinations of devices attached to one of four
5290         * connectors are acceptable except HVD device attached. For example,
5291         * LVD device can be attached to SE connector while SE device attached
5292         * to LVD connector.  If LVD device attached to SE connector, it only
5293         * runs up to Ultra speed.
5294         *
5295         * If an HVD device is attached to one of LVD connectors, return an
5296         * error.  However, there is no way to detect HVD device attached to
5297         * SE connectors.
5298         */
5299        if (scsi_cfg1 & HVD) {
5300                asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5301                return ADV_ERROR;
5302        }
5303
5304        /*
5305         * If either SE or LVD automatic termination control is enabled, then
5306         * set the termination value based on a table listed in a_condor.h.
5307         *
5308         * If manual termination was specified with an EEPROM setting then
5309         * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5310         * to be 'ored' into SCSI_CFG1.
5311         */
5312        if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5313                /* SE automatic termination control is enabled. */
5314                switch (scsi_cfg1 & C_DET_SE) {
5315                        /* TERM_SE_HI: on, TERM_SE_LO: on */
5316                case 0x1:
5317                case 0x2:
5318                case 0x3:
5319                        asc_dvc->cfg->termination |= TERM_SE;
5320                        break;
5321
5322                        /* TERM_SE_HI: on, TERM_SE_LO: off */
5323                case 0x0:
5324                        asc_dvc->cfg->termination |= TERM_SE_HI;
5325                        break;
5326                }
5327        }
5328
5329        if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5330                /* LVD automatic termination control is enabled. */
5331                switch (scsi_cfg1 & C_DET_LVD) {
5332                        /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5333                case 0x4:
5334                case 0x8:
5335                case 0xC:
5336                        asc_dvc->cfg->termination |= TERM_LVD;
5337                        break;
5338
5339                        /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5340                case 0x0:
5341                        break;
5342                }
5343        }
5344
5345        /*
5346         * Clear any set TERM_SE and TERM_LVD bits.
5347         */
5348        scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5349
5350        /*
5351         * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5352         */
5353        scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5354
5355        /*
5356         * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5357         * bits and set possibly modified termination control bits in the
5358         * Microcode SCSI_CFG1 Register Value.
5359         */
5360        scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5361
5362        /*
5363         * Set SCSI_CFG1 Microcode Default Value
5364         *
5365         * Set possibly modified termination control and reset DIS_TERM_DRV
5366         * bits in the Microcode SCSI_CFG1 Register Value.
5367         *
5368         * The microcode will set the SCSI_CFG1 register using this value
5369         * after it is started below.
5370         */
5371        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5372
5373        /*
5374         * Set MEM_CFG Microcode Default Value
5375         *
5376         * The microcode will set the MEM_CFG register using this value
5377         * after it is started below.
5378         *
5379         * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5380         * are defined.
5381         *
5382         * ASC-38C0800 has 16KB internal memory.
5383         */
5384        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5385                         BIOS_EN | RAM_SZ_16KB);
5386
5387        /*
5388         * Set SEL_MASK Microcode Default Value
5389         *
5390         * The microcode will set the SEL_MASK register using this value
5391         * after it is started below.
5392         */
5393        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5394                         ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5395
5396        AdvBuildCarrierFreelist(asc_dvc);
5397
5398        /*
5399         * Set-up the Host->RISC Initiator Command Queue (ICQ).
5400         */
5401
5402        if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5403                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5404                return ADV_ERROR;
5405        }
5406        asc_dvc->carr_freelist = (ADV_CARR_T *)
5407            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5408
5409        /*
5410         * The first command issued will be placed in the stopper carrier.
5411         */
5412        asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5413
5414        /*
5415         * Set RISC ICQ physical address start value.
5416         * carr_pa is LE, must be native before write
5417         */
5418        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5419
5420        /*
5421         * Set-up the RISC->Host Initiator Response Queue (IRQ).
5422         */
5423        if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5424                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5425                return ADV_ERROR;
5426        }
5427        asc_dvc->carr_freelist = (ADV_CARR_T *)
5428            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5429
5430        /*
5431         * The first command completed by the RISC will be placed in
5432         * the stopper.
5433         *
5434         * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5435         * completed the RISC will set the ASC_RQ_STOPPER bit.
5436         */
5437        asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5438
5439        /*
5440         * Set RISC IRQ physical address start value.
5441         *
5442         * carr_pa is LE, must be native before write *
5443         */
5444        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5445        asc_dvc->carr_pending_cnt = 0;
5446
5447        AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5448                             (ADV_INTR_ENABLE_HOST_INTR |
5449                              ADV_INTR_ENABLE_GLOBAL_INTR));
5450
5451        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5452        AdvWriteWordRegister(iop_base, IOPW_PC, word);
5453
5454        /* finally, finally, gentlemen, start your engine */
5455        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5456
5457        /*
5458         * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5459         * Resets should be performed. The RISC has to be running
5460         * to issue a SCSI Bus Reset.
5461         */
5462        if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5463                /*
5464                 * If the BIOS Signature is present in memory, restore the
5465                 * BIOS Handshake Configuration Table and do not perform
5466                 * a SCSI Bus Reset.
5467                 */
5468                if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5469                    0x55AA) {
5470                        /*
5471                         * Restore per TID negotiated values.
5472                         */
5473                        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5474                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5475                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5476                                         tagqng_able);
5477                        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5478                                AdvWriteByteLram(iop_base,
5479                                                 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5480                                                 max_cmd[tid]);
5481                        }
5482                } else {
5483                        if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5484                                warn_code = ASC_WARN_BUSRESET_ERROR;
5485                        }
5486                }
5487        }
5488
5489        return warn_code;
5490}
5491
5492/*
5493 * Initialize the ASC-38C1600.
5494 *
5495 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5496 *
5497 * For a non-fatal error return a warning code. If there are no warnings
5498 * then 0 is returned.
5499 *
5500 * Needed after initialization for error recovery.
5501 */
5502static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5503{
5504        const struct firmware *fw;
5505        const char fwname[] = "advansys/38C1600.bin";
5506        AdvPortAddr iop_base;
5507        ushort warn_code;
5508        int begin_addr;
5509        int end_addr;
5510        ushort code_sum;
5511        long word;
5512        int i;
5513        int err;
5514        unsigned long chksum;
5515        ushort scsi_cfg1;
5516        uchar byte;
5517        uchar tid;
5518        ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
5519        ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5520        uchar max_cmd[ASC_MAX_TID + 1];
5521
5522        /* If there is already an error, don't continue. */
5523        if (asc_dvc->err_code != 0) {
5524                return ADV_ERROR;
5525        }
5526
5527        /*
5528         * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5529         */
5530        if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5531                asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5532                return ADV_ERROR;
5533        }
5534
5535        warn_code = 0;
5536        iop_base = asc_dvc->iop_base;
5537
5538        /*
5539         * Save the RISC memory BIOS region before writing the microcode.
5540         * The BIOS may already be loaded and using its RISC LRAM region
5541         * so its region must be saved and restored.
5542         *
5543         * Note: This code makes the assumption, which is currently true,
5544         * that a chip reset does not clear RISC LRAM.
5545         */
5546        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5547                AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5548                                bios_mem[i]);
5549        }
5550
5551        /*
5552         * Save current per TID negotiated values.
5553         */
5554        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5555        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5556        AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5557        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5558        for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5559                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5560                                max_cmd[tid]);
5561        }
5562
5563        /*
5564         * RAM BIST (Built-In Self Test)
5565         *
5566         * Address : I/O base + offset 0x38h register (byte).
5567         * Function: Bit 7-6(RW) : RAM mode
5568         *                          Normal Mode   : 0x00
5569         *                          Pre-test Mode : 0x40
5570         *                          RAM Test Mode : 0x80
5571         *           Bit 5       : unused
5572         *           Bit 4(RO)   : Done bit
5573         *           Bit 3-0(RO) : Status
5574         *                          Host Error    : 0x08
5575         *                          Int_RAM Error : 0x04
5576         *                          RISC Error    : 0x02
5577         *                          SCSI Error    : 0x01
5578         *                          No Error      : 0x00
5579         *
5580         * Note: RAM BIST code should be put right here, before loading the
5581         * microcode and after saving the RISC memory BIOS region.
5582         */
5583
5584        /*
5585         * LRAM Pre-test
5586         *
5587         * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5588         * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5589         * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5590         * to NORMAL_MODE, return an error too.
5591         */
5592        for (i = 0; i < 2; i++) {
5593                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5594                mdelay(10);     /* Wait for 10ms before reading back. */
5595                byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5596                if ((byte & RAM_TEST_DONE) == 0
5597                    || (byte & 0x0F) != PRE_TEST_VALUE) {
5598                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5599                        return ADV_ERROR;
5600                }
5601
5602                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5603                mdelay(10);     /* Wait for 10ms before reading back. */
5604                if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5605                    != NORMAL_VALUE) {
5606                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5607                        return ADV_ERROR;
5608                }
5609        }
5610
5611        /*
5612         * LRAM Test - It takes about 1.5 ms to run through the test.
5613         *
5614         * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5615         * If Done bit not set or Status not 0, save register byte, set the
5616         * err_code, and return an error.
5617         */
5618        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5619        mdelay(10);     /* Wait for 10ms before checking status. */
5620
5621        byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5622        if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5623                /* Get here if Done bit not set or Status not 0. */
5624                asc_dvc->bist_err_code = byte;  /* for BIOS display message */
5625                asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5626                return ADV_ERROR;
5627        }
5628
5629        /* We need to reset back to normal mode after LRAM test passes. */
5630        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5631
5632        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5633        if (err) {
5634                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5635                       fwname, err);
5636                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5637                return err;
5638        }
5639        if (fw->size < 4) {
5640                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5641                       fw->size, fwname);
5642                release_firmware(fw);
5643                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5644                return -EINVAL;
5645        }
5646        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5647                 (fw->data[1] << 8) | fw->data[0];
5648        asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5649                                             fw->size - 4, ADV_38C1600_MEMSIZE,
5650                                             chksum);
5651        release_firmware(fw);
5652        if (asc_dvc->err_code)
5653                return ADV_ERROR;
5654
5655        /*
5656         * Restore the RISC memory BIOS region.
5657         */
5658        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5659                AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5660                                 bios_mem[i]);
5661        }
5662
5663        /*
5664         * Calculate and write the microcode code checksum to the microcode
5665         * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5666         */
5667        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5668        AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5669        code_sum = 0;
5670        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5671        for (word = begin_addr; word < end_addr; word += 2) {
5672                code_sum += AdvReadWordAutoIncLram(iop_base);
5673        }
5674        AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5675
5676        /*
5677         * Read microcode version and date.
5678         */
5679        AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5680                        asc_dvc->cfg->mcode_date);
5681        AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5682                        asc_dvc->cfg->mcode_version);
5683
5684        /*
5685         * Set the chip type to indicate the ASC38C1600.
5686         */
5687        AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5688
5689        /*
5690         * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5691         * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5692         * cable detection and then we are able to read C_DET[3:0].
5693         *
5694         * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5695         * Microcode Default Value' section below.
5696         */
5697        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5698        AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5699                             scsi_cfg1 | DIS_TERM_DRV);
5700
5701        /*
5702         * If the PCI Configuration Command Register "Parity Error Response
5703         * Control" Bit was clear (0), then set the microcode variable
5704         * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5705         * to ignore DMA parity errors.
5706         */
5707        if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5708                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5709                word |= CONTROL_FLAG_IGNORE_PERR;
5710                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5711        }
5712
5713        /*
5714         * If the BIOS control flag AIPP (Asynchronous Information
5715         * Phase Protection) disable bit is not set, then set the firmware
5716         * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5717         * AIPP checking and encoding.
5718         */
5719        if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5720                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5721                word |= CONTROL_FLAG_ENABLE_AIPP;
5722                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5723        }
5724
5725        /*
5726         * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5727         * and START_CTL_TH [3:2].
5728         */
5729        AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5730                             FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5731
5732        /*
5733         * Microcode operating variables for WDTR, SDTR, and command tag
5734         * queuing will be set in slave_configure() based on what a
5735         * device reports it is capable of in Inquiry byte 7.
5736         *
5737         * If SCSI Bus Resets have been disabled, then directly set
5738         * SDTR and WDTR from the EEPROM configuration. This will allow
5739         * the BIOS and warm boot to work without a SCSI bus hang on
5740         * the Inquiry caused by host and target mismatched DTR values.
5741         * Without the SCSI Bus Reset, before an Inquiry a device can't
5742         * be assumed to be in Asynchronous, Narrow mode.
5743         */
5744        if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5745                AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5746                                 asc_dvc->wdtr_able);
5747                AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5748                                 asc_dvc->sdtr_able);
5749        }
5750
5751        /*
5752         * Set microcode operating variables for DISC and SDTR_SPEED1,
5753         * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5754         * configuration values.
5755         *
5756         * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5757         * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5758         * without determining here whether the device supports SDTR.
5759         */
5760        AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5761                         asc_dvc->cfg->disc_enable);
5762        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5763        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5764        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5765        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5766
5767        /*
5768         * Set SCSI_CFG0 Microcode Default Value.
5769         *
5770         * The microcode will set the SCSI_CFG0 register using this value
5771         * after it is started below.
5772         */
5773        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5774                         PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5775                         asc_dvc->chip_scsi_id);
5776
5777        /*
5778         * Calculate SCSI_CFG1 Microcode Default Value.
5779         *
5780         * The microcode will set the SCSI_CFG1 register using this value
5781         * after it is started below.
5782         *
5783         * Each ASC-38C1600 function has only two cable detect bits.
5784         * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5785         */
5786        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5787
5788        /*
5789         * If the cable is reversed all of the SCSI_CTRL register signals
5790         * will be set. Check for and return an error if this condition is
5791         * found.
5792         */
5793        if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5794                asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5795                return ADV_ERROR;
5796        }
5797
5798        /*
5799         * Each ASC-38C1600 function has two connectors. Only an HVD device
5800         * can not be connected to either connector. An LVD device or SE device
5801         * may be connected to either connecor. If an SE device is connected,
5802         * then at most Ultra speed (20 Mhz) can be used on both connectors.
5803         *
5804         * If an HVD device is attached, return an error.
5805         */
5806        if (scsi_cfg1 & HVD) {
5807                asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5808                return ADV_ERROR;
5809        }
5810
5811        /*
5812         * Each function in the ASC-38C1600 uses only the SE cable detect and
5813         * termination because there are two connectors for each function. Each
5814         * function may use either LVD or SE mode. Corresponding the SE automatic
5815         * termination control EEPROM bits are used for each function. Each
5816         * function has its own EEPROM. If SE automatic control is enabled for
5817         * the function, then set the termination value based on a table listed
5818         * in a_condor.h.
5819         *
5820         * If manual termination is specified in the EEPROM for the function,
5821         * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5822         * ready to be 'ored' into SCSI_CFG1.
5823         */
5824        if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5825                struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5826                /* SE automatic termination control is enabled. */
5827                switch (scsi_cfg1 & C_DET_SE) {
5828                        /* TERM_SE_HI: on, TERM_SE_LO: on */
5829                case 0x1:
5830                case 0x2:
5831                case 0x3:
5832                        asc_dvc->cfg->termination |= TERM_SE;
5833                        break;
5834
5835                case 0x0:
5836                        if (PCI_FUNC(pdev->devfn) == 0) {
5837                                /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5838                        } else {
5839                                /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5840                                asc_dvc->cfg->termination |= TERM_SE_HI;
5841                        }
5842                        break;
5843                }
5844        }
5845
5846        /*
5847         * Clear any set TERM_SE bits.
5848         */
5849        scsi_cfg1 &= ~TERM_SE;
5850
5851        /*
5852         * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5853         */
5854        scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5855
5856        /*
5857         * Clear Big Endian and Terminator Polarity bits and set possibly
5858         * modified termination control bits in the Microcode SCSI_CFG1
5859         * Register Value.
5860         *
5861         * Big Endian bit is not used even on big endian machines.
5862         */
5863        scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5864
5865        /*
5866         * Set SCSI_CFG1 Microcode Default Value
5867         *
5868         * Set possibly modified termination control bits in the Microcode
5869         * SCSI_CFG1 Register Value.
5870         *
5871         * The microcode will set the SCSI_CFG1 register using this value
5872         * after it is started below.
5873         */
5874        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5875
5876        /*
5877         * Set MEM_CFG Microcode Default Value
5878         *
5879         * The microcode will set the MEM_CFG register using this value
5880         * after it is started below.
5881         *
5882         * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5883         * are defined.
5884         *
5885         * ASC-38C1600 has 32KB internal memory.
5886         *
5887         * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5888         * out a special 16K Adv Library and Microcode version. After the issue
5889         * resolved, we should turn back to the 32K support. Both a_condor.h and
5890         * mcode.sas files also need to be updated.
5891         *
5892         * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5893         *  BIOS_EN | RAM_SZ_32KB);
5894         */
5895        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5896                         BIOS_EN | RAM_SZ_16KB);
5897
5898        /*
5899         * Set SEL_MASK Microcode Default Value
5900         *
5901         * The microcode will set the SEL_MASK register using this value
5902         * after it is started below.
5903         */
5904        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5905                         ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5906
5907        AdvBuildCarrierFreelist(asc_dvc);
5908
5909        /*
5910         * Set-up the Host->RISC Initiator Command Queue (ICQ).
5911         */
5912        if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5913                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5914                return ADV_ERROR;
5915        }
5916        asc_dvc->carr_freelist = (ADV_CARR_T *)
5917            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5918
5919        /*
5920         * The first command issued will be placed in the stopper carrier.
5921         */
5922        asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5923
5924        /*
5925         * Set RISC ICQ physical address start value. Initialize the
5926         * COMMA register to the same value otherwise the RISC will
5927         * prematurely detect a command is available.
5928         */
5929        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5930        AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5931                              le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5932
5933        /*
5934         * Set-up the RISC->Host Initiator Response Queue (IRQ).
5935         */
5936        if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5937                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5938                return ADV_ERROR;
5939        }
5940        asc_dvc->carr_freelist = (ADV_CARR_T *)
5941            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5942
5943        /*
5944         * The first command completed by the RISC will be placed in
5945         * the stopper.
5946         *
5947         * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5948         * completed the RISC will set the ASC_RQ_STOPPER bit.
5949         */
5950        asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5951
5952        /*
5953         * Set RISC IRQ physical address start value.
5954         */
5955        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5956        asc_dvc->carr_pending_cnt = 0;
5957
5958        AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5959                             (ADV_INTR_ENABLE_HOST_INTR |
5960                              ADV_INTR_ENABLE_GLOBAL_INTR));
5961        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5962        AdvWriteWordRegister(iop_base, IOPW_PC, word);
5963
5964        /* finally, finally, gentlemen, start your engine */
5965        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5966
5967        /*
5968         * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5969         * Resets should be performed. The RISC has to be running
5970         * to issue a SCSI Bus Reset.
5971         */
5972        if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5973                /*
5974                 * If the BIOS Signature is present in memory, restore the
5975                 * per TID microcode operating variables.
5976                 */
5977                if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5978                    0x55AA) {
5979                        /*
5980                         * Restore per TID negotiated values.
5981                         */
5982                        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5983                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5984                        AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5985                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5986                                         tagqng_able);
5987                        for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5988                                AdvWriteByteLram(iop_base,
5989                                                 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5990                                                 max_cmd[tid]);
5991                        }
5992                } else {
5993                        if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5994                                warn_code = ASC_WARN_BUSRESET_ERROR;
5995                        }
5996                }
5997        }
5998
5999        return warn_code;
6000}
6001
6002/*
6003 * Reset chip and SCSI Bus.
6004 *
6005 * Return Value:
6006 *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
6007 *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
6008 */
6009static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
6010{
6011        int status;
6012        ushort wdtr_able, sdtr_able, tagqng_able;
6013        ushort ppr_able = 0;
6014        uchar tid, max_cmd[ADV_MAX_TID + 1];
6015        AdvPortAddr iop_base;
6016        ushort bios_sig;
6017
6018        iop_base = asc_dvc->iop_base;
6019
6020        /*
6021         * Save current per TID negotiated values.
6022         */
6023        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6024        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6025        if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6026                AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6027        }
6028        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6029        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6030                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6031                                max_cmd[tid]);
6032        }
6033
6034        /*
6035         * Force the AdvInitAsc3550/38C0800Driver() function to
6036         * perform a SCSI Bus Reset by clearing the BIOS signature word.
6037         * The initialization functions assumes a SCSI Bus Reset is not
6038         * needed if the BIOS signature word is present.
6039         */
6040        AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6041        AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
6042
6043        /*
6044         * Stop chip and reset it.
6045         */
6046        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
6047        AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
6048        mdelay(100);
6049        AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
6050                             ADV_CTRL_REG_CMD_WR_IO_REG);
6051
6052        /*
6053         * Reset Adv Library error code, if any, and try
6054         * re-initializing the chip.
6055         */
6056        asc_dvc->err_code = 0;
6057        if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6058                status = AdvInitAsc38C1600Driver(asc_dvc);
6059        } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6060                status = AdvInitAsc38C0800Driver(asc_dvc);
6061        } else {
6062                status = AdvInitAsc3550Driver(asc_dvc);
6063        }
6064
6065        /* Translate initialization return value to status value. */
6066        if (status == 0) {
6067                status = ADV_TRUE;
6068        } else {
6069                status = ADV_FALSE;
6070        }
6071
6072        /*
6073         * Restore the BIOS signature word.
6074         */
6075        AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6076
6077        /*
6078         * Restore per TID negotiated values.
6079         */
6080        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6081        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6082        if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6083                AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6084        }
6085        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6086        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6087                AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6088                                 max_cmd[tid]);
6089        }
6090
6091        return status;
6092}
6093
6094/*
6095 * adv_async_callback() - Adv Library asynchronous event callback function.
6096 */
6097static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
6098{
6099        switch (code) {
6100        case ADV_ASYNC_SCSI_BUS_RESET_DET:
6101                /*
6102                 * The firmware detected a SCSI Bus reset.
6103                 */
6104                ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6105                break;
6106
6107        case ADV_ASYNC_RDMA_FAILURE:
6108                /*
6109                 * Handle RDMA failure by resetting the SCSI Bus and
6110                 * possibly the chip if it is unresponsive. Log the error
6111                 * with a unique code.
6112                 */
6113                ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6114                AdvResetChipAndSB(adv_dvc_varp);
6115                break;
6116
6117        case ADV_HOST_SCSI_BUS_RESET:
6118                /*
6119                 * Host generated SCSI bus reset occurred.
6120                 */
6121                ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6122                break;
6123
6124        default:
6125                ASC_DBG(0, "unknown code 0x%x\n", code);
6126                break;
6127        }
6128}
6129
6130/*
6131 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6132 *
6133 * Callback function for the Wide SCSI Adv Library.
6134 */
6135static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
6136{
6137        struct asc_board *boardp;
6138        adv_req_t *reqp;
6139        adv_sgblk_t *sgblkp;
6140        struct scsi_cmnd *scp;
6141        struct Scsi_Host *shost;
6142        ADV_DCNT resid_cnt;
6143
6144        ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6145                 (ulong)adv_dvc_varp, (ulong)scsiqp);
6146        ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
6147
6148        /*
6149         * Get the adv_req_t structure for the command that has been
6150         * completed. The adv_req_t structure actually contains the
6151         * completed ADV_SCSI_REQ_Q structure.
6152         */
6153        reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr);
6154        ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
6155        if (reqp == NULL) {
6156                ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6157                return;
6158        }
6159
6160        /*
6161         * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6162         * command that has been completed.
6163         *
6164         * Note: The adv_req_t request structure and adv_sgblk_t structure,
6165         * if any, are dropped, because a board structure pointer can not be
6166         * determined.
6167         */
6168        scp = reqp->cmndp;
6169        ASC_DBG(1, "scp 0x%p\n", scp);
6170        if (scp == NULL) {
6171                ASC_PRINT
6172                    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6173                return;
6174        }
6175        ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6176
6177        shost = scp->device->host;
6178        ASC_STATS(shost, callback);
6179        ASC_DBG(1, "shost 0x%p\n", shost);
6180
6181        boardp = shost_priv(shost);
6182        BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var);
6183
6184        /*
6185         * 'done_status' contains the command's ending status.
6186         */
6187        switch (scsiqp->done_status) {
6188        case QD_NO_ERROR:
6189                ASC_DBG(2, "QD_NO_ERROR\n");
6190                scp->result = 0;
6191
6192                /*
6193                 * Check for an underrun condition.
6194                 *
6195                 * If there was no error and an underrun condition, then
6196                 * then return the number of underrun bytes.
6197                 */
6198                resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6199                if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6200                    resid_cnt <= scsi_bufflen(scp)) {
6201                        ASC_DBG(1, "underrun condition %lu bytes\n",
6202                                 (ulong)resid_cnt);
6203                        scsi_set_resid(scp, resid_cnt);
6204                }
6205                break;
6206
6207        case QD_WITH_ERROR:
6208                ASC_DBG(2, "QD_WITH_ERROR\n");
6209                switch (scsiqp->host_status) {
6210                case QHSTA_NO_ERROR:
6211                        if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6212                                ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6213                                ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6214                                                  SCSI_SENSE_BUFFERSIZE);
6215                                /*
6216                                 * Note: The 'status_byte()' macro used by
6217                                 * target drivers defined in scsi.h shifts the
6218                                 * status byte returned by host drivers right
6219                                 * by 1 bit.  This is why target drivers also
6220                                 * use right shifted status byte definitions.
6221                                 * For instance target drivers use
6222                                 * CHECK_CONDITION, defined to 0x1, instead of
6223                                 * the SCSI defined check condition value of
6224                                 * 0x2. Host drivers are supposed to return
6225                                 * the status byte as it is defined by SCSI.
6226                                 */
6227                                scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6228                                    STATUS_BYTE(scsiqp->scsi_status);
6229                        } else {
6230                                scp->result = STATUS_BYTE(scsiqp->scsi_status);
6231                        }
6232                        break;
6233
6234                default:
6235                        /* Some other QHSTA error occurred. */
6236                        ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6237                        scp->result = HOST_BYTE(DID_BAD_TARGET);
6238                        break;
6239                }
6240                break;
6241
6242        case QD_ABORTED_BY_HOST:
6243                ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6244                scp->result =
6245                    HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6246                break;
6247
6248        default:
6249                ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6250                scp->result =
6251                    HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6252                break;
6253        }
6254
6255        /*
6256         * If the 'init_tidmask' bit isn't already set for the target and the
6257         * current request finished normally, then set the bit for the target
6258         * to indicate that a device is present.
6259         */
6260        if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6261            scsiqp->done_status == QD_NO_ERROR &&
6262            scsiqp->host_status == QHSTA_NO_ERROR) {
6263                boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6264        }
6265
6266        asc_scsi_done(scp);
6267
6268        /*
6269         * Free all 'adv_sgblk_t' structures allocated for the request.
6270         */
6271        while ((sgblkp = reqp->sgblkp) != NULL) {
6272                /* Remove 'sgblkp' from the request list. */
6273                reqp->sgblkp = sgblkp->next_sgblkp;
6274
6275                /* Add 'sgblkp' to the board free list. */
6276                sgblkp->next_sgblkp = boardp->adv_sgblkp;
6277                boardp->adv_sgblkp = sgblkp;
6278        }
6279
6280        /*
6281         * Free the adv_req_t structure used with the command by adding
6282         * it back to the board free list.
6283         */
6284        reqp->next_reqp = boardp->adv_reqp;
6285        boardp->adv_reqp = reqp;
6286
6287        ASC_DBG(1, "done\n");
6288}
6289
6290/*
6291 * Adv Library Interrupt Service Routine
6292 *
6293 *  This function is called by a driver's interrupt service routine.
6294 *  The function disables and re-enables interrupts.
6295 *
6296 *  When a microcode idle command is completed, the ADV_DVC_VAR
6297 *  'idle_cmd_done' field is set to ADV_TRUE.
6298 *
6299 *  Note: AdvISR() can be called when interrupts are disabled or even
6300 *  when there is no hardware interrupt condition present. It will
6301 *  always check for completed idle commands and microcode requests.
6302 *  This is an important feature that shouldn't be changed because it
6303 *  allows commands to be completed from polling mode loops.
6304 *
6305 * Return:
6306 *   ADV_TRUE(1) - interrupt was pending
6307 *   ADV_FALSE(0) - no interrupt was pending
6308 */
6309static int AdvISR(ADV_DVC_VAR *asc_dvc)
6310{
6311        AdvPortAddr iop_base;
6312        uchar int_stat;
6313        ushort target_bit;
6314        ADV_CARR_T *free_carrp;
6315        ADV_VADDR irq_next_vpa;
6316        ADV_SCSI_REQ_Q *scsiq;
6317
6318        iop_base = asc_dvc->iop_base;
6319
6320        /* Reading the register clears the interrupt. */
6321        int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6322
6323        if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6324                         ADV_INTR_STATUS_INTRC)) == 0) {
6325                return ADV_FALSE;
6326        }
6327
6328        /*
6329         * Notify the driver of an asynchronous microcode condition by
6330         * calling the adv_async_callback function. The function
6331         * is passed the microcode ASC_MC_INTRB_CODE byte value.
6332         */
6333        if (int_stat & ADV_INTR_STATUS_INTRB) {
6334                uchar intrb_code;
6335
6336                AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6337
6338                if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6339                    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6340                        if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6341                            asc_dvc->carr_pending_cnt != 0) {
6342                                AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6343                                                     ADV_TICKLE_A);
6344                                if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6345                                        AdvWriteByteRegister(iop_base,
6346                                                             IOPB_TICKLE,
6347                                                             ADV_TICKLE_NOP);
6348                                }
6349                        }
6350                }
6351
6352                adv_async_callback(asc_dvc, intrb_code);
6353        }
6354
6355        /*
6356         * Check if the IRQ stopper carrier contains a completed request.
6357         */
6358        while (((irq_next_vpa =
6359                 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) {
6360                /*
6361                 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6362                 * The RISC will have set 'areq_vpa' to a virtual address.
6363                 *
6364                 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6365                 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6366                 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6367                 * in AdvExeScsiQueue().
6368                 */
6369                scsiq = (ADV_SCSI_REQ_Q *)
6370                    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa));
6371
6372                /*
6373                 * Request finished with good status and the queue was not
6374                 * DMAed to host memory by the firmware. Set all status fields
6375                 * to indicate good status.
6376                 */
6377                if ((irq_next_vpa & ASC_RQ_GOOD) != 0) {
6378                        scsiq->done_status = QD_NO_ERROR;
6379                        scsiq->host_status = scsiq->scsi_status = 0;
6380                        scsiq->data_cnt = 0L;
6381                }
6382
6383                /*
6384                 * Advance the stopper pointer to the next carrier
6385                 * ignoring the lower four bits. Free the previous
6386                 * stopper carrier.
6387                 */
6388                free_carrp = asc_dvc->irq_sp;
6389                asc_dvc->irq_sp = (ADV_CARR_T *)
6390                    ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa));
6391
6392                free_carrp->next_vpa =
6393                    cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
6394                asc_dvc->carr_freelist = free_carrp;
6395                asc_dvc->carr_pending_cnt--;
6396
6397                target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6398
6399                /*
6400                 * Clear request microcode control flag.
6401                 */
6402                scsiq->cntl = 0;
6403
6404                /*
6405                 * Notify the driver of the completed request by passing
6406                 * the ADV_SCSI_REQ_Q pointer to its callback function.
6407                 */
6408                scsiq->a_flag |= ADV_SCSIQ_DONE;
6409                adv_isr_callback(asc_dvc, scsiq);
6410                /*
6411                 * Note: After the driver callback function is called, 'scsiq'
6412                 * can no longer be referenced.
6413                 *
6414                 * Fall through and continue processing other completed
6415                 * requests...
6416                 */
6417        }
6418        return ADV_TRUE;
6419}
6420
6421static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6422{
6423        if (asc_dvc->err_code == 0) {
6424                asc_dvc->err_code = err_code;
6425                AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6426                                 err_code);
6427        }
6428        return err_code;
6429}
6430
6431static void AscAckInterrupt(PortAddr iop_base)
6432{
6433        uchar host_flag;
6434        uchar risc_flag;
6435        ushort loop;
6436
6437        loop = 0;
6438        do {
6439                risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6440                if (loop++ > 0x7FFF) {
6441                        break;
6442                }
6443        } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6444        host_flag =
6445            AscReadLramByte(iop_base,
6446                            ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6447        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6448                         (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6449        AscSetChipStatus(iop_base, CIW_INT_ACK);
6450        loop = 0;
6451        while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6452                AscSetChipStatus(iop_base, CIW_INT_ACK);
6453                if (loop++ > 3) {
6454                        break;
6455                }
6456        }
6457        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6458}
6459
6460static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6461{
6462        const uchar *period_table;
6463        int max_index;
6464        int min_index;
6465        int i;
6466
6467        period_table = asc_dvc->sdtr_period_tbl;
6468        max_index = (int)asc_dvc->max_sdtr_index;
6469        min_index = (int)asc_dvc->min_sdtr_index;
6470        if ((syn_time <= period_table[max_index])) {
6471                for (i = min_index; i < (max_index - 1); i++) {
6472                        if (syn_time <= period_table[i]) {
6473                                return (uchar)i;
6474                        }
6475                }
6476                return (uchar)max_index;
6477        } else {
6478                return (uchar)(max_index + 1);
6479        }
6480}
6481
6482static uchar
6483AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6484{
6485        EXT_MSG sdtr_buf;
6486        uchar sdtr_period_index;
6487        PortAddr iop_base;
6488
6489        iop_base = asc_dvc->iop_base;
6490        sdtr_buf.msg_type = EXTENDED_MESSAGE;
6491        sdtr_buf.msg_len = MS_SDTR_LEN;
6492        sdtr_buf.msg_req = EXTENDED_SDTR;
6493        sdtr_buf.xfer_period = sdtr_period;
6494        sdtr_offset &= ASC_SYN_MAX_OFFSET;
6495        sdtr_buf.req_ack_offset = sdtr_offset;
6496        sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6497        if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6498                AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6499                                        (uchar *)&sdtr_buf,
6500                                        sizeof(EXT_MSG) >> 1);
6501                return ((sdtr_period_index << 4) | sdtr_offset);
6502        } else {
6503                sdtr_buf.req_ack_offset = 0;
6504                AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6505                                        (uchar *)&sdtr_buf,
6506                                        sizeof(EXT_MSG) >> 1);
6507                return 0;
6508        }
6509}
6510
6511static uchar
6512AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6513{
6514        uchar byte;
6515        uchar sdtr_period_ix;
6516
6517        sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6518        if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6519                return 0xFF;
6520        byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6521        return byte;
6522}
6523
6524static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6525{
6526        ASC_SCSI_BIT_ID_TYPE org_id;
6527        int i;
6528        int sta = TRUE;
6529
6530        AscSetBank(iop_base, 1);
6531        org_id = AscReadChipDvcID(iop_base);
6532        for (i = 0; i <= ASC_MAX_TID; i++) {
6533                if (org_id == (0x01 << i))
6534                        break;
6535        }
6536        org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6537        AscWriteChipDvcID(iop_base, id);
6538        if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6539                AscSetBank(iop_base, 0);
6540                AscSetChipSyn(iop_base, sdtr_data);
6541                if (AscGetChipSyn(iop_base) != sdtr_data) {
6542                        sta = FALSE;
6543                }
6544        } else {
6545                sta = FALSE;
6546        }
6547        AscSetBank(iop_base, 1);
6548        AscWriteChipDvcID(iop_base, org_id);
6549        AscSetBank(iop_base, 0);
6550        return (sta);
6551}
6552
6553static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6554{
6555        AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6556        AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6557}
6558
6559static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6560{
6561        EXT_MSG ext_msg;
6562        EXT_MSG out_msg;
6563        ushort halt_q_addr;
6564        int sdtr_accept;
6565        ushort int_halt_code;
6566        ASC_SCSI_BIT_ID_TYPE scsi_busy;
6567        ASC_SCSI_BIT_ID_TYPE target_id;
6568        PortAddr iop_base;
6569        uchar tag_code;
6570        uchar q_status;
6571        uchar halt_qp;
6572        uchar sdtr_data;
6573        uchar target_ix;
6574        uchar q_cntl, tid_no;
6575        uchar cur_dvc_qng;
6576        uchar asyn_sdtr;
6577        uchar scsi_status;
6578        struct asc_board *boardp;
6579
6580        BUG_ON(!asc_dvc->drv_ptr);
6581        boardp = asc_dvc->drv_ptr;
6582
6583        iop_base = asc_dvc->iop_base;
6584        int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6585
6586        halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6587        halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6588        target_ix = AscReadLramByte(iop_base,
6589                                    (ushort)(halt_q_addr +
6590                                             (ushort)ASC_SCSIQ_B_TARGET_IX));
6591        q_cntl = AscReadLramByte(iop_base,
6592                            (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6593        tid_no = ASC_TIX_TO_TID(target_ix);
6594        target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6595        if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6596                asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6597        } else {
6598                asyn_sdtr = 0;
6599        }
6600        if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6601                if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6602                        AscSetChipSDTR(iop_base, 0, tid_no);
6603                        boardp->sdtr_data[tid_no] = 0;
6604                }
6605                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6606                return (0);
6607        } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6608                if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6609                        AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6610                        boardp->sdtr_data[tid_no] = asyn_sdtr;
6611                }
6612                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6613                return (0);
6614        } else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6615                AscMemWordCopyPtrFromLram(iop_base,
6616                                          ASCV_MSGIN_BEG,
6617                                          (uchar *)&ext_msg,
6618                                          sizeof(EXT_MSG) >> 1);
6619
6620                if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6621                    ext_msg.msg_req == EXTENDED_SDTR &&
6622                    ext_msg.msg_len == MS_SDTR_LEN) {
6623                        sdtr_accept = TRUE;
6624                        if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6625
6626                                sdtr_accept = FALSE;
6627                                ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6628                        }
6629                        if ((ext_msg.xfer_period <
6630                             asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6631                            || (ext_msg.xfer_period >
6632                                asc_dvc->sdtr_period_tbl[asc_dvc->
6633                                                         max_sdtr_index])) {
6634                                sdtr_accept = FALSE;
6635                                ext_msg.xfer_period =
6636                                    asc_dvc->sdtr_period_tbl[asc_dvc->
6637                                                             min_sdtr_index];
6638                        }
6639                        if (sdtr_accept) {
6640                                sdtr_data =
6641                                    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6642                                                   ext_msg.req_ack_offset);
6643                                if ((sdtr_data == 0xFF)) {
6644
6645                                        q_cntl |= QC_MSG_OUT;
6646                                        asc_dvc->init_sdtr &= ~target_id;
6647                                        asc_dvc->sdtr_done &= ~target_id;
6648                                        AscSetChipSDTR(iop_base, asyn_sdtr,
6649                                                       tid_no);
6650                                        boardp->sdtr_data[tid_no] = asyn_sdtr;
6651                                }
6652                        }
6653                        if (ext_msg.req_ack_offset == 0) {
6654
6655                                q_cntl &= ~QC_MSG_OUT;
6656                                asc_dvc->init_sdtr &= ~target_id;
6657                                asc_dvc->sdtr_done &= ~target_id;
6658                                AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6659                        } else {
6660                                if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6661                                        q_cntl &= ~QC_MSG_OUT;
6662                                        asc_dvc->sdtr_done |= target_id;
6663                                        asc_dvc->init_sdtr |= target_id;
6664                                        asc_dvc->pci_fix_asyn_xfer &=
6665                                            ~target_id;
6666                                        sdtr_data =
6667                                            AscCalSDTRData(asc_dvc,
6668                                                           ext_msg.xfer_period,
6669                                                           ext_msg.
6670                                                           req_ack_offset);
6671                                        AscSetChipSDTR(iop_base, sdtr_data,
6672                                                       tid_no);
6673                                        boardp->sdtr_data[tid_no] = sdtr_data;
6674                                } else {
6675                                        q_cntl |= QC_MSG_OUT;
6676                                        AscMsgOutSDTR(asc_dvc,
6677                                                      ext_msg.xfer_period,
6678                                                      ext_msg.req_ack_offset);
6679                                        asc_dvc->pci_fix_asyn_xfer &=
6680                                            ~target_id;
6681                                        sdtr_data =
6682                                            AscCalSDTRData(asc_dvc,
6683                                                           ext_msg.xfer_period,
6684                                                           ext_msg.
6685                                                           req_ack_offset);
6686                                        AscSetChipSDTR(iop_base, sdtr_data,
6687                                                       tid_no);
6688                                        boardp->sdtr_data[tid_no] = sdtr_data;
6689                                        asc_dvc->sdtr_done |= target_id;
6690                                        asc_dvc->init_sdtr |= target_id;
6691                                }
6692                        }
6693
6694                        AscWriteLramByte(iop_base,
6695                                         (ushort)(halt_q_addr +
6696                                                  (ushort)ASC_SCSIQ_B_CNTL),
6697                                         q_cntl);
6698                        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6699                        return (0);
6700                } else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6701                           ext_msg.msg_req == EXTENDED_WDTR &&
6702                           ext_msg.msg_len == MS_WDTR_LEN) {
6703
6704                        ext_msg.wdtr_width = 0;
6705                        AscMemWordCopyPtrToLram(iop_base,
6706                                                ASCV_MSGOUT_BEG,
6707                                                (uchar *)&ext_msg,
6708                                                sizeof(EXT_MSG) >> 1);
6709                        q_cntl |= QC_MSG_OUT;
6710                        AscWriteLramByte(iop_base,
6711                                         (ushort)(halt_q_addr +
6712                                                  (ushort)ASC_SCSIQ_B_CNTL),
6713                                         q_cntl);
6714                        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6715                        return (0);
6716                } else {
6717
6718                        ext_msg.msg_type = MESSAGE_REJECT;
6719                        AscMemWordCopyPtrToLram(iop_base,
6720                                                ASCV_MSGOUT_BEG,
6721                                                (uchar *)&ext_msg,
6722                                                sizeof(EXT_MSG) >> 1);
6723                        q_cntl |= QC_MSG_OUT;
6724                        AscWriteLramByte(iop_base,
6725                                         (ushort)(halt_q_addr +
6726                                                  (ushort)ASC_SCSIQ_B_CNTL),
6727                                         q_cntl);
6728                        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6729                        return (0);
6730                }
6731        } else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6732
6733                q_cntl |= QC_REQ_SENSE;
6734
6735                if ((asc_dvc->init_sdtr & target_id) != 0) {
6736
6737                        asc_dvc->sdtr_done &= ~target_id;
6738
6739                        sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6740                        q_cntl |= QC_MSG_OUT;
6741                        AscMsgOutSDTR(asc_dvc,
6742                                      asc_dvc->
6743                                      sdtr_period_tbl[(sdtr_data >> 4) &
6744                                                      (uchar)(asc_dvc->
6745                                                              max_sdtr_index -
6746                                                              1)],
6747                                      (uchar)(sdtr_data & (uchar)
6748                                              ASC_SYN_MAX_OFFSET));
6749                }
6750
6751                AscWriteLramByte(iop_base,
6752                                 (ushort)(halt_q_addr +
6753                                          (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6754
6755                tag_code = AscReadLramByte(iop_base,
6756                                           (ushort)(halt_q_addr + (ushort)
6757                                                    ASC_SCSIQ_B_TAG_CODE));
6758                tag_code &= 0xDC;
6759                if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6760                    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6761                    ) {
6762
6763                        tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6764                                     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6765
6766                }
6767                AscWriteLramByte(iop_base,
6768                                 (ushort)(halt_q_addr +
6769                                          (ushort)ASC_SCSIQ_B_TAG_CODE),
6770                                 tag_code);
6771
6772                q_status = AscReadLramByte(iop_base,
6773                                           (ushort)(halt_q_addr + (ushort)
6774                                                    ASC_SCSIQ_B_STATUS));
6775                q_status |= (QS_READY | QS_BUSY);
6776                AscWriteLramByte(iop_base,
6777                                 (ushort)(halt_q_addr +
6778                                          (ushort)ASC_SCSIQ_B_STATUS),
6779                                 q_status);
6780
6781                scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6782                scsi_busy &= ~target_id;
6783                AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6784
6785                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6786                return (0);
6787        } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6788
6789                AscMemWordCopyPtrFromLram(iop_base,
6790                                          ASCV_MSGOUT_BEG,
6791                                          (uchar *)&out_msg,
6792                                          sizeof(EXT_MSG) >> 1);
6793
6794                if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6795                    (out_msg.msg_len == MS_SDTR_LEN) &&
6796                    (out_msg.msg_req == EXTENDED_SDTR)) {
6797
6798                        asc_dvc->init_sdtr &= ~target_id;
6799                        asc_dvc->sdtr_done &= ~target_id;
6800                        AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6801                        boardp->sdtr_data[tid_no] = asyn_sdtr;
6802                }
6803                q_cntl &= ~QC_MSG_OUT;
6804                AscWriteLramByte(iop_base,
6805                                 (ushort)(halt_q_addr +
6806                                          (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6807                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6808                return (0);
6809        } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6810
6811                scsi_status = AscReadLramByte(iop_base,
6812                                              (ushort)((ushort)halt_q_addr +
6813                                                       (ushort)
6814                                                       ASC_SCSIQ_SCSI_STATUS));
6815                cur_dvc_qng =
6816                    AscReadLramByte(iop_base,
6817                                    (ushort)((ushort)ASC_QADR_BEG +
6818                                             (ushort)target_ix));
6819                if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6820
6821                        scsi_busy = AscReadLramByte(iop_base,
6822                                                    (ushort)ASCV_SCSIBUSY_B);
6823                        scsi_busy |= target_id;
6824                        AscWriteLramByte(iop_base,
6825                                         (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6826                        asc_dvc->queue_full_or_busy |= target_id;
6827
6828                        if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6829                                if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6830                                        cur_dvc_qng -= 1;
6831                                        asc_dvc->max_dvc_qng[tid_no] =
6832                                            cur_dvc_qng;
6833
6834                                        AscWriteLramByte(iop_base,
6835                                                         (ushort)((ushort)
6836                                                                  ASCV_MAX_DVC_QNG_BEG
6837                                                                  + (ushort)
6838                                                                  tid_no),
6839                                                         cur_dvc_qng);
6840
6841                                        /*
6842                                         * Set the device queue depth to the
6843                                         * number of active requests when the
6844                                         * QUEUE FULL condition was encountered.
6845                                         */
6846                                        boardp->queue_full |= target_id;
6847                                        boardp->queue_full_cnt[tid_no] =
6848                                            cur_dvc_qng;
6849                                }
6850                        }
6851                }
6852                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6853                return (0);
6854        }
6855#if CC_VERY_LONG_SG_LIST
6856        else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) {
6857                uchar q_no;
6858                ushort q_addr;
6859                uchar sg_wk_q_no;
6860                uchar first_sg_wk_q_no;
6861                ASC_SCSI_Q *scsiq;      /* Ptr to driver request. */
6862                ASC_SG_HEAD *sg_head;   /* Ptr to driver SG request. */
6863                ASC_SG_LIST_Q scsi_sg_q;        /* Structure written to queue. */
6864                ushort sg_list_dwords;
6865                ushort sg_entry_cnt;
6866                uchar next_qp;
6867                int i;
6868
6869                q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP);
6870                if (q_no == ASC_QLINK_END)
6871                        return 0;
6872
6873                q_addr = ASC_QNO_TO_QADDR(q_no);
6874
6875                /*
6876                 * Convert the request's SRB pointer to a host ASC_SCSI_REQ
6877                 * structure pointer using a macro provided by the driver.
6878                 * The ASC_SCSI_REQ pointer provides a pointer to the
6879                 * host ASC_SG_HEAD structure.
6880                 */
6881                /* Read request's SRB pointer. */
6882                scsiq = (ASC_SCSI_Q *)
6883                    ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base,
6884                                                                    (ushort)
6885                                                                    (q_addr +
6886                                                                     ASC_SCSIQ_D_SRBPTR))));
6887
6888                /*
6889                 * Get request's first and working SG queue.
6890                 */
6891                sg_wk_q_no = AscReadLramByte(iop_base,
6892                                             (ushort)(q_addr +
6893                                                      ASC_SCSIQ_B_SG_WK_QP));
6894
6895                first_sg_wk_q_no = AscReadLramByte(iop_base,
6896                                                   (ushort)(q_addr +
6897                                                            ASC_SCSIQ_B_FIRST_SG_WK_QP));
6898
6899                /*
6900                 * Reset request's working SG queue back to the
6901                 * first SG queue.
6902                 */
6903                AscWriteLramByte(iop_base,
6904                                 (ushort)(q_addr +
6905                                          (ushort)ASC_SCSIQ_B_SG_WK_QP),
6906                                 first_sg_wk_q_no);
6907
6908                sg_head = scsiq->sg_head;
6909
6910                /*
6911                 * Set sg_entry_cnt to the number of SG elements
6912                 * that will be completed on this interrupt.
6913                 *
6914                 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
6915                 * SG elements. The data_cnt and data_addr fields which
6916                 * add 1 to the SG element capacity are not used when
6917                 * restarting SG handling after a halt.
6918                 */
6919                if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) {
6920                        sg_entry_cnt = ASC_MAX_SG_LIST - 1;
6921
6922                        /*
6923                         * Keep track of remaining number of SG elements that
6924                         * will need to be handled on the next interrupt.
6925                         */
6926                        scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1);
6927                } else {
6928                        sg_entry_cnt = scsiq->remain_sg_entry_cnt;
6929                        scsiq->remain_sg_entry_cnt = 0;
6930                }
6931
6932                /*
6933                 * Copy SG elements into the list of allocated SG queues.
6934                 *
6935                 * Last index completed is saved in scsiq->next_sg_index.
6936                 */
6937                next_qp = first_sg_wk_q_no;
6938                q_addr = ASC_QNO_TO_QADDR(next_qp);
6939                scsi_sg_q.sg_head_qp = q_no;
6940                scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
6941                for (i = 0; i < sg_head->queue_cnt; i++) {
6942                        scsi_sg_q.seq_no = i + 1;
6943                        if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
6944                                sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
6945                                sg_entry_cnt -= ASC_SG_LIST_PER_Q;
6946                                /*
6947                                 * After very first SG queue RISC FW uses next
6948                                 * SG queue first element then checks sg_list_cnt
6949                                 * against zero and then decrements, so set
6950                                 * sg_list_cnt 1 less than number of SG elements
6951                                 * in each SG queue.
6952                                 */
6953                                scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1;
6954                                scsi_sg_q.sg_cur_list_cnt =
6955                                    ASC_SG_LIST_PER_Q - 1;
6956                        } else {
6957                                /*
6958                                 * This is the last SG queue in the list of
6959                                 * allocated SG queues. If there are more
6960                                 * SG elements than will fit in the allocated
6961                                 * queues, then set the QCSG_SG_XFER_MORE flag.
6962                                 */
6963                                if (scsiq->remain_sg_entry_cnt != 0) {
6964                                        scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
6965                                } else {
6966                                        scsi_sg_q.cntl |= QCSG_SG_XFER_END;
6967                                }
6968                                /* equals sg_entry_cnt * 2 */
6969                                sg_list_dwords = sg_entry_cnt << 1;
6970                                scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1;
6971                                scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1;
6972                                sg_entry_cnt = 0;
6973                        }
6974
6975                        scsi_sg_q.q_no = next_qp;
6976                        AscMemWordCopyPtrToLram(iop_base,
6977                                                q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
6978                                                (uchar *)&scsi_sg_q,
6979                                                sizeof(ASC_SG_LIST_Q) >> 1);
6980
6981                        AscMemDWordCopyPtrToLram(iop_base,
6982                                                 q_addr + ASC_SGQ_LIST_BEG,
6983                                                 (uchar *)&sg_head->
6984                                                 sg_list[scsiq->next_sg_index],
6985                                                 sg_list_dwords);
6986
6987                        scsiq->next_sg_index += ASC_SG_LIST_PER_Q;
6988
6989                        /*
6990                         * If the just completed SG queue contained the
6991                         * last SG element, then no more SG queues need
6992                         * to be written.
6993                         */
6994                        if (scsi_sg_q.cntl & QCSG_SG_XFER_END) {
6995                                break;
6996                        }
6997
6998                        next_qp = AscReadLramByte(iop_base,
6999                                                  (ushort)(q_addr +
7000                                                           ASC_SCSIQ_B_FWD));
7001                        q_addr = ASC_QNO_TO_QADDR(next_qp);
7002                }
7003
7004                /*
7005                 * Clear the halt condition so the RISC will be restarted
7006                 * after the return.
7007                 */
7008                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7009                return (0);
7010        }
7011#endif /* CC_VERY_LONG_SG_LIST */
7012        return (0);
7013}
7014
7015/*
7016 * void
7017 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7018 *
7019 * Calling/Exit State:
7020 *    none
7021 *
7022 * Description:
7023 *     Input an ASC_QDONE_INFO structure from the chip
7024 */
7025static void
7026DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7027{
7028        int i;
7029        ushort word;
7030
7031        AscSetChipLramAddr(iop_base, s_addr);
7032        for (i = 0; i < 2 * words; i += 2) {
7033                if (i == 10) {
7034                        continue;
7035                }
7036                word = inpw(iop_base + IOP_RAM_DATA);
7037                inbuf[i] = word & 0xff;
7038                inbuf[i + 1] = (word >> 8) & 0xff;
7039        }
7040        ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
7041}
7042
7043static uchar
7044_AscCopyLramScsiDoneQ(PortAddr iop_base,
7045                      ushort q_addr,
7046                      ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count)
7047{
7048        ushort _val;
7049        uchar sg_queue_cnt;
7050
7051        DvcGetQinfo(iop_base,
7052                    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
7053                    (uchar *)scsiq,
7054                    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
7055
7056        _val = AscReadLramWord(iop_base,
7057                               (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
7058        scsiq->q_status = (uchar)_val;
7059        scsiq->q_no = (uchar)(_val >> 8);
7060        _val = AscReadLramWord(iop_base,
7061                               (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7062        scsiq->cntl = (uchar)_val;
7063        sg_queue_cnt = (uchar)(_val >> 8);
7064        _val = AscReadLramWord(iop_base,
7065                               (ushort)(q_addr +
7066                                        (ushort)ASC_SCSIQ_B_SENSE_LEN));
7067        scsiq->sense_len = (uchar)_val;
7068        scsiq->extra_bytes = (uchar)(_val >> 8);
7069
7070        /*
7071         * Read high word of remain bytes from alternate location.
7072         */
7073        scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base,
7074                                                          (ushort)(q_addr +
7075                                                                   (ushort)
7076                                                                   ASC_SCSIQ_W_ALT_DC1)))
7077                               << 16);
7078        /*
7079         * Read low word of remain bytes from original location.
7080         */
7081        scsiq->remain_bytes += AscReadLramWord(iop_base,
7082                                               (ushort)(q_addr + (ushort)
7083                                                        ASC_SCSIQ_DW_REMAIN_XFER_CNT));
7084
7085        scsiq->remain_bytes &= max_dma_count;
7086        return sg_queue_cnt;
7087}
7088
7089/*
7090 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7091 *
7092 * Interrupt callback function for the Narrow SCSI Asc Library.
7093 */
7094static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
7095{
7096        struct asc_board *boardp;
7097        struct scsi_cmnd *scp;
7098        struct Scsi_Host *shost;
7099
7100        ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
7101        ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
7102
7103        scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr);
7104        if (!scp)
7105                return;
7106
7107        ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
7108
7109        shost = scp->device->host;
7110        ASC_STATS(shost, callback);
7111        ASC_DBG(1, "shost 0x%p\n", shost);
7112
7113        boardp = shost_priv(shost);
7114        BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var);
7115
7116        dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
7117                         SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7118        /*
7119         * 'qdonep' contains the command's ending status.
7120         */
7121        switch (qdonep->d3.done_stat) {
7122        case QD_NO_ERROR:
7123                ASC_DBG(2, "QD_NO_ERROR\n");
7124                scp->result = 0;
7125
7126                /*
7127                 * Check for an underrun condition.
7128                 *
7129                 * If there was no error and an underrun condition, then
7130                 * return the number of underrun bytes.
7131                 */
7132                if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
7133                    qdonep->remain_bytes <= scsi_bufflen(scp)) {
7134                        ASC_DBG(1, "underrun condition %u bytes\n",
7135                                 (unsigned)qdonep->remain_bytes);
7136                        scsi_set_resid(scp, qdonep->remain_bytes);
7137                }
7138                break;
7139
7140        case QD_WITH_ERROR:
7141                ASC_DBG(2, "QD_WITH_ERROR\n");
7142                switch (qdonep->d3.host_stat) {
7143                case QHSTA_NO_ERROR:
7144                        if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
7145                                ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7146                                ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
7147                                                  SCSI_SENSE_BUFFERSIZE);
7148                                /*
7149                                 * Note: The 'status_byte()' macro used by
7150                                 * target drivers defined in scsi.h shifts the
7151                                 * status byte returned by host drivers right
7152                                 * by 1 bit.  This is why target drivers also
7153                                 * use right shifted status byte definitions.
7154                                 * For instance target drivers use
7155                                 * CHECK_CONDITION, defined to 0x1, instead of
7156                                 * the SCSI defined check condition value of
7157                                 * 0x2. Host drivers are supposed to return
7158                                 * the status byte as it is defined by SCSI.
7159                                 */
7160                                scp->result = DRIVER_BYTE(DRIVER_SENSE) |
7161                                    STATUS_BYTE(qdonep->d3.scsi_stat);
7162                        } else {
7163                                scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
7164                        }
7165                        break;
7166
7167                default:
7168                        /* QHSTA error occurred */
7169                        ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
7170                        scp->result = HOST_BYTE(DID_BAD_TARGET);
7171                        break;
7172                }
7173                break;
7174
7175        case QD_ABORTED_BY_HOST:
7176                ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7177                scp->result =
7178                    HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
7179                                                    scsi_msg) |
7180                    STATUS_BYTE(qdonep->d3.scsi_stat);
7181                break;
7182
7183        default:
7184                ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
7185                scp->result =
7186                    HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
7187                                                    scsi_msg) |
7188                    STATUS_BYTE(qdonep->d3.scsi_stat);
7189                break;
7190        }
7191
7192        /*
7193         * If the 'init_tidmask' bit isn't already set for the target and the
7194         * current request finished normally, then set the bit for the target
7195         * to indicate that a device is present.
7196         */
7197        if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
7198            qdonep->d3.done_stat == QD_NO_ERROR &&
7199            qdonep->d3.host_stat == QHSTA_NO_ERROR) {
7200                boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
7201        }
7202
7203        asc_scsi_done(scp);
7204}
7205
7206static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
7207{
7208        uchar next_qp;
7209        uchar n_q_used;
7210        uchar sg_list_qp;
7211        uchar sg_queue_cnt;
7212        uchar q_cnt;
7213        uchar done_q_tail;
7214        uchar tid_no;
7215        ASC_SCSI_BIT_ID_TYPE scsi_busy;
7216        ASC_SCSI_BIT_ID_TYPE target_id;
7217        PortAddr iop_base;
7218        ushort q_addr;
7219        ushort sg_q_addr;
7220        uchar cur_target_qng;
7221        ASC_QDONE_INFO scsiq_buf;
7222        ASC_QDONE_INFO *scsiq;
7223        int false_overrun;
7224
7225        iop_base = asc_dvc->iop_base;
7226        n_q_used = 1;
7227        scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
7228        done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
7229        q_addr = ASC_QNO_TO_QADDR(done_q_tail);
7230        next_qp = AscReadLramByte(iop_base,
7231                                  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
7232        if (next_qp != ASC_QLINK_END) {
7233                AscPutVarDoneQTail(iop_base, next_qp);
7234                q_addr = ASC_QNO_TO_QADDR(next_qp);
7235                sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
7236                                                     asc_dvc->max_dma_count);
7237                AscWriteLramByte(iop_base,
7238                                 (ushort)(q_addr +
7239                                          (ushort)ASC_SCSIQ_B_STATUS),
7240                                 (uchar)(scsiq->
7241                                         q_status & (uchar)~(QS_READY |
7242                                                             QS_ABORTED)));
7243                tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
7244                target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
7245                if ((scsiq->cntl & QC_SG_HEAD) != 0) {
7246                        sg_q_addr = q_addr;
7247                        sg_list_qp = next_qp;
7248                        for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
7249                                sg_list_qp = AscReadLramByte(iop_base,
7250                                                             (ushort)(sg_q_addr
7251                                                                      + (ushort)
7252                                                                      ASC_SCSIQ_B_FWD));
7253                                sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
7254                                if (sg_list_qp == ASC_QLINK_END) {
7255                                        AscSetLibErrorCode(asc_dvc,
7256                                                           ASCQ_ERR_SG_Q_LINKS);
7257                                        scsiq->d3.done_stat = QD_WITH_ERROR;
7258                                        scsiq->d3.host_stat =
7259                                            QHSTA_D_QDONE_SG_LIST_CORRUPTED;
7260                                        goto FATAL_ERR_QDONE;
7261                                }
7262                                AscWriteLramByte(iop_base,
7263                                                 (ushort)(sg_q_addr + (ushort)
7264                                                          ASC_SCSIQ_B_STATUS),
7265                                                 QS_FREE);
7266                        }
7267                        n_q_used = sg_queue_cnt + 1;
7268                        AscPutVarDoneQTail(iop_base, sg_list_qp);
7269                }
7270                if (asc_dvc->queue_full_or_busy & target_id) {
7271                        cur_target_qng = AscReadLramByte(iop_base,
7272                                                         (ushort)((ushort)
7273                                                                  ASC_QADR_BEG
7274                                                                  + (ushort)
7275                                                                  scsiq->d2.
7276                                                                  target_ix));
7277                        if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
7278                                scsi_busy = AscReadLramByte(iop_base, (ushort)
7279                                                            ASCV_SCSIBUSY_B);
7280                                scsi_busy &= ~target_id;
7281                                AscWriteLramByte(iop_base,
7282                                                 (ushort)ASCV_SCSIBUSY_B,
7283                                                 scsi_busy);
7284                                asc_dvc->queue_full_or_busy &= ~target_id;
7285                        }
7286                }
7287                if (asc_dvc->cur_total_qng >= n_q_used) {
7288                        asc_dvc->cur_total_qng -= n_q_used;
7289                        if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
7290                                asc_dvc->cur_dvc_qng[tid_no]--;
7291                        }
7292                } else {
7293                        AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
7294                        scsiq->d3.done_stat = QD_WITH_ERROR;
7295                        goto FATAL_ERR_QDONE;
7296                }
7297                if ((scsiq->d2.srb_ptr == 0UL) ||
7298                    ((scsiq->q_status & QS_ABORTED) != 0)) {
7299                        return (0x11);
7300                } else if (scsiq->q_status == QS_DONE) {
7301                        false_overrun = FALSE;
7302                        if (scsiq->extra_bytes != 0) {
7303                                scsiq->remain_bytes +=
7304                                    (ADV_DCNT)scsiq->extra_bytes;
7305                        }
7306                        if (scsiq->d3.done_stat == QD_WITH_ERROR) {
7307                                if (scsiq->d3.host_stat ==
7308                                    QHSTA_M_DATA_OVER_RUN) {
7309                                        if ((scsiq->
7310                                             cntl & (QC_DATA_IN | QC_DATA_OUT))
7311                                            == 0) {
7312                                                scsiq->d3.done_stat =
7313                                                    QD_NO_ERROR;
7314                                                scsiq->d3.host_stat =
7315                                                    QHSTA_NO_ERROR;
7316                                        } else if (false_overrun) {
7317                                                scsiq->d3.done_stat =
7318                                                    QD_NO_ERROR;
7319                                                scsiq->d3.host_stat =
7320                                                    QHSTA_NO_ERROR;
7321                                        }
7322                                } else if (scsiq->d3.host_stat ==
7323                                           QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
7324                                        AscStopChip(iop_base);
7325                                        AscSetChipControl(iop_base,
7326                                                          (uchar)(CC_SCSI_RESET
7327                                                                  | CC_HALT));
7328                                        udelay(60);
7329                                        AscSetChipControl(iop_base, CC_HALT);
7330                                        AscSetChipStatus(iop_base,
7331                                                         CIW_CLR_SCSI_RESET_INT);
7332                                        AscSetChipStatus(iop_base, 0);
7333                                        AscSetChipControl(iop_base, 0);
7334                                }
7335                        }
7336                        if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7337                                asc_isr_callback(asc_dvc, scsiq);
7338                        } else {
7339                                if ((AscReadLramByte(iop_base,
7340                                                     (ushort)(q_addr + (ushort)
7341                                                              ASC_SCSIQ_CDB_BEG))
7342                                     == START_STOP)) {
7343                                        asc_dvc->unit_not_ready &= ~target_id;
7344                                        if (scsiq->d3.done_stat != QD_NO_ERROR) {
7345                                                asc_dvc->start_motor &=
7346                                                    ~target_id;
7347                                        }
7348                                }
7349                        }
7350                        return (1);
7351                } else {
7352                        AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7353 FATAL_ERR_QDONE:
7354                        if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7355                                asc_isr_callback(asc_dvc, scsiq);
7356                        }
7357                        return (0x80);
7358                }
7359        }
7360        return (0);
7361}
7362
7363static int AscISR(ASC_DVC_VAR *asc_dvc)
7364{
7365        ASC_CS_TYPE chipstat;
7366        PortAddr iop_base;
7367        ushort saved_ram_addr;
7368        uchar ctrl_reg;
7369        uchar saved_ctrl_reg;
7370        int int_pending;
7371        int status;
7372        uchar host_flag;
7373
7374        iop_base = asc_dvc->iop_base;
7375        int_pending = FALSE;
7376
7377        if (AscIsIntPending(iop_base) == 0)
7378                return int_pending;
7379
7380        if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7381                return ERR;
7382        }
7383        if (asc_dvc->in_critical_cnt != 0) {
7384                AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7385                return ERR;
7386        }
7387        if (asc_dvc->is_in_int) {
7388                AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7389                return ERR;
7390        }
7391        asc_dvc->is_in_int = TRUE;
7392        ctrl_reg = AscGetChipControl(iop_base);
7393        saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7394                                       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7395        chipstat = AscGetChipStatus(iop_base);
7396        if (chipstat & CSW_SCSI_RESET_LATCH) {
7397                if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7398                        int i = 10;
7399                        int_pending = TRUE;
7400                        asc_dvc->sdtr_done = 0;
7401                        saved_ctrl_reg &= (uchar)(~CC_HALT);
7402                        while ((AscGetChipStatus(iop_base) &
7403                                CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7404                                mdelay(100);
7405                        }
7406                        AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7407                        AscSetChipControl(iop_base, CC_HALT);
7408                        AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7409                        AscSetChipStatus(iop_base, 0);
7410                        chipstat = AscGetChipStatus(iop_base);
7411                }
7412        }
7413        saved_ram_addr = AscGetChipLramAddr(iop_base);
7414        host_flag = AscReadLramByte(iop_base,
7415                                    ASCV_HOST_FLAG_B) &
7416            (uchar)(~ASC_HOST_FLAG_IN_ISR);
7417        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7418                         (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7419        if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7420                AscAckInterrupt(iop_base);
7421                int_pending = TRUE;
7422                if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7423                        if (AscIsrChipHalted(asc_dvc) == ERR) {
7424                                goto ISR_REPORT_QDONE_FATAL_ERROR;
7425                        } else {
7426                                saved_ctrl_reg &= (uchar)(~CC_HALT);
7427                        }
7428                } else {
7429 ISR_REPORT_QDONE_FATAL_ERROR:
7430                        if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7431                                while (((status =
7432                                         AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7433                                }
7434                        } else {
7435                                do {
7436                                        if ((status =
7437                                             AscIsrQDone(asc_dvc)) == 1) {
7438                                                break;
7439                                        }
7440                                } while (status == 0x11);
7441                        }
7442                        if ((status & 0x80) != 0)
7443                                int_pending = ERR;
7444                }
7445        }
7446        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7447        AscSetChipLramAddr(iop_base, saved_ram_addr);
7448        AscSetChipControl(iop_base, saved_ctrl_reg);
7449        asc_dvc->is_in_int = FALSE;
7450        return int_pending;
7451}
7452
7453/*
7454 * advansys_reset()
7455 *
7456 * Reset the bus associated with the command 'scp'.
7457 *
7458 * This function runs its own thread. Interrupts must be blocked but
7459 * sleeping is allowed and no locking other than for host structures is
7460 * required. Returns SUCCESS or FAILED.
7461 */
7462static int advansys_reset(struct scsi_cmnd *scp)
7463{
7464        struct Scsi_Host *shost = scp->device->host;
7465        struct asc_board *boardp = shost_priv(shost);
7466        unsigned long flags;
7467        int status;
7468        int ret = SUCCESS;
7469
7470        ASC_DBG(1, "0x%p\n", scp);
7471
7472        ASC_STATS(shost, reset);
7473
7474        scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n");
7475
7476        if (ASC_NARROW_BOARD(boardp)) {
7477                ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7478
7479                /* Reset the chip and SCSI bus. */
7480                ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7481                status = AscInitAsc1000Driver(asc_dvc);
7482
7483                /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7484                if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7485                        scmd_printk(KERN_INFO, scp, "SCSI bus reset error: "
7486                                    "0x%x, status: 0x%x\n", asc_dvc->err_code,
7487                                    status);
7488                        ret = FAILED;
7489                } else if (status) {
7490                        scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: "
7491                                    "0x%x\n", status);
7492                } else {
7493                        scmd_printk(KERN_INFO, scp, "SCSI bus reset "
7494                                    "successful\n");
7495                }
7496
7497                ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7498                spin_lock_irqsave(shost->host_lock, flags);
7499        } else {
7500                /*
7501                 * If the suggest reset bus flags are set, then reset the bus.
7502                 * Otherwise only reset the device.
7503                 */
7504                ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7505
7506                /*
7507                 * Reset the target's SCSI bus.
7508                 */
7509                ASC_DBG(1, "before AdvResetChipAndSB()\n");
7510                switch (AdvResetChipAndSB(adv_dvc)) {
7511                case ASC_TRUE:
7512                        scmd_printk(KERN_INFO, scp, "SCSI bus reset "
7513                                    "successful\n");
7514                        break;
7515                case ASC_FALSE:
7516                default:
7517                        scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n");
7518                        ret = FAILED;
7519                        break;
7520                }
7521                spin_lock_irqsave(shost->host_lock, flags);
7522                AdvISR(adv_dvc);
7523        }
7524
7525        /* Save the time of the most recently completed reset. */
7526        boardp->last_reset = jiffies;
7527        spin_unlock_irqrestore(shost->host_lock, flags);
7528
7529        ASC_DBG(1, "ret %d\n", ret);
7530
7531        return ret;
7532}
7533
7534/*
7535 * advansys_biosparam()
7536 *
7537 * Translate disk drive geometry if the "BIOS greater than 1 GB"
7538 * support is enabled for a drive.
7539 *
7540 * ip (information pointer) is an int array with the following definition:
7541 * ip[0]: heads
7542 * ip[1]: sectors
7543 * ip[2]: cylinders
7544 */
7545static int
7546advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7547                   sector_t capacity, int ip[])
7548{
7549        struct asc_board *boardp = shost_priv(sdev->host);
7550
7551        ASC_DBG(1, "begin\n");
7552        ASC_STATS(sdev->host, biosparam);
7553        if (ASC_NARROW_BOARD(boardp)) {
7554                if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7555                     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7556                        ip[0] = 255;
7557                        ip[1] = 63;
7558                } else {
7559                        ip[0] = 64;
7560                        ip[1] = 32;
7561                }
7562        } else {
7563                if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7564                     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7565                        ip[0] = 255;
7566                        ip[1] = 63;
7567                } else {
7568                        ip[0] = 64;
7569                        ip[1] = 32;
7570                }
7571        }
7572        ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7573        ASC_DBG(1, "end\n");
7574        return 0;
7575}
7576
7577/*
7578 * First-level interrupt handler.
7579 *
7580 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7581 */
7582static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7583{
7584        struct Scsi_Host *shost = dev_id;
7585        struct asc_board *boardp = shost_priv(shost);
7586        irqreturn_t result = IRQ_NONE;
7587
7588        ASC_DBG(2, "boardp 0x%p\n", boardp);
7589        spin_lock(shost->host_lock);
7590        if (ASC_NARROW_BOARD(boardp)) {
7591                if (AscIsIntPending(shost->io_port)) {
7592                        result = IRQ_HANDLED;
7593                        ASC_STATS(shost, interrupt);
7594                        ASC_DBG(1, "before AscISR()\n");
7595                        AscISR(&boardp->dvc_var.asc_dvc_var);
7596                }
7597        } else {
7598                ASC_DBG(1, "before AdvISR()\n");
7599                if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7600                        result = IRQ_HANDLED;
7601                        ASC_STATS(shost, interrupt);
7602                }
7603        }
7604        spin_unlock(shost->host_lock);
7605
7606        ASC_DBG(1, "end\n");
7607        return result;
7608}
7609
7610static int AscHostReqRiscHalt(PortAddr iop_base)
7611{
7612        int count = 0;
7613        int sta = 0;
7614        uchar saved_stop_code;
7615
7616        if (AscIsChipHalted(iop_base))
7617                return (1);
7618        saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7619        AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7620                         ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7621        do {
7622                if (AscIsChipHalted(iop_base)) {
7623                        sta = 1;
7624                        break;
7625                }
7626                mdelay(100);
7627        } while (count++ < 20);
7628        AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7629        return (sta);
7630}
7631
7632static int
7633AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7634{
7635        int sta = FALSE;
7636
7637        if (AscHostReqRiscHalt(iop_base)) {
7638                sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7639                AscStartChip(iop_base);
7640        }
7641        return sta;
7642}
7643
7644static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7645{
7646        char type = sdev->type;
7647        ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7648
7649        if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7650                return;
7651        if (asc_dvc->init_sdtr & tid_bits)
7652                return;
7653
7654        if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7655                asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7656
7657        asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7658        if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7659            (type == TYPE_ROM) || (type == TYPE_TAPE))
7660                asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7661
7662        if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7663                AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7664                                        ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7665}
7666
7667static void
7668advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7669{
7670        ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7671        ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7672
7673        if (sdev->lun == 0) {
7674                ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7675                if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7676                        asc_dvc->init_sdtr |= tid_bit;
7677                } else {
7678                        asc_dvc->init_sdtr &= ~tid_bit;
7679                }
7680
7681                if (orig_init_sdtr != asc_dvc->init_sdtr)
7682                        AscAsyncFix(asc_dvc, sdev);
7683        }
7684
7685        if (sdev->tagged_supported) {
7686                if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7687                        if (sdev->lun == 0) {
7688                                asc_dvc->cfg->can_tagged_qng |= tid_bit;
7689                                asc_dvc->use_tagged_qng |= tid_bit;
7690                        }
7691                        scsi_change_queue_depth(sdev, 
7692                                                asc_dvc->max_dvc_qng[sdev->id]);
7693                }
7694        } else {
7695                if (sdev->lun == 0) {
7696                        asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7697                        asc_dvc->use_tagged_qng &= ~tid_bit;
7698                }
7699        }
7700
7701        if ((sdev->lun == 0) &&
7702            (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7703                AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7704                                 asc_dvc->cfg->disc_enable);
7705                AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7706                                 asc_dvc->use_tagged_qng);
7707                AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7708                                 asc_dvc->cfg->can_tagged_qng);
7709
7710                asc_dvc->max_dvc_qng[sdev->id] =
7711                                        asc_dvc->cfg->max_tag_qng[sdev->id];
7712                AscWriteLramByte(asc_dvc->iop_base,
7713                                 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7714                                 asc_dvc->max_dvc_qng[sdev->id]);
7715        }
7716}
7717
7718/*
7719 * Wide Transfers
7720 *
7721 * If the EEPROM enabled WDTR for the device and the device supports wide
7722 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7723 * write the new value to the microcode.
7724 */
7725static void
7726advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7727{
7728        unsigned short cfg_word;
7729        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7730        if ((cfg_word & tidmask) != 0)
7731                return;
7732
7733        cfg_word |= tidmask;
7734        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7735
7736        /*
7737         * Clear the microcode SDTR and WDTR negotiation done indicators for
7738         * the target to cause it to negotiate with the new setting set above.
7739         * WDTR when accepted causes the target to enter asynchronous mode, so
7740         * SDTR must be negotiated.
7741         */
7742        AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7743        cfg_word &= ~tidmask;
7744        AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7745        AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7746        cfg_word &= ~tidmask;
7747        AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7748}
7749
7750/*
7751 * Synchronous Transfers
7752 *
7753 * If the EEPROM enabled SDTR for the device and the device
7754 * supports synchronous transfers, then turn on the device's
7755 * 'sdtr_able' bit. Write the new value to the microcode.
7756 */
7757static void
7758advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7759{
7760        unsigned short cfg_word;
7761        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7762        if ((cfg_word & tidmask) != 0)
7763                return;
7764
7765        cfg_word |= tidmask;
7766        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7767
7768        /*
7769         * Clear the microcode "SDTR negotiation" done indicator for the
7770         * target to cause it to negotiate with the new setting set above.
7771         */
7772        AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7773        cfg_word &= ~tidmask;
7774        AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7775}
7776
7777/*
7778 * PPR (Parallel Protocol Request) Capable
7779 *
7780 * If the device supports DT mode, then it must be PPR capable.
7781 * The PPR message will be used in place of the SDTR and WDTR
7782 * messages to negotiate synchronous speed and offset, transfer
7783 * width, and protocol options.
7784 */
7785static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7786                                AdvPortAddr iop_base, unsigned short tidmask)
7787{
7788        AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7789        adv_dvc->ppr_able |= tidmask;
7790        AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7791}
7792
7793static void
7794advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7795{
7796        AdvPortAddr iop_base = adv_dvc->iop_base;
7797        unsigned short tidmask = 1 << sdev->id;
7798
7799        if (sdev->lun == 0) {
7800                /*
7801                 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7802                 * is enabled in the EEPROM and the device supports the
7803                 * feature, then enable it in the microcode.
7804                 */
7805
7806                if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7807                        advansys_wide_enable_wdtr(iop_base, tidmask);
7808                if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7809                        advansys_wide_enable_sdtr(iop_base, tidmask);
7810                if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7811                        advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7812
7813                /*
7814                 * Tag Queuing is disabled for the BIOS which runs in polled
7815                 * mode and would see no benefit from Tag Queuing. Also by
7816                 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7817                 * bugs will at least work with the BIOS.
7818                 */
7819                if ((adv_dvc->tagqng_able & tidmask) &&
7820                    sdev->tagged_supported) {
7821                        unsigned short cfg_word;
7822                        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7823                        cfg_word |= tidmask;
7824                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7825                                         cfg_word);
7826                        AdvWriteByteLram(iop_base,
7827                                         ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7828                                         adv_dvc->max_dvc_qng);
7829                }
7830        }
7831
7832        if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7833                scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7834}
7835
7836/*
7837 * Set the number of commands to queue per device for the
7838 * specified host adapter.
7839 */
7840static int advansys_slave_configure(struct scsi_device *sdev)
7841{
7842        struct asc_board *boardp = shost_priv(sdev->host);
7843
7844        if (ASC_NARROW_BOARD(boardp))
7845                advansys_narrow_slave_configure(sdev,
7846                                                &boardp->dvc_var.asc_dvc_var);
7847        else
7848                advansys_wide_slave_configure(sdev,
7849                                                &boardp->dvc_var.adv_dvc_var);
7850
7851        return 0;
7852}
7853
7854static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp)
7855{
7856        struct asc_board *board = shost_priv(scp->device->host);
7857        scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7858                                             SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7859        dma_cache_sync(board->dev, scp->sense_buffer,
7860                       SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7861        return cpu_to_le32(scp->SCp.dma_handle);
7862}
7863
7864static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7865                        struct asc_scsi_q *asc_scsi_q)
7866{
7867        struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7868        int use_sg;
7869
7870        memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7871
7872        /*
7873         * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
7874         */
7875        asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp);
7876        if (asc_scsi_q->q2.srb_ptr == BAD_SRB) {
7877                scp->result = HOST_BYTE(DID_SOFT_ERROR);
7878                return ASC_ERROR;
7879        }
7880
7881        /*
7882         * Build the ASC_SCSI_Q request.
7883         */
7884        asc_scsi_q->cdbptr = &scp->cmnd[0];
7885        asc_scsi_q->q2.cdb_len = scp->cmd_len;
7886        asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7887        asc_scsi_q->q1.target_lun = scp->device->lun;
7888        asc_scsi_q->q2.target_ix =
7889            ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7890        asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp);
7891        asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7892
7893        /*
7894         * If there are any outstanding requests for the current target,
7895         * then every 255th request send an ORDERED request. This heuristic
7896         * tries to retain the benefit of request sorting while preventing
7897         * request starvation. 255 is the max number of tags or pending commands
7898         * a device may have outstanding.
7899         *
7900         * The request count is incremented below for every successfully
7901         * started request.
7902         *
7903         */
7904        if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7905            (boardp->reqcnt[scp->device->id] % 255) == 0) {
7906                asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7907        } else {
7908                asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7909        }
7910
7911        /* Build ASC_SCSI_Q */
7912        use_sg = scsi_dma_map(scp);
7913        if (use_sg != 0) {
7914                int sgcnt;
7915                struct scatterlist *slp;
7916                struct asc_sg_head *asc_sg_head;
7917
7918                if (use_sg > scp->device->host->sg_tablesize) {
7919                        scmd_printk(KERN_ERR, scp, "use_sg %d > "
7920                                "sg_tablesize %d\n", use_sg,
7921                                scp->device->host->sg_tablesize);
7922                        scsi_dma_unmap(scp);
7923                        scp->result = HOST_BYTE(DID_ERROR);
7924                        return ASC_ERROR;
7925                }
7926
7927                asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
7928                        use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
7929                if (!asc_sg_head) {
7930                        scsi_dma_unmap(scp);
7931                        scp->result = HOST_BYTE(DID_SOFT_ERROR);
7932                        return ASC_ERROR;
7933                }
7934
7935                asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7936                asc_scsi_q->sg_head = asc_sg_head;
7937                asc_scsi_q->q1.data_cnt = 0;
7938                asc_scsi_q->q1.data_addr = 0;
7939                /* This is a byte value, otherwise it would need to be swapped. */
7940                asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7941                ASC_STATS_ADD(scp->device->host, xfer_elem,
7942                              asc_sg_head->entry_cnt);
7943
7944                /*
7945                 * Convert scatter-gather list into ASC_SG_HEAD list.
7946                 */
7947                scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7948                        asc_sg_head->sg_list[sgcnt].addr =
7949                            cpu_to_le32(sg_dma_address(slp));
7950                        asc_sg_head->sg_list[sgcnt].bytes =
7951                            cpu_to_le32(sg_dma_len(slp));
7952                        ASC_STATS_ADD(scp->device->host, xfer_sect,
7953                                      DIV_ROUND_UP(sg_dma_len(slp), 512));
7954                }
7955        }
7956
7957        ASC_STATS(scp->device->host, xfer_cnt);
7958
7959        ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7960        ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7961
7962        return ASC_NOERROR;
7963}
7964
7965/*
7966 * Build scatter-gather list for Adv Library (Wide Board).
7967 *
7968 * Additional ADV_SG_BLOCK structures will need to be allocated
7969 * if the total number of scatter-gather elements exceeds
7970 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7971 * assumed to be physically contiguous.
7972 *
7973 * Return:
7974 *      ADV_SUCCESS(1) - SG List successfully created
7975 *      ADV_ERROR(-1) - SG List creation failed
7976 */
7977static int
7978adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp,
7979               int use_sg)
7980{
7981        adv_sgblk_t *sgblkp;
7982        ADV_SCSI_REQ_Q *scsiqp;
7983        struct scatterlist *slp;
7984        int sg_elem_cnt;
7985        ADV_SG_BLOCK *sg_block, *prev_sg_block;
7986        ADV_PADDR sg_block_paddr;
7987        int i;
7988
7989        scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
7990        slp = scsi_sglist(scp);
7991        sg_elem_cnt = use_sg;
7992        prev_sg_block = NULL;
7993        reqp->sgblkp = NULL;
7994
7995        for (;;) {
7996                /*
7997                 * Allocate a 'adv_sgblk_t' structure from the board free
7998                 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7999                 * (15) scatter-gather elements.
8000                 */
8001                if ((sgblkp = boardp->adv_sgblkp) == NULL) {
8002                        ASC_DBG(1, "no free adv_sgblk_t\n");
8003                        ASC_STATS(scp->device->host, adv_build_nosg);
8004
8005                        /*
8006                         * Allocation failed. Free 'adv_sgblk_t' structures
8007                         * already allocated for the request.
8008                         */
8009                        while ((sgblkp = reqp->sgblkp) != NULL) {
8010                                /* Remove 'sgblkp' from the request list. */
8011                                reqp->sgblkp = sgblkp->next_sgblkp;
8012
8013                                /* Add 'sgblkp' to the board free list. */
8014                                sgblkp->next_sgblkp = boardp->adv_sgblkp;
8015                                boardp->adv_sgblkp = sgblkp;
8016                        }
8017                        return ASC_BUSY;
8018                }
8019
8020                /* Complete 'adv_sgblk_t' board allocation. */
8021                boardp->adv_sgblkp = sgblkp->next_sgblkp;
8022                sgblkp->next_sgblkp = NULL;
8023
8024                /*
8025                 * Get 8 byte aligned virtual and physical addresses
8026                 * for the allocated ADV_SG_BLOCK structure.
8027                 */
8028                sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block);
8029                sg_block_paddr = virt_to_bus(sg_block);
8030
8031                /*
8032                 * Check if this is the first 'adv_sgblk_t' for the
8033                 * request.
8034                 */
8035                if (reqp->sgblkp == NULL) {
8036                        /* Request's first scatter-gather block. */
8037                        reqp->sgblkp = sgblkp;
8038
8039                        /*
8040                         * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8041                         * address pointers.
8042                         */
8043                        scsiqp->sg_list_ptr = sg_block;
8044                        scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr);
8045                } else {
8046                        /* Request's second or later scatter-gather block. */
8047                        sgblkp->next_sgblkp = reqp->sgblkp;
8048                        reqp->sgblkp = sgblkp;
8049
8050                        /*
8051                         * Point the previous ADV_SG_BLOCK structure to
8052                         * the newly allocated ADV_SG_BLOCK structure.
8053                         */
8054                        prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr);
8055                }
8056
8057                for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
8058                        sg_block->sg_list[i].sg_addr =
8059                                        cpu_to_le32(sg_dma_address(slp));
8060                        sg_block->sg_list[i].sg_count =
8061                                        cpu_to_le32(sg_dma_len(slp));
8062                        ASC_STATS_ADD(scp->device->host, xfer_sect,
8063                                      DIV_ROUND_UP(sg_dma_len(slp), 512));
8064
8065                        if (--sg_elem_cnt == 0) {       /* Last ADV_SG_BLOCK and scatter-gather entry. */
8066                                sg_block->sg_cnt = i + 1;
8067                                sg_block->sg_ptr = 0L;  /* Last ADV_SG_BLOCK in list. */
8068                                return ADV_SUCCESS;
8069                        }
8070                        slp++;
8071                }
8072                sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
8073                prev_sg_block = sg_block;
8074        }
8075}
8076
8077/*
8078 * Build a request structure for the Adv Library (Wide Board).
8079 *
8080 * If an adv_req_t can not be allocated to issue the request,
8081 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8082 *
8083 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8084 * microcode for DMA addresses or math operations are byte swapped
8085 * to little-endian order.
8086 */
8087static int
8088adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8089              ADV_SCSI_REQ_Q **adv_scsiqpp)
8090{
8091        adv_req_t *reqp;
8092        ADV_SCSI_REQ_Q *scsiqp;
8093        int i;
8094        int ret;
8095        int use_sg;
8096
8097        /*
8098         * Allocate an adv_req_t structure from the board to execute
8099         * the command.
8100         */
8101        if (boardp->adv_reqp == NULL) {
8102                ASC_DBG(1, "no free adv_req_t\n");
8103                ASC_STATS(scp->device->host, adv_build_noreq);
8104                return ASC_BUSY;
8105        } else {
8106                reqp = boardp->adv_reqp;
8107                boardp->adv_reqp = reqp->next_reqp;
8108                reqp->next_reqp = NULL;
8109        }
8110
8111        /*
8112         * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8113         */
8114        scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8115
8116        /*
8117         * Initialize the structure.
8118         */
8119        scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
8120
8121        /*
8122         * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8123         */
8124        scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp);
8125
8126        /*
8127         * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8128         */
8129        reqp->cmndp = scp;
8130
8131        /*
8132         * Build the ADV_SCSI_REQ_Q request.
8133         */
8134
8135        /* Set CDB length and copy it to the request structure.  */
8136        scsiqp->cdb_len = scp->cmd_len;
8137        /* Copy first 12 CDB bytes to cdb[]. */
8138        for (i = 0; i < scp->cmd_len && i < 12; i++) {
8139                scsiqp->cdb[i] = scp->cmnd[i];
8140        }
8141        /* Copy last 4 CDB bytes, if present, to cdb16[]. */
8142        for (; i < scp->cmd_len; i++) {
8143                scsiqp->cdb16[i - 12] = scp->cmnd[i];
8144        }
8145
8146        scsiqp->target_id = scp->device->id;
8147        scsiqp->target_lun = scp->device->lun;
8148
8149        scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0]));
8150        scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
8151
8152        /* Build ADV_SCSI_REQ_Q */
8153
8154        use_sg = scsi_dma_map(scp);
8155        if (use_sg == 0) {
8156                /* Zero-length transfer */
8157                reqp->sgblkp = NULL;
8158                scsiqp->data_cnt = 0;
8159                scsiqp->vdata_addr = NULL;
8160
8161                scsiqp->data_addr = 0;
8162                scsiqp->sg_list_ptr = NULL;
8163                scsiqp->sg_real_addr = 0;
8164        } else {
8165                if (use_sg > ADV_MAX_SG_LIST) {
8166                        scmd_printk(KERN_ERR, scp, "use_sg %d > "
8167                                   "ADV_MAX_SG_LIST %d\n", use_sg,
8168                                   scp->device->host->sg_tablesize);
8169                        scsi_dma_unmap(scp);
8170                        scp->result = HOST_BYTE(DID_ERROR);
8171
8172                        /*
8173                         * Free the 'adv_req_t' structure by adding it back
8174                         * to the board free list.
8175                         */
8176                        reqp->next_reqp = boardp->adv_reqp;
8177                        boardp->adv_reqp = reqp;
8178
8179                        return ASC_ERROR;
8180                }
8181
8182                scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
8183
8184                ret = adv_get_sglist(boardp, reqp, scp, use_sg);
8185                if (ret != ADV_SUCCESS) {
8186                        /*
8187                         * Free the adv_req_t structure by adding it back to
8188                         * the board free list.
8189                         */
8190                        reqp->next_reqp = boardp->adv_reqp;
8191                        boardp->adv_reqp = reqp;
8192
8193                        return ret;
8194                }
8195
8196                ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
8197        }
8198
8199        ASC_STATS(scp->device->host, xfer_cnt);
8200
8201        ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
8202        ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8203
8204        *adv_scsiqpp = scsiqp;
8205
8206        return ASC_NOERROR;
8207}
8208
8209static int AscSgListToQueue(int sg_list)
8210{
8211        int n_sg_list_qs;
8212
8213        n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
8214        if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
8215                n_sg_list_qs++;
8216        return n_sg_list_qs + 1;
8217}
8218
8219static uint
8220AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
8221{
8222        uint cur_used_qs;
8223        uint cur_free_qs;
8224        ASC_SCSI_BIT_ID_TYPE target_id;
8225        uchar tid_no;
8226
8227        target_id = ASC_TIX_TO_TARGET_ID(target_ix);
8228        tid_no = ASC_TIX_TO_TID(target_ix);
8229        if ((asc_dvc->unit_not_ready & target_id) ||
8230            (asc_dvc->queue_full_or_busy & target_id)) {
8231                return 0;
8232        }
8233        if (n_qs == 1) {
8234                cur_used_qs = (uint) asc_dvc->cur_total_qng +
8235                    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
8236        } else {
8237                cur_used_qs = (uint) asc_dvc->cur_total_qng +
8238                    (uint) ASC_MIN_FREE_Q;
8239        }
8240        if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
8241                cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
8242                if (asc_dvc->cur_dvc_qng[tid_no] >=
8243                    asc_dvc->max_dvc_qng[tid_no]) {
8244                        return 0;
8245                }
8246                return cur_free_qs;
8247        }
8248        if (n_qs > 1) {
8249                if ((n_qs > asc_dvc->last_q_shortage)
8250                    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
8251                        asc_dvc->last_q_shortage = n_qs;
8252                }
8253        }
8254        return 0;
8255}
8256
8257static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
8258{
8259        ushort q_addr;
8260        uchar next_qp;
8261        uchar q_status;
8262
8263        q_addr = ASC_QNO_TO_QADDR(free_q_head);
8264        q_status = (uchar)AscReadLramByte(iop_base,
8265                                          (ushort)(q_addr +
8266                                                   ASC_SCSIQ_B_STATUS));
8267        next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
8268        if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
8269                return next_qp;
8270        return ASC_QLINK_END;
8271}
8272
8273static uchar
8274AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
8275{
8276        uchar i;
8277
8278        for (i = 0; i < n_free_q; i++) {
8279                free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
8280                if (free_q_head == ASC_QLINK_END)
8281                        break;
8282        }
8283        return free_q_head;
8284}
8285
8286/*
8287 * void
8288 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8289 *
8290 * Calling/Exit State:
8291 *    none
8292 *
8293 * Description:
8294 *     Output an ASC_SCSI_Q structure to the chip
8295 */
8296static void
8297DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8298{
8299        int i;
8300
8301        ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
8302        AscSetChipLramAddr(iop_base, s_addr);
8303        for (i = 0; i < 2 * words; i += 2) {
8304                if (i == 4 || i == 20) {
8305                        continue;
8306                }
8307                outpw(iop_base + IOP_RAM_DATA,
8308                      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
8309        }
8310}
8311
8312static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8313{
8314        ushort q_addr;
8315        uchar tid_no;
8316        uchar sdtr_data;
8317        uchar syn_period_ix;
8318        uchar syn_offset;
8319        PortAddr iop_base;
8320
8321        iop_base = asc_dvc->iop_base;
8322        if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
8323            ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
8324                tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
8325                sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8326                syn_period_ix =
8327                    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
8328                syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
8329                AscMsgOutSDTR(asc_dvc,
8330                              asc_dvc->sdtr_period_tbl[syn_period_ix],
8331                              syn_offset);
8332                scsiq->q1.cntl |= QC_MSG_OUT;
8333        }
8334        q_addr = ASC_QNO_TO_QADDR(q_no);
8335        if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
8336                scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8337        }
8338        scsiq->q1.status = QS_FREE;
8339        AscMemWordCopyPtrToLram(iop_base,
8340                                q_addr + ASC_SCSIQ_CDB_BEG,
8341                                (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
8342
8343        DvcPutScsiQ(iop_base,
8344                    q_addr + ASC_SCSIQ_CPY_BEG,
8345                    (uchar *)&scsiq->q1.cntl,
8346                    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
8347        AscWriteLramWord(iop_base,
8348                         (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
8349                         (ushort)(((ushort)scsiq->q1.
8350                                   q_no << 8) | (ushort)QS_READY));
8351        return 1;
8352}
8353
8354static int
8355AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8356{
8357        int sta;
8358        int i;
8359        ASC_SG_HEAD *sg_head;
8360        ASC_SG_LIST_Q scsi_sg_q;
8361        ASC_DCNT saved_data_addr;
8362        ASC_DCNT saved_data_cnt;
8363        PortAddr iop_base;
8364        ushort sg_list_dwords;
8365        ushort sg_index;
8366        ushort sg_entry_cnt;
8367        ushort q_addr;
8368        uchar next_qp;
8369
8370        iop_base = asc_dvc->iop_base;
8371        sg_head = scsiq->sg_head;
8372        saved_data_addr = scsiq->q1.data_addr;
8373        saved_data_cnt = scsiq->q1.data_cnt;
8374        scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr;
8375        scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes;
8376#if CC_VERY_LONG_SG_LIST
8377        /*
8378         * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8379         * then not all SG elements will fit in the allocated queues.
8380         * The rest of the SG elements will be copied when the RISC
8381         * completes the SG elements that fit and halts.
8382         */
8383        if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8384                /*
8385                 * Set sg_entry_cnt to be the number of SG elements that
8386                 * will fit in the allocated SG queues. It is minus 1, because
8387                 * the first SG element is handled above. ASC_MAX_SG_LIST is
8388                 * already inflated by 1 to account for this. For example it
8389                 * may be 50 which is 1 + 7 queues * 7 SG elements.
8390                 */
8391                sg_entry_cnt = ASC_MAX_SG_LIST - 1;
8392
8393                /*
8394                 * Keep track of remaining number of SG elements that will
8395                 * need to be handled from a_isr.c.
8396                 */
8397                scsiq->remain_sg_entry_cnt =
8398                    sg_head->entry_cnt - ASC_MAX_SG_LIST;
8399        } else {
8400#endif /* CC_VERY_LONG_SG_LIST */
8401                /*
8402                 * Set sg_entry_cnt to be the number of SG elements that
8403                 * will fit in the allocated SG queues. It is minus 1, because
8404                 * the first SG element is handled above.
8405                 */
8406                sg_entry_cnt = sg_head->entry_cnt - 1;
8407#if CC_VERY_LONG_SG_LIST
8408        }
8409#endif /* CC_VERY_LONG_SG_LIST */
8410        if (sg_entry_cnt != 0) {
8411                scsiq->q1.cntl |= QC_SG_HEAD;
8412                q_addr = ASC_QNO_TO_QADDR(q_no);
8413                sg_index = 1;
8414                scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8415                scsi_sg_q.sg_head_qp = q_no;
8416                scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8417                for (i = 0; i < sg_head->queue_cnt; i++) {
8418                        scsi_sg_q.seq_no = i + 1;
8419                        if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8420                                sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8421                                sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8422                                if (i == 0) {
8423                                        scsi_sg_q.sg_list_cnt =
8424                                            ASC_SG_LIST_PER_Q;
8425                                        scsi_sg_q.sg_cur_list_cnt =
8426                                            ASC_SG_LIST_PER_Q;
8427                                } else {
8428                                        scsi_sg_q.sg_list_cnt =
8429                                            ASC_SG_LIST_PER_Q - 1;
8430                                        scsi_sg_q.sg_cur_list_cnt =
8431                                            ASC_SG_LIST_PER_Q - 1;
8432                                }
8433                        } else {
8434#if CC_VERY_LONG_SG_LIST
8435                                /*
8436                                 * This is the last SG queue in the list of
8437                                 * allocated SG queues. If there are more
8438                                 * SG elements than will fit in the allocated
8439                                 * queues, then set the QCSG_SG_XFER_MORE flag.
8440                                 */
8441                                if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8442                                        scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
8443                                } else {
8444#endif /* CC_VERY_LONG_SG_LIST */
8445                                        scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8446#if CC_VERY_LONG_SG_LIST
8447                                }
8448#endif /* CC_VERY_LONG_SG_LIST */
8449                                sg_list_dwords = sg_entry_cnt << 1;
8450                                if (i == 0) {
8451                                        scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8452                                        scsi_sg_q.sg_cur_list_cnt =
8453                                            sg_entry_cnt;
8454                                } else {
8455                                        scsi_sg_q.sg_list_cnt =
8456                                            sg_entry_cnt - 1;
8457                                        scsi_sg_q.sg_cur_list_cnt =
8458                                            sg_entry_cnt - 1;
8459                                }
8460                                sg_entry_cnt = 0;
8461                        }
8462                        next_qp = AscReadLramByte(iop_base,
8463                                                  (ushort)(q_addr +
8464                                                           ASC_SCSIQ_B_FWD));
8465                        scsi_sg_q.q_no = next_qp;
8466                        q_addr = ASC_QNO_TO_QADDR(next_qp);
8467                        AscMemWordCopyPtrToLram(iop_base,
8468                                                q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8469                                                (uchar *)&scsi_sg_q,
8470                                                sizeof(ASC_SG_LIST_Q) >> 1);
8471                        AscMemDWordCopyPtrToLram(iop_base,
8472                                                 q_addr + ASC_SGQ_LIST_BEG,
8473                                                 (uchar *)&sg_head->
8474                                                 sg_list[sg_index],
8475                                                 sg_list_dwords);
8476                        sg_index += ASC_SG_LIST_PER_Q;
8477                        scsiq->next_sg_index = sg_index;
8478                }
8479        } else {
8480                scsiq->q1.cntl &= ~QC_SG_HEAD;
8481        }
8482        sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8483        scsiq->q1.data_addr = saved_data_addr;
8484        scsiq->q1.data_cnt = saved_data_cnt;
8485        return (sta);
8486}
8487
8488static int
8489AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8490{
8491        PortAddr iop_base;
8492        uchar free_q_head;
8493        uchar next_qp;
8494        uchar tid_no;
8495        uchar target_ix;
8496        int sta;
8497
8498        iop_base = asc_dvc->iop_base;
8499        target_ix = scsiq->q2.target_ix;
8500        tid_no = ASC_TIX_TO_TID(target_ix);
8501        sta = 0;
8502        free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8503        if (n_q_required > 1) {
8504                next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8505                                                    (uchar)n_q_required);
8506                if (next_qp != ASC_QLINK_END) {
8507                        asc_dvc->last_q_shortage = 0;
8508                        scsiq->sg_head->queue_cnt = n_q_required - 1;
8509                        scsiq->q1.q_no = free_q_head;
8510                        sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8511                                                     free_q_head);
8512                }
8513        } else if (n_q_required == 1) {
8514                next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8515                if (next_qp != ASC_QLINK_END) {
8516                        scsiq->q1.q_no = free_q_head;
8517                        sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8518                }
8519        }
8520        if (sta == 1) {
8521                AscPutVarFreeQHead(iop_base, next_qp);
8522                asc_dvc->cur_total_qng += n_q_required;
8523                asc_dvc->cur_dvc_qng[tid_no]++;
8524        }
8525        return sta;
8526}
8527
8528#define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
8529static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8530        INQUIRY,
8531        REQUEST_SENSE,
8532        READ_CAPACITY,
8533        READ_TOC,
8534        MODE_SELECT,
8535        MODE_SENSE,
8536        MODE_SELECT_10,
8537        MODE_SENSE_10,
8538        0xFF,
8539        0xFF,
8540        0xFF,
8541        0xFF,
8542        0xFF,
8543        0xFF,
8544        0xFF,
8545        0xFF
8546};
8547
8548static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8549{
8550        PortAddr iop_base;
8551        int sta;
8552        int n_q_required;
8553        int disable_syn_offset_one_fix;
8554        int i;
8555        ASC_PADDR addr;
8556        ushort sg_entry_cnt = 0;
8557        ushort sg_entry_cnt_minus_one = 0;
8558        uchar target_ix;
8559        uchar tid_no;
8560        uchar sdtr_data;
8561        uchar extra_bytes;
8562        uchar scsi_cmd;
8563        uchar disable_cmd;
8564        ASC_SG_HEAD *sg_head;
8565        ASC_DCNT data_cnt;
8566
8567        iop_base = asc_dvc->iop_base;
8568        sg_head = scsiq->sg_head;
8569        if (asc_dvc->err_code != 0)
8570                return (ERR);
8571        scsiq->q1.q_no = 0;
8572        if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8573                scsiq->q1.extra_bytes = 0;
8574        }
8575        sta = 0;
8576        target_ix = scsiq->q2.target_ix;
8577        tid_no = ASC_TIX_TO_TID(target_ix);
8578        n_q_required = 1;
8579        if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8580                if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8581                        asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8582                        sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8583                        AscMsgOutSDTR(asc_dvc,
8584                                      asc_dvc->
8585                                      sdtr_period_tbl[(sdtr_data >> 4) &
8586                                                      (uchar)(asc_dvc->
8587                                                              max_sdtr_index -
8588                                                              1)],
8589                                      (uchar)(sdtr_data & (uchar)
8590                                              ASC_SYN_MAX_OFFSET));
8591                        scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8592                }
8593        }
8594        if (asc_dvc->in_critical_cnt != 0) {
8595                AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8596                return (ERR);
8597        }
8598        asc_dvc->in_critical_cnt++;
8599        if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8600                if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8601                        asc_dvc->in_critical_cnt--;
8602                        return (ERR);
8603                }
8604#if !CC_VERY_LONG_SG_LIST
8605                if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8606                        asc_dvc->in_critical_cnt--;
8607                        return (ERR);
8608                }
8609#endif /* !CC_VERY_LONG_SG_LIST */
8610                if (sg_entry_cnt == 1) {
8611                        scsiq->q1.data_addr =
8612                            (ADV_PADDR)sg_head->sg_list[0].addr;
8613                        scsiq->q1.data_cnt =
8614                            (ADV_DCNT)sg_head->sg_list[0].bytes;
8615                        scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8616                }
8617                sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8618        }
8619        scsi_cmd = scsiq->cdbptr[0];
8620        disable_syn_offset_one_fix = FALSE;
8621        if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8622            !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8623                if (scsiq->q1.cntl & QC_SG_HEAD) {
8624                        data_cnt = 0;
8625                        for (i = 0; i < sg_entry_cnt; i++) {
8626                                data_cnt +=
8627                                    (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i].
8628                                                          bytes);
8629                        }
8630                } else {
8631                        data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8632                }
8633                if (data_cnt != 0UL) {
8634                        if (data_cnt < 512UL) {
8635                                disable_syn_offset_one_fix = TRUE;
8636                        } else {
8637                                for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8638                                     i++) {
8639                                        disable_cmd =
8640                                            _syn_offset_one_disable_cmd[i];
8641                                        if (disable_cmd == 0xFF) {
8642                                                break;
8643                                        }
8644                                        if (scsi_cmd == disable_cmd) {
8645                                                disable_syn_offset_one_fix =
8646                                                    TRUE;
8647                                                break;
8648                                        }
8649                                }
8650                        }
8651                }
8652        }
8653        if (disable_syn_offset_one_fix) {
8654                scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8655                scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8656                                       ASC_TAG_FLAG_DISABLE_DISCONNECT);
8657        } else {
8658                scsiq->q2.tag_code &= 0x27;
8659        }
8660        if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8661                if (asc_dvc->bug_fix_cntl) {
8662                        if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8663                                if ((scsi_cmd == READ_6) ||
8664                                    (scsi_cmd == READ_10)) {
8665                                        addr =
8666                                            (ADV_PADDR)le32_to_cpu(sg_head->
8667                                                                   sg_list
8668                                                                   [sg_entry_cnt_minus_one].
8669                                                                   addr) +
8670                                            (ADV_DCNT)le32_to_cpu(sg_head->
8671                                                                  sg_list
8672                                                                  [sg_entry_cnt_minus_one].
8673                                                                  bytes);
8674                                        extra_bytes =
8675                                            (uchar)((ushort)addr & 0x0003);
8676                                        if ((extra_bytes != 0)
8677                                            &&
8678                                            ((scsiq->q2.
8679                                              tag_code &
8680                                              ASC_TAG_FLAG_EXTRA_BYTES)
8681                                             == 0)) {
8682                                                scsiq->q2.tag_code |=
8683                                                    ASC_TAG_FLAG_EXTRA_BYTES;
8684                                                scsiq->q1.extra_bytes =
8685                                                    extra_bytes;
8686                                                data_cnt =
8687                                                    le32_to_cpu(sg_head->
8688                                                                sg_list
8689                                                                [sg_entry_cnt_minus_one].
8690                                                                bytes);
8691                                                data_cnt -=
8692                                                    (ASC_DCNT) extra_bytes;
8693                                                sg_head->
8694                                                    sg_list
8695                                                    [sg_entry_cnt_minus_one].
8696                                                    bytes =
8697                                                    cpu_to_le32(data_cnt);
8698                                        }
8699                                }
8700                        }
8701                }
8702                sg_head->entry_to_copy = sg_head->entry_cnt;
8703#if CC_VERY_LONG_SG_LIST
8704                /*
8705                 * Set the sg_entry_cnt to the maximum possible. The rest of
8706                 * the SG elements will be copied when the RISC completes the
8707                 * SG elements that fit and halts.
8708                 */
8709                if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8710                        sg_entry_cnt = ASC_MAX_SG_LIST;
8711                }
8712#endif /* CC_VERY_LONG_SG_LIST */
8713                n_q_required = AscSgListToQueue(sg_entry_cnt);
8714                if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8715                     (uint) n_q_required)
8716                    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8717                        if ((sta =
8718                             AscSendScsiQueue(asc_dvc, scsiq,
8719                                              n_q_required)) == 1) {
8720                                asc_dvc->in_critical_cnt--;
8721                                return (sta);
8722                        }
8723                }
8724        } else {
8725                if (asc_dvc->bug_fix_cntl) {
8726                        if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8727                                if ((scsi_cmd == READ_6) ||
8728                                    (scsi_cmd == READ_10)) {
8729                                        addr =
8730                                            le32_to_cpu(scsiq->q1.data_addr) +
8731                                            le32_to_cpu(scsiq->q1.data_cnt);
8732                                        extra_bytes =
8733                                            (uchar)((ushort)addr & 0x0003);
8734                                        if ((extra_bytes != 0)
8735                                            &&
8736                                            ((scsiq->q2.
8737                                              tag_code &
8738                                              ASC_TAG_FLAG_EXTRA_BYTES)
8739                                             == 0)) {
8740                                                data_cnt =
8741                                                    le32_to_cpu(scsiq->q1.
8742                                                                data_cnt);
8743                                                if (((ushort)data_cnt & 0x01FF)
8744                                                    == 0) {
8745                                                        scsiq->q2.tag_code |=
8746                                                            ASC_TAG_FLAG_EXTRA_BYTES;
8747                                                        data_cnt -= (ASC_DCNT)
8748                                                            extra_bytes;
8749                                                        scsiq->q1.data_cnt =
8750                                                            cpu_to_le32
8751                                                            (data_cnt);
8752                                                        scsiq->q1.extra_bytes =
8753                                                            extra_bytes;
8754                                                }
8755                                        }
8756                                }
8757                        }
8758                }
8759                n_q_required = 1;
8760                if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8761                    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8762                        if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8763                                                    n_q_required)) == 1) {
8764                                asc_dvc->in_critical_cnt--;
8765                                return (sta);
8766                        }
8767                }
8768        }
8769        asc_dvc->in_critical_cnt--;
8770        return (sta);
8771}
8772
8773/*
8774 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8775 *
8776 *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8777 *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
8778 *   RISC to notify it a new command is ready to be executed.
8779 *
8780 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8781 * set to SCSI_MAX_RETRY.
8782 *
8783 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
8784 * for DMA addresses or math operations are byte swapped to little-endian
8785 * order.
8786 *
8787 * Return:
8788 *      ADV_SUCCESS(1) - The request was successfully queued.
8789 *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
8790 *                       request completes.
8791 *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
8792 *                       host IC error.
8793 */
8794static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq)
8795{
8796        AdvPortAddr iop_base;
8797        ADV_PADDR req_paddr;
8798        ADV_CARR_T *new_carrp;
8799
8800        /*
8801         * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8802         */
8803        if (scsiq->target_id > ADV_MAX_TID) {
8804                scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8805                scsiq->done_status = QD_WITH_ERROR;
8806                return ADV_ERROR;
8807        }
8808
8809        iop_base = asc_dvc->iop_base;
8810
8811        /*
8812         * Allocate a carrier ensuring at least one carrier always
8813         * remains on the freelist and initialize fields.
8814         */
8815        if ((new_carrp = asc_dvc->carr_freelist) == NULL) {
8816                return ADV_BUSY;
8817        }
8818        asc_dvc->carr_freelist = (ADV_CARR_T *)
8819            ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa));
8820        asc_dvc->carr_pending_cnt++;
8821
8822        /*
8823         * Set the carrier to be a stopper by setting 'next_vpa'
8824         * to the stopper value. The current stopper will be changed
8825         * below to point to the new stopper.
8826         */
8827        new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
8828
8829        /*
8830         * Clear the ADV_SCSI_REQ_Q done flag.
8831         */
8832        scsiq->a_flag &= ~ADV_SCSIQ_DONE;
8833
8834        req_paddr = virt_to_bus(scsiq);
8835        BUG_ON(req_paddr & 31);
8836        /* Wait for assertion before making little-endian */
8837        req_paddr = cpu_to_le32(req_paddr);
8838
8839        /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8840        scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq));
8841        scsiq->scsiq_rptr = req_paddr;
8842
8843        scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp));
8844        /*
8845         * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
8846         * order during initialization.
8847         */
8848        scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8849
8850        /*
8851         * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8852         * the microcode. The newly allocated stopper will become the new
8853         * stopper.
8854         */
8855        asc_dvc->icq_sp->areq_vpa = req_paddr;
8856
8857        /*
8858         * Set the 'next_vpa' pointer for the old stopper to be the
8859         * physical address of the new stopper. The RISC can only
8860         * follow physical addresses.
8861         */
8862        asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8863
8864        /*
8865         * Set the host adapter stopper pointer to point to the new carrier.
8866         */
8867        asc_dvc->icq_sp = new_carrp;
8868
8869        if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8870            asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8871                /*
8872                 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8873                 */
8874                AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8875                if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8876                        /*
8877                         * Clear the tickle value. In the ASC-3550 the RISC flag
8878                         * command 'clr_tickle_a' does not work unless the host
8879                         * value is cleared.
8880                         */
8881                        AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8882                                             ADV_TICKLE_NOP);
8883                }
8884        } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8885                /*
8886                 * Notify the RISC a carrier is ready by writing the physical
8887                 * address of the new carrier stopper to the COMMA register.
8888                 */
8889                AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8890                                      le32_to_cpu(new_carrp->carr_pa));
8891        }
8892
8893        return ADV_SUCCESS;
8894}
8895
8896/*
8897 * Execute a single 'Scsi_Cmnd'.
8898 */
8899static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8900{
8901        int ret, err_code;
8902        struct asc_board *boardp = shost_priv(scp->device->host);
8903
8904        ASC_DBG(1, "scp 0x%p\n", scp);
8905
8906        if (ASC_NARROW_BOARD(boardp)) {
8907                ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8908                struct asc_scsi_q asc_scsi_q;
8909
8910                /* asc_build_req() can not return ASC_BUSY. */
8911                ret = asc_build_req(boardp, scp, &asc_scsi_q);
8912                if (ret == ASC_ERROR) {
8913                        ASC_STATS(scp->device->host, build_error);
8914                        return ASC_ERROR;
8915                }
8916
8917                ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8918                kfree(asc_scsi_q.sg_head);
8919                err_code = asc_dvc->err_code;
8920        } else {
8921                ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8922                ADV_SCSI_REQ_Q *adv_scsiqp;
8923
8924                switch (adv_build_req(boardp, scp, &adv_scsiqp)) {
8925                case ASC_NOERROR:
8926                        ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8927                        break;
8928                case ASC_BUSY:
8929                        ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8930                        /*
8931                         * The asc_stats fields 'adv_build_noreq' and
8932                         * 'adv_build_nosg' count wide board busy conditions.
8933                         * They are updated in adv_build_req and
8934                         * adv_get_sglist, respectively.
8935                         */
8936                        return ASC_BUSY;
8937                case ASC_ERROR:
8938                default:
8939                        ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8940                        ASC_STATS(scp->device->host, build_error);
8941                        return ASC_ERROR;
8942                }
8943
8944                ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp);
8945                err_code = adv_dvc->err_code;
8946        }
8947
8948        switch (ret) {
8949        case ASC_NOERROR:
8950                ASC_STATS(scp->device->host, exe_noerror);
8951                /*
8952                 * Increment monotonically increasing per device
8953                 * successful request counter. Wrapping doesn't matter.
8954                 */
8955                boardp->reqcnt[scp->device->id]++;
8956                ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8957                break;
8958        case ASC_BUSY:
8959                ASC_STATS(scp->device->host, exe_busy);
8960                break;
8961        case ASC_ERROR:
8962                scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8963                        "err_code 0x%x\n", err_code);
8964                ASC_STATS(scp->device->host, exe_error);
8965                scp->result = HOST_BYTE(DID_ERROR);
8966                break;
8967        default:
8968                scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8969                        "err_code 0x%x\n", err_code);
8970                ASC_STATS(scp->device->host, exe_unknown);
8971                scp->result = HOST_BYTE(DID_ERROR);
8972                break;
8973        }
8974
8975        ASC_DBG(1, "end\n");
8976        return ret;
8977}
8978
8979/*
8980 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8981 *
8982 * This function always returns 0. Command return status is saved
8983 * in the 'scp' result field.
8984 */
8985static int
8986advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
8987{
8988        struct Scsi_Host *shost = scp->device->host;
8989        int asc_res, result = 0;
8990
8991        ASC_STATS(shost, queuecommand);
8992        scp->scsi_done = done;
8993
8994        asc_res = asc_execute_scsi_cmnd(scp);
8995
8996        switch (asc_res) {
8997        case ASC_NOERROR:
8998                break;
8999        case ASC_BUSY:
9000                result = SCSI_MLQUEUE_HOST_BUSY;
9001                break;
9002        case ASC_ERROR:
9003        default:
9004                asc_scsi_done(scp);
9005                break;
9006        }
9007
9008        return result;
9009}
9010
9011static DEF_SCSI_QCMD(advansys_queuecommand)
9012
9013static ushort AscGetEisaChipCfg(PortAddr iop_base)
9014{
9015        PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9016            (PortAddr) (ASC_EISA_CFG_IOP_MASK);
9017        return inpw(eisa_cfg_iop);
9018}
9019
9020/*
9021 * Return the BIOS address of the adapter at the specified
9022 * I/O port and with the specified bus type.
9023 */
9024static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
9025                                            unsigned short bus_type)
9026{
9027        unsigned short cfg_lsw;
9028        unsigned short bios_addr;
9029
9030        /*
9031         * The PCI BIOS is re-located by the motherboard BIOS. Because
9032         * of this the driver can not determine where a PCI BIOS is
9033         * loaded and executes.
9034         */
9035        if (bus_type & ASC_IS_PCI)
9036                return 0;
9037
9038        if ((bus_type & ASC_IS_EISA) != 0) {
9039                cfg_lsw = AscGetEisaChipCfg(iop_base);
9040                cfg_lsw &= 0x000F;
9041                bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
9042                return bios_addr;
9043        }
9044
9045        cfg_lsw = AscGetChipCfgLsw(iop_base);
9046
9047        /*
9048         *  ISA PnP uses the top bit as the 32K BIOS flag
9049         */
9050        if (bus_type == ASC_IS_ISAPNP)
9051                cfg_lsw &= 0x7FFF;
9052        bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
9053        return bios_addr;
9054}
9055
9056static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
9057{
9058        ushort cfg_lsw;
9059
9060        if (AscGetChipScsiID(iop_base) == new_host_id) {
9061                return (new_host_id);
9062        }
9063        cfg_lsw = AscGetChipCfgLsw(iop_base);
9064        cfg_lsw &= 0xF8FF;
9065        cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
9066        AscSetChipCfgLsw(iop_base, cfg_lsw);
9067        return (AscGetChipScsiID(iop_base));
9068}
9069
9070static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
9071{
9072        unsigned char sc;
9073
9074        AscSetBank(iop_base, 1);
9075        sc = inp(iop_base + IOP_REG_SC);
9076        AscSetBank(iop_base, 0);
9077        return sc;
9078}
9079
9080static unsigned char AscGetChipVersion(PortAddr iop_base,
9081                                       unsigned short bus_type)
9082{
9083        if (bus_type & ASC_IS_EISA) {
9084                PortAddr eisa_iop;
9085                unsigned char revision;
9086                eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9087                    (PortAddr) ASC_EISA_REV_IOP_MASK;
9088                revision = inp(eisa_iop);
9089                return ASC_CHIP_MIN_VER_EISA - 1 + revision;
9090        }
9091        return AscGetChipVerNo(iop_base);
9092}
9093
9094#ifdef CONFIG_ISA
9095static void AscEnableIsaDma(uchar dma_channel)
9096{
9097        if (dma_channel < 4) {
9098                outp(0x000B, (ushort)(0xC0 | dma_channel));
9099                outp(0x000A, dma_channel);
9100        } else if (dma_channel < 8) {
9101                outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
9102                outp(0x00D4, (ushort)(dma_channel - 4));
9103        }
9104}
9105#endif /* CONFIG_ISA */
9106
9107static int AscStopQueueExe(PortAddr iop_base)
9108{
9109        int count = 0;
9110
9111        if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
9112                AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
9113                                 ASC_STOP_REQ_RISC_STOP);
9114                do {
9115                        if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
9116                            ASC_STOP_ACK_RISC_STOP) {
9117                                return (1);
9118                        }
9119                        mdelay(100);
9120                } while (count++ < 20);
9121        }
9122        return (0);
9123}
9124
9125static ASC_DCNT AscGetMaxDmaCount(ushort bus_type)
9126{
9127        if (bus_type & ASC_IS_ISA)
9128                return ASC_MAX_ISA_DMA_COUNT;
9129        else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
9130                return ASC_MAX_VL_DMA_COUNT;
9131        return ASC_MAX_PCI_DMA_COUNT;
9132}
9133
9134#ifdef CONFIG_ISA
9135static ushort AscGetIsaDmaChannel(PortAddr iop_base)
9136{
9137        ushort channel;
9138
9139        channel = AscGetChipCfgLsw(iop_base) & 0x0003;
9140        if (channel == 0x03)
9141                return (0);
9142        else if (channel == 0x00)
9143                return (7);
9144        return (channel + 4);
9145}
9146
9147static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
9148{
9149        ushort cfg_lsw;
9150        uchar value;
9151
9152        if ((dma_channel >= 5) && (dma_channel <= 7)) {
9153                if (dma_channel == 7)
9154                        value = 0x00;
9155                else
9156                        value = dma_channel - 4;
9157                cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
9158                cfg_lsw |= value;
9159                AscSetChipCfgLsw(iop_base, cfg_lsw);
9160                return (AscGetIsaDmaChannel(iop_base));
9161        }
9162        return 0;
9163}
9164
9165static uchar AscGetIsaDmaSpeed(PortAddr iop_base)
9166{
9167        uchar speed_value;
9168
9169        AscSetBank(iop_base, 1);
9170        speed_value = AscReadChipDmaSpeed(iop_base);
9171        speed_value &= 0x07;
9172        AscSetBank(iop_base, 0);
9173        return speed_value;
9174}
9175
9176static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
9177{
9178        speed_value &= 0x07;
9179        AscSetBank(iop_base, 1);
9180        AscWriteChipDmaSpeed(iop_base, speed_value);
9181        AscSetBank(iop_base, 0);
9182        return AscGetIsaDmaSpeed(iop_base);
9183}
9184#endif /* CONFIG_ISA */
9185
9186static ushort AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
9187{
9188        int i;
9189        PortAddr iop_base;
9190        ushort warn_code;
9191        uchar chip_version;
9192
9193        iop_base = asc_dvc->iop_base;
9194        warn_code = 0;
9195        asc_dvc->err_code = 0;
9196        if ((asc_dvc->bus_type &
9197             (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
9198                asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
9199        }
9200        AscSetChipControl(iop_base, CC_HALT);
9201        AscSetChipStatus(iop_base, 0);
9202        asc_dvc->bug_fix_cntl = 0;
9203        asc_dvc->pci_fix_asyn_xfer = 0;
9204        asc_dvc->pci_fix_asyn_xfer_always = 0;
9205        /* asc_dvc->init_state initialized in AscInitGetConfig(). */
9206        asc_dvc->sdtr_done = 0;
9207        asc_dvc->cur_total_qng = 0;
9208        asc_dvc->is_in_int = 0;
9209        asc_dvc->in_critical_cnt = 0;
9210        asc_dvc->last_q_shortage = 0;
9211        asc_dvc->use_tagged_qng = 0;
9212        asc_dvc->no_scam = 0;
9213        asc_dvc->unit_not_ready = 0;
9214        asc_dvc->queue_full_or_busy = 0;
9215        asc_dvc->redo_scam = 0;
9216        asc_dvc->res2 = 0;
9217        asc_dvc->min_sdtr_index = 0;
9218        asc_dvc->cfg->can_tagged_qng = 0;
9219        asc_dvc->cfg->cmd_qng_enabled = 0;
9220        asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
9221        asc_dvc->init_sdtr = 0;
9222        asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
9223        asc_dvc->scsi_reset_wait = 3;
9224        asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
9225        asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
9226        asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
9227        asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
9228        asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
9229        chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
9230        asc_dvc->cfg->chip_version = chip_version;
9231        asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
9232        asc_dvc->max_sdtr_index = 7;
9233        if ((asc_dvc->bus_type & ASC_IS_PCI) &&
9234            (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
9235                asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
9236                asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
9237                asc_dvc->max_sdtr_index = 15;
9238                if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
9239                        AscSetExtraControl(iop_base,
9240                                           (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9241                } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
9242                        AscSetExtraControl(iop_base,
9243                                           (SEC_ACTIVE_NEGATE |
9244                                            SEC_ENABLE_FILTER));
9245                }
9246        }
9247        if (asc_dvc->bus_type == ASC_IS_PCI) {
9248                AscSetExtraControl(iop_base,
9249                                   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9250        }
9251
9252        asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
9253#ifdef CONFIG_ISA
9254        if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
9255                if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
9256                        AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
9257                        asc_dvc->bus_type = ASC_IS_ISAPNP;
9258                }
9259                asc_dvc->cfg->isa_dma_channel =
9260                    (uchar)AscGetIsaDmaChannel(iop_base);
9261        }
9262#endif /* CONFIG_ISA */
9263        for (i = 0; i <= ASC_MAX_TID; i++) {
9264                asc_dvc->cur_dvc_qng[i] = 0;
9265                asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
9266                asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
9267                asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
9268                asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
9269        }
9270        return warn_code;
9271}
9272
9273static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
9274{
9275        int retry;
9276
9277        for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
9278                unsigned char read_back;
9279                AscSetChipEEPCmd(iop_base, cmd_reg);
9280                mdelay(1);
9281                read_back = AscGetChipEEPCmd(iop_base);
9282                if (read_back == cmd_reg)
9283                        return 1;
9284        }
9285        return 0;
9286}
9287
9288static void AscWaitEEPRead(void)
9289{
9290        mdelay(1);
9291}
9292
9293static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
9294{
9295        ushort read_wval;
9296        uchar cmd_reg;
9297
9298        AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9299        AscWaitEEPRead();
9300        cmd_reg = addr | ASC_EEP_CMD_READ;
9301        AscWriteEEPCmdReg(iop_base, cmd_reg);
9302        AscWaitEEPRead();
9303        read_wval = AscGetChipEEPData(iop_base);
9304        AscWaitEEPRead();
9305        return read_wval;
9306}
9307
9308static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9309                              ushort bus_type)
9310{
9311        ushort wval;
9312        ushort sum;
9313        ushort *wbuf;
9314        int cfg_beg;
9315        int cfg_end;
9316        int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9317        int s_addr;
9318
9319        wbuf = (ushort *)cfg_buf;
9320        sum = 0;
9321        /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9322        for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9323                *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9324                sum += *wbuf;
9325        }
9326        if (bus_type & ASC_IS_VL) {
9327                cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9328                cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9329        } else {
9330                cfg_beg = ASC_EEP_DVC_CFG_BEG;
9331                cfg_end = ASC_EEP_MAX_DVC_ADDR;
9332        }
9333        for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9334                wval = AscReadEEPWord(iop_base, (uchar)s_addr);
9335                if (s_addr <= uchar_end_in_config) {
9336                        /*
9337                         * Swap all char fields - must unswap bytes already swapped
9338                         * by AscReadEEPWord().
9339                         */
9340                        *wbuf = le16_to_cpu(wval);
9341                } else {
9342                        /* Don't swap word field at the end - cntl field. */
9343                        *wbuf = wval;
9344                }
9345                sum += wval;    /* Checksum treats all EEPROM data as words. */
9346        }
9347        /*
9348         * Read the checksum word which will be compared against 'sum'
9349         * by the caller. Word field already swapped.
9350         */
9351        *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9352        return sum;
9353}
9354
9355static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
9356{
9357        PortAddr iop_base;
9358        ushort q_addr;
9359        ushort saved_word;
9360        int sta;
9361
9362        iop_base = asc_dvc->iop_base;
9363        sta = 0;
9364        q_addr = ASC_QNO_TO_QADDR(241);
9365        saved_word = AscReadLramWord(iop_base, q_addr);
9366        AscSetChipLramAddr(iop_base, q_addr);
9367        AscSetChipLramData(iop_base, 0x55AA);
9368        mdelay(10);
9369        AscSetChipLramAddr(iop_base, q_addr);
9370        if (AscGetChipLramData(iop_base) == 0x55AA) {
9371                sta = 1;
9372                AscWriteLramWord(iop_base, q_addr, saved_word);
9373        }
9374        return (sta);
9375}
9376
9377static void AscWaitEEPWrite(void)
9378{
9379        mdelay(20);
9380}
9381
9382static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
9383{
9384        ushort read_back;
9385        int retry;
9386
9387        retry = 0;
9388        while (TRUE) {
9389                AscSetChipEEPData(iop_base, data_reg);
9390                mdelay(1);
9391                read_back = AscGetChipEEPData(iop_base);
9392                if (read_back == data_reg) {
9393                        return (1);
9394                }
9395                if (retry++ > ASC_EEP_MAX_RETRY) {
9396                        return (0);
9397                }
9398        }
9399}
9400
9401static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
9402{
9403        ushort read_wval;
9404
9405        read_wval = AscReadEEPWord(iop_base, addr);
9406        if (read_wval != word_val) {
9407                AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
9408                AscWaitEEPRead();
9409                AscWriteEEPDataReg(iop_base, word_val);
9410                AscWaitEEPRead();
9411                AscWriteEEPCmdReg(iop_base,
9412                                  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
9413                AscWaitEEPWrite();
9414                AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9415                AscWaitEEPRead();
9416                return (AscReadEEPWord(iop_base, addr));
9417        }
9418        return (read_wval);
9419}
9420
9421static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9422                               ushort bus_type)
9423{
9424        int n_error;
9425        ushort *wbuf;
9426        ushort word;
9427        ushort sum;
9428        int s_addr;
9429        int cfg_beg;
9430        int cfg_end;
9431        int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9432
9433        wbuf = (ushort *)cfg_buf;
9434        n_error = 0;
9435        sum = 0;
9436        /* Write two config words; AscWriteEEPWord() will swap bytes. */
9437        for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9438                sum += *wbuf;
9439                if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9440                        n_error++;
9441                }
9442        }
9443        if (bus_type & ASC_IS_VL) {
9444                cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9445                cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9446        } else {
9447                cfg_beg = ASC_EEP_DVC_CFG_BEG;
9448                cfg_end = ASC_EEP_MAX_DVC_ADDR;
9449        }
9450        for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9451                if (s_addr <= uchar_end_in_config) {
9452                        /*
9453                         * This is a char field. Swap char fields before they are
9454                         * swapped again by AscWriteEEPWord().
9455                         */
9456                        word = cpu_to_le16(*wbuf);
9457                        if (word !=
9458                            AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9459                                n_error++;
9460                        }
9461                } else {
9462                        /* Don't swap word field at the end - cntl field. */
9463                        if (*wbuf !=
9464                            AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9465                                n_error++;
9466                        }
9467                }
9468                sum += *wbuf;   /* Checksum calculated from word values. */
9469        }
9470        /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9471        *wbuf = sum;
9472        if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9473                n_error++;
9474        }
9475
9476        /* Read EEPROM back again. */
9477        wbuf = (ushort *)cfg_buf;
9478        /*
9479         * Read two config words; Byte-swapping done by AscReadEEPWord().
9480         */
9481        for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9482                if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9483                        n_error++;
9484                }
9485        }
9486        if (bus_type & ASC_IS_VL) {
9487                cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9488                cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9489        } else {
9490                cfg_beg = ASC_EEP_DVC_CFG_BEG;
9491                cfg_end = ASC_EEP_MAX_DVC_ADDR;
9492        }
9493        for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9494                if (s_addr <= uchar_end_in_config) {
9495                        /*
9496                         * Swap all char fields. Must unswap bytes already swapped
9497                         * by AscReadEEPWord().
9498                         */
9499                        word =
9500                            le16_to_cpu(AscReadEEPWord
9501                                        (iop_base, (uchar)s_addr));
9502                } else {
9503                        /* Don't swap word field at the end - cntl field. */
9504                        word = AscReadEEPWord(iop_base, (uchar)s_addr);
9505                }
9506                if (*wbuf != word) {
9507                        n_error++;
9508                }
9509        }
9510        /* Read checksum; Byte swapping not needed. */
9511        if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
9512                n_error++;
9513        }
9514        return n_error;
9515}
9516
9517static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9518                           ushort bus_type)
9519{
9520        int retry;
9521        int n_error;
9522
9523        retry = 0;
9524        while (TRUE) {
9525                if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
9526                                                   bus_type)) == 0) {
9527                        break;
9528                }
9529                if (++retry > ASC_EEP_MAX_RETRY) {
9530                        break;
9531                }
9532        }
9533        return n_error;
9534}
9535
9536static ushort AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
9537{
9538        ASCEEP_CONFIG eep_config_buf;
9539        ASCEEP_CONFIG *eep_config;
9540        PortAddr iop_base;
9541        ushort chksum;
9542        ushort warn_code;
9543        ushort cfg_msw, cfg_lsw;
9544        int i;
9545        int write_eep = 0;
9546
9547        iop_base = asc_dvc->iop_base;
9548        warn_code = 0;
9549        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
9550        AscStopQueueExe(iop_base);
9551        if ((AscStopChip(iop_base) == FALSE) ||
9552            (AscGetChipScsiCtrl(iop_base) != 0)) {
9553                asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
9554                AscResetChipAndScsiBus(asc_dvc);
9555                mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
9556        }
9557        if (AscIsChipHalted(iop_base) == FALSE) {
9558                asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
9559                return (warn_code);
9560        }
9561        AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
9562        if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
9563                asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
9564                return (warn_code);
9565        }
9566        eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
9567        cfg_msw = AscGetChipCfgMsw(iop_base);
9568        cfg_lsw = AscGetChipCfgLsw(iop_base);
9569        if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9570                cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9571                warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9572                AscSetChipCfgMsw(iop_base, cfg_msw);
9573        }
9574        chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
9575        ASC_DBG(1, "chksum 0x%x\n", chksum);
9576        if (chksum == 0) {
9577                chksum = 0xaa55;
9578        }
9579        if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9580                warn_code |= ASC_WARN_AUTO_CONFIG;
9581                if (asc_dvc->cfg->chip_version == 3) {
9582                        if (eep_config->cfg_lsw != cfg_lsw) {
9583                                warn_code |= ASC_WARN_EEPROM_RECOVER;
9584                                eep_config->cfg_lsw =
9585                                    AscGetChipCfgLsw(iop_base);
9586                        }
9587                        if (eep_config->cfg_msw != cfg_msw) {
9588                                warn_code |= ASC_WARN_EEPROM_RECOVER;
9589                                eep_config->cfg_msw =
9590                                    AscGetChipCfgMsw(iop_base);
9591                        }
9592                }
9593        }
9594        eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9595        eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
9596        ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
9597        if (chksum != eep_config->chksum) {
9598                if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
9599                    ASC_CHIP_VER_PCI_ULTRA_3050) {
9600                        ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9601                        eep_config->init_sdtr = 0xFF;
9602                        eep_config->disc_enable = 0xFF;
9603                        eep_config->start_motor = 0xFF;
9604                        eep_config->use_cmd_qng = 0;
9605                        eep_config->max_total_qng = 0xF0;
9606                        eep_config->max_tag_qng = 0x20;
9607                        eep_config->cntl = 0xBFFF;
9608                        ASC_EEP_SET_CHIP_ID(eep_config, 7);
9609                        eep_config->no_scam = 0;
9610                        eep_config->adapter_info[0] = 0;
9611                        eep_config->adapter_info[1] = 0;
9612                        eep_config->adapter_info[2] = 0;
9613                        eep_config->adapter_info[3] = 0;
9614                        eep_config->adapter_info[4] = 0;
9615                        /* Indicate EEPROM-less board. */
9616                        eep_config->adapter_info[5] = 0xBB;
9617                } else {
9618                        ASC_PRINT
9619                            ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9620                        write_eep = 1;
9621                        warn_code |= ASC_WARN_EEPROM_CHKSUM;
9622                }
9623        }
9624        asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9625        asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9626        asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9627        asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
9628        asc_dvc->start_motor = eep_config->start_motor;
9629        asc_dvc->dvc_cntl = eep_config->cntl;
9630        asc_dvc->no_scam = eep_config->no_scam;
9631        asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9632        asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9633        asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9634        asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9635        asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9636        asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9637        if (!AscTestExternalLram(asc_dvc)) {
9638                if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9639                     ASC_IS_PCI_ULTRA)) {
9640                        eep_config->max_total_qng =
9641                            ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9642                        eep_config->max_tag_qng =
9643                            ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9644                } else {
9645                        eep_config->cfg_msw |= 0x0800;
9646                        cfg_msw |= 0x0800;
9647                        AscSetChipCfgMsw(iop_base, cfg_msw);
9648                        eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9649                        eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9650                }
9651        } else {
9652        }
9653        if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9654                eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9655        }
9656        if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9657                eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9658        }
9659        if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9660                eep_config->max_tag_qng = eep_config->max_total_qng;
9661        }
9662        if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9663                eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9664        }
9665        asc_dvc->max_total_qng = eep_config->max_total_qng;
9666        if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9667            eep_config->use_cmd_qng) {
9668                eep_config->disc_enable = eep_config->use_cmd_qng;
9669                warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9670        }
9671        ASC_EEP_SET_CHIP_ID(eep_config,
9672                            ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9673        asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9674        if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9675            !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9676                asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9677        }
9678
9679        for (i = 0; i <= ASC_MAX_TID; i++) {
9680                asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9681                asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9682                asc_dvc->cfg->sdtr_period_offset[i] =
9683                    (uchar)(ASC_DEF_SDTR_OFFSET |
9684                            (asc_dvc->min_sdtr_index << 4));
9685        }
9686        eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9687        if (write_eep) {
9688                if ((i = AscSetEEPConfig(iop_base, eep_config,
9689                                     asc_dvc->bus_type)) != 0) {
9690                        ASC_PRINT1
9691                            ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9692                             i);
9693                } else {
9694                        ASC_PRINT
9695                            ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9696                }
9697        }
9698        return (warn_code);
9699}
9700
9701static int AscInitGetConfig(struct Scsi_Host *shost)
9702{
9703        struct asc_board *board = shost_priv(shost);
9704        ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9705        unsigned short warn_code = 0;
9706
9707        asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9708        if (asc_dvc->err_code != 0)
9709                return asc_dvc->err_code;
9710
9711        if (AscFindSignature(asc_dvc->iop_base)) {
9712                warn_code |= AscInitAscDvcVar(asc_dvc);
9713                warn_code |= AscInitFromEEP(asc_dvc);
9714                asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9715                if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9716                        asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9717        } else {
9718                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9719        }
9720
9721        switch (warn_code) {
9722        case 0: /* No error */
9723                break;
9724        case ASC_WARN_IO_PORT_ROTATE:
9725                shost_printk(KERN_WARNING, shost, "I/O port address "
9726                                "modified\n");
9727                break;
9728        case ASC_WARN_AUTO_CONFIG:
9729                shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9730                                "enabled\n");
9731                break;
9732        case ASC_WARN_EEPROM_CHKSUM:
9733                shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9734                break;
9735        case ASC_WARN_IRQ_MODIFIED:
9736                shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9737                break;
9738        case ASC_WARN_CMD_QNG_CONFLICT:
9739                shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9740                                "disconnects\n");
9741                break;
9742        default:
9743                shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9744                                warn_code);
9745                break;
9746        }
9747
9748        if (asc_dvc->err_code != 0)
9749                shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9750                        "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9751
9752        return asc_dvc->err_code;
9753}
9754
9755static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9756{
9757        struct asc_board *board = shost_priv(shost);
9758        ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9759        PortAddr iop_base = asc_dvc->iop_base;
9760        unsigned short cfg_msw;
9761        unsigned short warn_code = 0;
9762
9763        asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9764        if (asc_dvc->err_code != 0)
9765                return asc_dvc->err_code;
9766        if (!AscFindSignature(asc_dvc->iop_base)) {
9767                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9768                return asc_dvc->err_code;
9769        }
9770
9771        cfg_msw = AscGetChipCfgMsw(iop_base);
9772        if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9773                cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9774                warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9775                AscSetChipCfgMsw(iop_base, cfg_msw);
9776        }
9777        if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9778            asc_dvc->cfg->cmd_qng_enabled) {
9779                asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9780                warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9781        }
9782        if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9783                warn_code |= ASC_WARN_AUTO_CONFIG;
9784        }
9785#ifdef CONFIG_PCI
9786        if (asc_dvc->bus_type & ASC_IS_PCI) {
9787                cfg_msw &= 0xFFC0;
9788                AscSetChipCfgMsw(iop_base, cfg_msw);
9789                if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9790                } else {
9791                        if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9792                            (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9793                                asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9794                                asc_dvc->bug_fix_cntl |=
9795                                    ASC_BUG_FIX_ASYN_USE_SYN;
9796                        }
9797                }
9798        } else
9799#endif /* CONFIG_PCI */
9800        if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
9801                if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
9802                    == ASC_CHIP_VER_ASYN_BUG) {
9803                        asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
9804                }
9805        }
9806        if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9807            asc_dvc->cfg->chip_scsi_id) {
9808                asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9809        }
9810#ifdef CONFIG_ISA
9811        if (asc_dvc->bus_type & ASC_IS_ISA) {
9812                AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
9813                AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
9814        }
9815#endif /* CONFIG_ISA */
9816
9817        asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9818
9819        switch (warn_code) {
9820        case 0: /* No error. */
9821                break;
9822        case ASC_WARN_IO_PORT_ROTATE:
9823                shost_printk(KERN_WARNING, shost, "I/O port address "
9824                                "modified\n");
9825                break;
9826        case ASC_WARN_AUTO_CONFIG:
9827                shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9828                                "enabled\n");
9829                break;
9830        case ASC_WARN_EEPROM_CHKSUM:
9831                shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9832                break;
9833        case ASC_WARN_IRQ_MODIFIED:
9834                shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9835                break;
9836        case ASC_WARN_CMD_QNG_CONFLICT:
9837                shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9838                                "disconnects\n");
9839                break;
9840        default:
9841                shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9842                                warn_code);
9843                break;
9844        }
9845
9846        if (asc_dvc->err_code != 0)
9847                shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9848                        "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9849
9850        return asc_dvc->err_code;
9851}
9852
9853/*
9854 * EEPROM Configuration.
9855 *
9856 * All drivers should use this structure to set the default EEPROM
9857 * configuration. The BIOS now uses this structure when it is built.
9858 * Additional structure information can be found in a_condor.h where
9859 * the structure is defined.
9860 *
9861 * The *_Field_IsChar structs are needed to correct for endianness.
9862 * These values are read from the board 16 bits at a time directly
9863 * into the structs. Because some fields are char, the values will be
9864 * in the wrong order. The *_Field_IsChar tells when to flip the
9865 * bytes. Data read and written to PCI memory is automatically swapped
9866 * on big-endian platforms so char fields read as words are actually being
9867 * unswapped on big-endian platforms.
9868 */
9869static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9870        ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
9871        0x0000,                 /* cfg_msw */
9872        0xFFFF,                 /* disc_enable */
9873        0xFFFF,                 /* wdtr_able */
9874        0xFFFF,                 /* sdtr_able */
9875        0xFFFF,                 /* start_motor */
9876        0xFFFF,                 /* tagqng_able */
9877        0xFFFF,                 /* bios_scan */
9878        0,                      /* scam_tolerant */
9879        7,                      /* adapter_scsi_id */
9880        0,                      /* bios_boot_delay */
9881        3,                      /* scsi_reset_delay */
9882        0,                      /* bios_id_lun */
9883        0,                      /* termination */
9884        0,                      /* reserved1 */
9885        0xFFE7,                 /* bios_ctrl */
9886        0xFFFF,                 /* ultra_able */
9887        0,                      /* reserved2 */
9888        ASC_DEF_MAX_HOST_QNG,   /* max_host_qng */
9889        ASC_DEF_MAX_DVC_QNG,    /* max_dvc_qng */
9890        0,                      /* dvc_cntl */
9891        0,                      /* bug_fix */
9892        0,                      /* serial_number_word1 */
9893        0,                      /* serial_number_word2 */
9894        0,                      /* serial_number_word3 */
9895        0,                      /* check_sum */
9896        {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9897        ,                       /* oem_name[16] */
9898        0,                      /* dvc_err_code */
9899        0,                      /* adv_err_code */
9900        0,                      /* adv_err_addr */
9901        0,                      /* saved_dvc_err_code */
9902        0,                      /* saved_adv_err_code */
9903        0,                      /* saved_adv_err_addr */
9904        0                       /* num_of_err */
9905};
9906
9907static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9908        0,                      /* cfg_lsw */
9909        0,                      /* cfg_msw */
9910        0,                      /* -disc_enable */
9911        0,                      /* wdtr_able */
9912        0,                      /* sdtr_able */
9913        0,                      /* start_motor */
9914        0,                      /* tagqng_able */
9915        0,                      /* bios_scan */
9916        0,                      /* scam_tolerant */
9917        1,                      /* adapter_scsi_id */
9918        1,                      /* bios_boot_delay */
9919        1,                      /* scsi_reset_delay */
9920        1,                      /* bios_id_lun */
9921        1,                      /* termination */
9922        1,                      /* reserved1 */
9923        0,                      /* bios_ctrl */
9924        0,                      /* ultra_able */
9925        0,                      /* reserved2 */
9926        1,                      /* max_host_qng */
9927        1,                      /* max_dvc_qng */
9928        0,                      /* dvc_cntl */
9929        0,                      /* bug_fix */
9930        0,                      /* serial_number_word1 */
9931        0,                      /* serial_number_word2 */
9932        0,                      /* serial_number_word3 */
9933        0,                      /* check_sum */
9934        {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9935        ,                       /* oem_name[16] */
9936        0,                      /* dvc_err_code */
9937        0,                      /* adv_err_code */
9938        0,                      /* adv_err_addr */
9939        0,                      /* saved_dvc_err_code */
9940        0,                      /* saved_adv_err_code */
9941        0,                      /* saved_adv_err_addr */
9942        0                       /* num_of_err */
9943};
9944
9945static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9946        ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
9947        0x0000,                 /* 01 cfg_msw */
9948        0xFFFF,                 /* 02 disc_enable */
9949        0xFFFF,                 /* 03 wdtr_able */
9950        0x4444,                 /* 04 sdtr_speed1 */
9951        0xFFFF,                 /* 05 start_motor */
9952        0xFFFF,                 /* 06 tagqng_able */
9953        0xFFFF,                 /* 07 bios_scan */
9954        0,                      /* 08 scam_tolerant */
9955        7,                      /* 09 adapter_scsi_id */
9956        0,                      /*    bios_boot_delay */
9957        3,                      /* 10 scsi_reset_delay */
9958        0,                      /*    bios_id_lun */
9959        0,                      /* 11 termination_se */
9960        0,                      /*    termination_lvd */
9961        0xFFE7,                 /* 12 bios_ctrl */
9962        0x4444,                 /* 13 sdtr_speed2 */
9963        0x4444,                 /* 14 sdtr_speed3 */
9964        ASC_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
9965        ASC_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
9966        0,                      /* 16 dvc_cntl */
9967        0x4444,                 /* 17 sdtr_speed4 */
9968        0,                      /* 18 serial_number_word1 */
9969        0,                      /* 19 serial_number_word2 */
9970        0,                      /* 20 serial_number_word3 */
9971        0,                      /* 21 check_sum */
9972        {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9973        ,                       /* 22-29 oem_name[16] */
9974        0,                      /* 30 dvc_err_code */
9975        0,                      /* 31 adv_err_code */
9976        0,                      /* 32 adv_err_addr */
9977        0,                      /* 33 saved_dvc_err_code */
9978        0,                      /* 34 saved_adv_err_code */
9979        0,                      /* 35 saved_adv_err_addr */
9980        0,                      /* 36 reserved */
9981        0,                      /* 37 reserved */
9982        0,                      /* 38 reserved */
9983        0,                      /* 39 reserved */
9984        0,                      /* 40 reserved */
9985        0,                      /* 41 reserved */
9986        0,                      /* 42 reserved */
9987        0,                      /* 43 reserved */
9988        0,                      /* 44 reserved */
9989        0,                      /* 45 reserved */
9990        0,                      /* 46 reserved */
9991        0,                      /* 47 reserved */
9992        0,                      /* 48 reserved */
9993        0,                      /* 49 reserved */
9994        0,                      /* 50 reserved */
9995        0,                      /* 51 reserved */
9996        0,                      /* 52 reserved */
9997        0,                      /* 53 reserved */
9998        0,                      /* 54 reserved */
9999        0,                      /* 55 reserved */
10000        0,                      /* 56 cisptr_lsw */
10001        0,                      /* 57 cisprt_msw */
10002        PCI_VENDOR_ID_ASP,      /* 58 subsysvid */
10003        PCI_DEVICE_ID_38C0800_REV1,     /* 59 subsysid */
10004        0,                      /* 60 reserved */
10005        0,                      /* 61 reserved */
10006        0,                      /* 62 reserved */
10007        0                       /* 63 reserved */
10008};
10009
10010static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
10011        0,                      /* 00 cfg_lsw */
10012        0,                      /* 01 cfg_msw */
10013        0,                      /* 02 disc_enable */
10014        0,                      /* 03 wdtr_able */
10015        0,                      /* 04 sdtr_speed1 */
10016        0,                      /* 05 start_motor */
10017        0,                      /* 06 tagqng_able */
10018        0,                      /* 07 bios_scan */
10019        0,                      /* 08 scam_tolerant */
10020        1,                      /* 09 adapter_scsi_id */
10021        1,                      /*    bios_boot_delay */
10022        1,                      /* 10 scsi_reset_delay */
10023        1,                      /*    bios_id_lun */
10024        1,                      /* 11 termination_se */
10025        1,                      /*    termination_lvd */
10026        0,                      /* 12 bios_ctrl */
10027        0,                      /* 13 sdtr_speed2 */
10028        0,                      /* 14 sdtr_speed3 */
10029        1,                      /* 15 max_host_qng */
10030        1,                      /*    max_dvc_qng */
10031        0,                      /* 16 dvc_cntl */
10032        0,                      /* 17 sdtr_speed4 */
10033        0,                      /* 18 serial_number_word1 */
10034        0,                      /* 19 serial_number_word2 */
10035        0,                      /* 20 serial_number_word3 */
10036        0,                      /* 21 check_sum */
10037        {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10038        ,                       /* 22-29 oem_name[16] */
10039        0,                      /* 30 dvc_err_code */
10040        0,                      /* 31 adv_err_code */
10041        0,                      /* 32 adv_err_addr */
10042        0,                      /* 33 saved_dvc_err_code */
10043        0,                      /* 34 saved_adv_err_code */
10044        0,                      /* 35 saved_adv_err_addr */
10045        0,                      /* 36 reserved */
10046        0,                      /* 37 reserved */
10047        0,                      /* 38 reserved */
10048        0,                      /* 39 reserved */
10049        0,                      /* 40 reserved */
10050        0,                      /* 41 reserved */
10051        0,                      /* 42 reserved */
10052        0,                      /* 43 reserved */
10053        0,                      /* 44 reserved */
10054        0,                      /* 45 reserved */
10055        0,                      /* 46 reserved */
10056        0,                      /* 47 reserved */
10057        0,                      /* 48 reserved */
10058        0,                      /* 49 reserved */
10059        0,                      /* 50 reserved */
10060        0,                      /* 51 reserved */
10061        0,                      /* 52 reserved */
10062        0,                      /* 53 reserved */
10063        0,                      /* 54 reserved */
10064        0,                      /* 55 reserved */
10065        0,                      /* 56 cisptr_lsw */
10066        0,                      /* 57 cisprt_msw */
10067        0,                      /* 58 subsysvid */
10068        0,                      /* 59 subsysid */
10069        0,                      /* 60 reserved */
10070        0,                      /* 61 reserved */
10071        0,                      /* 62 reserved */
10072        0                       /* 63 reserved */
10073};
10074
10075static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
10076        ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
10077        0x0000,                 /* 01 cfg_msw */
10078        0xFFFF,                 /* 02 disc_enable */
10079        0xFFFF,                 /* 03 wdtr_able */
10080        0x5555,                 /* 04 sdtr_speed1 */
10081        0xFFFF,                 /* 05 start_motor */
10082        0xFFFF,                 /* 06 tagqng_able */
10083        0xFFFF,                 /* 07 bios_scan */
10084        0,                      /* 08 scam_tolerant */
10085        7,                      /* 09 adapter_scsi_id */
10086        0,                      /*    bios_boot_delay */
10087        3,                      /* 10 scsi_reset_delay */
10088        0,                      /*    bios_id_lun */
10089        0,                      /* 11 termination_se */
10090        0,                      /*    termination_lvd */
10091        0xFFE7,                 /* 12 bios_ctrl */
10092        0x5555,                 /* 13 sdtr_speed2 */
10093        0x5555,                 /* 14 sdtr_speed3 */
10094        ASC_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
10095        ASC_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
10096        0,                      /* 16 dvc_cntl */
10097        0x5555,                 /* 17 sdtr_speed4 */
10098        0,                      /* 18 serial_number_word1 */
10099        0,                      /* 19 serial_number_word2 */
10100        0,                      /* 20 serial_number_word3 */
10101        0,                      /* 21 check_sum */
10102        {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10103        ,                       /* 22-29 oem_name[16] */
10104        0,                      /* 30 dvc_err_code */
10105        0,                      /* 31 adv_err_code */
10106        0,                      /* 32 adv_err_addr */
10107        0,                      /* 33 saved_dvc_err_code */
10108        0,                      /* 34 saved_adv_err_code */
10109        0,                      /* 35 saved_adv_err_addr */
10110        0,                      /* 36 reserved */
10111        0,                      /* 37 reserved */
10112        0,                      /* 38 reserved */
10113        0,                      /* 39 reserved */
10114        0,                      /* 40 reserved */
10115        0,                      /* 41 reserved */
10116        0,                      /* 42 reserved */
10117        0,                      /* 43 reserved */
10118        0,                      /* 44 reserved */
10119        0,                      /* 45 reserved */
10120        0,                      /* 46 reserved */
10121        0,                      /* 47 reserved */
10122        0,                      /* 48 reserved */
10123        0,                      /* 49 reserved */
10124        0,                      /* 50 reserved */
10125        0,                      /* 51 reserved */
10126        0,                      /* 52 reserved */
10127        0,                      /* 53 reserved */
10128        0,                      /* 54 reserved */
10129        0,                      /* 55 reserved */
10130        0,                      /* 56 cisptr_lsw */
10131        0,                      /* 57 cisprt_msw */
10132        PCI_VENDOR_ID_ASP,      /* 58 subsysvid */
10133        PCI_DEVICE_ID_38C1600_REV1,     /* 59 subsysid */
10134        0,                      /* 60 reserved */
10135        0,                      /* 61 reserved */
10136        0,                      /* 62 reserved */
10137        0                       /* 63 reserved */
10138};
10139
10140static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
10141        0,                      /* 00 cfg_lsw */
10142        0,                      /* 01 cfg_msw */
10143        0,                      /* 02 disc_enable */
10144        0,                      /* 03 wdtr_able */
10145        0,                      /* 04 sdtr_speed1 */
10146        0,                      /* 05 start_motor */
10147        0,                      /* 06 tagqng_able */
10148        0,                      /* 07 bios_scan */
10149        0,                      /* 08 scam_tolerant */
10150        1,                      /* 09 adapter_scsi_id */
10151        1,                      /*    bios_boot_delay */
10152        1,                      /* 10 scsi_reset_delay */
10153        1,                      /*    bios_id_lun */
10154        1,                      /* 11 termination_se */
10155        1,                      /*    termination_lvd */
10156        0,                      /* 12 bios_ctrl */
10157        0,                      /* 13 sdtr_speed2 */
10158        0,                      /* 14 sdtr_speed3 */
10159        1,                      /* 15 max_host_qng */
10160        1,                      /*    max_dvc_qng */
10161        0,                      /* 16 dvc_cntl */
10162        0,                      /* 17 sdtr_speed4 */
10163        0,                      /* 18 serial_number_word1 */
10164        0,                      /* 19 serial_number_word2 */
10165        0,                      /* 20 serial_number_word3 */
10166        0,                      /* 21 check_sum */
10167        {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10168        ,                       /* 22-29 oem_name[16] */
10169        0,                      /* 30 dvc_err_code */
10170        0,                      /* 31 adv_err_code */
10171        0,                      /* 32 adv_err_addr */
10172        0,                      /* 33 saved_dvc_err_code */
10173        0,                      /* 34 saved_adv_err_code */
10174        0,                      /* 35 saved_adv_err_addr */
10175        0,                      /* 36 reserved */
10176        0,                      /* 37 reserved */
10177        0,                      /* 38 reserved */
10178        0,                      /* 39 reserved */
10179        0,                      /* 40 reserved */
10180        0,                      /* 41 reserved */
10181        0,                      /* 42 reserved */
10182        0,                      /* 43 reserved */
10183        0,                      /* 44 reserved */
10184        0,                      /* 45 reserved */
10185        0,                      /* 46 reserved */
10186        0,                      /* 47 reserved */
10187        0,                      /* 48 reserved */
10188        0,                      /* 49 reserved */
10189        0,                      /* 50 reserved */
10190        0,                      /* 51 reserved */
10191        0,                      /* 52 reserved */
10192        0,                      /* 53 reserved */
10193        0,                      /* 54 reserved */
10194        0,                      /* 55 reserved */
10195        0,                      /* 56 cisptr_lsw */
10196        0,                      /* 57 cisprt_msw */
10197        0,                      /* 58 subsysvid */
10198        0,                      /* 59 subsysid */
10199        0,                      /* 60 reserved */
10200        0,                      /* 61 reserved */
10201        0,                      /* 62 reserved */
10202        0                       /* 63 reserved */
10203};
10204
10205#ifdef CONFIG_PCI
10206/*
10207 * Wait for EEPROM command to complete
10208 */
10209static void AdvWaitEEPCmd(AdvPortAddr iop_base)
10210{
10211        int eep_delay_ms;
10212
10213        for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
10214                if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
10215                    ASC_EEP_CMD_DONE) {
10216                        break;
10217                }
10218                mdelay(1);
10219        }
10220        if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
10221            0)
10222                BUG();
10223}
10224
10225/*
10226 * Read the EEPROM from specified location
10227 */
10228static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
10229{
10230        AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10231                             ASC_EEP_CMD_READ | eep_word_addr);
10232        AdvWaitEEPCmd(iop_base);
10233        return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
10234}
10235
10236/*
10237 * Write the EEPROM from 'cfg_buf'.
10238 */
10239static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
10240                                ADVEEP_3550_CONFIG *cfg_buf)
10241{
10242        ushort *wbuf;
10243        ushort addr, chksum;
10244        ushort *charfields;
10245
10246        wbuf = (ushort *)cfg_buf;
10247        charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10248        chksum = 0;
10249
10250        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10251        AdvWaitEEPCmd(iop_base);
10252
10253        /*
10254         * Write EEPROM from word 0 to word 20.
10255         */
10256        for (addr = ADV_EEP_DVC_CFG_BEGIN;
10257             addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10258                ushort word;
10259
10260                if (*charfields++) {
10261                        word = cpu_to_le16(*wbuf);
10262                } else {
10263                        word = *wbuf;
10264                }
10265                chksum += *wbuf;        /* Checksum is calculated from word values. */
10266                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10267                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10268                                     ASC_EEP_CMD_WRITE | addr);
10269                AdvWaitEEPCmd(iop_base);
10270                mdelay(ADV_EEP_DELAY_MS);
10271        }
10272
10273        /*
10274         * Write EEPROM checksum at word 21.
10275         */
10276        AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10277        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10278        AdvWaitEEPCmd(iop_base);
10279        wbuf++;
10280        charfields++;
10281
10282        /*
10283         * Write EEPROM OEM name at words 22 to 29.
10284         */
10285        for (addr = ADV_EEP_DVC_CTL_BEGIN;
10286             addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10287                ushort word;
10288
10289                if (*charfields++) {
10290                        word = cpu_to_le16(*wbuf);
10291                } else {
10292                        word = *wbuf;
10293                }
10294                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10295                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10296                                     ASC_EEP_CMD_WRITE | addr);
10297                AdvWaitEEPCmd(iop_base);
10298        }
10299        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10300        AdvWaitEEPCmd(iop_base);
10301}
10302
10303/*
10304 * Write the EEPROM from 'cfg_buf'.
10305 */
10306static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
10307                                   ADVEEP_38C0800_CONFIG *cfg_buf)
10308{
10309        ushort *wbuf;
10310        ushort *charfields;
10311        ushort addr, chksum;
10312
10313        wbuf = (ushort *)cfg_buf;
10314        charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10315        chksum = 0;
10316
10317        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10318        AdvWaitEEPCmd(iop_base);
10319
10320        /*
10321         * Write EEPROM from word 0 to word 20.
10322         */
10323        for (addr = ADV_EEP_DVC_CFG_BEGIN;
10324             addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10325                ushort word;
10326
10327                if (*charfields++) {
10328                        word = cpu_to_le16(*wbuf);
10329                } else {
10330                        word = *wbuf;
10331                }
10332                chksum += *wbuf;        /* Checksum is calculated from word values. */
10333                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10334                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10335                                     ASC_EEP_CMD_WRITE | addr);
10336                AdvWaitEEPCmd(iop_base);
10337                mdelay(ADV_EEP_DELAY_MS);
10338        }
10339
10340        /*
10341         * Write EEPROM checksum at word 21.
10342         */
10343        AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10344        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10345        AdvWaitEEPCmd(iop_base);
10346        wbuf++;
10347        charfields++;
10348
10349        /*
10350         * Write EEPROM OEM name at words 22 to 29.
10351         */
10352        for (addr = ADV_EEP_DVC_CTL_BEGIN;
10353             addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10354                ushort word;
10355
10356                if (*charfields++) {
10357                        word = cpu_to_le16(*wbuf);
10358                } else {
10359                        word = *wbuf;
10360                }
10361                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10362                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10363                                     ASC_EEP_CMD_WRITE | addr);
10364                AdvWaitEEPCmd(iop_base);
10365        }
10366        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10367        AdvWaitEEPCmd(iop_base);
10368}
10369
10370/*
10371 * Write the EEPROM from 'cfg_buf'.
10372 */
10373static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
10374                                   ADVEEP_38C1600_CONFIG *cfg_buf)
10375{
10376        ushort *wbuf;
10377        ushort *charfields;
10378        ushort addr, chksum;
10379
10380        wbuf = (ushort *)cfg_buf;
10381        charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10382        chksum = 0;
10383
10384        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10385        AdvWaitEEPCmd(iop_base);
10386
10387        /*
10388         * Write EEPROM from word 0 to word 20.
10389         */
10390        for (addr = ADV_EEP_DVC_CFG_BEGIN;
10391             addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10392                ushort word;
10393
10394                if (*charfields++) {
10395                        word = cpu_to_le16(*wbuf);
10396                } else {
10397                        word = *wbuf;
10398                }
10399                chksum += *wbuf;        /* Checksum is calculated from word values. */
10400                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10401                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10402                                     ASC_EEP_CMD_WRITE | addr);
10403                AdvWaitEEPCmd(iop_base);
10404                mdelay(ADV_EEP_DELAY_MS);
10405        }
10406
10407        /*
10408         * Write EEPROM checksum at word 21.
10409         */
10410        AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10411        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10412        AdvWaitEEPCmd(iop_base);
10413        wbuf++;
10414        charfields++;
10415
10416        /*
10417         * Write EEPROM OEM name at words 22 to 29.
10418         */
10419        for (addr = ADV_EEP_DVC_CTL_BEGIN;
10420             addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10421                ushort word;
10422
10423                if (*charfields++) {
10424                        word = cpu_to_le16(*wbuf);
10425                } else {
10426                        word = *wbuf;
10427                }
10428                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10429                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10430                                     ASC_EEP_CMD_WRITE | addr);
10431                AdvWaitEEPCmd(iop_base);
10432        }
10433        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10434        AdvWaitEEPCmd(iop_base);
10435}
10436
10437/*
10438 * Read EEPROM configuration into the specified buffer.
10439 *
10440 * Return a checksum based on the EEPROM configuration read.
10441 */
10442static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
10443                                  ADVEEP_3550_CONFIG *cfg_buf)
10444{
10445        ushort wval, chksum;
10446        ushort *wbuf;
10447        int eep_addr;
10448        ushort *charfields;
10449
10450        charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10451        wbuf = (ushort *)cfg_buf;
10452        chksum = 0;
10453
10454        for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10455             eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10456                wval = AdvReadEEPWord(iop_base, eep_addr);
10457                chksum += wval; /* Checksum is calculated from word values. */
10458                if (*charfields++) {
10459                        *wbuf = le16_to_cpu(wval);
10460                } else {
10461                        *wbuf = wval;
10462                }
10463        }
10464        /* Read checksum word. */
10465        *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10466        wbuf++;
10467        charfields++;
10468
10469        /* Read rest of EEPROM not covered by the checksum. */
10470        for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10471             eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10472                *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10473                if (*charfields++) {
10474                        *wbuf = le16_to_cpu(*wbuf);
10475                }
10476        }
10477        return chksum;
10478}
10479
10480/*
10481 * Read EEPROM configuration into the specified buffer.
10482 *
10483 * Return a checksum based on the EEPROM configuration read.
10484 */
10485static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
10486                                     ADVEEP_38C0800_CONFIG *cfg_buf)
10487{
10488        ushort wval, chksum;
10489        ushort *wbuf;
10490        int eep_addr;
10491        ushort *charfields;
10492
10493        charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10494        wbuf = (ushort *)cfg_buf;
10495        chksum = 0;
10496
10497        for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10498             eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10499                wval = AdvReadEEPWord(iop_base, eep_addr);
10500                chksum += wval; /* Checksum is calculated from word values. */
10501                if (*charfields++) {
10502                        *wbuf = le16_to_cpu(wval);
10503                } else {
10504                        *wbuf = wval;
10505                }
10506        }
10507        /* Read checksum word. */
10508        *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10509        wbuf++;
10510        charfields++;
10511
10512        /* Read rest of EEPROM not covered by the checksum. */
10513        for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10514             eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10515                *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10516                if (*charfields++) {
10517                        *wbuf = le16_to_cpu(*wbuf);
10518                }
10519        }
10520        return chksum;
10521}
10522
10523/*
10524 * Read EEPROM configuration into the specified buffer.
10525 *
10526 * Return a checksum based on the EEPROM configuration read.
10527 */
10528static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
10529                                     ADVEEP_38C1600_CONFIG *cfg_buf)
10530{
10531        ushort wval, chksum;
10532        ushort *wbuf;
10533        int eep_addr;
10534        ushort *charfields;
10535
10536        charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10537        wbuf = (ushort *)cfg_buf;
10538        chksum = 0;
10539
10540        for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10541             eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10542                wval = AdvReadEEPWord(iop_base, eep_addr);
10543                chksum += wval; /* Checksum is calculated from word values. */
10544                if (*charfields++) {
10545                        *wbuf = le16_to_cpu(wval);
10546                } else {
10547                        *wbuf = wval;
10548                }
10549        }
10550        /* Read checksum word. */
10551        *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10552        wbuf++;
10553        charfields++;
10554
10555        /* Read rest of EEPROM not covered by the checksum. */
10556        for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10557             eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10558                *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10559                if (*charfields++) {
10560                        *wbuf = le16_to_cpu(*wbuf);
10561                }
10562        }
10563        return chksum;
10564}
10565
10566/*
10567 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10568 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10569 * all of this is done.
10570 *
10571 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10572 *
10573 * For a non-fatal error return a warning code. If there are no warnings
10574 * then 0 is returned.
10575 *
10576 * Note: Chip is stopped on entry.
10577 */
10578static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
10579{
10580        AdvPortAddr iop_base;
10581        ushort warn_code;
10582        ADVEEP_3550_CONFIG eep_config;
10583
10584        iop_base = asc_dvc->iop_base;
10585
10586        warn_code = 0;
10587
10588        /*
10589         * Read the board's EEPROM configuration.
10590         *
10591         * Set default values if a bad checksum is found.
10592         */
10593        if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
10594                warn_code |= ASC_WARN_EEPROM_CHKSUM;
10595
10596                /*
10597                 * Set EEPROM default values.
10598                 */
10599                memcpy(&eep_config, &Default_3550_EEPROM_Config,
10600                        sizeof(ADVEEP_3550_CONFIG));
10601
10602                /*
10603                 * Assume the 6 byte board serial number that was read from
10604                 * EEPROM is correct even if the EEPROM checksum failed.
10605                 */
10606                eep_config.serial_number_word3 =
10607                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10608
10609                eep_config.serial_number_word2 =
10610                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10611
10612                eep_config.serial_number_word1 =
10613                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10614
10615                AdvSet3550EEPConfig(iop_base, &eep_config);
10616        }
10617        /*
10618         * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10619         * EEPROM configuration that was read.
10620         *
10621         * This is the mapping of EEPROM fields to Adv Library fields.
10622         */
10623        asc_dvc->wdtr_able = eep_config.wdtr_able;
10624        asc_dvc->sdtr_able = eep_config.sdtr_able;
10625        asc_dvc->ultra_able = eep_config.ultra_able;
10626        asc_dvc->tagqng_able = eep_config.tagqng_able;
10627        asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10628        asc_dvc->max_host_qng = eep_config.max_host_qng;
10629        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10630        asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10631        asc_dvc->start_motor = eep_config.start_motor;
10632        asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10633        asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10634        asc_dvc->no_scam = eep_config.scam_tolerant;
10635        asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10636        asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10637        asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10638
10639        /*
10640         * Set the host maximum queuing (max. 253, min. 16) and the per device
10641         * maximum queuing (max. 63, min. 4).
10642         */
10643        if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10644                eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10645        } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10646                /* If the value is zero, assume it is uninitialized. */
10647                if (eep_config.max_host_qng == 0) {
10648                        eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10649                } else {
10650                        eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10651                }
10652        }
10653
10654        if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10655                eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10656        } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10657                /* If the value is zero, assume it is uninitialized. */
10658                if (eep_config.max_dvc_qng == 0) {
10659                        eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10660                } else {
10661                        eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10662                }
10663        }
10664
10665        /*
10666         * If 'max_dvc_qng' is greater than 'max_host_qng', then
10667         * set 'max_dvc_qng' to 'max_host_qng'.
10668         */
10669        if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10670                eep_config.max_dvc_qng = eep_config.max_host_qng;
10671        }
10672
10673        /*
10674         * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10675         * values based on possibly adjusted EEPROM values.
10676         */
10677        asc_dvc->max_host_qng = eep_config.max_host_qng;
10678        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10679
10680        /*
10681         * If the EEPROM 'termination' field is set to automatic (0), then set
10682         * the ADV_DVC_CFG 'termination' field to automatic also.
10683         *
10684         * If the termination is specified with a non-zero 'termination'
10685         * value check that a legal value is set and set the ADV_DVC_CFG
10686         * 'termination' field appropriately.
10687         */
10688        if (eep_config.termination == 0) {
10689                asc_dvc->cfg->termination = 0;  /* auto termination */
10690        } else {
10691                /* Enable manual control with low off / high off. */
10692                if (eep_config.termination == 1) {
10693                        asc_dvc->cfg->termination = TERM_CTL_SEL;
10694
10695                        /* Enable manual control with low off / high on. */
10696                } else if (eep_config.termination == 2) {
10697                        asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10698
10699                        /* Enable manual control with low on / high on. */
10700                } else if (eep_config.termination == 3) {
10701                        asc_dvc->cfg->termination =
10702                            TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10703                } else {
10704                        /*
10705                         * The EEPROM 'termination' field contains a bad value. Use
10706                         * automatic termination instead.
10707                         */
10708                        asc_dvc->cfg->termination = 0;
10709                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
10710                }
10711        }
10712
10713        return warn_code;
10714}
10715
10716/*
10717 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10718 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10719 * all of this is done.
10720 *
10721 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10722 *
10723 * For a non-fatal error return a warning code. If there are no warnings
10724 * then 0 is returned.
10725 *
10726 * Note: Chip is stopped on entry.
10727 */
10728static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10729{
10730        AdvPortAddr iop_base;
10731        ushort warn_code;
10732        ADVEEP_38C0800_CONFIG eep_config;
10733        uchar tid, termination;
10734        ushort sdtr_speed = 0;
10735
10736        iop_base = asc_dvc->iop_base;
10737
10738        warn_code = 0;
10739
10740        /*
10741         * Read the board's EEPROM configuration.
10742         *
10743         * Set default values if a bad checksum is found.
10744         */
10745        if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10746            eep_config.check_sum) {
10747                warn_code |= ASC_WARN_EEPROM_CHKSUM;
10748
10749                /*
10750                 * Set EEPROM default values.
10751                 */
10752                memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10753                        sizeof(ADVEEP_38C0800_CONFIG));
10754
10755                /*
10756                 * Assume the 6 byte board serial number that was read from
10757                 * EEPROM is correct even if the EEPROM checksum failed.
10758                 */
10759                eep_config.serial_number_word3 =
10760                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10761
10762                eep_config.serial_number_word2 =
10763                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10764
10765                eep_config.serial_number_word1 =
10766                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10767
10768                AdvSet38C0800EEPConfig(iop_base, &eep_config);
10769        }
10770        /*
10771         * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10772         * EEPROM configuration that was read.
10773         *
10774         * This is the mapping of EEPROM fields to Adv Library fields.
10775         */
10776        asc_dvc->wdtr_able = eep_config.wdtr_able;
10777        asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10778        asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10779        asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10780        asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10781        asc_dvc->tagqng_able = eep_config.tagqng_able;
10782        asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10783        asc_dvc->max_host_qng = eep_config.max_host_qng;
10784        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10785        asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10786        asc_dvc->start_motor = eep_config.start_motor;
10787        asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10788        asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10789        asc_dvc->no_scam = eep_config.scam_tolerant;
10790        asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10791        asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10792        asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10793
10794        /*
10795         * For every Target ID if any of its 'sdtr_speed[1234]' bits
10796         * are set, then set an 'sdtr_able' bit for it.
10797         */
10798        asc_dvc->sdtr_able = 0;
10799        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10800                if (tid == 0) {
10801                        sdtr_speed = asc_dvc->sdtr_speed1;
10802                } else if (tid == 4) {
10803                        sdtr_speed = asc_dvc->sdtr_speed2;
10804                } else if (tid == 8) {
10805                        sdtr_speed = asc_dvc->sdtr_speed3;
10806                } else if (tid == 12) {
10807                        sdtr_speed = asc_dvc->sdtr_speed4;
10808                }
10809                if (sdtr_speed & ADV_MAX_TID) {
10810                        asc_dvc->sdtr_able |= (1 << tid);
10811                }
10812                sdtr_speed >>= 4;
10813        }
10814
10815        /*
10816         * Set the host maximum queuing (max. 253, min. 16) and the per device
10817         * maximum queuing (max. 63, min. 4).
10818         */
10819        if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10820                eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10821        } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10822                /* If the value is zero, assume it is uninitialized. */
10823                if (eep_config.max_host_qng == 0) {
10824                        eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10825                } else {
10826                        eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10827                }
10828        }
10829
10830        if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10831                eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10832        } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10833                /* If the value is zero, assume it is uninitialized. */
10834                if (eep_config.max_dvc_qng == 0) {
10835                        eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10836                } else {
10837                        eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10838                }
10839        }
10840
10841        /*
10842         * If 'max_dvc_qng' is greater than 'max_host_qng', then
10843         * set 'max_dvc_qng' to 'max_host_qng'.
10844         */
10845        if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10846                eep_config.max_dvc_qng = eep_config.max_host_qng;
10847        }
10848
10849        /*
10850         * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10851         * values based on possibly adjusted EEPROM values.
10852         */
10853        asc_dvc->max_host_qng = eep_config.max_host_qng;
10854        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10855
10856        /*
10857         * If the EEPROM 'termination' field is set to automatic (0), then set
10858         * the ADV_DVC_CFG 'termination' field to automatic also.
10859         *
10860         * If the termination is specified with a non-zero 'termination'
10861         * value check that a legal value is set and set the ADV_DVC_CFG
10862         * 'termination' field appropriately.
10863         */
10864        if (eep_config.termination_se == 0) {
10865                termination = 0;        /* auto termination for SE */
10866        } else {
10867                /* Enable manual control with low off / high off. */
10868                if (eep_config.termination_se == 1) {
10869                        termination = 0;
10870
10871                        /* Enable manual control with low off / high on. */
10872                } else if (eep_config.termination_se == 2) {
10873                        termination = TERM_SE_HI;
10874
10875                        /* Enable manual control with low on / high on. */
10876                } else if (eep_config.termination_se == 3) {
10877                        termination = TERM_SE;
10878                } else {
10879                        /*
10880                         * The EEPROM 'termination_se' field contains a bad value.
10881                         * Use automatic termination instead.
10882                         */
10883                        termination = 0;
10884                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
10885                }
10886        }
10887
10888        if (eep_config.termination_lvd == 0) {
10889                asc_dvc->cfg->termination = termination;        /* auto termination for LVD */
10890        } else {
10891                /* Enable manual control with low off / high off. */
10892                if (eep_config.termination_lvd == 1) {
10893                        asc_dvc->cfg->termination = termination;
10894
10895                        /* Enable manual control with low off / high on. */
10896                } else if (eep_config.termination_lvd == 2) {
10897                        asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10898
10899                        /* Enable manual control with low on / high on. */
10900                } else if (eep_config.termination_lvd == 3) {
10901                        asc_dvc->cfg->termination = termination | TERM_LVD;
10902                } else {
10903                        /*
10904                         * The EEPROM 'termination_lvd' field contains a bad value.
10905                         * Use automatic termination instead.
10906                         */
10907                        asc_dvc->cfg->termination = termination;
10908                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
10909                }
10910        }
10911
10912        return warn_code;
10913}
10914
10915/*
10916 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10917 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10918 * all of this is done.
10919 *
10920 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10921 *
10922 * For a non-fatal error return a warning code. If there are no warnings
10923 * then 0 is returned.
10924 *
10925 * Note: Chip is stopped on entry.
10926 */
10927static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10928{
10929        AdvPortAddr iop_base;
10930        ushort warn_code;
10931        ADVEEP_38C1600_CONFIG eep_config;
10932        uchar tid, termination;
10933        ushort sdtr_speed = 0;
10934
10935        iop_base = asc_dvc->iop_base;
10936
10937        warn_code = 0;
10938
10939        /*
10940         * Read the board's EEPROM configuration.
10941         *
10942         * Set default values if a bad checksum is found.
10943         */
10944        if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10945            eep_config.check_sum) {
10946                struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10947                warn_code |= ASC_WARN_EEPROM_CHKSUM;
10948
10949                /*
10950                 * Set EEPROM default values.
10951                 */
10952                memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10953                        sizeof(ADVEEP_38C1600_CONFIG));
10954
10955                if (PCI_FUNC(pdev->devfn) != 0) {
10956                        u8 ints;
10957                        /*
10958                         * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10959                         * and old Mac system booting problem. The Expansion
10960                         * ROM must be disabled in Function 1 for these systems
10961                         */
10962                        eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10963                        /*
10964                         * Clear the INTAB (bit 11) if the GPIO 0 input
10965                         * indicates the Function 1 interrupt line is wired
10966                         * to INTB.
10967                         *
10968                         * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10969                         *   1 - Function 1 interrupt line wired to INT A.
10970                         *   0 - Function 1 interrupt line wired to INT B.
10971                         *
10972                         * Note: Function 0 is always wired to INTA.
10973                         * Put all 5 GPIO bits in input mode and then read
10974                         * their input values.
10975                         */
10976                        AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10977                        ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10978                        if ((ints & 0x01) == 0)
10979                                eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10980                }
10981
10982                /*
10983                 * Assume the 6 byte board serial number that was read from
10984                 * EEPROM is correct even if the EEPROM checksum failed.
10985                 */
10986                eep_config.serial_number_word3 =
10987                        AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10988                eep_config.serial_number_word2 =
10989                        AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10990                eep_config.serial_number_word1 =
10991                        AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10992
10993                AdvSet38C1600EEPConfig(iop_base, &eep_config);
10994        }
10995
10996        /*
10997         * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10998         * EEPROM configuration that was read.
10999         *
11000         * This is the mapping of EEPROM fields to Adv Library fields.
11001         */
11002        asc_dvc->wdtr_able = eep_config.wdtr_able;
11003        asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11004        asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11005        asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11006        asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11007        asc_dvc->ppr_able = 0;
11008        asc_dvc->tagqng_able = eep_config.tagqng_able;
11009        asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11010        asc_dvc->max_host_qng = eep_config.max_host_qng;
11011        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11012        asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
11013        asc_dvc->start_motor = eep_config.start_motor;
11014        asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11015        asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11016        asc_dvc->no_scam = eep_config.scam_tolerant;
11017
11018        /*
11019         * For every Target ID if any of its 'sdtr_speed[1234]' bits
11020         * are set, then set an 'sdtr_able' bit for it.
11021         */
11022        asc_dvc->sdtr_able = 0;
11023        for (tid = 0; tid <= ASC_MAX_TID; tid++) {
11024                if (tid == 0) {
11025                        sdtr_speed = asc_dvc->sdtr_speed1;
11026                } else if (tid == 4) {
11027                        sdtr_speed = asc_dvc->sdtr_speed2;
11028                } else if (tid == 8) {
11029                        sdtr_speed = asc_dvc->sdtr_speed3;
11030                } else if (tid == 12) {
11031                        sdtr_speed = asc_dvc->sdtr_speed4;
11032                }
11033                if (sdtr_speed & ASC_MAX_TID) {
11034                        asc_dvc->sdtr_able |= (1 << tid);
11035                }
11036                sdtr_speed >>= 4;
11037        }
11038
11039        /*
11040         * Set the host maximum queuing (max. 253, min. 16) and the per device
11041         * maximum queuing (max. 63, min. 4).
11042         */
11043        if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11044                eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11045        } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11046                /* If the value is zero, assume it is uninitialized. */
11047                if (eep_config.max_host_qng == 0) {
11048                        eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11049                } else {
11050                        eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11051                }
11052        }
11053
11054        if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11055                eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11056        } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11057                /* If the value is zero, assume it is uninitialized. */
11058                if (eep_config.max_dvc_qng == 0) {
11059                        eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11060                } else {
11061                        eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11062                }
11063        }
11064
11065        /*
11066         * If 'max_dvc_qng' is greater than 'max_host_qng', then
11067         * set 'max_dvc_qng' to 'max_host_qng'.
11068         */
11069        if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11070                eep_config.max_dvc_qng = eep_config.max_host_qng;
11071        }
11072
11073        /*
11074         * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11075         * values based on possibly adjusted EEPROM values.
11076         */
11077        asc_dvc->max_host_qng = eep_config.max_host_qng;
11078        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11079
11080        /*
11081         * If the EEPROM 'termination' field is set to automatic (0), then set
11082         * the ASC_DVC_CFG 'termination' field to automatic also.
11083         *
11084         * If the termination is specified with a non-zero 'termination'
11085         * value check that a legal value is set and set the ASC_DVC_CFG
11086         * 'termination' field appropriately.
11087         */
11088        if (eep_config.termination_se == 0) {
11089                termination = 0;        /* auto termination for SE */
11090        } else {
11091                /* Enable manual control with low off / high off. */
11092                if (eep_config.termination_se == 1) {
11093                        termination = 0;
11094
11095                        /* Enable manual control with low off / high on. */
11096                } else if (eep_config.termination_se == 2) {
11097                        termination = TERM_SE_HI;
11098
11099                        /* Enable manual control with low on / high on. */
11100                } else if (eep_config.termination_se == 3) {
11101                        termination = TERM_SE;
11102                } else {
11103                        /*
11104                         * The EEPROM 'termination_se' field contains a bad value.
11105                         * Use automatic termination instead.
11106                         */
11107                        termination = 0;
11108                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
11109                }
11110        }
11111
11112        if (eep_config.termination_lvd == 0) {
11113                asc_dvc->cfg->termination = termination;        /* auto termination for LVD */
11114        } else {
11115                /* Enable manual control with low off / high off. */
11116                if (eep_config.termination_lvd == 1) {
11117                        asc_dvc->cfg->termination = termination;
11118
11119                        /* Enable manual control with low off / high on. */
11120                } else if (eep_config.termination_lvd == 2) {
11121                        asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11122
11123                        /* Enable manual control with low on / high on. */
11124                } else if (eep_config.termination_lvd == 3) {
11125                        asc_dvc->cfg->termination = termination | TERM_LVD;
11126                } else {
11127                        /*
11128                         * The EEPROM 'termination_lvd' field contains a bad value.
11129                         * Use automatic termination instead.
11130                         */
11131                        asc_dvc->cfg->termination = termination;
11132                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
11133                }
11134        }
11135
11136        return warn_code;
11137}
11138
11139/*
11140 * Initialize the ADV_DVC_VAR structure.
11141 *
11142 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11143 *
11144 * For a non-fatal error return a warning code. If there are no warnings
11145 * then 0 is returned.
11146 */
11147static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
11148{
11149        struct asc_board *board = shost_priv(shost);
11150        ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
11151        unsigned short warn_code = 0;
11152        AdvPortAddr iop_base = asc_dvc->iop_base;
11153        u16 cmd;
11154        int status;
11155
11156        asc_dvc->err_code = 0;
11157
11158        /*
11159         * Save the state of the PCI Configuration Command Register
11160         * "Parity Error Response Control" Bit. If the bit is clear (0),
11161         * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11162         * DMA parity errors.
11163         */
11164        asc_dvc->cfg->control_flag = 0;
11165        pci_read_config_word(pdev, PCI_COMMAND, &cmd);
11166        if ((cmd & PCI_COMMAND_PARITY) == 0)
11167                asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
11168
11169        asc_dvc->cfg->chip_version =
11170            AdvGetChipVersion(iop_base, asc_dvc->bus_type);
11171
11172        ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11173                 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
11174                 (ushort)ADV_CHIP_ID_BYTE);
11175
11176        ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11177                 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
11178                 (ushort)ADV_CHIP_ID_WORD);
11179
11180        /*
11181         * Reset the chip to start and allow register writes.
11182         */
11183        if (AdvFindSignature(iop_base) == 0) {
11184                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
11185                return ADV_ERROR;
11186        } else {
11187                /*
11188                 * The caller must set 'chip_type' to a valid setting.
11189                 */
11190                if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
11191                    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
11192                    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
11193                        asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
11194                        return ADV_ERROR;
11195                }
11196
11197                /*
11198                 * Reset Chip.
11199                 */
11200                AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11201                                     ADV_CTRL_REG_CMD_RESET);
11202                mdelay(100);
11203                AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11204                                     ADV_CTRL_REG_CMD_WR_IO_REG);
11205
11206                if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
11207                        status = AdvInitFrom38C1600EEP(asc_dvc);
11208                } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11209                        status = AdvInitFrom38C0800EEP(asc_dvc);
11210                } else {
11211                        status = AdvInitFrom3550EEP(asc_dvc);
11212                }
11213                warn_code |= status;
11214        }
11215
11216        if (warn_code != 0)
11217                shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
11218
11219        if (asc_dvc->err_code)
11220                shost_printk(KERN_ERR, shost, "error code 0x%x\n",
11221                                asc_dvc->err_code);
11222
11223        return asc_dvc->err_code;
11224}
11225#endif
11226
11227static struct scsi_host_template advansys_template = {
11228        .proc_name = DRV_NAME,
11229#ifdef CONFIG_PROC_FS
11230        .show_info = advansys_show_info,
11231#endif
11232        .name = DRV_NAME,
11233        .info = advansys_info,
11234        .queuecommand = advansys_queuecommand,
11235        .eh_bus_reset_handler = advansys_reset,
11236        .bios_param = advansys_biosparam,
11237        .slave_configure = advansys_slave_configure,
11238        /*
11239         * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11240         * must be set. The flag will be cleared in advansys_board_found
11241         * for non-ISA adapters.
11242         */
11243        .unchecked_isa_dma = 1,
11244        /*
11245         * All adapters controlled by this driver are capable of large
11246         * scatter-gather lists. According to the mid-level SCSI documentation
11247         * this obviates any performance gain provided by setting
11248         * 'use_clustering'. But empirically while CPU utilization is increased
11249         * by enabling clustering, I/O throughput increases as well.
11250         */
11251        .use_clustering = ENABLE_CLUSTERING,
11252};
11253
11254static int advansys_wide_init_chip(struct Scsi_Host *shost)
11255{
11256        struct asc_board *board = shost_priv(shost);
11257        struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11258        int req_cnt = 0;
11259        adv_req_t *reqp = NULL;
11260        int sg_cnt = 0;
11261        adv_sgblk_t *sgp;
11262        int warn_code, err_code;
11263
11264        /*
11265         * Allocate buffer carrier structures. The total size
11266         * is about 4 KB, so allocate all at once.
11267         */
11268        adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL);
11269        ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf);
11270
11271        if (!adv_dvc->carrier_buf)
11272                goto kmalloc_failed;
11273
11274        /*
11275         * Allocate up to 'max_host_qng' request structures for the Wide
11276         * board. The total size is about 16 KB, so allocate all at once.
11277         * If the allocation fails decrement and try again.
11278         */
11279        for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) {
11280                reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL);
11281
11282                ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt,
11283                         (ulong)sizeof(adv_req_t) * req_cnt);
11284
11285                if (reqp)
11286                        break;
11287        }
11288
11289        if (!reqp)
11290                goto kmalloc_failed;
11291
11292        adv_dvc->orig_reqp = reqp;
11293
11294        /*
11295         * Allocate up to ADV_TOT_SG_BLOCK request structures for
11296         * the Wide board. Each structure is about 136 bytes.
11297         */
11298        board->adv_sgblkp = NULL;
11299        for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) {
11300                sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL);
11301
11302                if (!sgp)
11303                        break;
11304
11305                sgp->next_sgblkp = board->adv_sgblkp;
11306                board->adv_sgblkp = sgp;
11307
11308        }
11309
11310        ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t),
11311                 sizeof(adv_sgblk_t) * sg_cnt);
11312
11313        if (!board->adv_sgblkp)
11314                goto kmalloc_failed;
11315
11316        /*
11317         * Point 'adv_reqp' to the request structures and
11318         * link them together.
11319         */
11320        req_cnt--;
11321        reqp[req_cnt].next_reqp = NULL;
11322        for (; req_cnt > 0; req_cnt--) {
11323                reqp[req_cnt - 1].next_reqp = &reqp[req_cnt];
11324        }
11325        board->adv_reqp = &reqp[0];
11326
11327        if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
11328                ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11329                warn_code = AdvInitAsc3550Driver(adv_dvc);
11330        } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11331                ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11332                warn_code = AdvInitAsc38C0800Driver(adv_dvc);
11333        } else {
11334                ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11335                warn_code = AdvInitAsc38C1600Driver(adv_dvc);
11336        }
11337        err_code = adv_dvc->err_code;
11338
11339        if (warn_code || err_code) {
11340                shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
11341                        "0x%x\n", warn_code, err_code);
11342        }
11343
11344        goto exit;
11345
11346 kmalloc_failed:
11347        shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
11348        err_code = ADV_ERROR;
11349 exit:
11350        return err_code;
11351}
11352
11353static void advansys_wide_free_mem(struct asc_board *board)
11354{
11355        struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11356        kfree(adv_dvc->carrier_buf);
11357        adv_dvc->carrier_buf = NULL;
11358        kfree(adv_dvc->orig_reqp);
11359        adv_dvc->orig_reqp = board->adv_reqp = NULL;
11360        while (board->adv_sgblkp) {
11361                adv_sgblk_t *sgp = board->adv_sgblkp;
11362                board->adv_sgblkp = sgp->next_sgblkp;
11363                kfree(sgp);
11364        }
11365}
11366
11367static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
11368                                int bus_type)
11369{
11370        struct pci_dev *pdev;
11371        struct asc_board *boardp = shost_priv(shost);
11372        ASC_DVC_VAR *asc_dvc_varp = NULL;
11373        ADV_DVC_VAR *adv_dvc_varp = NULL;
11374        int share_irq, warn_code, ret;
11375
11376        pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
11377
11378        if (ASC_NARROW_BOARD(boardp)) {
11379                ASC_DBG(1, "narrow board\n");
11380                asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
11381                asc_dvc_varp->bus_type = bus_type;
11382                asc_dvc_varp->drv_ptr = boardp;
11383                asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
11384                asc_dvc_varp->iop_base = iop;
11385        } else {
11386#ifdef CONFIG_PCI
11387                adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
11388                adv_dvc_varp->drv_ptr = boardp;
11389                adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
11390                if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
11391                        ASC_DBG(1, "wide board ASC-3550\n");
11392                        adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
11393                } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
11394                        ASC_DBG(1, "wide board ASC-38C0800\n");
11395                        adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
11396                } else {
11397                        ASC_DBG(1, "wide board ASC-38C1600\n");
11398                        adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
11399                }
11400
11401                boardp->asc_n_io_port = pci_resource_len(pdev, 1);
11402                boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
11403                if (!boardp->ioremap_addr) {
11404                        shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
11405                                        "returned NULL\n",
11406                                        (long)pci_resource_start(pdev, 1),
11407                                        boardp->asc_n_io_port);
11408                        ret = -ENODEV;
11409                        goto err_shost;
11410                }
11411                adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
11412                ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
11413
11414                /*
11415                 * Even though it isn't used to access wide boards, other
11416                 * than for the debug line below, save I/O Port address so
11417                 * that it can be reported.
11418                 */
11419                boardp->ioport = iop;
11420
11421                ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11422                                (ushort)inp(iop + 1), (ushort)inpw(iop));
11423#endif /* CONFIG_PCI */
11424        }
11425
11426        if (ASC_NARROW_BOARD(boardp)) {
11427                /*
11428                 * Set the board bus type and PCI IRQ before
11429                 * calling AscInitGetConfig().
11430                 */
11431                switch (asc_dvc_varp->bus_type) {
11432#ifdef CONFIG_ISA
11433                case ASC_IS_ISA:
11434                        shost->unchecked_isa_dma = TRUE;
11435                        share_irq = 0;
11436                        break;
11437                case ASC_IS_VL:
11438                        shost->unchecked_isa_dma = FALSE;
11439                        share_irq = 0;
11440                        break;
11441                case ASC_IS_EISA:
11442                        shost->unchecked_isa_dma = FALSE;
11443                        share_irq = IRQF_SHARED;
11444                        break;
11445#endif /* CONFIG_ISA */
11446#ifdef CONFIG_PCI
11447                case ASC_IS_PCI:
11448                        shost->unchecked_isa_dma = FALSE;
11449                        share_irq = IRQF_SHARED;
11450                        break;
11451#endif /* CONFIG_PCI */
11452                default:
11453                        shost_printk(KERN_ERR, shost, "unknown adapter type: "
11454                                        "%d\n", asc_dvc_varp->bus_type);
11455                        shost->unchecked_isa_dma = TRUE;
11456                        share_irq = 0;
11457                        break;
11458                }
11459
11460                /*
11461                 * NOTE: AscInitGetConfig() may change the board's
11462                 * bus_type value. The bus_type value should no
11463                 * longer be used. If the bus_type field must be
11464                 * referenced only use the bit-wise AND operator "&".
11465                 */
11466                ASC_DBG(2, "AscInitGetConfig()\n");
11467                ret = AscInitGetConfig(shost) ? -ENODEV : 0;
11468        } else {
11469#ifdef CONFIG_PCI
11470                /*
11471                 * For Wide boards set PCI information before calling
11472                 * AdvInitGetConfig().
11473                 */
11474                shost->unchecked_isa_dma = FALSE;
11475                share_irq = IRQF_SHARED;
11476                ASC_DBG(2, "AdvInitGetConfig()\n");
11477
11478                ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11479#endif /* CONFIG_PCI */
11480        }
11481
11482        if (ret)
11483                goto err_unmap;
11484
11485        /*
11486         * Save the EEPROM configuration so that it can be displayed
11487         * from /proc/scsi/advansys/[0...].
11488         */
11489        if (ASC_NARROW_BOARD(boardp)) {
11490
11491                ASCEEP_CONFIG *ep;
11492
11493                /*
11494                 * Set the adapter's target id bit in the 'init_tidmask' field.
11495                 */
11496                boardp->init_tidmask |=
11497                    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
11498
11499                /*
11500                 * Save EEPROM settings for the board.
11501                 */
11502                ep = &boardp->eep_config.asc_eep;
11503
11504                ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
11505                ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
11506                ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
11507                ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
11508                ep->start_motor = asc_dvc_varp->start_motor;
11509                ep->cntl = asc_dvc_varp->dvc_cntl;
11510                ep->no_scam = asc_dvc_varp->no_scam;
11511                ep->max_total_qng = asc_dvc_varp->max_total_qng;
11512                ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
11513                /* 'max_tag_qng' is set to the same value for every device. */
11514                ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
11515                ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
11516                ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
11517                ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
11518                ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
11519                ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
11520                ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
11521
11522                /*
11523                 * Modify board configuration.
11524                 */
11525                ASC_DBG(2, "AscInitSetConfig()\n");
11526                ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
11527                if (ret)
11528                        goto err_unmap;
11529        } else {
11530                ADVEEP_3550_CONFIG *ep_3550;
11531                ADVEEP_38C0800_CONFIG *ep_38C0800;
11532                ADVEEP_38C1600_CONFIG *ep_38C1600;
11533
11534                /*
11535                 * Save Wide EEP Configuration Information.
11536                 */
11537                if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
11538                        ep_3550 = &boardp->eep_config.adv_3550_eep;
11539
11540                        ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
11541                        ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
11542                        ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11543                        ep_3550->termination = adv_dvc_varp->cfg->termination;
11544                        ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
11545                        ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
11546                        ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
11547                        ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
11548                        ep_3550->ultra_able = adv_dvc_varp->ultra_able;
11549                        ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
11550                        ep_3550->start_motor = adv_dvc_varp->start_motor;
11551                        ep_3550->scsi_reset_delay =
11552                            adv_dvc_varp->scsi_reset_wait;
11553                        ep_3550->serial_number_word1 =
11554                            adv_dvc_varp->cfg->serial1;
11555                        ep_3550->serial_number_word2 =
11556                            adv_dvc_varp->cfg->serial2;
11557                        ep_3550->serial_number_word3 =
11558                            adv_dvc_varp->cfg->serial3;
11559                } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
11560                        ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
11561
11562                        ep_38C0800->adapter_scsi_id =
11563                            adv_dvc_varp->chip_scsi_id;
11564                        ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
11565                        ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11566                        ep_38C0800->termination_lvd =
11567                            adv_dvc_varp->cfg->termination;
11568                        ep_38C0800->disc_enable =
11569                            adv_dvc_varp->cfg->disc_enable;
11570                        ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
11571                        ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
11572                        ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11573                        ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11574                        ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11575                        ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11576                        ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11577                        ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11578                        ep_38C0800->start_motor = adv_dvc_varp->start_motor;
11579                        ep_38C0800->scsi_reset_delay =
11580                            adv_dvc_varp->scsi_reset_wait;
11581                        ep_38C0800->serial_number_word1 =
11582                            adv_dvc_varp->cfg->serial1;
11583                        ep_38C0800->serial_number_word2 =
11584                            adv_dvc_varp->cfg->serial2;
11585                        ep_38C0800->serial_number_word3 =
11586                            adv_dvc_varp->cfg->serial3;
11587                } else {
11588                        ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
11589
11590                        ep_38C1600->adapter_scsi_id =
11591                            adv_dvc_varp->chip_scsi_id;
11592                        ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
11593                        ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11594                        ep_38C1600->termination_lvd =
11595                            adv_dvc_varp->cfg->termination;
11596                        ep_38C1600->disc_enable =
11597                            adv_dvc_varp->cfg->disc_enable;
11598                        ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
11599                        ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
11600                        ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11601                        ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11602                        ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11603                        ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11604                        ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11605                        ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11606                        ep_38C1600->start_motor = adv_dvc_varp->start_motor;
11607                        ep_38C1600->scsi_reset_delay =
11608                            adv_dvc_varp->scsi_reset_wait;
11609                        ep_38C1600->serial_number_word1 =
11610                            adv_dvc_varp->cfg->serial1;
11611                        ep_38C1600->serial_number_word2 =
11612                            adv_dvc_varp->cfg->serial2;
11613                        ep_38C1600->serial_number_word3 =
11614                            adv_dvc_varp->cfg->serial3;
11615                }
11616
11617                /*
11618                 * Set the adapter's target id bit in the 'init_tidmask' field.
11619                 */
11620                boardp->init_tidmask |=
11621                    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
11622        }
11623
11624        /*
11625         * Channels are numbered beginning with 0. For AdvanSys one host
11626         * structure supports one channel. Multi-channel boards have a
11627         * separate host structure for each channel.
11628         */
11629        shost->max_channel = 0;
11630        if (ASC_NARROW_BOARD(boardp)) {
11631                shost->max_id = ASC_MAX_TID + 1;
11632                shost->max_lun = ASC_MAX_LUN + 1;
11633                shost->max_cmd_len = ASC_MAX_CDB_LEN;
11634
11635                shost->io_port = asc_dvc_varp->iop_base;
11636                boardp->asc_n_io_port = ASC_IOADR_GAP;
11637                shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
11638
11639                /* Set maximum number of queues the adapter can handle. */
11640                shost->can_queue = asc_dvc_varp->max_total_qng;
11641        } else {
11642                shost->max_id = ADV_MAX_TID + 1;
11643                shost->max_lun = ADV_MAX_LUN + 1;
11644                shost->max_cmd_len = ADV_MAX_CDB_LEN;
11645
11646                /*
11647                 * Save the I/O Port address and length even though
11648                 * I/O ports are not used to access Wide boards.
11649                 * Instead the Wide boards are accessed with
11650                 * PCI Memory Mapped I/O.
11651                 */
11652                shost->io_port = iop;
11653
11654                shost->this_id = adv_dvc_varp->chip_scsi_id;
11655
11656                /* Set maximum number of queues the adapter can handle. */
11657                shost->can_queue = adv_dvc_varp->max_host_qng;
11658        }
11659
11660        /*
11661         * Following v1.3.89, 'cmd_per_lun' is no longer needed
11662         * and should be set to zero.
11663         *
11664         * But because of a bug introduced in v1.3.89 if the driver is
11665         * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
11666         * SCSI function 'allocate_device' will panic. To allow the driver
11667         * to work as a module in these kernels set 'cmd_per_lun' to 1.
11668         *
11669         * Note: This is wrong.  cmd_per_lun should be set to the depth
11670         * you want on untagged devices always.
11671         #ifdef MODULE
11672         */
11673        shost->cmd_per_lun = 1;
11674/* #else
11675            shost->cmd_per_lun = 0;
11676#endif */
11677
11678        /*
11679         * Set the maximum number of scatter-gather elements the
11680         * adapter can handle.
11681         */
11682        if (ASC_NARROW_BOARD(boardp)) {
11683                /*
11684                 * Allow two commands with 'sg_tablesize' scatter-gather
11685                 * elements to be executed simultaneously. This value is
11686                 * the theoretical hardware limit. It may be decreased
11687                 * below.
11688                 */
11689                shost->sg_tablesize =
11690                    (((asc_dvc_varp->max_total_qng - 2) / 2) *
11691                     ASC_SG_LIST_PER_Q) + 1;
11692        } else {
11693                shost->sg_tablesize = ADV_MAX_SG_LIST;
11694        }
11695
11696        /*
11697         * The value of 'sg_tablesize' can not exceed the SCSI
11698         * mid-level driver definition of SG_ALL. SG_ALL also
11699         * must not be exceeded, because it is used to define the
11700         * size of the scatter-gather table in 'struct asc_sg_head'.
11701         */
11702        if (shost->sg_tablesize > SG_ALL) {
11703                shost->sg_tablesize = SG_ALL;
11704        }
11705
11706        ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11707
11708        /* BIOS start address. */
11709        if (ASC_NARROW_BOARD(boardp)) {
11710                shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11711                                                    asc_dvc_varp->bus_type);
11712        } else {
11713                /*
11714                 * Fill-in BIOS board variables. The Wide BIOS saves
11715                 * information in LRAM that is used by the driver.
11716                 */
11717                AdvReadWordLram(adv_dvc_varp->iop_base,
11718                                BIOS_SIGNATURE, boardp->bios_signature);
11719                AdvReadWordLram(adv_dvc_varp->iop_base,
11720                                BIOS_VERSION, boardp->bios_version);
11721                AdvReadWordLram(adv_dvc_varp->iop_base,
11722                                BIOS_CODESEG, boardp->bios_codeseg);
11723                AdvReadWordLram(adv_dvc_varp->iop_base,
11724                                BIOS_CODELEN, boardp->bios_codelen);
11725
11726                ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11727                         boardp->bios_signature, boardp->bios_version);
11728
11729                ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11730                         boardp->bios_codeseg, boardp->bios_codelen);
11731
11732                /*
11733                 * If the BIOS saved a valid signature, then fill in
11734                 * the BIOS code segment base address.
11735                 */
11736                if (boardp->bios_signature == 0x55AA) {
11737                        /*
11738                         * Convert x86 realmode code segment to a linear
11739                         * address by shifting left 4.
11740                         */
11741                        shost->base = ((ulong)boardp->bios_codeseg << 4);
11742                } else {
11743                        shost->base = 0;
11744                }
11745        }
11746
11747        /*
11748         * Register Board Resources - I/O Port, DMA, IRQ
11749         */
11750
11751        /* Register DMA Channel for Narrow boards. */
11752        shost->dma_channel = NO_ISA_DMA;        /* Default to no ISA DMA. */
11753#ifdef CONFIG_ISA
11754        if (ASC_NARROW_BOARD(boardp)) {
11755                /* Register DMA channel for ISA bus. */
11756                if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
11757                        shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
11758                        ret = request_dma(shost->dma_channel, DRV_NAME);
11759                        if (ret) {
11760                                shost_printk(KERN_ERR, shost, "request_dma() "
11761                                                "%d failed %d\n",
11762                                                shost->dma_channel, ret);
11763                                goto err_unmap;
11764                        }
11765                        AscEnableIsaDma(shost->dma_channel);
11766                }
11767        }
11768#endif /* CONFIG_ISA */
11769
11770        /* Register IRQ Number. */
11771        ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11772
11773        ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11774                          DRV_NAME, shost);
11775
11776        if (ret) {
11777                if (ret == -EBUSY) {
11778                        shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11779                                        "already in use\n", boardp->irq);
11780                } else if (ret == -EINVAL) {
11781                        shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11782                                        "not valid\n", boardp->irq);
11783                } else {
11784                        shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11785                                        "failed with %d\n", boardp->irq, ret);
11786                }
11787                goto err_free_dma;
11788        }
11789
11790        /*
11791         * Initialize board RISC chip and enable interrupts.
11792         */
11793        if (ASC_NARROW_BOARD(boardp)) {
11794                ASC_DBG(2, "AscInitAsc1000Driver()\n");
11795
11796                asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11797                if (!asc_dvc_varp->overrun_buf) {
11798                        ret = -ENOMEM;
11799                        goto err_free_irq;
11800                }
11801                warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11802
11803                if (warn_code || asc_dvc_varp->err_code) {
11804                        shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11805                                        "warn 0x%x, error 0x%x\n",
11806                                        asc_dvc_varp->init_state, warn_code,
11807                                        asc_dvc_varp->err_code);
11808                        if (!asc_dvc_varp->overrun_dma) {
11809                                ret = -ENODEV;
11810                                goto err_free_mem;
11811                        }
11812                }
11813        } else {
11814                if (advansys_wide_init_chip(shost)) {
11815                        ret = -ENODEV;
11816                        goto err_free_mem;
11817                }
11818        }
11819
11820        ASC_DBG_PRT_SCSI_HOST(2, shost);
11821
11822        ret = scsi_add_host(shost, boardp->dev);
11823        if (ret)
11824                goto err_free_mem;
11825
11826        scsi_scan_host(shost);
11827        return 0;
11828
11829 err_free_mem:
11830        if (ASC_NARROW_BOARD(boardp)) {
11831                if (asc_dvc_varp->overrun_dma)
11832                        dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11833                                         ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11834                kfree(asc_dvc_varp->overrun_buf);
11835        } else
11836                advansys_wide_free_mem(boardp);
11837 err_free_irq:
11838        free_irq(boardp->irq, shost);
11839 err_free_dma:
11840#ifdef CONFIG_ISA
11841        if (shost->dma_channel != NO_ISA_DMA)
11842                free_dma(shost->dma_channel);
11843#endif
11844 err_unmap:
11845        if (boardp->ioremap_addr)
11846                iounmap(boardp->ioremap_addr);
11847 err_shost:
11848        return ret;
11849}
11850
11851/*
11852 * advansys_release()
11853 *
11854 * Release resources allocated for a single AdvanSys adapter.
11855 */
11856static int advansys_release(struct Scsi_Host *shost)
11857{
11858        struct asc_board *board = shost_priv(shost);
11859        ASC_DBG(1, "begin\n");
11860        scsi_remove_host(shost);
11861        free_irq(board->irq, shost);
11862#ifdef CONFIG_ISA
11863        if (shost->dma_channel != NO_ISA_DMA) {
11864                ASC_DBG(1, "free_dma()\n");
11865                free_dma(shost->dma_channel);
11866        }
11867#endif
11868        if (ASC_NARROW_BOARD(board)) {
11869                dma_unmap_single(board->dev,
11870                                        board->dvc_var.asc_dvc_var.overrun_dma,
11871                                        ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11872                kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11873        } else {
11874                iounmap(board->ioremap_addr);
11875                advansys_wide_free_mem(board);
11876        }
11877        scsi_host_put(shost);
11878        ASC_DBG(1, "end\n");
11879        return 0;
11880}
11881
11882#define ASC_IOADR_TABLE_MAX_IX  11
11883
11884static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11885        0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11886        0x0210, 0x0230, 0x0250, 0x0330
11887};
11888
11889/*
11890 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw.  It decodes as:
11891 * 00: 10
11892 * 01: 11
11893 * 10: 12
11894 * 11: 15
11895 */
11896static unsigned int advansys_isa_irq_no(PortAddr iop_base)
11897{
11898        unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11899        unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
11900        if (chip_irq == 13)
11901                chip_irq = 15;
11902        return chip_irq;
11903}
11904
11905static int advansys_isa_probe(struct device *dev, unsigned int id)
11906{
11907        int err = -ENODEV;
11908        PortAddr iop_base = _asc_def_iop_base[id];
11909        struct Scsi_Host *shost;
11910        struct asc_board *board;
11911
11912        if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11913                ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11914                return -ENODEV;
11915        }
11916        ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11917        if (!AscFindSignature(iop_base))
11918                goto release_region;
11919        if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
11920                goto release_region;
11921
11922        err = -ENOMEM;
11923        shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11924        if (!shost)
11925                goto release_region;
11926
11927        board = shost_priv(shost);
11928        board->irq = advansys_isa_irq_no(iop_base);
11929        board->dev = dev;
11930
11931        err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
11932        if (err)
11933                goto free_host;
11934
11935        dev_set_drvdata(dev, shost);
11936        return 0;
11937
11938 free_host:
11939        scsi_host_put(shost);
11940 release_region:
11941        release_region(iop_base, ASC_IOADR_GAP);
11942        return err;
11943}
11944
11945static int advansys_isa_remove(struct device *dev, unsigned int id)
11946{
11947        int ioport = _asc_def_iop_base[id];
11948        advansys_release(dev_get_drvdata(dev));
11949        release_region(ioport, ASC_IOADR_GAP);
11950        return 0;
11951}
11952
11953static struct isa_driver advansys_isa_driver = {
11954        .probe          = advansys_isa_probe,
11955        .remove         = advansys_isa_remove,
11956        .driver = {
11957                .owner  = THIS_MODULE,
11958                .name   = DRV_NAME,
11959        },
11960};
11961
11962/*
11963 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
11964 * 000: invalid
11965 * 001: 10
11966 * 010: 11
11967 * 011: 12
11968 * 100: invalid
11969 * 101: 14
11970 * 110: 15
11971 * 111: invalid
11972 */
11973static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11974{
11975        unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11976        unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11977        if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11978                return 0;
11979        return chip_irq;
11980}
11981
11982static int advansys_vlb_probe(struct device *dev, unsigned int id)
11983{
11984        int err = -ENODEV;
11985        PortAddr iop_base = _asc_def_iop_base[id];
11986        struct Scsi_Host *shost;
11987        struct asc_board *board;
11988
11989        if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11990                ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11991                return -ENODEV;
11992        }
11993        ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11994        if (!AscFindSignature(iop_base))
11995                goto release_region;
11996        /*
11997         * I don't think this condition can actually happen, but the old
11998         * driver did it, and the chances of finding a VLB setup in 2007
11999         * to do testing with is slight to none.
12000         */
12001        if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
12002                goto release_region;
12003
12004        err = -ENOMEM;
12005        shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12006        if (!shost)
12007                goto release_region;
12008
12009        board = shost_priv(shost);
12010        board->irq = advansys_vlb_irq_no(iop_base);
12011        board->dev = dev;
12012
12013        err = advansys_board_found(shost, iop_base, ASC_IS_VL);
12014        if (err)
12015                goto free_host;
12016
12017        dev_set_drvdata(dev, shost);
12018        return 0;
12019
12020 free_host:
12021        scsi_host_put(shost);
12022 release_region:
12023        release_region(iop_base, ASC_IOADR_GAP);
12024        return -ENODEV;
12025}
12026
12027static struct isa_driver advansys_vlb_driver = {
12028        .probe          = advansys_vlb_probe,
12029        .remove         = advansys_isa_remove,
12030        .driver = {
12031                .owner  = THIS_MODULE,
12032                .name   = "advansys_vlb",
12033        },
12034};
12035
12036static struct eisa_device_id advansys_eisa_table[] = {
12037        { "ABP7401" },
12038        { "ABP7501" },
12039        { "" }
12040};
12041
12042MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
12043
12044/*
12045 * EISA is a little more tricky than PCI; each EISA device may have two
12046 * channels, and this driver is written to make each channel its own Scsi_Host
12047 */
12048struct eisa_scsi_data {
12049        struct Scsi_Host *host[2];
12050};
12051
12052/*
12053 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
12054 * 000: 10
12055 * 001: 11
12056 * 010: 12
12057 * 011: invalid
12058 * 100: 14
12059 * 101: 15
12060 * 110: invalid
12061 * 111: invalid
12062 */
12063static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
12064{
12065        unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
12066        unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
12067        if ((chip_irq == 13) || (chip_irq > 15))
12068                return 0;
12069        return chip_irq;
12070}
12071
12072static int advansys_eisa_probe(struct device *dev)
12073{
12074        int i, ioport, irq = 0;
12075        int err;
12076        struct eisa_device *edev = to_eisa_device(dev);
12077        struct eisa_scsi_data *data;
12078
12079        err = -ENOMEM;
12080        data = kzalloc(sizeof(*data), GFP_KERNEL);
12081        if (!data)
12082                goto fail;
12083        ioport = edev->base_addr + 0xc30;
12084
12085        err = -ENODEV;
12086        for (i = 0; i < 2; i++, ioport += 0x20) {
12087                struct asc_board *board;
12088                struct Scsi_Host *shost;
12089                if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
12090                        printk(KERN_WARNING "Region %x-%x busy\n", ioport,
12091                               ioport + ASC_IOADR_GAP - 1);
12092                        continue;
12093                }
12094                if (!AscFindSignature(ioport)) {
12095                        release_region(ioport, ASC_IOADR_GAP);
12096                        continue;
12097                }
12098
12099                /*
12100                 * I don't know why we need to do this for EISA chips, but
12101                 * not for any others.  It looks to be equivalent to
12102                 * AscGetChipCfgMsw, but I may have overlooked something,
12103                 * so I'm not converting it until I get an EISA board to
12104                 * test with.
12105                 */
12106                inw(ioport + 4);
12107
12108                if (!irq)
12109                        irq = advansys_eisa_irq_no(edev);
12110
12111                err = -ENOMEM;
12112                shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12113                if (!shost)
12114                        goto release_region;
12115
12116                board = shost_priv(shost);
12117                board->irq = irq;
12118                board->dev = dev;
12119
12120                err = advansys_board_found(shost, ioport, ASC_IS_EISA);
12121                if (!err) {
12122                        data->host[i] = shost;
12123                        continue;
12124                }
12125
12126                scsi_host_put(shost);
12127 release_region:
12128                release_region(ioport, ASC_IOADR_GAP);
12129                break;
12130        }
12131
12132        if (err)
12133                goto free_data;
12134        dev_set_drvdata(dev, data);
12135        return 0;
12136
12137 free_data:
12138        kfree(data->host[0]);
12139        kfree(data->host[1]);
12140        kfree(data);
12141 fail:
12142        return err;
12143}
12144
12145static int advansys_eisa_remove(struct device *dev)
12146{
12147        int i;
12148        struct eisa_scsi_data *data = dev_get_drvdata(dev);
12149
12150        for (i = 0; i < 2; i++) {
12151                int ioport;
12152                struct Scsi_Host *shost = data->host[i];
12153                if (!shost)
12154                        continue;
12155                ioport = shost->io_port;
12156                advansys_release(shost);
12157                release_region(ioport, ASC_IOADR_GAP);
12158        }
12159
12160        kfree(data);
12161        return 0;
12162}
12163
12164static struct eisa_driver advansys_eisa_driver = {
12165        .id_table =             advansys_eisa_table,
12166        .driver = {
12167                .name =         DRV_NAME,
12168                .probe =        advansys_eisa_probe,
12169                .remove =       advansys_eisa_remove,
12170        }
12171};
12172
12173/* PCI Devices supported by this driver */
12174static struct pci_device_id advansys_pci_tbl[] = {
12175        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
12176         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12177        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
12178         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12179        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
12180         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12181        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
12182         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12183        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
12184         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12185        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
12186         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12187        {}
12188};
12189
12190MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
12191
12192static void advansys_set_latency(struct pci_dev *pdev)
12193{
12194        if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
12195            (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
12196                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
12197        } else {
12198                u8 latency;
12199                pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
12200                if (latency < 0x20)
12201                        pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
12202        }
12203}
12204
12205static int advansys_pci_probe(struct pci_dev *pdev,
12206                              const struct pci_device_id *ent)
12207{
12208        int err, ioport;
12209        struct Scsi_Host *shost;
12210        struct asc_board *board;
12211
12212        err = pci_enable_device(pdev);
12213        if (err)
12214                goto fail;
12215        err = pci_request_regions(pdev, DRV_NAME);
12216        if (err)
12217                goto disable_device;
12218        pci_set_master(pdev);
12219        advansys_set_latency(pdev);
12220
12221        err = -ENODEV;
12222        if (pci_resource_len(pdev, 0) == 0)
12223                goto release_region;
12224
12225        ioport = pci_resource_start(pdev, 0);
12226
12227        err = -ENOMEM;
12228        shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12229        if (!shost)
12230                goto release_region;
12231
12232        board = shost_priv(shost);
12233        board->irq = pdev->irq;
12234        board->dev = &pdev->dev;
12235
12236        if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
12237            pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
12238            pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
12239                board->flags |= ASC_IS_WIDE_BOARD;
12240        }
12241
12242        err = advansys_board_found(shost, ioport, ASC_IS_PCI);
12243        if (err)
12244                goto free_host;
12245
12246        pci_set_drvdata(pdev, shost);
12247        return 0;
12248
12249 free_host:
12250        scsi_host_put(shost);
12251 release_region:
12252        pci_release_regions(pdev);
12253 disable_device:
12254        pci_disable_device(pdev);
12255 fail:
12256        return err;
12257}
12258
12259static void advansys_pci_remove(struct pci_dev *pdev)
12260{
12261        advansys_release(pci_get_drvdata(pdev));
12262        pci_release_regions(pdev);
12263        pci_disable_device(pdev);
12264}
12265
12266static struct pci_driver advansys_pci_driver = {
12267        .name =         DRV_NAME,
12268        .id_table =     advansys_pci_tbl,
12269        .probe =        advansys_pci_probe,
12270        .remove =       advansys_pci_remove,
12271};
12272
12273static int __init advansys_init(void)
12274{
12275        int error;
12276
12277        error = isa_register_driver(&advansys_isa_driver,
12278                                    ASC_IOADR_TABLE_MAX_IX);
12279        if (error)
12280                goto fail;
12281
12282        error = isa_register_driver(&advansys_vlb_driver,
12283                                    ASC_IOADR_TABLE_MAX_IX);
12284        if (error)
12285                goto unregister_isa;
12286
12287        error = eisa_driver_register(&advansys_eisa_driver);
12288        if (error)
12289                goto unregister_vlb;
12290
12291        error = pci_register_driver(&advansys_pci_driver);
12292        if (error)
12293                goto unregister_eisa;
12294
12295        return 0;
12296
12297 unregister_eisa:
12298        eisa_driver_unregister(&advansys_eisa_driver);
12299 unregister_vlb:
12300        isa_unregister_driver(&advansys_vlb_driver);
12301 unregister_isa:
12302        isa_unregister_driver(&advansys_isa_driver);
12303 fail:
12304        return error;
12305}
12306
12307static void __exit advansys_exit(void)
12308{
12309        pci_unregister_driver(&advansys_pci_driver);
12310        eisa_driver_unregister(&advansys_eisa_driver);
12311        isa_unregister_driver(&advansys_vlb_driver);
12312        isa_unregister_driver(&advansys_isa_driver);
12313}
12314
12315module_init(advansys_init);
12316module_exit(advansys_exit);
12317
12318MODULE_LICENSE("GPL");
12319MODULE_FIRMWARE("advansys/mcode.bin");
12320MODULE_FIRMWARE("advansys/3550.bin");
12321MODULE_FIRMWARE("advansys/38C0800.bin");
12322MODULE_FIRMWARE("advansys/38C1600.bin");
12323